JP4697661B2 - Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy - Google Patents

Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy Download PDF

Info

Publication number
JP4697661B2
JP4697661B2 JP2005190915A JP2005190915A JP4697661B2 JP 4697661 B2 JP4697661 B2 JP 4697661B2 JP 2005190915 A JP2005190915 A JP 2005190915A JP 2005190915 A JP2005190915 A JP 2005190915A JP 4697661 B2 JP4697661 B2 JP 4697661B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
carbide
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005190915A
Other languages
Japanese (ja)
Other versions
JP2007007764A (en
Inventor
和則 佐藤
夏樹 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005190915A priority Critical patent/JP4697661B2/en
Publication of JP2007007764A publication Critical patent/JP2007007764A/en
Application granted granted Critical
Publication of JP4697661B2 publication Critical patent/JP4697661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Description

この発明は、硬質被覆層がすぐれた高温耐酸化性を有し、さらに高温硬さと耐熱性に加えて、高温強度も具備し、したがって特に高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面あるいは高速度工具鋼基体の表面に硬質被覆層を形成した表面被覆切削工具に関するものである。   In the present invention, the hard coating layer has excellent high-temperature oxidation resistance, and also has high-temperature strength in addition to high-temperature hardness and heat resistance, and therefore, Ni alloy and Co alloy with high heat generation, and further Ti The surface of cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet that exhibits excellent wear resistance when used for high-speed cutting of heat-resistant alloys such as alloys or high-speed tool steel The present invention relates to a surface-coated cutting tool in which a hard coating layer is formed on the surface of a substrate.

一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、表面被覆切削工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:[Cr1-X AlX]N(ただし、原子比で、Xは0.50〜0.65を示す)、
を満足するCrとAlの複合窒化物[以下、(Cr,Al)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる超硬工具(以下、被覆超硬工具という)が知られており、かかる従来の被覆超硬工具においては、硬質被覆層を構成する前記(Cr,Al)N層が、構成成分であるAlによって高温硬さ、同Crによって高温強度、さらにCrとAlの共存含有によって耐熱性を具備することから、切削時に相対的に高い発熱を伴うNi合金やCo合金、さらにTi合金などの耐熱合金の切削加工に用いた場合にも、すぐれた耐摩耗性を示すことも知られている。
Also, as one of the surface-coated cutting tools, for example, on the surface of a cemented carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, Having a single phase structure, and
Composition formula: [Cr 1-X Al X ] N (wherein X is 0.50 to 0.65 in atomic ratio),
Carbide tool (hereinafter referred to as coated ultra-hard coating) formed by vapor-depositing a hard coating layer composed of a composite nitride of Cr and Al [hereinafter referred to as (Cr, Al) N] layer satisfying the requirements of 2 to 8 μm. In such a conventional coated carbide tool, the (Cr, Al) N layer constituting the hard coating layer is hardened at high temperature by Al as a component, and high temperature by Cr. Since it has heat resistance due to the strength and coexistence of Cr and Al, even when used for cutting heat resistant alloys such as Ni alloys and Co alloys, and Ti alloys with relatively high heat generation during cutting, It is also known to exhibit excellent wear resistance.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層である(Cr,Al)N層の組成に対応した組成を有するCr−Al合金がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Cr,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第3027502号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, a cathode electrode (evaporation source) in which a Cr—Al alloy having a composition corresponding to the composition of the (Cr, Al) N layer, which is a hard coating layer, is heated to a temperature of 500 ° C. and an anode electrode. In the meantime, for example, arc discharge is generated under the condition of current: 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 2 Pa, for example. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Cr, Al) N layer on the surface of the cemented carbide substrate under the condition of applying a voltage.
Japanese Patent No. 3027502

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記従来の被覆超硬工具においては、これを切削時に相対的に高い発熱を伴うNi合金やCo合金、さらにTi合金などの耐熱合金の切削加工を通常の切削加工条件で行うのに用いた場合には、良好な耐摩耗性を発揮するが、特に前記耐熱合金の切削加工を、一段と高い熱発生を伴なう高速切削加工条件で行うのに用いた場合には、硬質被覆層である(Cr,Al)N層が厳しい高温酸化雰囲気に曝されることになるが、前記(Cr,Al)N層は充分な高温耐酸化性を具備するものでないので、これが原因で摩耗進行が著しく促進するようになり、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. In the coated carbide tool, when this is used to perform cutting of heat-resistant alloys such as Ni alloy and Co alloy, and Ti alloy with relatively high heat generation during cutting under normal cutting conditions, Although it exhibits good wear resistance, it is a hard coating layer when it is used to perform cutting of the above heat-resistant alloy under high-speed cutting conditions with higher heat generation (Cr, Al ) Although the N layer is exposed to a severe high-temperature oxidation atmosphere, the (Cr, Al) N layer does not have sufficient high-temperature oxidation resistance. A relatively short time From reaching the service life it is at present.

そこで、本発明者等は、上述のような観点から、特に上記の耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具を開発すべく、上記従来の被覆超硬工具の硬質被覆層を構成する(Cr,Al)N層に着目し、研究を行った結果、
(a)上記従来の硬質被覆層を構成する(Cr,Al)N層において、これにY(イットリウム)成分を含有させて、CrとAlとYの複合窒化物[以下、(Cr,Al,Y)Nで示す]層とすると、Y成分の含有に比例して層の高温耐酸化性が向上し、層はすぐれた高温耐酸化性を具備するようになるが、前記の従来(Cr,Al)N層のもつすぐれた高温硬さと高温強度、さらに耐熱性を損なわずに含有可能な割合は精々1〜10原子%程度までで、この程度のY含有割合では、耐熱合金の高速切削加工での厳しい高温酸化雰囲気ですぐれた高温耐酸化性を発揮することができず、前記耐熱合金の高速切削加工ですぐれた高温耐酸化性を発揮させるためには前記1〜10原子%をはるかに越えた15〜30原子%のY含有が必要であり、一方15〜30原子%のY成分を含有した(Cr,Al,Y)N層を硬質被覆層として実用に供するためには、所定量のCrを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、この結果高温硬さおよび耐熱性のきわめて低いものとなること。
In view of the above, the present inventors have developed the above-mentioned conventional coating in order to develop a surface-coated cutting tool that exhibits excellent wear resistance with a hard coating layer particularly in high-speed cutting of the above heat-resistant alloy. As a result of conducting research by focusing on the (Cr, Al) N layer that constitutes the hard coating layer of carbide tools,
(A) In the (Cr, Al) N layer constituting the conventional hard coating layer, a Y (yttrium) component is added to this, and a composite nitride of Cr, Al and Y [hereinafter referred to as (Cr, Al, Y) N]] layer, the high-temperature oxidation resistance of the layer is improved in proportion to the Y component content, and the layer has excellent high-temperature oxidation resistance. Al) N layer has excellent high-temperature hardness, high-temperature strength, and the proportion that can be contained without impairing heat resistance is at most about 1 to 10 atomic%, and with this Y-content proportion, high-speed cutting of heat-resistant alloys In order to exhibit excellent high-temperature oxidation resistance in high-speed cutting of the heat-resistant alloy, the above 1 to 10 atomic% is much more difficult. It must contain more than 15-30 atomic% Y, On the other hand, in order to use a (Cr, Al, Y) N layer containing a Y component of 15 to 30 atomic% as a hard coating layer, it is necessary to ensure a predetermined high-temperature strength by containing a predetermined amount of Cr. In this case, however, it is inevitable that the content ratio of the Al component is extremely low, and as a result, the high temperature hardness and heat resistance are extremely low.

