JP4695113B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4695113B2
JP4695113B2 JP2007090246A JP2007090246A JP4695113B2 JP 4695113 B2 JP4695113 B2 JP 4695113B2 JP 2007090246 A JP2007090246 A JP 2007090246A JP 2007090246 A JP2007090246 A JP 2007090246A JP 4695113 B2 JP4695113 B2 JP 4695113B2
Authority
JP
Japan
Prior art keywords
refrigerant
outdoor unit
outdoor
air conditioner
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007090246A
Other languages
Japanese (ja)
Other versions
JP2008249227A (en
Inventor
洋志 東
正彦 藤井
浩 澤田
将文 篠宮
弘樹 成安
二朗 福留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2007090246A priority Critical patent/JP4695113B2/en
Publication of JP2008249227A publication Critical patent/JP2008249227A/en
Application granted granted Critical
Publication of JP4695113B2 publication Critical patent/JP4695113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、室内機と室外機とを接続する内外連絡管に、複数台の室外機を並列接続した空調装置に関するものである。   The present invention relates to an air conditioner in which a plurality of outdoor units are connected in parallel to an internal / external communication pipe that connects the indoor unit and the outdoor unit.

一般に、室内機と室外機とを接続する内外連絡管に、複数台の室外機を並列接続した空調装置は知られている。   In general, an air conditioner in which a plurality of outdoor units are connected in parallel to an internal / external communication pipe that connects the indoor unit and the outdoor unit is known.

このような空調装置においては、複数台の室外機を並列接続しているので、各室外機間での冷媒量がアンバランスになりやすい。   In such an air conditioner, since a plurality of outdoor units are connected in parallel, the amount of refrigerant between the outdoor units tends to be unbalanced.

そこで、従来より、冷媒余剰側または運転停止側の室外機の冷媒経路にある冷媒を、冷媒不足側または運転中の室外機の冷媒経路に導いて、運転時の冷媒不足を解消するようになされた空調装置が提案されている(例えば、特許文献1ないし3参照。)。   Therefore, conventionally, the refrigerant in the refrigerant path of the outdoor unit on the refrigerant surplus side or the operation stop side is guided to the refrigerant shortage side or the refrigerant path of the outdoor unit in operation to solve the refrigerant shortage during operation. An air conditioner has been proposed (see, for example, Patent Documents 1 to 3).

特許文献1の空調装置は、冷媒不足側の冷媒経路にある吐出冷媒の一部を、冷媒余剰側の冷媒経路にあるレシーバに送り込んで、このレシーバに寝込んだ余剰冷媒を冷媒不足側の冷媒経路に回収するようになされている。   The air conditioner of Patent Literature 1 sends a part of the discharged refrigerant in the refrigerant path on the refrigerant shortage side to a receiver in the refrigerant path on the refrigerant surplus side, and the surplus refrigerant that has fallen into the receiver is supplied to the refrigerant path on the refrigerant shortage side. It is designed to be recovered.

特許文献2の空調装置は、運転中の室外機からの高圧冷媒を、停止中の室外機に送り込んで、これら室外機同士を連絡する外外連絡管経由で停止中の室外機に寝込んだ冷媒を運転中の室外機へと回収するようになされている。   The air conditioner of Patent Literature 2 sends high-pressure refrigerant from an operating outdoor unit to the stopped outdoor unit, and the refrigerant that has fallen into the stopped outdoor unit via an external communication pipe that connects these outdoor units to each other. Is recovered to the outdoor unit in operation.

特許文献3の空調装置は、室内機と室外機との間を連絡する液側内外連絡管に開閉弁を設け、運転停止時にこの弁を閉じることにより、停止室外機内への冷媒の流入を防止するようになされている。
特許第3096687号公報 特開平7−269974号公報 特許第3143142号公報
The air conditioner of Patent Literature 3 is provided with an open / close valve in a liquid side internal / external communication pipe that communicates between an indoor unit and an outdoor unit, and closes the valve when operation is stopped to prevent refrigerant from flowing into the stopped outdoor unit. It is made to do.
Japanese Patent No. 3096687 JP-A-7-269974 Japanese Patent No. 3143142

しかし、上記特許文献1の空調装置の場合、冷媒不足側の冷媒経路にある吐出冷媒の一部を、冷媒余剰側の冷媒経路にあるレシーバに送り込むので、冷媒不足であるにも関わらず、冷媒回収のためにさらに余分な冷媒を、冷媒余剰側の冷媒経路にあるレシーバに送り込まなければならない。したがって、冷媒不足を解消するために余分な冷媒を消費することとなり、空調能力が低下することが懸念される。   However, in the case of the air conditioner of Patent Document 1, a part of the discharged refrigerant in the refrigerant path on the refrigerant shortage side is sent to the receiver in the refrigerant path on the refrigerant surplus side. In order to recover, extra refrigerant must be sent to a receiver in the refrigerant path on the refrigerant surplus side. Therefore, excess refrigerant is consumed in order to eliminate the shortage of refrigerant, and there is a concern that the air conditioning capability is reduced.

