JP4698100B2 - Multi-wiring board - Google Patents

Multi-wiring board Download PDF

Info

Publication number
JP4698100B2
JP4698100B2 JP2001301325A JP2001301325A JP4698100B2 JP 4698100 B2 JP4698100 B2 JP 4698100B2 JP 2001301325 A JP2001301325 A JP 2001301325A JP 2001301325 A JP2001301325 A JP 2001301325A JP 4698100 B2 JP4698100 B2 JP 4698100B2
Authority
JP
Japan
Prior art keywords
conductor
dummy
wiring board
wiring
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001301325A
Other languages
Japanese (ja)
Other versions
JP2003110220A (en
Inventor
英典 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001301325A priority Critical patent/JP4698100B2/en
Publication of JP2003110220A publication Critical patent/JP2003110220A/en
Application granted granted Critical
Publication of JP4698100B2 publication Critical patent/JP4698100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、広面積の母基板中に半導体素子や抵抗器等の電子部品を搭載するための配線基板となる配線基板領域を多数個配列形成して成る多数個取り配線基板に関する。
【0002】
【従来の技術】
従来、半導体素子や抵抗器等の電子部品を搭載するために用いられる配線基板として、ガラス基材および熱硬化性樹脂から成る絶縁層と銅箔等から成る配線導体とを交互に複数積層して成るプリント基板が知られている。このようなプリント基板は、絶縁層表面に被着した銅箔をエッチングして配線導体を形成し、配線導体が形成された絶縁層を熱硬化性樹脂からなる接着材を間に挟んで複数積層圧着して多層化することにより製造されている。しかしながらこのプリント基板は、絶縁層表面の配線導体部と非配線導体部との段差により表面が凹凸状態となることから、絶縁層に若干の可塑性を持たせた絶縁シートを用い、絶縁シートを積層する際に絶縁シートの配線導体に当接する部位を配線導体の厚みに対応して塑性変形させることにより配線導体を絶縁シート中に埋入させ積層・硬化することにより、プリント基板表面に凹凸が形成されないようにしている(特開平10−27959号公報参照)。
【0003】
このようなプリント基板は、耐熱性繊維に熱硬化性樹脂前駆体を含浸させた母基板と成る絶縁シートの配線基板領域にレーザで貫通孔を形成した後、この貫通孔内に金属粉末および熱硬化性樹脂前駆体から成る導体ペーストをスクリーン印刷(圧入)で埋め込み貫通導体を形成し、他方、耐熱性樹脂から成る転写用シート基材の表面に銅箔を被着し、所定のパターンにエッチングして絶縁シートの各配線基板領域に対応する位置に配線導体を形成し、しかる後、貫通導体が形成された絶縁シートに配線導体が形成された転写用シート基材を圧接して配線導体を絶縁シートに転写埋入するとともに貫通導体と接続させ、さらに、絶縁シートから転写用シート基材を剥離した後、配線導体が埋入された絶縁シートを複数積層して熱プレスを用いて熱硬化性樹脂前駆体を硬化一体化させて多数個取り配線基板を得、最後に、これをルータ等の切断機で分割することにより製造される。
【0004】
なお、多数個取り配線基板に形成した配線導体の導通試験や配線導体間の絶縁試験などの電気検査を行う際の配線基板の位置決めのために、通常は、配線基板領域の周囲の母基板の表面に配線導体を形成すると同時に位置決めマークを形成し、この位置決めマークを基準として電気検査を行っている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のような多数個取り配線基板は、可塑性を有する絶縁シートを複数積層して熱プレスを用いて製造されているため、積層して熱プレスする際に熱硬化性樹脂前駆体の粘度が低下するとともに熱硬化性樹脂前駆体が流動し位置決めマークの位置がズレてしまい、電気検査を行う際に電気検査端子が正確な位置に接触できず、その結果、正確な電気検査ができないという問題点を有していた。
【0006】
本発明は上記従来技術における問題点に鑑み完成されたものであり、その目的は、位置決めマークの位置ズレを抑制でき、電気検査を行う際に電気検査端子が配線導体の所定の位置に正確に接触し、正確な電気検査を行うことができる多数個取り配線基板を提供するものである。
【0007】
【課題を解決するための手段】
本発明の多数個取り配線基板は、ガラス繊維基材に熱硬化性樹脂を含浸して硬化させて成る複数の絶縁層から成る母基板に、絶縁層の表面および層間に配設された配線導体と、上下に位置する配線導体間の絶縁層に形成された貫通孔と、この貫通孔の内部に導体を充填して配線導体間を電気的に接続する貫通導体とを具備して成る配線基板領域を複数個配列して成るとともに、配線基板領域の周囲の母基板の表面に配線基板領域の位置確認のための位置決めマークを転写により形成して成る多数個取り配線基板であって、位置決めマークの直下の絶縁層にダミーの貫通孔を形成し、このダミーの貫通孔の内部に導体を充填したダミーの貫通導体を形成するとともに、このダミーの貫通導体と位置決めマークとを接続したことを特徴とするものである。
【0008】
本発明の多数個取り配線基板によれば、位置決めマークの直下の絶縁層にダミーの貫通孔を形成し、このダミーの貫通孔の内部に導体を充填したダミーの貫通導体を形成するとともに、ダミーの貫通導体と位置決めマークとを接続したことから、積層して熱プレスする際に熱硬化性樹脂前駆体の粘度が低下し熱硬化性樹脂前駆体が流動しても、ダミーの貫通導体が位置決めマークのズレを抑制するくさびの役目を果たすために、位置決めマークの位置ズレを抑制でき、電気検査を行う際に電気検査端子が配線導体の所定の位置に正確に接触することができ、その結果、正確な電気検査を行うことができる多数個取り配線基板とすることができる。
【0009】
【発明の実施の形態】
つぎに、本発明の多数個取り配線基板を添付の図面に基づいて詳細に説明する。
【0010】
図1(a)は本発明の多数個取り配線基板の平面図であり、図1(b)は断面図である。これらの図において、1は絶縁層、2は配線導体、3は貫通孔、4は貫通導体、5は位置決めマーク、6aはダミーの貫通孔、6bはダミーの貫通導体、7は配線基板領域、8は母基板、Aはガラス繊維基材であり、主にこれらで本発明の多数個取り配線基板が構成されている。なお、図1では、絶縁層1を3層積層した場合の例を示している。