(b)上記(a)の(Cr,Al,Y)N層において、Y含有割合をきわめて高くし、一方Y成分の含有割合を高めた分、Al含有割合を低くした(Cr,Al,Y)N層(以下、薄層Aという)と、
前記薄層Aに比してY含有割合は低いが、相対的にAl含有割合を高くし、所定の相対的に高い高温硬さと耐熱性とを備えた(Cr,Al,Y)N層(以下、薄層Bという)を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で交互積層すると、この交互積層構造の(Cr,Al,Y)N層は、高Y含有の薄層Aのもつすぐれた高温耐酸化性を損なうことなく、しかも、相対的にAl含有割合が高い薄層Bによってその高温硬さと耐熱性とが補われることにより、すぐれた高温耐酸化性を具備すると同時に相対的に高い高温硬さと耐熱性とを保持した交互積層構造の(Cr,Al,Y)N層となること。

ここで、薄層A、薄層Bの組成式は、次のとおりである。

薄層Aの組成式:[Cr1-(E+F)Al]N(ただし、原子比で、Eは0.1〜0.25、Fは0.15〜0.30を示す)
薄層Bの組成式:[Cr1-(M+N)Al]N(ただし、原子比で、Mは0.50〜0.65、Nは0.01〜0.10を示す)
(B) In the (Cr, Al, Y) N layer of (a) above, the Y content ratio was made extremely high, while the Al content ratio was lowered (Cr, Al, Y) as much as the Y component content ratio was increased. ) N layer (hereinafter referred to as thin layer A);
Although the Y content is lower than that of the thin layer A, the Al content is relatively high, and a (Cr, Al, Y) N layer having a predetermined relatively high high-temperature hardness and heat resistance ( (Hereinafter referred to as thin layer B) are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometer), and the (Cr, Al, Y) N layer of this alternately laminated structure is Without impairing the excellent high-temperature oxidation resistance of the high Y-containing thin layer A, and by supplementing the high-temperature hardness and heat resistance with the thin layer B having a relatively high Al content, excellent high temperature (Cr, Al, Y) N layer having an alternately laminated structure that has oxidation resistance and at the same time maintains relatively high temperature hardness and heat resistance.

Here, the composition formulas of the thin layer A and the thin layer B are as follows.

Composition formula of the thin layer A: [Cr 1- (E + F) Al E Y F] N ( provided that an atomic ratio, E is 0.1 to 0.25, F represents a 0.15 to 0.30)
Composition formula of the thin layer B: [Cr 1- (M + N) Al M Y N] N ( provided that an atomic ratio, M is .50 to .65, N denotes the 0.01-0.10)

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Cr,Al,Y)N層は、耐熱合金の高速切削加工で要求される、すぐれた高温耐酸化性と所定の高温硬さおよび耐熱性を具備するものの、未だ十分満足な高温硬さおよび耐熱性を有するものでないので、これを硬質被覆層の上部層として設け、一方同下部層として、高温耐酸化性は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さおよび耐熱性を具備する上記従来の硬質被覆層を構成する(Cr,Al)N層にY成分を1〜10原子%の割合で含有させた(Cr,Al,Y)N層、すなわち、
組成式:[Cr1-(X+Z)Al]N(ただし、原子比で、Xは0.50〜0.65、Zは0.01〜0.10を示す)を満足する、単一相構造の(Cr,Al,Y)N層、
を設けた構造にすると、この結果の硬質被覆層は、すぐれた高温耐酸化性に加えて、高温硬さと耐熱性、さらに高温強度を複合的に具備したものとなるので、この硬質被覆層を蒸着形成してなる表面被覆切削工具は、高熱発生を伴い、厳しい高温酸化雰囲気に曝される耐熱合金の高速切削加工でも、前記硬質被覆層の摩耗進行が著しく抑制されるようになることから、すぐれた耐摩耗性を長期に亘って発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Cr, Al, Y) N layer having the alternately laminated structure of the thin layer A and the thin layer B in (b) above has excellent high-temperature oxidation resistance required for high-speed cutting of a heat-resistant alloy. Although it has the prescribed high-temperature hardness and heat resistance, it still does not have satisfactory high-temperature hardness and heat resistance, so it is provided as the upper layer of the hard coating layer, while the lower layer is used as the high-temperature oxidation resistance Is not sufficient, but the content ratio of the Al component is relatively high, and the Y component is 1 in the (Cr, Al) N layer constituting the conventional hard coating layer having excellent high temperature hardness and heat resistance. (Cr, Al, Y) N layer contained in a ratio of -10 atomic%, that is,
Composition formula: [Cr 1- (X + Z ) Al X Y Z] N ( provided that an atomic ratio, X is 0.50 to .65, Z represents a 0.01-0.10) satisfies the single (Cr, Al, Y) N layer of single phase structure,
The resulting hard coating layer has a combination of high temperature hardness, heat resistance, and high temperature strength in addition to excellent high temperature oxidation resistance. Since the surface-coated cutting tool formed by vapor deposition is accompanied by high heat generation, even in high-speed cutting of a heat-resistant alloy that is exposed to a severe high-temperature oxidation atmosphere, the progress of wear of the hard coating layer is remarkably suppressed, Demonstrate excellent wear resistance over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、
(a)いずれも(Cr,Al,Y)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚が5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Cr1-(E+F)Al]N(ただし、原子比で、Eは0.10〜0.25、Fは0.15〜0.30を示す)を満足する(Cr,Al,Y)N層、
上記薄層Bは、
組成式:[Cr1-(M+N)Al]N(ただし、原子比で、Mは0.50〜0.65、Nは0.01〜0.10を示す)を満足する(Cr,Al,Y)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[(Cr1-(X+Z)Al]N(ただし、原子比で、Xは0.50〜0.65、Zは0.01〜0.10を示す)を満足する(Cr,Al,Y)N層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具に特徴を有するものである。
The present invention has been made based on the above research results, and is provided on the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, or on the surface of a high-speed tool steel substrate. In addition,
(A) Both are composed of an upper layer and a lower layer made of (Cr, Al, Y) N, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternate layered structure of thin layers A and thin layers B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: [Cr 1− (E + F) Al E Y F ] N (wherein E represents 0.10 to 0.25 and F represents 0.15 to 0.30 in atomic ratio) (Cr , Al, Y) N layer,
The thin layer B is
Composition formula: [Cr 1- (M + N ) Al M Y N] N ( provided that an atomic ratio, M is 0.50 to .65, N denotes the 0.01-0.10) satisfies (Cr , Al, Y) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [(Cr 1− (X + Z) Al X Y Z ] N (wherein X is 0.50 to 0.65 and Z is 0.01 to 0.10 in atomic ratio) is satisfied ( Cr, Al, Y) N layer,
It is characterized by a surface-coated cutting tool that exhibits excellent wear resistance in high-speed cutting of a heat-resistant alloy formed by vapor-depositing a hard coating layer made of