また、上記特許文献2の空調装置の場合、室外機同士を連絡する外外連絡管経由で停止中の室外機に寝込んだ冷媒を運転中の室外機へと回収するため、回収した液冷媒がそのままコンプレッサーに導入されて液圧縮を起こすこととなり、空調能力が低下することが懸念される。   Further, in the case of the air conditioner of Patent Document 2 described above, the recovered liquid refrigerant is used for recovering the refrigerant that has fallen into the stopped outdoor unit to the outdoor unit that is in operation via the external communication pipe that connects the outdoor units to each other. As it is introduced into the compressor as it is, liquid compression occurs, and there is a concern that the air conditioning capacity will be reduced.

さらに、上記特許文献3の空調装置の場合、開閉弁を閉じることによって停止した室外機内への冷媒の流入を防止するだけなので、停止した室外機の冷媒経路に残った冷媒を積極的に回収することができない。その結果、運転中の室外機の冷媒不足が解消されないこととなり、空調能力が低下することが懸念される。   Furthermore, in the case of the air conditioner of Patent Document 3 described above, the refrigerant remaining in the refrigerant path of the stopped outdoor unit is positively collected because it only prevents the refrigerant from flowing into the stopped outdoor unit by closing the on-off valve. I can't. As a result, the shortage of refrigerant in the outdoor unit during operation will not be resolved, and there is a concern that the air conditioning capability will be reduced.

本発明は、かかる実情に鑑みてなされたものであって、複数台の室外機を並列接続した空調装置において、空調能力の低下を生じることなく冷媒不足を効率良く解消することができる空調装置を提供することを目的としている。   The present invention has been made in view of such a situation, and in an air conditioner in which a plurality of outdoor units are connected in parallel, an air conditioner that can efficiently solve a refrigerant shortage without causing a decrease in air conditioning capability. It is intended to provide.

上記課題を解決するための本発明の空調装置は、室内機と室外機とを接続する内外連絡管に各々レシーバを有する複数の室外機を並列接続する空調装置において、全室外機による暖房運転時に、冷媒余剰側の室外機で吐出冷媒が、自機のレシーバに迂回する構成としたものである。   The air conditioner of the present invention for solving the above problems is an air conditioner in which a plurality of outdoor units each having a receiver are connected in parallel to an internal / external communication pipe that connects the indoor unit and the outdoor unit. In the outdoor unit on the refrigerant surplus side, the discharged refrigerant bypasses the receiver of the own unit.

また、上記課題を解決するための本発明の空調装置は、室内機と室外機とを接続する内外連絡管に各々レシーバを有する複数の室外機を並列接続する空調装置において、停止室外機が存在する暖房運転時に、運転室外機よりガス側内外連絡管経由で吐出冷媒が停止室外機のレシーバに流入する構成とし、停止室外機のレシーバ内の冷媒を液側内外連絡管および各室外機の圧縮機吸入ライン同士を連絡する外外連絡管を介して運転室外機に回収する構成としたものである。 Moreover, the air conditioner of the present invention for solving the above-mentioned problems is a condition in which an outdoor unit having a stop is present in an air conditioner in which a plurality of outdoor units each having a receiver are connected in parallel to an internal / external communication pipe that connects the indoor unit and the outdoor unit. During heating operation, the refrigerant discharged from the cab outdoor unit flows into the receiver of the stop outdoor unit via the gas side internal / external connection pipe, and the refrigerant in the receiver of the stop outdoor unit is compressed by the liquid side internal / external connection pipe and each outdoor unit. It is configured to collect in the cab outside unit through an outside / outside connecting pipe that connects the machine suction lines .