【0011】
本発明の多数個取り配線基板は、絶縁層1を複数積層してなる母基板8の中央部に多数の配線基板領域7を配設するとともに、絶縁層1表面の配線基板領域7の周囲の母基板8の表面に位置決めマーク5を配設させることにより形成されている。
【0012】
多数個取り配線基板を構成する絶縁層1は、ガラス繊維基材Aに熱硬化性樹脂を含浸させた、いわゆるプリプレグを硬化することにより形成されている。ガラス繊維基材Aは、織布や不織布として絶縁層1に対して30〜70体積%の割合で含有され、熱硬化性樹脂が硬化収縮する際の絶縁層1のそりや変形等を抑制する機能を有し、また、熱硬化性樹脂としては、エポキシ樹脂やPPE(ポリフェニレンエーテル樹脂)・フェノール系樹脂・トリアジン系樹脂・ポリイミド系樹脂等が用いられる。
【0013】
このような多数個取り配線基板は、例えば、熱硬化性樹脂がエポキシ樹脂から成る場合であれば、ビスフェノールA型エポキシ樹脂やノボラック型エポキシ樹脂・グリシジルエステル型エポキシ樹脂等のエポキシ樹脂に芳香族アミン等の架橋剤・溶剤・可塑剤・分散剤等を添加した混合物を混練して液状ワニスを得て、この液状ワニスをガラス繊維基材Aに含浸させて絶縁層1となるプリプレグを得るとともに、このプリプレグを複数積層し150〜200℃の温度で数時間熱プレスすることにより形成される。
【0014】
なお、絶縁層1の厚みは自由に設定することができるが、絶縁性の観点からは50μm以上、配線基板の薄型化の観点からは200μm以下の厚みが好ましい。また、絶縁層1は、例えばレーザで絶縁層1に貫通孔3を形成する際にその孔径や形状を均一化するために、ガラス繊維基材Aを加圧しその隙間を減少させて密度を均一化したガラス繊維基材Aに熱硬化性樹脂を含浸させて形成することも可能である。
【0015】
絶縁層1の表面には、銅・金等の金属箔からなる配線導体2が被着形成されている。配線導体2は、配線基板に搭載される半導体素子等の電子部品(図示せず)を外部電気回路の配線導体(図示せず)に電気的に接続する機能を有し、例えば、配線導体2の形状に形成された銅箔を転写する転写法、あるいはめっきによって配線導体2を形成するめっき法等を採用することにより絶縁層1の表面に被着形成される。
【0016】
なお、配線導体2は、その厚みが5〜50μm程度であり、高速の電気信号を伝達させるという観点からは5μm以上であることが好ましく、配線導体2を絶縁層1から剥離し難いものとするためには、50μm以下としておくことが好ましい。
【0017】
さらに、絶縁層1には、上下に位置する各配線導体2を電気的に接続するために貫通導体4が形成されている。このような貫通導体4は、絶縁層1にレーザで貫通孔3を形成し、この貫通孔3内部に導体ペースト等の導体を充填して成る。また、貫通導体4は、その直径が50〜300μm、その密度が500〜2500個/cm2であることが好ましい。直径が50μmより小さいとプリプレグを積層して熱プレスする際の熱硬化性樹脂前駆体の流動により位置ズレし易くなる傾向があり、200μmを超えると配線導体2と貫通導体4の位置がズレた際に貫通孔3から導体ペーストがはみ出し、隣接する貫通導体4と短絡してしまう危険性がある。したがって、貫通導体4の直径は50〜300μmが好ましい。さらに、貫通導体4の密度が500個/cm2未満では、プリプレグを積層して熱プレスする際の熱硬化性樹脂前駆体の流動により位置ズレし易くなる傾向があり、貫通導体4と配線導体2とのズレが大きくなり断線してしまう傾向があり、2500個/cm2を超えると貫通導体4間の間隔が狭くなり温度サイクル試験において絶縁層1の絶縁性が低下して電気的に短絡してしまう傾向がある。したがって、貫通導体4の密度は500〜2500個/cm2が好ましい。
【0018】
貫通孔3は、ドリル等の機械的方法や炭酸ガスレーザやYAGレーザ・エキシマレーザ等の従来周知のレーザを用いて形成され、好適には、絶縁層1の材料に依存せず微細加工ができるとともに貫通孔3の孔径を50〜300μmの範囲で自由に形成でき、かつ加工速度の速い炭酸ガスレーザを用いて形成されることが好ましい。
【0019】
また、貫通導体4は、貫通孔3に従来周知のスクリーン印刷法や圧入法等を採用することにより、銅等の金属粉末と熱硬化性樹脂とからなる導体ペーストを充填することにより形成される。
【0020】
このような導体ぺーストは、銅や銀・アルミニウム・金等の金属材料の1種または2種以上の混合物を主体とする金属粉末と熱硬化性樹脂や熱可塑性樹脂等とから成り、低抵抗値という観点からは、銅または銅を含む混合物あるいは上記から選ばれる金属に他の金属を被覆したものを主成分とする金属粉末を用いて形成されることが好ましい。また、貫通導体4をより低抵抗値化するために、半田や錫等の低融点金属の粉末を用いることも行われる。さらに、抵抗値の調整をする目的で、ニッケル−クロム合金などの高抵抗金属やこの高抵抗金属と低抵抗金属とを合金化した金属粉末を用いることも行われる。
【0021】
貫通導体4に含有される金属粉末は、導電性を確保するためにはその含有量が70重量%以上であることが好ましく、また、貫通導体4に含有される金属粉末を熱硬化性樹脂や熱可塑性樹脂で強固に結合するにはその含有量が95%以下が好ましい。したがって、貫通導体4に含有される金属粉末は、70〜95重量%の範囲とすることが好ましい。
【0022】
また、金属粉末は、その平均粒径が0.1〜15μmの範囲であることが好ましく、平均粒径が0.1μm未満であると導体ペーストの粘度が増加して、導体ペーストを貫通孔3に良好に充填することが困難となる傾向があり、15μmを超えると金属粉末を有機材料に均一に分散させることが困難となる傾向にある。したがって、導体ぺーストに含有される金属粉末の平均粒径は0.1〜15μmであることが好ましい。
【0023】
なお、導体ペーストの粘度をせん断速度が100s-1の測定条件において20〜1000Pa・sとすることが好ましい。導体ペーストの粘度がせん断速度が100s-1の測定条件において20Pa・s未満であると、貫通孔3に導体ペーストを充填する際に、貫通孔3の周囲にだれ・にじみ等を生じ易くなり、また、1000Pa・sを超えると導体ペーストの流動性が低下して、貫通孔3に導体ペーストを充填することが困難となる傾向がある。したがって、導体ペーストの粘度はせん断速度が 100s-1の測定条件において20〜1000Pa・sの範囲が好ましい。なお、導体ペーストの粘度は、有機系の結合剤や溶剤を添加することにより適宜調整することができる。
【0024】
そして、この貫通孔3に、例えばスクリーン印刷法を用いて導体ペーストを充填して貫通導体4を形成した後、絶縁層1の所定の位置にあらかじめ転写シートに配線導体2の形状に形成した銅箔等の金属箔を重ねあわせて加圧することにより、配線導体2が絶縁層1の表面に被着形成されるとともに貫通導体4と電気的に接続される。さらに、表面に必要な配線導体2が被着形成された絶縁層1を複数層重ねあわせ、4〜6MPaの圧力を加えながら60〜200℃の温度で30分〜24時間加熱することにより本発明の多数個取り配線基板が製造される。
【0025】
なお、貫通導体4を形成する際に、絶縁層1の表面に導体ペーストにより突出部を形成しておき、貫通導体4と配線導体2との接続部に導体ペーストを押し広げて貫通孔3の面積より広い層間接続部を形成することにより、貫通導体4と配線導体2との接続強度をより高めることができる。