つぎに、この発明の表面被覆切削工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および平均層厚
上記の通り、硬質被覆層を構成する(Cr,Al,Y)N層におけるAl成分には高温硬さ、同Cr成分には高温強度を向上させると共に、AlおよびCrが共存含有した状態で耐熱性を向上させ、さらに同Y成分には高温耐酸化性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さと耐熱性を維持するが、Alの含有割合を示すX値がCrとYとの合量に占める割合(原子比、以下同じ)で0.50未満では、所望のすぐれた高温硬さと耐熱性を確保することができず、摩耗の進行促進が避けられず、一方Alの割合を示す同X値が同0.65を越えると、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、X値を0.50〜0.65と定めた。
また、Y成分の割合を示すZ値がCrとAlの合量に占める割合で、0.01未満では、所定の高温耐酸化性を確保することができず、一方同Z値が0.10を超えると、高温強度に低下傾向が現れるようになることから、Z値を0.01〜0.10と定めた。
さらに、その平均層厚が2μm未満では、自身のもつすぐれた高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、これが工具寿命短命化の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the surface-coated cutting tool of the present invention are limited as described above will be described.
(A) Composition formula and average layer thickness of the lower layer As described above, the Al component in the (Cr, Al, Y) N layer constituting the hard coating layer is improved in high-temperature hardness, and the Cr component is improved in high-temperature strength. At the same time, the heat resistance is improved in the state where Al and Cr coexist, and the Y component has an effect of improving high-temperature oxidation resistance. In the lower layer, the content ratio of the Al component is relatively increased, High high temperature hardness and heat resistance are maintained, but if the X value indicating the Al content is less than 0.50 in terms of the total amount of Cr and Y (atomic ratio, the same applies hereinafter), the desired excellent high temperature hardness However, if the X value indicating the proportion of Al exceeds 0.65, the high-temperature strength decreases rapidly, and as a result, chipping ( X value is 0. .50 to 0.65.
Further, if the Z value indicating the proportion of the Y component occupies the total amount of Cr and Al, and less than 0.01, the predetermined high-temperature oxidation resistance cannot be ensured, while the Z value is 0.10. When the value exceeds 1, the high temperature strength tends to decrease, so the Z value was determined to be 0.01 to 0.10.
Furthermore, if the average layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, which causes a shortened tool life, while the average layer thickness is 6 μm. If it exceeds 1, chipping is likely to occur, so the average layer thickness was set to 2 to 6 μm.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Cr,Al,Y)NにおけるY成分には、上記の通り相対的にその含有割合を高くして、高温耐酸化性を向上させ、もって高熱発生を伴う耐熱合金の高速切削加工ですぐれた高温耐酸化性を発揮させ、摩耗進行を抑制する作用があるが、その含有割合を示すF値がCrとAlの合量に占める割合で、0.15未満では前記作用に所望のすぐれた効果を確保することができず、一方同F値が0.30を越えると、高温強度が急激に低下し、これが上部層全体の高温強度低下の原因となり、チッピングが発生し易くなることから、F値を0.15〜0.30と定めた。
また、Alの割合を示すE値がCrとYの合量に占める割合で、0.10未満では、最低限の高温硬さを確保することができず、摩耗促進の原因となり、一方同E値が0.25を超えると、高温強度が低下するようになり、チッピング発生の原因となることから、E値を0.10〜0.25と定めた。
(B) Composition formula of upper layer thin layer A The Y component in (Cr, Al, Y) N of the upper layer thin layer A has a relatively high content ratio as described above, and is resistant to high temperature oxidation. The high-temperature oxidation resistance of the heat-resistant alloy with high heat generation is demonstrated by the high-temperature oxidation resistance and suppresses the progress of wear, but the F value indicating the content ratio is a combination of Cr and Al. If the ratio is less than 0.15, the desired excellent effect cannot be ensured for the above action. On the other hand, if the F value exceeds 0.30, the high-temperature strength decreases rapidly, and this is the upper layer. The F value was set to 0.15 to 0.30 because it causes a decrease in the overall high-temperature strength and easily causes chipping.
Further, the E value indicating the proportion of Al is the proportion of the total amount of Cr and Y, and if it is less than 0.10, the minimum high-temperature hardness cannot be secured, causing wear promotion, while the E If the value exceeds 0.25, the high-temperature strength decreases and causes chipping, so the E value was set to 0.10 to 0.25.

(c)上部層の薄層Bの組成式

薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、云わば、薄層Aに不足する特性(高温硬さ)を補うことを主たる目的とするものである。

すでに述べたように、上部層の薄層Aは、Y成分の含有割合を高めその高温耐酸化性の向上を図ったものであるが、上部層には所定の高温強度も求められており、これを確保するためには薄層Aに所定量のCrを含有する必要がある。そうすると、薄層AにおけるAlの含有割合は、少なくならざるを得ず、その結果として、薄層Aは高温硬さおよび耐熱性が不十分となり、ひいては、耐摩耗性の低下につながる。
そこで、上部層の薄層Bにおいては、Y成分の含有割合を相対的に低くし、その分Al成分の含有割合を高く維持することで、相対的に高い高温硬さと耐熱性を具備せしめ、隣接する薄層Aの高温硬さの不足を補い、もって、前記薄層Aの有するすぐれた高温耐酸化性を損なうことなく、しかも、前記薄層Bの有する高温硬さおよび耐熱性を具備した上部層を形成する。

薄層Bの組成式におけるAlの含有割合を示すM値が0.50未満では、所望の高温硬さを確保することができず、摩耗進行が促進するようになり、一方同M値が0.65を越えると、上部層全体の高温強度が低下するようになり、チッピング発生の原因となることから、M値を0.50〜0.65と定めた。

また、Yの割合を示すN値がCrとAlの合量に占める割合で、0.01未満になると、上部層全体の高温耐酸化性低下が避けられず、一方同N値が0.10を超えると、高温強度が急激に低下するようになることから、N値を0.01〜0.10と定めた。
(C) Composition formula of thin layer B of the upper layer

The main purpose of the thin layer B is to make up for the characteristics (high temperature hardness) that the thin layer A lacks in the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B.

As already mentioned, the upper layer thin layer A is intended to increase the content ratio of the Y component and improve its high temperature oxidation resistance, but the upper layer is also required to have a predetermined high temperature strength, In order to ensure this, the thin layer A needs to contain a predetermined amount of Cr. If it does so, the content rate of Al in the thin layer A must be reduced, As a result, the thin layer A becomes inadequate in high temperature hardness and heat resistance, and it leads to the fall of abrasion resistance by extension.
Therefore, in the thin layer B of the upper layer, the content ratio of the Y component is relatively low, and the content ratio of the Al component is maintained high by that amount, thereby providing relatively high high temperature hardness and heat resistance. Compensating for the lack of high-temperature hardness of the adjacent thin layer A, and without damaging the excellent high-temperature oxidation resistance of the thin layer A, and also having the high-temperature hardness and heat resistance of the thin layer B An upper layer is formed.