さらに、上記課題を解決するための本発明の空調装置は、室内機と室外機とを接続する内外連絡管に各々レシーバを有する複数の室外機を並列接続する空調装置において、各室外機に液側内外連絡管への自動開閉弁を設け、各室外機の圧縮機吸入ライン同士を連絡する外外連絡管を設け、各室外機のレシーバ所定位置と外外連絡管とを接続する構成として、停止室外機が存在する暖房または冷房運転時に、停止室外機の前記自動開閉弁を閉じて停止室外機のレシーバ内圧で外外連絡管へ冷媒を押し出す構成としたものである。   Furthermore, an air conditioner of the present invention for solving the above-described problems is provided in an air conditioner in which a plurality of outdoor units each having a receiver are connected in parallel to an internal / external communication pipe that connects the indoor unit and the outdoor unit. As an arrangement to provide an automatic open / close valve to the side internal / external communication pipe, to provide an external / external communication pipe that connects the compressor suction lines of each outdoor unit, and to connect a predetermined receiver position of the outdoor unit to the external / external communication pipe, In the heating or cooling operation in which the stop outdoor unit exists, the automatic open / close valve of the stop outdoor unit is closed and the refrigerant is pushed out to the external / external communication pipe by the receiver internal pressure of the stop outdoor unit.

以上述べたように、本発明によると、空調能力の低下を生じることなく冷媒不足を効率良く解消することができる。   As described above, according to the present invention, the shortage of refrigerant can be efficiently solved without causing a decrease in air conditioning capability.

以下、本発明の実施例を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1ないし図8は本発明に係る空調装置1の冷媒回路図を示している。このうち、図1ないし図4は冷媒不足を解消する運転時、図5ないし図8は通常の運転時をそれぞれ示している。   1 to 8 show refrigerant circuit diagrams of an air conditioner 1 according to the present invention. Of these, FIGS. 1 to 4 show the operation during which the refrigerant shortage is solved, and FIGS. 5 to 8 show the normal operation.

図1ないし図8において、空調装置1は、室内機2a,2bと室外機3a、3bとを液側内外連絡管11およびガス側内外連絡管12に接続している。室外機3a、3bは、液側内外連絡管11およびガス側内外連絡管12に並列接続して構成されている。各室外機3a、3b同士は、外外連絡管13で接続されている。   1 to 8, the air conditioner 1 connects indoor units 2a, 2b and outdoor units 3a, 3b to a liquid side inside / outside connecting pipe 11 and a gas side inside / outside connecting pipe 12. The outdoor units 3a and 3b are configured to be connected in parallel to the liquid side inside / outside connecting pipe 11 and the gas side inside / outside connecting pipe 12. The outdoor units 3 a and 3 b are connected to each other by an external / external communication pipe 13.

室外機3aは、圧縮機31a、オイルセパレータ32a、四方弁33a、室外熱交換器34a、ブリッジ回路35a、リキッドレシーバ36a、過冷却器37a、閉鎖弁BV1a,BV2a (いずれも手動開閉式、通常開)、廃熱回収器38a、室外ファン39aを具備して構成されている。室外機3bは室外機3aと同じであるので説明を省略する。   The outdoor unit 3a includes a compressor 31a, an oil separator 32a, a four-way valve 33a, an outdoor heat exchanger 34a, a bridge circuit 35a, a liquid receiver 36a, a supercooler 37a, and shut-off valves BV1a and BV2a (both are manually openable and normally open). ), A waste heat recovery unit 38a, and an outdoor fan 39a. Since the outdoor unit 3b is the same as the outdoor unit 3a, description thereof is omitted.

室内機2aは、電子膨張弁21a、室内熱交換器22a、室内ファン23aを具備して構成されている。室内機2bは、室内機2aと同じであるので説明を省略する。   The indoor unit 2a includes an electronic expansion valve 21a, an indoor heat exchanger 22a, and an indoor fan 23a. Since the indoor unit 2b is the same as the indoor unit 2a, description thereof is omitted.

この空調装置1の冷媒経路において、EV1〜EV3は電子膨張弁、CV1〜CV5,CV51,CV53,CV54,CV56,CV57は逆止弁、SV1,SV51〜SV58は開閉弁、TS1〜TS5、TD1〜TD2は温度センサを示している。   In the refrigerant path of the air conditioner 1, EV1 to EV3 are electronic expansion valves, CV1 to CV5, CV51, CV53, CV54, CV56, and CV57 are check valves, SV1, SV51 to SV58 are on-off valves, TS1 to TS5, and TD1 to TD1. TD2 indicates a temperature sensor.