【0026】
また、本発明の多数個取り配線基板においては、各配線基板領域7の周囲の母基板7の表面に、電気検査の位置決めのための位置決めマーク5が被着形成されている。
【0027】
位置決めマーク5は、多数個取り配線基板に形成した配線導体2の導通試験や配線導体2間の絶縁試験などの電気検査を行う際の配線基板の位置決めとなるものである。
【0028】
位置決めマーク5は、その大きさが0.5〜2.5mm、厚みが5〜50μmの金属箔からなり、その形状は、画像認識が容易な形状であれば特に限定はされないが、丸形や正方形・十字型等の座標の認識が容易な形状が望ましい。位置決めマーク5の大きさが0.5mm未満になると後述するダミーの貫通導体3を形成することが困難になる傾向があり、2.5mmを超えると、母基板8上に配線基板領域7を高密度に配設するのが困難となる傾向があり、また、画像認識の倍率を下げて行う必要があるため位置決めの精度が低下するといった傾向がある。したがって、位置決めマーク5の大きさは、0.5〜2.5mmとすることが好ましい。
【0029】
なお、このような位置決めマーク5は、配線導体2と同様に銅や金等の金属箔からなり、特に加工性および安価という観点からは銅箔から成ることが好ましく、さらに、位置決めマーク5を配線基板領域7の配線導体2同じ金属から成るものとすることにより、位置決めマーク5と配線導体2とを同時に形成することができ、生産効率の高い多数個取り配線基板とすることができる。したがって、位置決めマーク5を配線基板領域7の配線導体2同じ金属から成るものとすることが好ましい。
【0030】
そして、位置決めマーク5の直下の絶縁層1には、ダミーの貫通孔6aが形成され、さらに、ダミーの貫通孔6aの内部に導体を充填したダミーの貫通導体6bを形成するとともに、ダミーの貫通導体6と位置決めマーク5とを接続しており、本発明の多層配線基板においては、このことが重要である。
【0031】
本発明の多数個取り配線基板によれば、位置決めマーク5の直下の絶縁層1にダミーの貫通孔6aを形成し、ダミーの貫通孔6aの内部に導体を充填したダミーの貫通導体6bを形成するとともに、ダミーの貫通導体6bと位置決めマーク5とを接続したことから、積層して熱プレスする際に熱硬化性樹脂前駆体の粘度が低下し熱硬化性樹脂前駆体が流動しても、ダミーの貫通導体6bが位置決めマーク5のズレを抑制するくさびの役目を果たし、配線導体2と同様に、位置決めマーク5のズレを抑制でき、電気検査を行う際に電気検査端子が配線導体2の所定の位置に正確に接触することができ、その結果、正確な電気検査結果を行うことができる多数個取り配線基板とすることができる。
【0032】
このようなダミーの貫通導体6bの直径は50〜300μmが好ましく、直径が50μmより小さいとダミーの貫通導体6bのくさび止めの効果が得られずに、位置決めマーク5のズレが大きくなり、電気検査をする際に正確な位置決めが困難となり検査端子が配線基板領域7内の所定の位置に正確に接触しない傾向があり、300μmを超えると少しの位置ズレで位置決めマーク5から導体ペースト等がはみ出し、外観不良となってしまう傾向がある。したがって、ダミーの貫通導体6bの直径は50〜300μmが好ましい。
【0033】
なお、このようなダミーの貫通導体6bは、各配線基板領域7に形成した貫通導体4と同様に、絶縁層1に設けたダミーの貫通孔6aに前述した導体ペーストを充填することにより貫通導体4と同時に形成することができるために、ダミーの貫通導体6bを別途形成する工程が増えることはなく、生産効率の高い多数個取り配線基板とすることができる。したがって、ダミーの貫通導体6bと各配線基板領域7に形成した貫通導体4とを同じ導体ペーストで作成することが好ましい。また、ダミーの貫通孔6aおよびダミーの貫通導体6bは、貫通孔3および貫通導体4と同時に、同様の方法で形成すればよい。
【0034】
次に、このダミーの貫通孔6aにダミーの貫通導体6bを形成した後、絶縁層1の所定の位置に、転写シートに形成した位置決めマーク5の金属箔を重ねあわせて加圧することにより、位置決めマーク5が絶縁層1の表面に被着形成されるとともにダミーの貫通導体6bと接続される。なお、ダミーの貫通導体6bを形成する際に、絶縁層1の表面に導体ペーストにより突出部を形成しておき、ダミーの貫通導体6bと位置決めマーク5との接続部に導体ペーストを押し広げてダミーの貫通孔6aの面積より広い層間接続部を形成することにより、ダミーの貫通導体6bと位置決めマーク5との接続強度をより高めることができる。
【0035】
かくして、本発明の多数個取り配線基板によれば、位置決めマーク5の直下の絶縁層1にダミーの貫通孔6aを形成し、ダミーの貫通孔6aの内部に導体を充填したダミーの貫通導体6bを形成するとともに、ダミーの貫通導体6bと位置決めマーク5とを接続したことから、積層して熱プレスする際に熱硬化性樹脂前駆体の粘度が低下し熱硬化性樹脂前駆体が流動しても、ダミーの貫通導体6bが位置決めマーク5のズレを抑制するくさびの役目を果たし、位置決めマーク5のズレを抑制でき、電気検査を行う際に電気検査端子が配線導体2の所定の位置に正確に接触するので、その結果、正確な電気検査結果を行うことができる多数個取り配線基板とすることができる。
【0036】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば上述の実施例ではガラス繊維基材に熱硬化性樹脂を含浸させたプリプレグを用いているが、薄型のプリント基板の剛性を向上するために、熱硬化性樹脂に対して、シリカやアルミナ・ムライト・ジルコニア等の無機粉末を5〜70体積%の割合で添加したプリプレグシートを用いてもかまわない。
【0037】
【発明の効果】
本発明の多数個取り配線基板によれば、位置決めマークの直下の絶縁層にダミーの貫通孔を形成し、ダミーの貫通孔の内部に導体を充填したダミーの貫通導体を形成するとともに、ダミーの貫通導体と位置決めマークとを接続したことから、積層して熱プレスする際に熱硬化性樹脂前駆体の粘度が低下し熱硬化性樹脂前駆体が流動しても、ダミーの貫通導体が位置決めマークのズレを抑制するくさびの役目を果たすために、配線導体と同様に位置決めマークのズレを抑制でき、電気検査を行う際に電気検査端子が配線導体の所定の位置に正確に接触することができ、その結果、正確な電気検査を行うことができる多数個取り配線基板とすることができる。
【図面の簡単な説明】
【図1】(a)、(b)は、それぞれ本発明の多数個取り配線基板の実施形態の一例を示す平面図および断面図である。
【符号の説明】
1・・・・・・絶縁層
2・・・・・・配線導体
3・・・・・・貫通孔
4・・・・・・貫通導体
5・・・・・・位置決めマーク
6a・・・・・ダミーの貫通孔
6b・・・・・ダミーの貫通導体
7・・・・・・配線基板領域
8・・・・・・母基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-cavity wiring board in which a large number of wiring board regions are arranged in a large-area mother board to be a wiring board for mounting electronic components such as semiconductor elements and resistors.