If the M value indicating the Al content in the composition formula of the thin layer B is less than 0.50, the desired high-temperature hardness cannot be ensured, and the progress of wear is promoted, while the M value is 0. If it exceeds .65, the high-temperature strength of the entire upper layer decreases, causing chipping, so the M value was determined to be 0.50 to 0.65.

Further, if the N value indicating the ratio of Y is the ratio of the total amount of Cr and Al, and less than 0.01, the high temperature oxidation resistance of the entire upper layer is inevitably lowered, while the N value is 0.10. Since the high temperature strength suddenly decreases when the value exceeds N, the N value is determined to be 0.01 to 0.10.

(d)上部層の薄層Aと薄層Bの一層平均層厚

上部層の薄層Aと薄層Bそれぞれの一層平均層厚が5nm未満では、それぞれの薄層を上記の組成のものとして明確に形成することが困難であり、この結果上部層に所望のすぐれた高温耐酸化性および所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの一層平均層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さ不足、薄層Bであれば高温耐酸化性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの一層平均層厚を5〜20nmと定めた。

すなわち、薄層Bは、薄層Aの有する特性のうちの不十分な特性を補うために設けたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が5〜20nmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた高温耐酸化性を具備し、しかもこれを損なうことなく所定の高温硬さ、高温強度を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が20nmを越えると、薄層Aの高温硬さ不足、あるいは、薄層Bの高温耐酸化性不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を5〜20nmと定めた。

薄層Aと薄層Bの一層平均層厚を5〜20nmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた高温耐酸化性、高温硬さ、高温強度及び耐熱性を兼ね備えた硬質被覆層が得られる。
(D) Single layer average layer thickness of thin layer A and thin layer B of the upper layer

If the average layer thickness of each of the thin layers A and B of the upper layer is less than 5 nm, it is difficult to clearly form each thin layer as having the above composition. The high temperature oxidation resistance and the predetermined high temperature hardness and heat resistance cannot be ensured, and if the average layer thickness of each layer exceeds 20 nm, the disadvantage of each thin layer, that is, if the thin layer A is used, If the thickness of the layer B is insufficient, the high temperature oxidation resistance may appear locally in the layer, which may cause chipping or promote the progress of wear. The layer thickness was determined to be 5 to 20 nm.

That is, the thin layer B is provided to compensate for insufficient properties among the properties of the thin layer A, but the average layer thickness of each of the thin layers A and B is in the range of 5 to 20 nm. If it is in the upper layer, the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B has excellent high-temperature oxidation resistance, and as if it had predetermined high-temperature hardness and high-temperature strength without impairing this. It acts as if it is a single layer, but if the average layer thickness of each of the thin layers A and B exceeds 20 nm, the high-temperature hardness of the thin layer A is insufficient, or the high-temperature oxidation resistance of the thin layer B Insufficiency appears locally in the layer, and the upper layer as a whole cannot exhibit good characteristics as a single layer, so that the average layer thickness of each of the thin layer A and the thin layer B is 5 It was set to ˜20 nm.

By forming an upper layer having an alternately laminated structure in which the average layer thickness of the thin layer A and the thin layer B is in the range of 5 to 20 nm on the lower layer surface, excellent high temperature oxidation resistance, high temperature hardness, high temperature A hard coating layer having both strength and heat resistance is obtained.


(e)上部層の平均層厚

その平均層厚が0.5μm未満では、自身のもつすぐれた高温耐酸化性と、所定の高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が1.5μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜1.5μmと定めた。

(E) Average layer thickness of the upper layer

If the average layer thickness is less than 0.5 μm, the excellent high-temperature oxidation resistance and the predetermined high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the average layer thickness exceeds 1.5 μm, chipping is likely to occur. Therefore, the average layer thickness was set to 0.5 to 1.5 μm.

この発明の表面被覆切削工具は、硬質被覆層が(Cr,Al,Y)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた高温耐酸化性を具備し、しかもこれを損なうことなく所定の高温硬さおよび耐熱性を有し、さらに、同単一相構造の下部層がすぐれた高温硬さおよび耐熱性を有することから、特に高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工でも、硬質被覆層がすぐれた高温耐酸化性を発揮し、この結果すぐれた耐摩耗性を長期に亘って発揮するものである。   In the surface-coated cutting tool of the present invention, the hard coating layer is composed of a (Cr, Al, Y) N layer, and it is excellent in that the upper layer of the hard coating layer has an alternately laminated structure of thin layers A and thin layers B. Because it has high temperature oxidation resistance and has a predetermined high temperature hardness and heat resistance without impairing this, and the lower layer of the single phase structure has excellent high temperature hardness and heat resistance, In particular, even in high-speed cutting of heat-resistant alloys such as Ni alloys, Co alloys, and Ti alloys with high heat generation, the hard coating layer exhibits excellent high-temperature oxidation resistance, which results in excellent wear resistance for a long time. It is demonstrated over the long term.