本発明の空調装置1の室外機3aは、オイルセパレータ32aと四方弁33aとの間の冷媒流路と、リキッドレシーバ36aとの間にバイパス管14aが設けられている。バイパス管14aには、リキッドレシーバ36a側への冷媒の流れを止める逆止弁CV4aが設けられている。また、この逆止弁CV4aを回避するように分流管15aが設けられている。この分流管15aには、逆止弁CV4aとは逆方向に冷媒の流れを止める逆止弁CV54aと、開閉弁SV54aとが設けられている。また、リキッドレシーバ36aの所定高さの位置には、外外連絡管13へと連通する連絡管16aが設けられている。室外機3bも同様に構成されている。   In the outdoor unit 3a of the air conditioner 1 of the present invention, a bypass pipe 14a is provided between the refrigerant flow path between the oil separator 32a and the four-way valve 33a and the liquid receiver 36a. The bypass pipe 14a is provided with a check valve CV4a that stops the flow of the refrigerant toward the liquid receiver 36a. Further, a branch pipe 15a is provided so as to avoid the check valve CV4a. The branch pipe 15a is provided with a check valve CV54a for stopping the flow of the refrigerant in the direction opposite to that of the check valve CV4a, and an on-off valve SV54a. In addition, a communication pipe 16 a that communicates with the external / external communication pipe 13 is provided at a predetermined height of the liquid receiver 36 a. The outdoor unit 3b is configured similarly.

まず、図5ないし図8に基づいて、本発明に係る空調装置1の通常運転時における冷媒回路の冷媒の流れを説明する。   First, based on FIG. 5 thru | or FIG. 8, the flow of the refrigerant | coolant of a refrigerant circuit at the time of the normal operation of the air conditioner 1 which concerns on this invention is demonstrated.

図5は二台の室外機3a,3bによる通常冷房運転時を示している。この時、室外機3a,3bの冷媒は、圧縮機31a,31bを吐出してオイルセパレータ32a,32bでオイルから分離された後、四方弁33a,33bを介して室外熱交換器34a,34bへと流入する。その後、室外熱交換器34a,34bからブリッジ回路35a,35bを経た冷媒は、リキッドレシーバ36a,36bで液冷媒として貯留される。この液冷媒は、再度ブリッジ回路35a,35bを経て閉鎖弁BV1a, BV1bから液側内外連絡管11へと供給される。   FIG. 5 shows a normal cooling operation by the two outdoor units 3a and 3b. At this time, the refrigerant of the outdoor units 3a, 3b is discharged from the compressors 31a, 31b and separated from the oil by the oil separators 32a, 32b, and then to the outdoor heat exchangers 34a, 34b via the four-way valves 33a, 33b. And flows in. Thereafter, the refrigerant that has passed through the bridge circuits 35a and 35b from the outdoor heat exchangers 34a and 34b is stored as liquid refrigerant in the liquid receivers 36a and 36b. This liquid refrigerant is supplied again from the closing valves BV1a, BV1b to the liquid side inside / outside connecting pipe 11 via the bridge circuits 35a, 35b.

液側内外連絡管11からの冷媒は、室内機2a,2bの電子膨張弁21a,21bを経て室内熱交換器22a,22bで蒸発気化した後、ガス側内外連絡管12を経て閉鎖弁BV2a, BV2bから圧縮機31a, 31bへ吸引される。この際、冷房は、電子膨張弁21a,21bの開度調整を行うことによって制御される。また、冷房能力が不足する場合、冷媒は、リキッドレシーバ36a,36bからブリッジ回路35a,35bへと向かう冷媒の一部が、電子膨張弁EV2を開度調整して過冷却器37a,37bへと導かれる。これによってリキッドレシーバ36a,36b内の液冷媒は、過冷却され冷房能力の不足を解消するように制御される。過冷却器37a,37bを通過した冷媒は、通常の冷媒経路を通過するガス冷媒と合流する。   The refrigerant from the liquid side inside / outside connecting pipe 11 evaporates and evaporates in the indoor heat exchangers 22a, 22b through the electronic expansion valves 21a, 21b of the indoor units 2a, 2b, and then passes through the gas side inside / outside connecting pipe 12 to the closing valve BV2a, Suction is performed from the BV 2b to the compressors 31a and 31b. At this time, the cooling is controlled by adjusting the opening of the electronic expansion valves 21a and 21b. In addition, when the cooling capacity is insufficient, a part of the refrigerant from the liquid receivers 36a and 36b to the bridge circuits 35a and 35b is adjusted to the opening degree of the electronic expansion valve EV2 and then to the supercoolers 37a and 37b. Led. As a result, the liquid refrigerant in the liquid receivers 36a and 36b is controlled to be supercooled to eliminate the lack of cooling capacity. The refrigerant that has passed through the subcoolers 37a and 37b merges with the gas refrigerant that passes through the normal refrigerant path.