[0002]
[Prior art]
Conventionally, as a wiring board used for mounting electronic components such as semiconductor elements and resistors, a plurality of insulating layers made of glass base material and thermosetting resin and wiring conductors made of copper foil or the like are alternately laminated. A printed circuit board is known. Such a printed circuit board is formed by etching a copper foil deposited on the surface of an insulating layer to form a wiring conductor, and laminating a plurality of insulating layers on which the wiring conductor is formed with a thermosetting resin adhesive interposed therebetween. Manufactured by crimping and multilayering. However, this printed circuit board has an uneven surface due to the level difference between the wiring conductor part and the non-wiring conductor part on the surface of the insulating layer, so use an insulating sheet with a little plasticity in the insulating layer and laminate the insulating sheet. When a part of the insulation sheet is in contact with the wiring conductor, plastic deformation is performed according to the thickness of the wiring conductor, so that the wiring conductor is embedded in the insulation sheet and laminated and cured to form irregularities on the surface of the printed circuit board. (See JP-A-10-27959).
[0003]
In such a printed board, a through hole is formed by a laser in a wiring board region of an insulating sheet which is a mother board in which a heat-resistant fiber is impregnated with a thermosetting resin precursor, and then metal powder and heat are formed in the through hole. A conductive paste made of a curable resin precursor is embedded by screen printing (press-fit) to form a through conductor, and on the other hand, a copper foil is deposited on the surface of a transfer sheet substrate made of a heat-resistant resin and etched into a predetermined pattern. Then, the wiring conductor is formed at a position corresponding to each wiring board region of the insulating sheet, and then the wiring sheet is formed by pressing the transfer sheet base material on which the wiring conductor is formed on the insulating sheet on which the through conductor is formed. After transferring and embedding into the insulating sheet and connecting with the through conductor, and further peeling off the transfer sheet base material from the insulating sheet, a plurality of insulating sheets embedded with wiring conductors are laminated and using a heat press The curable resin precursor is cured integrally to obtain a multi-piece wiring substrate, finally, which is produced by dividing by cutting machine such as a router.
[0004]
In order to position the wiring board when conducting electrical inspections such as continuity tests of wiring conductors formed on multi-piece wiring boards and insulation tests between wiring conductors, it is normal for the mother board around the wiring board area to At the same time as forming the wiring conductor on the surface, a positioning mark is formed, and an electrical inspection is performed using this positioning mark as a reference.