つぎに、この発明の表面被覆切削工具を実施例により具体的に説明する。   Next, the surface-coated cutting tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B-1 to B-6 made of TiCN base cermet having the following chip shape were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Cr−Al−Y合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層Bおよび下部層形成用Cr−Al−Y合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Cr−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Cr−Al−Y合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Cr−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,Y)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Cr−Al−Y合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層Bおよび下部層形成用Cr−Al−Y合金のカソード電極とアノード電極間に同じく50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し、再び前記薄層A形成用Cr−Al−Y合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層Bおよび下部層形成用Cr−Al−Y合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and used as a cathode electrode (evaporation source) on one side with the target compositions shown in Tables 3 and 4, respectively. As the upper layer Cr-Al-Y alloy having the corresponding component composition and the cathode electrode (evaporation source) on the other side, the component compositions corresponding to the target compositions shown in Tables 3 and 4 are also used. The upper layer thin layer B and the lower layer forming Cr—Al—Y alloy are arranged opposite to each other with the rotary table interposed therebetween,
(B) First, the inside of the apparatus is evacuated and maintained at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a carbide substrate that rotates while rotating on the rotary table. And a current of 100 A is passed between the thin layer B and Cr-Al-Y alloy for forming the lower layer and the anode electrode to generate an arc discharge, whereby the surface of the carbide substrate is Bombard cleaning with Cr-Al-Y alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and An arc discharge is generated by passing a current of 100 A between the layer B and the Cr—Al—Y alloy for forming the lower layer and the anode electrode, so that the target compositions shown in Tables 3 and 4 are formed on the surface of the cemented carbide substrate. And a (Cr, Al, Y) N layer having a single phase structure with a target layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the carbide substrate rotating while rotating on the rotary table. In the applied state, a predetermined current in the range of 50 to 100 A is passed between the cathode electrode and the anode electrode of the Cr-Al-Y alloy for forming the thin layer A to generate arc discharge, and the carbide A thin layer A having a predetermined layer thickness is formed on the surface of the substrate, and after the thin layer A is formed, the arc discharge is stopped. Instead, the cathode electrode of the thin layer B and the lower layer forming Cr—Al—Y alloy Similarly, a predetermined current in the range of 50 to 100 A is passed between the anode electrodes to generate arc discharge to form a thin layer B having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer A is formed again. Cr-Al-Y alloy cathode The formation of the thin layer A by arc discharge between the cathode electrode and the anode electrode and the formation of the thin layer B by arc discharge between the cathode layer and the anode electrode of the thin layer B and the lower layer forming Cr—Al—Y alloy are alternately performed. Thus, an upper layer composed of alternately laminated thin layers A and B having a target composition and a target layer thickness of one layer along the layer thickness direction is similarly formed on the surface of the cemented carbide substrate. By carrying out vapor deposition with the overall target layer thicknesses shown in Tables 3 and 4, the present invention surface-coated carbide throwaway tip (hereinafter referred to as the present invention coated carbide tip) 1 to 1 as the present invention coated carbide tool. 16 were produced respectively.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったCr−Al合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Cr−Al合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Cr,Al)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. A Cr—Al alloy having a component composition corresponding to the target composition shown in Table 5 was mounted as a cathode electrode (evaporation source) as a cathode electrode (evaporation source). While maintaining the following vacuum, the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the cemented carbide substrate, and between the Cr—Al alloy of the cathode electrode and the anode electrode An arc discharge is generated by supplying a current of 100 A to the substrate, and the surface of the carbide substrate is bombarded with the Cr—Al alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa. At the same time, the bias voltage applied to the cemented carbide substrate is lowered to -100V to generate an arc discharge between the cathode electrode and the anode electrode of the Cr-Al alloy. A hard coating layer composed of a (Cr, Al) N layer having a single phase structure having a target composition and a target layer thickness shown in Table 5 is formed on each surface of -10 and B-1 to B-6 by vapor deposition. Thus, conventional surface-coated carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated carbide tools were produced, respectively.

つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、
被削材:質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 120 m/min.、
切り込み: 1.0 mm、

送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのCo合金の乾式断続高速切削加工試験(通常の切削速度は80m/min.)、
被削材:質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Mo3.0−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成を有するNi合金の丸棒、
切削速度: 150 m/min.、

切り込み: 1.2 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件(切削条件B)でのNi合金の乾式連続高速切削加工試験(通常の切削速度は100m/min.)、
被削材:質量%で、Ti90.0−Al6.0−V4.0の組成を有するTi合金の長さ方向等間隔4本縦溝入り丸棒、

切削速度: 120 m/min.、
切り込み: 1.2 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)でのTi合金の乾式断続高速切削加工試験(通常の切削速度は70m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, the coated carbide tips 1-16 of the present invention and the conventional coated carbide tip 1 in the state where each of the various coated carbide tips is screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: Co alloy having a composition of Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0-Mn1.20-C0.40 in mass%. 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 120 m / min. ,
Cutting depth: 1.0 mm,

Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
A dry interrupted high-speed cutting test of a Co alloy under the conditions (cutting condition A) (normal cutting speed is 80 m / min.),
Work material: By mass%, the composition of Ni52.5-Cr19.0-Fe18.5-Nb5.1-Mo3.0-Ti0.9-Al0.5-Mn0.2-Si0.2-C0.04 A nickel alloy round bar having
Cutting speed: 150 m / min. ,

Cutting depth: 1.2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of Ni alloy under the conditions (cutting condition B) (normal cutting speed is 100 m / min.),
Work material: Round bar with four flutes at equal intervals in the longitudinal direction of Ti alloy having a composition of Ti90.0-Al6.0-V4.0 by mass%,

Cutting speed: 120 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
A dry interrupted high-speed cutting test (normal cutting speed is 70 m / min.) Of Ti alloy under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661


(イ)原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
(ロ)また、直径が8mm、13mm、および26mmの3種の寸法の高速度工具鋼(JIS・SKH57)素材から、機械加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもった高速度工具鋼(以下、HSSという)基体(エンドミル)E−1〜E−6をそれぞれ製造した。HSS基体(エンドミル)E−1〜E−2、E−3〜E−4、E−5〜E−6の寸法・形状は、それぞれ、前記超硬基体(エンドミル)C−1〜C−3、C−4〜C−6、C−7〜C−8のそれと同じである。

(A) As raw material powder, medium coarse WC powder having an average particle size of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, 2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, Co powder of 1.8 μm was prepared, and these raw material powders were blended in the blending composition shown in Table 7, respectively, and added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressure of 100 MPa Are pressed into various green compacts of a predetermined shape, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa. And after holding at this temperature for 1 hour, As a result, three types of cemented carbide substrate-forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm were formed. In the combination shown in the above, the diameter × length of the cutting edge is 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and each has a four-blade square shape with a twist angle of 30 degrees. Cemented carbide substrates (end mills) C-1 to C-8 were produced, respectively.
(B) Also, the diameter of the cutting edge part in the combinations shown in Table 7 by machining from high-speed tool steel (JIS / SKH57) materials of three types of diameters of 8 mm, 13 mm, and 26 mm × High-speed tool steel (hereinafter referred to as HSS) base (end mill) E having a four-blade square shape with dimensions of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. -1 to E-6 were produced. The dimensions and shapes of the HSS substrates (end mills) E-1 to E-2, E-3 to E-4, and E-5 to E-6 are the same as the carbide substrates (end mills) C-1 to C-3. , C-4 to C-6, and C-7 to C-8.

ついで、これらの超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,Y)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明表面被覆切削工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8及び本発明表面被覆高速度工具鋼製エンドミル(以下、本発明被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。   Next, the surfaces of these carbide substrates (end mills) C-1 to C-8 and HSS substrates (end mills) E-1 to E-6 were ultrasonically cleaned in acetone and dried, as shown in FIG. From the (Cr, Al, Y) N layer having the single composition of the target composition and the target layer thickness shown in Table 8 under the same conditions as in Example 1 above. The total target layer thickness shown in Table 8 is also the lower layer, and the upper layer consisting of the alternating layers of the thin layer A and the thin layer B having the target composition and the single target layer thickness are also shown in Table 8 along the layer thickness direction. As a surface-coated cutting tool of the present invention, the surface-coated carbide end mill (hereinafter referred to as the present invention coated carbide end mill) 1 to 8 and the surface-coated high-speed tool steel end mill (hereinafter referred to as the present invention) The present invention coated HSS end Le and refers) 9-14 were prepared, respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Cr,Al)N層からなる硬質被覆層を蒸着することにより、従来表面被覆超硬製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8及び従来表面被覆高速度工具鋼製エンドミル(以下、従来被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 and HSS substrates (end mills) E-1 to E-6 were ultrasonically cleaned in acetone and dried. 2 is charged in the arc ion plating apparatus shown in FIG. 2 and has a single-phase structure with the target composition and target layer thickness shown in Table 9 under the same conditions as in Example 1 (Cr, Al). ) Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 and conventional surface-coated high-speed tool steel end mills (hereinafter referred to as conventional coatings) by vapor-depositing a hard coating layer consisting of N layers 9-14) (referred to as HSS end mills). Were manufactured respectively.