図6は二台の室外機3a,3bによる通常暖房運転時を示している。この時、室外機3a,3bの冷媒は、圧縮機31a,31bを吐出してオイルセパレータ32a,32bでオイルから分離された後、四方弁33a,33bを介して閉鎖弁BV2a,BV2bからガス側内外連絡管12へと供給される。   FIG. 6 shows a normal heating operation by the two outdoor units 3a and 3b. At this time, the refrigerant of the outdoor units 3a and 3b is discharged from the compressors 31a and 31b and separated from the oil by the oil separators 32a and 32b, and then from the closing valves BV2a and BV2b via the four-way valves 33a and 33b. It is supplied to the internal / external communication pipe 12.

ガス側内外連絡管12からの冷媒は、室内機2a,2bの室内熱交換器22a,22bで凝縮液化した後、電子膨張弁21a,21bを経て液側内外連絡管11へと導かれる。液側内外連絡管11の液冷媒は、室外機3a,3bの閉鎖弁BV1a,BV2bからブリッジ回路35a,35bを経てリキッドレシーバ36a,36bへと回収される。この液冷媒は、再度ブリッジ回路35a,35bの電子膨張弁EV1で開度調整して室外熱交換器34a,34bへと導かれる。この室外熱交換器34a,34bで蒸発気化した後、四方弁33a,33bから再度圧縮機31a,31bへと吸引される。また、暖房運転では室外熱交換器34a,34bの蒸発能力の不足を補うため、冷媒の一部が電子膨張弁EV2から過冷却器37a,37bを解して廃熱回収器38a,38bへ導かれる。この廃熱回収器38a,38bで、圧縮機31a,31bの駆動源である図示しないエンジンの廃熱によって蒸発気化された冷媒は、通常の冷媒経路を通過するガス冷媒と合流する。   The refrigerant from the gas side inside / outside connecting pipe 12 is condensed and liquefied by the indoor heat exchangers 22a, 22b of the indoor units 2a, 2b, and then led to the liquid side inside / outside connecting pipe 11 via the electronic expansion valves 21a, 21b. The liquid refrigerant in the liquid side inside / outside connecting pipe 11 is collected from the shutoff valves BV1a, BV2b of the outdoor units 3a, 3b to the liquid receivers 36a, 36b via the bridge circuits 35a, 35b. The liquid refrigerant is led to the outdoor heat exchangers 34a and 34b after the opening degree is adjusted again by the electronic expansion valve EV1 of the bridge circuits 35a and 35b. After evaporating and evaporating in the outdoor heat exchangers 34a and 34b, the air is sucked again from the four-way valves 33a and 33b to the compressors 31a and 31b. In addition, in the heating operation, in order to compensate for the lack of evaporation capacity of the outdoor heat exchangers 34a and 34b, a part of the refrigerant is led from the electronic expansion valve EV2 to the supercoolers 37a and 37b and led to the waste heat recovery units 38a and 38b. It is burned. In the waste heat recovery units 38a and 38b, the refrigerant evaporated by the waste heat of the engine (not shown), which is the driving source of the compressors 31a and 31b, joins the gas refrigerant passing through the normal refrigerant path.

図7は一台の室外機3aが通常冷房運転、他方の室外機3bが停止している運転時を示している。この時、運転側の室外機3aでは、上記図5で説明した通常の冷房運転時と同様に冷媒が流れる。一方、停止側の室外機3bでは、リキッドレシーバ36bに冷媒が流入することとなる。この場合、冷媒は、停止側の室外機3bのリキッドレシーバ36bに冷媒が満タンの状態になっても、運転側の室外機3aで運転できる量だけ充填されている。したがって、停止側の室外機3bから運転側の室外機3aへの冷媒回収を行わなくても運転をすることができる。   FIG. 7 shows an operation in which one outdoor unit 3a is in a normal cooling operation and the other outdoor unit 3b is stopped. At this time, in the outdoor unit 3a on the operation side, the refrigerant flows in the same manner as in the normal cooling operation described with reference to FIG. On the other hand, in the outdoor unit 3b on the stop side, the refrigerant flows into the liquid receiver 36b. In this case, the refrigerant is filled in the liquid receiver 36b of the outdoor unit 3b on the stop side by an amount that can be operated by the outdoor unit 3a on the operation side even when the refrigerant becomes full. Therefore, it is possible to operate without collecting refrigerant from the outdoor unit 3b on the stop side to the outdoor unit 3a on the operation side.