[0005]
[Problems to be solved by the invention]
However, since the multi-cavity wiring board as described above is manufactured by laminating a plurality of insulating sheets having plasticity and using a hot press, the viscosity of the thermosetting resin precursor when laminating and hot pressing is increased. The thermosetting resin precursor flows and the position of the positioning mark shifts, and the electrical inspection terminal cannot contact the correct position when performing electrical inspection, and as a result, accurate electrical inspection cannot be performed. Had problems.
[0006]
The present invention has been completed in view of the problems in the prior art described above, and its purpose is to suppress the displacement of the positioning mark, and when performing an electrical inspection, the electrical inspection terminal is accurately positioned at a predetermined position of the wiring conductor. It is intended to provide a multi-piece wiring board that can be in contact with each other and perform an accurate electrical inspection.
[0007]
[Means for Solving the Problems]
The multi-cavity wiring board of the present invention is a wiring conductor disposed between a surface of an insulating layer and between layers on a mother board composed of a plurality of insulating layers obtained by impregnating a glass fiber base material with a thermosetting resin and curing it. And a through-hole formed in an insulating layer between upper and lower wiring conductors and a through-conductor that fills the inside of the through-hole and electrically connects the wiring conductors. A multi-piece wiring board formed by arranging a plurality of areas and forming a positioning mark for transferring the position of the wiring board area on the surface of the mother board around the wiring board area by transferring the positioning mark. A dummy through hole is formed in the insulating layer immediately below the dummy through hole, a dummy through conductor filled with a conductor is formed inside the dummy through hole, and the dummy through conductor is connected to the positioning mark. Things to do A.
[0008]
According to the multi-cavity wiring board of the present invention, a dummy through hole is formed in the insulating layer immediately below the positioning mark, a dummy through conductor filled with a conductor is formed inside the dummy through hole, and a dummy is formed. Since the through-hole conductor and the positioning mark were connected, the dummy through-conductor was positioned even if the thermosetting resin precursor flowed and the viscosity of the thermosetting resin precursor decreased when laminating and hot pressing In order to play the role of a wedge that suppresses the deviation of the mark, the positional deviation of the positioning mark can be suppressed, and the electrical inspection terminal can accurately contact the predetermined position of the wiring conductor during the electrical inspection, and as a result Thus, it is possible to obtain a multi-piece wiring board capable of performing an accurate electrical inspection.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the multi-piece wiring board of the present invention will be described in detail with reference to the accompanying drawings.
[0010]
FIG. 1A is a plan view of a multi-piece wiring board of the present invention, and FIG. 1B is a cross-sectional view. In these drawings, 1 is an insulating layer, 2 is a wiring conductor, 3 is a through hole, 4 is a through conductor, 5 is a positioning mark, 6a is a dummy through hole, 6b is a dummy through conductor, 7 is a wiring board region, Reference numeral 8 denotes a mother board, and A denotes a glass fiber base material, which mainly constitute the multi-cavity wiring board of the present invention. FIG. 1 shows an example in which three insulating layers 1 are stacked.
[0011]
In the multi-cavity wiring board of the present invention, a large number of wiring board regions 7 are disposed in the central portion of a mother board 8 formed by laminating a plurality of insulating layers 1, and around the wiring board area 7 on the surface of the insulating layer 1. The positioning mark 5 is formed on the surface of the mother board 8.
[0012]
The insulating layer 1 constituting the multi-piece wiring board is formed by curing a so-called prepreg in which a glass fiber substrate A is impregnated with a thermosetting resin. The glass fiber base A is contained as a woven fabric or a non-woven fabric in a proportion of 30 to 70% by volume with respect to the insulating layer 1, and suppresses warpage or deformation of the insulating layer 1 when the thermosetting resin is cured and contracted. As the thermosetting resin, epoxy resin, PPE (polyphenylene ether resin), phenol resin, triazine resin, polyimide resin, or the like is used.
[0013]
For example, if the thermosetting resin is made of an epoxy resin, such a multi-cavity wiring board is made of an aromatic amine to an epoxy resin such as a bisphenol A type epoxy resin, a novolac type epoxy resin, or a glycidyl ester type epoxy resin. And knead a mixture added with a crosslinking agent, a solvent, a plasticizer, a dispersant, etc. to obtain a liquid varnish, impregnating the liquid varnish into the glass fiber substrate A to obtain a prepreg that becomes the insulating layer 1, A plurality of the prepregs are laminated and formed by hot pressing at a temperature of 150 to 200 ° C. for several hours.
[0014]
Although the thickness of the insulating layer 1 can be set freely, it is preferably 50 μm or more from the viewpoint of insulation and 200 μm or less from the viewpoint of reducing the thickness of the wiring board. In addition, the insulating layer 1 has a uniform density by pressurizing the glass fiber substrate A to reduce the gaps in order to make the hole diameter and shape uniform when forming the through holes 3 in the insulating layer 1 with a laser, for example. It is also possible to impregnate the glass fiber substrate A that has been made impregnated with a thermosetting resin.
[0015]
A wiring conductor 2 made of a metal foil such as copper or gold is deposited on the surface of the insulating layer 1. The wiring conductor 2 has a function of electrically connecting an electronic component (not shown) such as a semiconductor element mounted on the wiring board to a wiring conductor (not shown) of an external electric circuit. For example, the wiring conductor 2 The surface of the insulating layer 1 is deposited by adopting a transfer method for transferring the copper foil formed in the above shape or a plating method for forming the wiring conductor 2 by plating.
[0016]
The wiring conductor 2 has a thickness of about 5 to 50 μm and is preferably 5 μm or more from the viewpoint of transmitting a high-speed electrical signal, and the wiring conductor 2 is difficult to peel from the insulating layer 1. For this purpose, it is preferable to set the thickness to 50 μm or less.