(a)つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、
(a−1)本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Mo3.0−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成を有するNi合金の板材、
切削速度: 60 m/min.、
溝深さ(切り込み):2.5 mm、
テーブル送り: 140 mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は35m/min.)を行い、
(a−2)本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti90.0−Al6.0−V4.0の組成を有するTi合金の板材、
切削速度: 80 m/min.、
溝深さ(切り込み):4 mm、
テーブル送り: 120 mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は40m/min.)を行い、
(a−3)本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、
切削速度: 70 m/min.、
溝深さ(切り込み):9 mm、
テーブル送り:110 mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は40m/min.)を行い、
上記(a−1)〜(a−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
(A) Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8,
(A-1) About this invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3,
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm in Dimensions and Mass%, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Mo3.0-Ti0.9-Al0.5- Ni alloy plate material having a composition of Mn0.2-Si0.2-C0.04,
Cutting speed: 60 m / min. ,
Groove depth (cut): 2.5 mm,
Table feed: 140 mm / min,
A dry high-speed grooving test of the Ni alloy under the conditions (normal cutting speed is 35 m / min.),
(A-2) About this invention coated carbide end mills 4-6 and conventional coated carbide end mills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm, as well as mass%, Ti 90.0-Al6.0-V4.0 Ti alloy plate,
Cutting speed: 80 m / min. ,
Groove depth (cut): 4 mm,
Table feed: 120 mm / min,
A dry high-speed grooving test of the Ti alloy under the conditions (normal cutting speed is 40 m / min.),
(A-3) About the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8,
Work Material-Plane: 100 mm x 250 mm, Thickness: 50 mm, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0- A Co alloy plate having a composition of Mn1.20-C0.40,
Cutting speed: 70 m / min. ,
Groove depth (cut): 9 mm,
Table feed: 110 mm / min,
A dry high-speed grooving test of the Co alloy under the conditions (normal cutting speed is 40 m / min.),
In any of the above groove cutting tests (a-1) to (a-3), the cutting groove length until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. Was measured.


(b)つぎに、本発明被覆HSSエンドミル9〜14および比較被覆HSSエンドミル9〜14のうち、

(b−1)本発明被覆HSSエンドミル9、10および従来被覆HSSエンドミル9、10については、

被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Mo3.0−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成を有するNi合金の板材、
切削速度: 40 m/min.、
溝深さ(切り込み):1.5 mm、
テーブル送り: 120 mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は20m/min.)を行い、
(b−2)本発明被覆HSSエンドミル11、12および従来被覆HSSエンドミル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti90.0−Al6.0−V4.0の組成を有するTi合金の板材、
切削速度: 45 m/min.、
溝深さ(切り込み):2.5 mm、
テーブル送り: 90 mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は25m/min.)を行い、
(b−3)本発明被覆HSSエンドミル13、14および従来被覆HSSエンドミル13、14については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、
切削速度: 40 m/min.、
溝深さ(切り込み):5 mm、
テーブル送り: 80 mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は20m/min.)を行い、
上記(b−1)〜(b−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記(a−1)〜(a−3)、(b−1)〜(b−3)の測定結果を表8,9にそれぞれ示した。

(B) Next, among the coated HSS end mills 9 to 14 and the comparative coated HSS end mills 9 to 14 of the present invention,

(B-1) About the present coated HSS end mills 9 and 10 and the conventional coated HSS end mills 9 and 10,

Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm in Dimensions and Mass%, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Mo3.0-Ti0.9-Al0.5- Ni alloy plate material having a composition of Mn0.2-Si0.2-C0.04,
Cutting speed: 40 m / min. ,
Groove depth (cut): 1.5 mm,
Table feed: 120 mm / min,
A dry high-speed grooving test of the Ni alloy under the conditions (normal cutting speed is 20 m / min.),
(B-2) About this invention coated HSS end mills 11 and 12 and conventional coated HSS end mills 11 and 12,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm, as well as mass%, Ti 90.0-Al6.0-V4.0 Ti alloy plate,
Cutting speed: 45 m / min. ,
Groove depth (cut): 2.5 mm,
Table feed: 90 mm / min,
A dry high-speed grooving test of the Ti alloy under the conditions (normal cutting speed is 25 m / min.),
(B-3) About this invention coated HSS end mills 13 and 14 and conventional coated HSS end mills 13 and 14,
Work Material-Plane: 100 mm x 250 mm, Thickness: 50 mm, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0- A Co alloy plate having a composition of Mn1.20-C0.40,
Cutting speed: 40 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 80 mm / min,
A dry high-speed grooving test of the Co alloy under the conditions (normal cutting speed is 20 m / min.),
In any of the groove cutting tests of (b-1) to (b-3) above, the cutting groove length until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. Was measured.
The measurement results of the above (a-1) to (a-3) and (b-1) to (b-3) are shown in Tables 8 and 9, respectively.

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。

また、上記の実施例2で用いた高速度工具鋼(JIS・SKH57)素材を用い、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×25mm(HSS基体F−1、F−2)、8mm×45mm(HSS基体F−3、F−4)、および16mm×90mm(HSS基体F−5、F−6)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった高速度工具鋼製のHSS基体(ドリル)F−1〜F−6をそれぞれ製造した
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

In addition, using the high-speed tool steel (JIS / SKH57) material used in Example 2 above, the diameter x length of the groove forming portion was 4 mm x 25 mm (HSS bases F-1, F- 2), 8 mm × 45 mm (HSS substrates F-3, F-4), and 16 mm × 90 mm (HSS substrates F-5, F-6), and each has a two-blade shape with a twist angle of 30 degrees. HSS substrates (drills) F-1 to F-6 made of high-speed tool steel were manufactured respectively.