また、前記したように、冷房能力が不足する場合にはリキッドレシーバ36a内の液冷媒を過冷却する。   As described above, when the cooling capacity is insufficient, the liquid refrigerant in the liquid receiver 36a is supercooled.

なお、ガス側内外連絡管12では圧縮機31aの吸引力が働くため、室内機2a,2bを通過したガス冷媒が室外機3bへ流れ込むことはない。   Since the suction force of the compressor 31a works in the gas side inside / outside connecting pipe 12, the gas refrigerant that has passed through the indoor units 2a, 2b does not flow into the outdoor unit 3b.

図8は、一台の室外機3aが暖房運転状態にあり、他方の室外機3bが運転停止状態になっている状態を示している。この時、運転中の室外機3aでは、上記図6で説明した通常の暖房運転時と同様に冷媒が流れる。このとき、ガス側内外連絡管12内には圧縮機31aからの吐出冷媒が流れるため、室外機3bへガス冷媒が流れ込むおそれがある。このため、この吐出ガス冷媒の流入を防止するため、オイルセパレータ32b内に圧縮機31b側への冷媒流入を停止する逆止弁が内蔵されている。また、戻りの液側内外連絡管11も高圧状態であり、冷房時と同様、停止している室外機3bのリキッドレシーバ36b内に冷媒は流入する。暖房時で複数の室内機2で停止機と運転機が存在する場合では、冷房時と異なり、圧縮機31aの吐出側と室内熱交換器22は連通するが、室内機2の電子膨張弁21が全閉または開度が非常に絞られるため、圧縮機31aの吸引側と室内熱交換器22は実質的に不通となる。そのため、圧縮機31aからの吐出冷媒が停止している室内機2の室内熱交換器22に流れ込んだまま圧縮機31aに戻らず、やがて液冷媒となって寝込むことになる。従って、図7で説明した冷房運転の場合と異なり、運転を継続するためには停止している室外機3bのリキッドレシーバ36bに流入して寝込んでいる冷媒を回収しなければ運転中の室外機3aは、冷媒が不足傾向になり、暖房能力が不足する。   FIG. 8 shows a state in which one outdoor unit 3a is in a heating operation state and the other outdoor unit 3b is in an operation stopped state. At this time, in the outdoor unit 3a in operation, the refrigerant flows as in the normal heating operation described with reference to FIG. At this time, since the refrigerant discharged from the compressor 31a flows in the gas side inside / outside connecting pipe 12, the gas refrigerant may flow into the outdoor unit 3b. For this reason, in order to prevent the discharge gas refrigerant from flowing in, a check valve for stopping the refrigerant flow into the compressor 31b is incorporated in the oil separator 32b. The return liquid side inside / outside connecting pipe 11 is also in a high pressure state, and the refrigerant flows into the liquid receiver 36b of the stopped outdoor unit 3b as in cooling. In the case where a plurality of stop units and operating units exist in the plurality of indoor units 2 during heating, the discharge side of the compressor 31a and the indoor heat exchanger 22 communicate with each other, unlike in cooling, but the electronic expansion valve 21 of the indoor unit 2 However, the suction side of the compressor 31a and the indoor heat exchanger 22 are substantially disconnected. Therefore, the refrigerant discharged from the compressor 31a flows into the indoor heat exchanger 22 of the indoor unit 2 where it is stopped, does not return to the compressor 31a, and eventually falls into a liquid refrigerant. Therefore, unlike the case of the cooling operation described with reference to FIG. 7, in order to continue the operation, the outdoor unit in operation must be recovered unless the refrigerant that has flowed into the liquid receiver 36b of the outdoor unit 3b that has been stopped is recovered. In 3a, the refrigerant tends to be insufficient, and the heating capacity is insufficient.

次に、図1ないし図4に基づいて、本発明に係る空調装置1が冷媒回収運転を行う場合の冷媒回路の冷媒の流れを説明する。   Next, based on FIG. 1 thru | or FIG. 4, the flow of the refrigerant | coolant of a refrigerant circuit in case the air conditioner 1 which concerns on this invention performs a refrigerant | coolant collection | recovery driving | operation is demonstrated.