[0017]
Furthermore, a through conductor 4 is formed in the insulating layer 1 in order to electrically connect the wiring conductors 2 positioned above and below. Such a through conductor 4 is formed by forming a through hole 3 in the insulating layer 1 with a laser and filling the inside of the through hole 3 with a conductor such as a conductor paste. The through conductors 4 preferably have a diameter of 50 to 300 μm and a density of 500 to 2500 pieces / cm 2 . If the diameter is smaller than 50 μm, the position of the wiring conductor 2 and the through conductor 4 tends to be shifted due to the flow of the thermosetting resin precursor when the prepreg is laminated and hot pressed. At this time, there is a risk that the conductive paste protrudes from the through hole 3 and short-circuits with the adjacent through conductor 4. Therefore, the diameter of the through conductor 4 is preferably 50 to 300 μm. Furthermore, if the density of the through conductors 4 is less than 500 / cm 2 , the through conductors 4 and the wiring conductors tend to be misaligned due to the flow of the thermosetting resin precursor when the prepreg is laminated and hot pressed. There is a tendency to disconnect from 2 and there is a tendency to break, and if it exceeds 2500 / cm 2 , the interval between the through conductors 4 becomes narrow and the insulation of the insulating layer 1 is lowered in the temperature cycle test, causing an electrical short circuit. There is a tendency to end up. Therefore, the density of the through conductors 4 is preferably 500 to 2500 / cm 2 .
[0018]
The through-hole 3 is formed using a mechanical method such as a drill or a conventionally known laser such as a carbon dioxide laser, a YAG laser, or an excimer laser. Preferably, the through-hole 3 can be finely processed without depending on the material of the insulating layer 1. The through-hole 3 is preferably formed using a carbon dioxide laser that can be freely formed in a diameter of 50 to 300 μm and has a high processing speed.
[0019]
Further, the through conductor 4 is formed by filling the through hole 3 with a conductor paste made of a metal powder such as copper and a thermosetting resin by adopting a conventionally known screen printing method or press-fitting method. .
[0020]
Such a conductor paste is composed of a metal powder mainly composed of one or a mixture of two or more metal materials such as copper, silver, aluminum, and gold, a thermosetting resin, a thermoplastic resin, and the like, and has a low resistance. From the viewpoint of value, it is preferably formed using copper or a mixture containing copper, or a metal powder mainly composed of a metal selected from the above coated with another metal. Further, in order to lower the resistance value of the through conductor 4, a powder of a low melting point metal such as solder or tin is also used. Further, for the purpose of adjusting the resistance value, a high-resistance metal such as a nickel-chromium alloy or a metal powder obtained by alloying this high-resistance metal and a low-resistance metal is also used.
[0021]
The metal powder contained in the through conductor 4 preferably has a content of 70% by weight or more in order to ensure conductivity, and the metal powder contained in the through conductor 4 is replaced with a thermosetting resin or the like. In order to bond firmly with a thermoplastic resin, the content is preferably 95% or less. Therefore, the metal powder contained in the through conductor 4 is preferably in the range of 70 to 95% by weight.
[0022]
Further, the metal powder preferably has an average particle size in the range of 0.1 to 15 μm. If the average particle size is less than 0.1 μm, the viscosity of the conductor paste increases, and the conductor paste is improved in the through holes 3. It tends to be difficult to fill, and when it exceeds 15 μm, it tends to be difficult to uniformly disperse the metal powder in the organic material. Therefore, the average particle size of the metal powder contained in the conductor paste is preferably 0.1 to 15 μm.
[0023]
In addition, it is preferable that the viscosity of the conductor paste is 20 to 100 Pa · s under the measurement condition where the shear rate is 100 s −1 . If the viscosity of the conductor paste is less than 20 Pa · s under the measurement condition of a shear rate of 100 s −1 , dripping / bleeding is likely to occur around the through hole 3 when the through hole 3 is filled with the conductor paste, On the other hand, if it exceeds 1000 Pa · s, the fluidity of the conductor paste decreases, and it tends to be difficult to fill the through holes 3 with the conductor paste. Therefore, the viscosity of the conductor paste is preferably in the range of 20 to 100 Pa · s under the measurement condition where the shear rate is 100 s −1 . The viscosity of the conductor paste can be appropriately adjusted by adding an organic binder or solvent.
[0024]
Then, the through-hole 3 is filled with a conductive paste using, for example, a screen printing method to form the through-conductor 4, and then the copper formed in the shape of the wiring conductor 2 on the transfer sheet in advance at a predetermined position of the insulating layer 1. By overlapping and pressing metal foil such as foil, the wiring conductor 2 is formed on the surface of the insulating layer 1 and is electrically connected to the through conductor 4. Furthermore, the present invention is made by stacking a plurality of insulating layers 1 each having a necessary wiring conductor 2 deposited on the surface, and heating at a temperature of 60 to 200 ° C. for 30 minutes to 24 hours while applying a pressure of 4 to 6 MPa. A multi-cavity wiring board is manufactured.
[0025]
When the through conductor 4 is formed, a protrusion is formed on the surface of the insulating layer 1 with a conductor paste, and the conductor paste is spread over the connecting portion between the through conductor 4 and the wiring conductor 2 to form the through hole 3. By forming the interlayer connection portion wider than the area, the connection strength between the through conductor 4 and the wiring conductor 2 can be further increased.
[0026]
Further, in the multi-piece wiring board of the present invention, positioning marks 5 for electrical inspection positioning are deposited on the surface of the mother board 7 around each wiring board region 7.
[0027]
The positioning mark 5 is used to position the wiring board when performing electrical inspection such as a continuity test of the wiring conductors 2 formed on the multi-piece wiring board and an insulation test between the wiring conductors 2.