ついで、これらの超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,Y)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8及び本発明表面被覆HSSドリル(以下、本発明被覆HSSドリルと云う)9〜14をそれぞれ製造した。   Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 and HSS substrates (drills) F-1 to F-6 are honed, ultrasonically cleaned in acetone, and dried. In the same manner, the arc ion plating apparatus shown in FIG. 1 was charged, and under the same conditions as in Example 1, it had a single phase structure with the target composition and target layer thickness shown in Table 10 (Cr, Al , Y) The lower layer consisting of N layers and the upper layer consisting of alternating layers of the thin layer A and the thin layer B with the target composition and the single target layer thickness also shown in Table 10 along the layer thickness direction are also shown in Table 10 By carrying out vapor deposition with the overall target layer thickness shown, the present invention surface coated carbide drill (hereinafter referred to as the present invention coated carbide drill) 1-8 and the present surface coated HSS drill (hereinafter referred to as the present invention coated HSS drill). 9-14 each manufactured) It was.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Cr,Al)N層からなる硬質被覆層を蒸着することにより、従来表面被覆超硬製ドリル(以下、従来被覆超硬ドリルと云う)1〜8及び従来表面被覆HSSドリル(以下、従来被覆HSSドリルと云う)9〜14をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 and HSS substrates (drills) F-1 to F-6 are subjected to honing and ultrasonically cleaned in acetone. In a dry state, the same was put into the arc ion plating apparatus shown in FIG. 2, and under the same conditions as in Example 1, a single phase structure with the target composition and target layer thickness also shown in Table 11 was obtained. By vapor-depositing a hard coating layer comprising a (Cr, Al) N layer, conventional drills made of surface coated carbide (hereinafter referred to as conventional coated carbide drills) 1-8 and conventional surface coated HSS drills (hereinafter referred to as conventional drills). 9-14, each of which was referred to as a coated HSS drill.

(c)つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、
(c−1)本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、

被削材−平面:100mm×250、厚さ:50mmの寸法、並びに質量%で、Ti90.0−Al6.0−V4.0の組成を有するTi合金の板材、
切削速度:100 m/min.、
送り: 0.15 mm/rev、
穴深さ: 8 mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は60m/min.)を行い、
(c−2)本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、
切削速度: 90 m/min.、
送り: 0.20 mm/rev、
穴深さ: 16 mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は50m/min.)を行い、
(c−3)本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Mo3.0−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成を有するNi合金の板材、
切削速度: 60 m/min.、
送り: 0.35 mm/rev、
穴深さ: 30 mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は35m/min.)を行い、
上記(c−1)〜(c−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
(C) Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8,
(C-1) About this invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,

Work material-plane: 100 mm × 250, thickness: 50 mm, and mass%, and Ti alloy plate having a composition of Ti90.0-Al6.0-V4.0,
Cutting speed: 100 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 8 mm,
A wet high-speed drilling test of the Ti alloy under the conditions (normal cutting speed is 60 m / min.),
(C-2) About the present coated carbide drills 4-6 and the conventional coated carbide drills 4-6,
Work Material-Plane: 100 mm x 250 mm, Thickness: 50 mm, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0- A Co alloy plate having a composition of Mn1.20-C0.40,
Cutting speed: 90 m / min. ,
Feed: 0.20 mm / rev,
Hole depth: 16 mm,
A wet high speed drilling test of the Co alloy under the conditions (normal cutting speed is 50 m / min.),
(C-3) About the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm in Dimensions and Mass%, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Mo3.0-Ti0.9-Al0.5- Ni alloy plate material having a composition of Mn0.2-Si0.2-C0.04,
Cutting speed: 60 m / min. ,
Feed: 0.35 mm / rev,
Hole depth: 30 mm,
A wet high-speed drilling test of Ni alloy under the conditions (normal cutting speed is 35 m / min.),
In any of the wet high-speed drilling tests (using water-soluble cutting oil) of any of the above (c-1) to (c-3), the number of drilling processes until the flank wear width of the tip cutting edge surface reaches 0.3 mm Was measured.


(d)つぎに、上記本発明被覆HSSドリル9〜14および従来被覆HSSドリル9〜14のうち、
(d−1)本発明被覆HSSドリル9、10および従来被覆HSSドリル9、10については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti90.0−Al6.0−V4.0の組成を有するTi合金の板材、
切削速度: 40 m/min.、
送り: 0.15 mm/rev、
穴深さ: 8 mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は20m/min.)を行い、
(d−2)本発明被覆HSSドリル11、12および従来被覆HSSドリル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、
切削速度: 30 m/min.、
送り: 0.10 mm/rev、
穴深さ: 16 mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)を行い、
(d−3)本発明被覆HSSドリル13、14および従来被覆HSSドリル13、14については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Mo3.0−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成を有するNi合金の板材、
切削速度: 30 m/min.、
送り: 0.25 mm/rev、
穴深さ: 30 mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)を行い、
上記(d−1)〜(d−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
上記(c−1)〜(c−3)、(d−1)〜(d−3)の測定結果を表10、11にそれぞれ示した。

(D) Next, among the above-mentioned present invention coated HSS drills 9-14 and conventional coated HSS drills 9-14,
(D-1) For the coated HSS drills 9 and 10 of the present invention and the conventional coated HSS drills 9 and 10,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm, as well as mass%, Ti 90.0-Al6.0-V4.0 Ti alloy plate,
Cutting speed: 40 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 8 mm,
A wet high-speed drilling test of the Ti alloy under the conditions (normal cutting speed is 20 m / min.),
(D-2) About this invention coated HSS drills 11 and 12 and conventional coated HSS drills 11 and 12,
Work Material-Plane: 100 mm x 250 mm, Thickness: 50 mm, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0- A Co alloy plate having a composition of Mn1.20-C0.40,
Cutting speed: 30 m / min. ,
Feed: 0.10 mm / rev,
Hole depth: 16 mm,
A wet high speed drilling test of the Co alloy under the conditions (normal cutting speed is 15 m / min.),
(D-3) About this invention coated HSS drills 13 and 14 and conventional coated HSS drills 13 and 14,
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm in Dimensions and Mass%, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Mo3.0-Ti0.9-Al0.5- Ni alloy plate material having a composition of Mn0.2-Si0.2-C0.04,
Cutting speed: 30 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 30 mm,
A wet high-speed drilling test of Ni alloy under the conditions (normal cutting speed is 15 m / min.),
In any of the wet high-speed drilling tests (using water-soluble cutting oil) in any of the above (d-1) to (d-3), the number of drilling processes until the flank wear width of the tip cutting edge surface reaches 0.3 mm Was measured.
The measurement results of the above (c-1) to (c-3) and (d-1) to (d-3) are shown in Tables 10 and 11, respectively.