図1は、二台の室外機3a,3bが共に暖房運転状態にあり、そのうちの一方の室外機3aが冷媒不足傾向にあって、他方の室外機3bが冷媒余剰傾向にある状況から冷媒回収運転を行なう状態を示している。   FIG. 1 shows that two outdoor units 3a and 3b are both in a heating operation state, one of the outdoor units 3a is in a refrigerant shortage tendency, and the other outdoor unit 3b is in a refrigerant surplus refrigerant recovery state. It shows the state of driving.

この場合、上記図6で説明した通常の暖房運転から、冷媒回収運転に切り替えられる。   In this case, the normal heating operation described in FIG. 6 is switched to the refrigerant recovery operation.

変更点としては、冷媒余剰傾向にある室外機3bにおいて、過冷却器37bの出口と廃熱回収器38bとの間の冷媒流路から、外外連絡管13へと連絡する冷媒流路に設けられた開閉弁SV52bが閉じられ、連絡管16bに設けられた開閉弁SV53bが開かれ、分流管15bに設けられた開閉弁SV54bが開かれる。   As a change point, in the outdoor unit 3b that tends to have a surplus of refrigerant, it is provided in the refrigerant channel that communicates with the external / external communication pipe 13 from the refrigerant channel between the outlet of the supercooler 37b and the waste heat recovery unit 38b. The open / close valve SV52b is closed, the open / close valve SV53b provided in the communication pipe 16b is opened, and the open / close valve SV54b provided in the flow dividing pipe 15b is opened.

これにより、冷媒余剰側の室外機3bでは、圧縮機31bからの冷媒が、バイパス管14b、分流管15b、バイパス管14bを介してリキッドレシーバ36bへと導かれることとなる。   Thereby, in the outdoor unit 3b on the refrigerant surplus side, the refrigerant from the compressor 31b is guided to the liquid receiver 36b via the bypass pipe 14b, the branch pipe 15b, and the bypass pipe 14b.

この圧縮機31bからの吐出冷媒の流入により、リキッドレシーバ36b内圧が室外機31aのリキッドレシーバ36aの内圧より高くなり、液側内外連絡管11から閉鎖弁BV1bを経てリキッドレシーバ36bに流入する冷媒量が減少する。そして、その反動として室内機2a,2bから液側内外連絡管11、閉鎖弁BV1aを経てリキッドレシーバ36aへ冷媒が流れ込み易くなる。   Due to the inflow of the refrigerant discharged from the compressor 31b, the internal pressure of the liquid receiver 36b becomes higher than the internal pressure of the liquid receiver 36a of the outdoor unit 31a, and the amount of refrigerant flowing into the liquid receiver 36b from the liquid side internal / external communication pipe 11 via the closing valve BV1b. Decrease. As a reaction, the refrigerant easily flows from the indoor units 2a and 2b to the liquid receiver 36a through the liquid side inside / outside connecting pipe 11 and the closing valve BV1a.

また、リキッドレシーバ36b内の余剰冷媒は、連絡管16bから外外連絡管13を介しても室外機3aへと回収することができる。この外外連絡管13を介して室外機3aへと回収した冷媒は、開閉弁SV52aから廃熱回収器38aを介して圧縮機31aへと吸引される。この際、冷媒は、廃熱回収器38aを介して圧縮機31aへと吸引されることにより、エンジン廃熱により十分に気化して圧縮機31aで液圧縮を起こさないようになされている。   In addition, surplus refrigerant in the liquid receiver 36b can be recovered from the communication pipe 16b to the outdoor unit 3a via the external / external communication pipe 13. The refrigerant recovered to the outdoor unit 3a via the external / external communication pipe 13 is sucked from the on-off valve SV52a to the compressor 31a via the waste heat recovery unit 38a. At this time, the refrigerant is sucked into the compressor 31a through the waste heat recovery unit 38a, so that it is sufficiently vaporized by the engine waste heat and does not cause liquid compression in the compressor 31a.