[0028]
The positioning mark 5 is made of a metal foil having a size of 0.5 to 2.5 mm and a thickness of 5 to 50 μm. The shape of the positioning mark 5 is not particularly limited as long as the image can be easily recognized. A shape that allows easy recognition of coordinates such as a mold is desirable. If the size of the positioning mark 5 is less than 0.5 mm, it tends to be difficult to form a dummy through conductor 3 to be described later, and if it exceeds 2.5 mm, the wiring board region 7 is densely formed on the mother board 8. There is a tendency that it is difficult to dispose, and there is a tendency that the positioning accuracy decreases because it is necessary to reduce the image recognition magnification. Therefore, the size of the positioning mark 5 is preferably 0.5 to 2.5 mm.
[0029]
Such a positioning mark 5 is made of a metal foil such as copper or gold like the wiring conductor 2, and is preferably made of a copper foil from the viewpoint of workability and low cost. By making the wiring conductor 2 of the substrate region 7 from the same metal, the positioning mark 5 and the wiring conductor 2 can be formed simultaneously, and a multi-piece wiring board with high production efficiency can be obtained. Therefore, the positioning mark 5 is preferably made of the same metal as the wiring conductor 2 in the wiring board region 7.
[0030]
A dummy through hole 6a is formed in the insulating layer 1 immediately below the positioning mark 5, and a dummy through conductor 6b filled with a conductor is formed in the dummy through hole 6a. The conductor 6 and the positioning mark 5 are connected, and this is important in the multilayer wiring board of the present invention.
[0031]
According to the multi-cavity wiring board of the present invention, the dummy through hole 6a is formed in the insulating layer 1 immediately below the positioning mark 5, and the dummy through conductor 6b in which the conductor is filled in the dummy through hole 6a is formed. In addition, since the dummy penetrating conductor 6b and the positioning mark 5 are connected, even when the thermosetting resin precursor is lowered and the thermosetting resin precursor flows when laminating and hot pressing, The dummy penetrating conductor 6b serves as a wedge that suppresses the displacement of the positioning mark 5 and can suppress the displacement of the positioning mark 5 in the same manner as the wiring conductor 2, so that the electrical inspection terminal is connected to the wiring conductor 2 when performing electrical inspection. As a result, it is possible to obtain a multi-piece wiring board that can accurately contact a predetermined position and as a result can perform an accurate electrical inspection result.
[0032]
The diameter of the dummy penetrating conductor 6b is preferably 50 to 300 [mu] m. If the diameter is smaller than 50 [mu] m, the dummy penetrating conductor 6b does not have the effect of preventing the wedge, and the displacement of the positioning mark 5 becomes large. When this is done, accurate positioning becomes difficult and the inspection terminal tends not to contact the predetermined position in the wiring board region 7 accurately. When the thickness exceeds 300 μm, the conductive paste or the like protrudes from the positioning mark 5 with a slight positional deviation. There is a tendency to become poor appearance. Therefore, the diameter of the dummy through conductor 6b is preferably 50 to 300 μm.
[0033]
Such a dummy through conductor 6b is formed by filling the dummy through hole 6a provided in the insulating layer 1 with the above-described conductor paste in the same manner as the through conductor 4 formed in each wiring board region 7. 4 can be formed at the same time, the number of steps for separately forming the dummy through conductor 6b does not increase, and a multi-piece wiring board with high production efficiency can be obtained. Therefore, it is preferable to create the dummy through conductor 6b and the through conductor 4 formed in each wiring board region 7 with the same conductor paste. The dummy through-hole 6a and the dummy through-conductor 6b may be formed by the same method simultaneously with the through-hole 3 and the through-conductor 4.
[0034]
Next, after forming the dummy through conductor 6b in the dummy through hole 6a, the metal foil of the positioning mark 5 formed on the transfer sheet is overlapped and pressed at a predetermined position of the insulating layer 1 to perform positioning. A mark 5 is formed on the surface of the insulating layer 1 and connected to the dummy through conductor 6b. When forming the dummy penetrating conductor 6b, a protrusion is formed on the surface of the insulating layer 1 with a conductor paste, and the conductor paste is spread over the connecting portion between the dummy penetrating conductor 6b and the positioning mark 5. By forming an interlayer connection portion wider than the area of the dummy through hole 6a, the connection strength between the dummy through conductor 6b and the positioning mark 5 can be further increased.
[0035]
Thus, according to the multi-piece wiring board of the present invention, the dummy through hole 6a is formed in the insulating layer 1 immediately below the positioning mark 5 and the dummy through hole 6a is filled with the conductor. Since the dummy penetrating conductor 6b and the positioning mark 5 are connected, the viscosity of the thermosetting resin precursor decreases and the thermosetting resin precursor flows when it is laminated and hot pressed. In addition, the dummy through conductor 6b serves as a wedge that suppresses the displacement of the positioning mark 5 and can suppress the displacement of the positioning mark 5, so that the electrical inspection terminal is accurately positioned at a predetermined position of the wiring conductor 2 when performing the electrical inspection. As a result, it is possible to obtain a multi-piece wiring board capable of performing an accurate electrical inspection result.
[0036]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiments, the glass fiber base material is thermosetting. A prepreg impregnated with resin is used, but in order to improve the rigidity of a thin printed circuit board, inorganic powder such as silica, alumina, mullite, zirconia or the like is added in an amount of 5 to 70% by volume with respect to the thermosetting resin. You may use the prepreg sheet added in the ratio.
[0037]
【The invention's effect】
According to the multi-cavity wiring board of the present invention, a dummy through hole is formed in the insulating layer directly below the positioning mark, a dummy through conductor filled with a conductor is formed inside the dummy through hole, and the dummy Because the through-conductor and the positioning mark are connected, the dummy through-conductor is positioned even when the thermosetting resin precursor flows and the viscosity of the thermosetting resin precursor drops when the layers are heat pressed. In order to serve as a wedge that suppresses misalignment, misalignment of the positioning mark can be suppressed in the same way as the wiring conductor, and the electrical inspection terminal can accurately contact a predetermined position of the wiring conductor when performing electrical inspection. As a result, it is possible to obtain a multi-piece wiring board capable of performing an accurate electrical inspection.