Figure 0004697661
Figure 0004697661

Figure 0004697661
Figure 0004697661

この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、本発明被覆HSSエンドミル9〜14、本発明被覆超硬ドリル1〜8および本発明被覆HSSドリル9〜14の(Cr,Al,Y)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに、従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、従来被覆HSSエンドミル9〜14、従来被覆超硬ドリル1〜8および従来被覆HSSドリル9〜14の(Cr,Al)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the present coated carbide tips 1 to 16 as the present surface coated cutting tool, the present coated carbide end mill 1 to 8, the present coated HSS end mill 9 to 14, the present coated carbide drill 1 to 8 and the present invention HSS drills 9 to 14 (Cr, Al, Y) N hard coating layer composed of (Cr, Al, Y) N, upper layer thin layer A and thin layer B, further composition of the lower layer, and conventional coating super Hard coating consisting of (Cr, Al) N of hard tip 1-16, conventional coated carbide end mill 1-8, conventional coated HSS end mill 9-14, conventional coated carbide drill 1-8 and conventional coated HSS drill 9-14 When the composition of the layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜11に示される結果から、本発明表面被覆切削工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層(0.5〜1.5μmの平均層厚を有す)と、単一相構造の下部層(2〜6μmの平均層厚を有す)からなり、前記上部層がすぐれた高温耐酸化性と所定の高温硬さおよび耐熱性を備え、また、前記下部層がすぐれた高温硬さおよび耐熱性を有しているので、硬質被覆層は全体としてこれらのすぐれた特性を兼ね備えたものとなり、高熱発生を伴うNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工でも、前記硬質被覆層が前記上部層によってすぐれた高温耐酸化性を発揮し、切刃部における高温酸化が著しく抑制されることから、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Cr,Al)N層からなる従来被覆超硬工具は、特に硬質被覆層の高温耐酸化性不足が原因で前記耐熱合金の高速切削加工では、摩耗が急速に進行し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 11, the surface-coated cutting tool of the present invention has an upper layer in which the hard coating layer has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm. (Having an average layer thickness of 0.5 to 1.5 μm) and a lower layer having a single phase structure (having an average layer thickness of 2 to 6 μm), the upper layer having excellent high temperature oxidation resistance And the predetermined high temperature hardness and heat resistance, and since the lower layer has excellent high temperature hardness and heat resistance, the hard coating layer as a whole combines these excellent characteristics, Even in high-speed cutting of heat-resistant alloys such as Ni alloys, Co alloys, and Ti alloys with high heat generation, the hard coating layer exhibits excellent high-temperature oxidation resistance due to the upper layer, and high-temperature oxidation at the cutting edge is remarkable. Excellent wear resistance due to suppression In contrast, the conventional coated carbide tool in which the hard coating layer is composed of a single layer (Cr, Al) N layer has a high speed of the above heat-resistant alloy, especially due to the lack of high-temperature oxidation resistance of the hard coating layer. It is clear that in cutting, wear progresses rapidly and reaches the service life in a relatively short time.

上述のように、この発明の表面被覆切削工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特にNi合金やCo合金、さらにTi合金などの耐熱合金の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the surface-coated cutting tool of the present invention is not limited to cutting under normal cutting conditions such as various types of steel and cast iron, in particular, heat resistant alloys such as Ni alloys, Co alloys, and Ti alloys. It exhibits excellent wear resistance even in high-speed cutting with high heat generation and exhibits excellent cutting performance over a long period of time. It is possible to cope with the reduction of cost and cost.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、
(a)いずれもCrとAlとY(イットリウム)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Cr1-(E+F)Al]N(ただし、原子比で、Eは0.10〜0.25、Fは0.15〜0.30を示す)を満足するCrとAlとYの複合窒化物層、
上記薄層Bは、
組成式:[Cr1-(M+N)Al]N(ただし、原子比で、Mは0.50〜0.65、Nは0.01〜0.10を示す)を満足するCrとAlとYの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Cr1-(X+Z)Al]N(ただし、原子比で、Xは0.50〜0.65、Zは0.01〜0.10を示す)を満足するCrとAlとYの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。
On the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, or on the surface of a high-speed tool steel substrate,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Cr, Al and Y (yttrium), the upper layer being an average layer of 0.5 to 1.5 μm, and the lower layer being an average layer of 2 to 6 μm Each has a thickness,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Compositional formula: [Cr 1− (E + F) Al E Y F ] N (wherein, in terms of atomic ratio, E represents 0.10 to 0.25, F represents 0.15 to 0.30) and Cr A composite nitride layer of Al and Y;
The thin layer B is
Composition formula: [Cr 1- (M + N ) Al M Y N] N ( provided that an atomic ratio, M is 0.50 to .65, N denotes the 0.01-0.10) and Cr satisfying a A composite nitride layer of Al and Y,
(C) the lower layer has a single phase structure;
Composition formula: [Cr 1- (X + Z ) Al X Y Z] N ( provided that an atomic ratio, X is 0.50 to .65, Z represents a 0.01-0.10) and Cr satisfying a A composite nitride layer of Al and Y;
A surface-coated cutting tool that exhibits excellent wear resistance in high-speed cutting of a heat-resistant alloy, formed by vapor-depositing a hard coating layer comprising
JP2005190915A 2005-06-30 2005-06-30 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy Expired - Fee Related JP4697661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190915A JP4697661B2 (en) 2005-06-30 2005-06-30 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190915A JP4697661B2 (en) 2005-06-30 2005-06-30 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy

Publications (2)

Publication Number Publication Date
JP2007007764A JP2007007764A (en) 2007-01-18
JP4697661B2 true JP4697661B2 (en) 2011-06-08

Family

ID=37746890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190915A Expired - Fee Related JP4697661B2 (en) 2005-06-30 2005-06-30 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy

Country Status (1)

Country Link
JP (1) JP4697661B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713413B2 (en) 2006-06-30 2011-06-29 株式会社神戸製鋼所 Hard coating and method for producing the same
WO2009037776A1 (en) * 2007-09-20 2009-03-26 Osg Corporation Hard laminated coating, hard laminated coating provided tool and method of providing coating
JP5234499B2 (en) * 2008-05-28 2013-07-10 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP5234332B2 (en) * 2008-05-28 2013-07-10 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP5287383B2 (en) * 2009-03-13 2013-09-11 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed cutting
CN103286537B (en) * 2013-06-26 2016-03-30 洛阳理工学院 A kind of preparation method with high-wearing feature coated cutting tool
US20210016361A1 (en) * 2018-03-27 2021-01-21 Mitsubishi Materials Corporation Surface-coated cutting tool
JPWO2019188783A1 (en) * 2018-03-27 2021-02-18 三菱マテリアル株式会社 Surface coating cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311507A (en) * 2002-04-26 2003-11-05 Mitsubishi Materials Corp Cutting tool made of surface coated sintered having hard coating layer with excellent chipping resistance under high speed heavy cutting conditions
JP2004050381A (en) * 2002-07-24 2004-02-19 Mitsubishi Materials Corp Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP2006289538A (en) * 2005-04-08 2006-10-26 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1771602T3 (en) * 2004-07-15 2011-07-29 Oerlikon Trading Ag Highly oxidation resistant hard coating materials for cutting tools

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311507A (en) * 2002-04-26 2003-11-05 Mitsubishi Materials Corp Cutting tool made of surface coated sintered having hard coating layer with excellent chipping resistance under high speed heavy cutting conditions
JP2004050381A (en) * 2002-07-24 2004-02-19 Mitsubishi Materials Corp Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP2006289538A (en) * 2005-04-08 2006-10-26 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy

Also Published As

Publication number Publication date
JP2007007764A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4697661B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP4706915B2 (en) Surface-coated cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of heat-resistant alloys
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5041222B2 (en) Surface coated cutting tool
JP2007105841A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4702538B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP5196122B2 (en) Surface coated cutting tool
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP2006334739A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting of heat resistant alloy
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4697660B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4697659B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4720996B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007105843A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
JP4706921B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP3978723B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5099495B2 (en) Surface coated cutting tool
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110207

R150 Certificate of patent or registration of utility model

Ref document number: 4697661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110220

LAPS Cancellation because of no payment of annual fees