[Brief description of the drawings]
FIGS. 1A and 1B are a plan view and a cross-sectional view, respectively, showing an example of an embodiment of a multi-piece wiring board according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulation layer 2 ... Wiring conductor 3 ... Through hole 4 ... Through conductor 5 ... Positioning mark 6a ...・ Dummy through hole 6b ...... Dummy through conductor 7 ... Wiring board region 8 ... Mother board

Claims (2)

ガラス繊維基材に熱硬化性樹脂を含浸して硬化させて成る複数の絶縁層から成る母基板に、前記絶縁層の表面および層間に配設された配線導体と、上下に位置する前記配線導体間の前記絶縁層に形成された貫通孔と、該貫通孔の内部に導体を充填し前記配線導体間を電気的に接続する貫通導体とを具備して成る配線基板領域を複数個配列して成るとともに、前記配線基板領域の周囲の前記母基板の表面に前記配線基板領域の位置確認のための位置決めマークを転写により形成して成る多数個取り配線基板であって、
前記位置決めマークの直下の前記絶縁層にダミーの貫通孔を形成し、該ダミーの貫通孔の内部に導体を充填したダミーの貫通導体を形成するとともに、該ダミーの貫通導体と前記位置決めマークとを接続したことを特徴とする多数個取り配線基板。
A wiring conductor disposed between a surface and an interlayer of the insulating layer on a mother substrate made of a plurality of insulating layers formed by impregnating and curing a glass fiber base material with a thermosetting resin, and the wiring conductor positioned above and below A plurality of wiring board regions each including a through hole formed in the insulating layer and a through conductor that fills the inside of the through hole and electrically connects the wiring conductors; And a multi-piece wiring board formed by transferring a positioning mark for confirming the position of the wiring board area on the surface of the mother board around the wiring board area,
A dummy through hole is formed in the insulating layer immediately below the positioning mark, a dummy through conductor filled with a conductor is formed in the dummy through hole, and the dummy through conductor and the positioning mark are formed. A multi-piece wiring board characterized by being connected.
請求項1に記載の多数個取り配線基板において、In the multi-cavity wiring board according to claim 1,
前記ダミーの貫通導体と前記位置決めマークとを、前記ダミーの貫通孔よりも幅が広い前記導体から成る層間接続部を介して接続したことを特徴とする多数個取り配線基板。A multi-piece wiring board, wherein the dummy through conductor and the positioning mark are connected through an interlayer connection portion made of the conductor having a width wider than that of the dummy through hole.
JP2001301325A 2001-09-28 2001-09-28 Multi-wiring board Expired - Fee Related JP4698100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301325A JP4698100B2 (en) 2001-09-28 2001-09-28 Multi-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301325A JP4698100B2 (en) 2001-09-28 2001-09-28 Multi-wiring board

Publications (2)

Publication Number Publication Date
JP2003110220A JP2003110220A (en) 2003-04-11
JP4698100B2 true JP4698100B2 (en) 2011-06-08

Family

ID=19121760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301325A Expired - Fee Related JP4698100B2 (en) 2001-09-28 2001-09-28 Multi-wiring board

Country Status (1)

Country Link
JP (1) JP4698100B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172336A1 (en) * 2018-03-08 2019-09-12 京セラ株式会社 Light emitting element mounting substrate and light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116174U (en) * 1991-03-25 1992-10-16 富士通電装株式会社 Printed board
JPH10107437A (en) * 1996-09-30 1998-04-24 Kyocera Corp Manufacturing method of circuit board
JP2000101253A (en) * 1998-09-24 2000-04-07 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2000101248A (en) * 1998-09-24 2000-04-07 Ibiden Co Ltd Multiple multilayer printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116174U (en) * 1991-03-25 1992-10-16 富士通電装株式会社 Printed board
JPH10107437A (en) * 1996-09-30 1998-04-24 Kyocera Corp Manufacturing method of circuit board
JP2000101253A (en) * 1998-09-24 2000-04-07 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2000101248A (en) * 1998-09-24 2000-04-07 Ibiden Co Ltd Multiple multilayer printed wiring board

Also Published As

Publication number Publication date
JP2003110220A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
KR940009175B1 (en) Multi-printed wiring board
WO2014155455A1 (en) Wiring board
WO2007046459A1 (en) Multilayer printed wiring board and its manufacturing method
CN108684155B (en) Method for embedding resistor in printed circuit board
JP6903654B2 (en) Manufacturing method of multi-layer wiring board
US20090294160A1 (en) Method of making printed wiring board and electrically-conductive binder
CN103108491A (en) Circuit board and manufacture method thereof
JP4227482B2 (en) Manufacturing method of module with built-in components
JP3572305B2 (en) INSULATING SHEET, MULTI-LAYER WIRING BOARD, AND ITS MANUFACTURING METHOD
TWI777958B (en) Manufacturing method of multilayer circuit board
JP2002246536A (en) Method for manufacturing three-dimensional mounting package and package module for its manufacturing
JP5581828B2 (en) Multilayer circuit board and substrate manufacturing method
JP4698100B2 (en) Multi-wiring board
JP6058321B2 (en) Wiring board manufacturing method
CN210157483U (en) Multilayer substrate
JP4003556B2 (en) Printed circuit board manufacturing method
JP2005039136A (en) Circuit board and method for connection thereof
JP3829660B2 (en) Printed circuit board mounting structure and method for manufacturing printed circuit board mounting structure
JP7430494B2 (en) Connection hole forming method for multilayer wiring board and method for manufacturing multilayer wiring board using the same
JP2005109188A (en) Circuit board and multilayer board, and method for manufacturing circuit board and multilayer board
JP2004193504A (en) Multiple-taking wiring board
JP3924453B2 (en) WIRING BOARD AND ELECTRONIC DEVICE USING THE SAME
JP4277723B2 (en) Multilayer circuit board and method for manufacturing multilayer circuit board
JPH02178995A (en) Manufacture of multilayer printed board
JP5077801B2 (en) Manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

LAPS Cancellation because of no payment of annual fees