連絡管16bは、リキッドレシーバ36bの所定高さの位置に設けているので、リキッドレシーバ36b内の冷媒液面が、この高さよりも低くなった場合、連絡管16bにはガス冷媒が流れることとなる。この連絡管16bにガス冷媒が流れるようになったら、室外機3bの冷媒余剰が解消され、室外機3aの冷媒不足が解消されたものと判断することができる。そして、冷媒回収運転から、通常の暖房運転へと設定が戻される。   Since the connecting pipe 16b is provided at a predetermined height of the liquid receiver 36b, when the liquid level in the liquid receiver 36b is lower than this height, gas refrigerant flows through the connecting pipe 16b. Become. If the gas refrigerant flows through the communication pipe 16b, it can be determined that the refrigerant surplus in the outdoor unit 3b has been eliminated and the refrigerant shortage in the outdoor unit 3a has been eliminated. Then, the setting is returned from the refrigerant recovery operation to the normal heating operation.

図2は、暖房運転中の室外機3aが冷媒不足傾向にあって、停止中の室外機3bに冷媒が寝込んでいる状況から、冷媒回収運転を行なう状態を示している。図8の一台暖房運転時から冷媒回収運転に切り替える際の変更点としては、冷媒余剰傾向にある停止室外機3bにおいて、過冷却器37bの出口と廃熱回収器38bとの間の冷媒流路から、外外連絡管13へと連絡する冷媒流路に設けられた開閉弁SV52bが閉じられ、連絡管16bに設けられた開閉弁SV53bが開かれ、分流管15bに設けられた開閉弁SV54bが開かれる。   FIG. 2 shows a state in which the refrigerant recovery operation is performed from the situation in which the outdoor unit 3a in the heating operation is in a refrigerant shortage tendency and the refrigerant is trapped in the stopped outdoor unit 3b. As a change point when switching from the single unit heating operation to the refrigerant recovery operation in FIG. 8, the refrigerant flow between the outlet of the supercooler 37 b and the waste heat recovery unit 38 b in the stop outdoor unit 3 b that tends to have a surplus refrigerant. The on-off valve SV52b provided in the refrigerant flow path communicating with the outside / outside connecting pipe 13 from the passage is closed, the on-off valve SV53b provided on the connecting pipe 16b is opened, and the on-off valve SV54b provided on the branch pipe 15b. Is opened.

これにより、冷媒余剰側の室外機3bでは、ガス側内外連絡管12を通過する冷媒の一部が、閉鎖弁BV2b、四方弁33b、バイパス管14b、分流管15b、バイパス管14bを介してリキッドレシーバ36bへと導かれることとなる。   Thereby, in the refrigerant | coolant surplus side outdoor unit 3b, a part of refrigerant | coolant which passes the gas side internal / external communication pipe | tube 12 is liquidized via the closing valve BV2b, the four-way valve 33b, the bypass pipe 14b, the shunt pipe 15b, and the bypass pipe 14b. It will be guided to the receiver 36b.

この圧縮機31aからの冷媒に押されて、リキッドレシーバ36b内の寝込み冷媒は、ブリッジ回路35bから閉鎖弁BV1bを経て液側内外連絡管11へと導かれ、この液側内外連絡管11を介して冷媒不足側の室外機3aへと回収することができる。   Pushed by the refrigerant from the compressor 31a, the stagnation refrigerant in the liquid receiver 36b is guided from the bridge circuit 35b to the liquid side internal / external communication pipe 11 via the shut-off valve BV1b. Thus, it can be recovered to the outdoor unit 3a on the refrigerant shortage side.

また、リキッドレシーバ36b内の寝込み冷媒は、連絡管16bから外外連絡管13を介しても室外機3aへと回収することができる。この外外連絡管13を介して室外機3aへと回収した冷媒は、開閉弁SV52aから廃熱回収器38aを介して圧縮機31aへと吸引される。この際、冷媒は、廃熱回収器38aを介して圧縮機31aへと吸引されることにより、エンジン廃熱により十分に気化して圧縮機31aで液圧縮を起こさないようになされている。連絡管16bは、リキッドレシーバ36bの所定高さの位置に設けているので、リキッドレシーバ36b内の冷媒液面が、この高さよりも低くなった場合、連絡管16bにはガス冷媒が流れることとなる。この連絡管16bにガス冷媒が流れるようになったら、室外機3bの冷媒余剰が解消され、室外機3aの冷媒不足が解消されたものと判断することができる。そして、冷媒回収運転から、一台の室外機3aの暖房運転へと設定が戻される。   In addition, the stagnation refrigerant in the liquid receiver 36b can be recovered from the communication pipe 16b to the outdoor unit 3a via the external / external communication pipe 13. The refrigerant recovered to the outdoor unit 3a via the external / external communication pipe 13 is sucked from the on-off valve SV52a to the compressor 31a via the waste heat recovery unit 38a. At this time, the refrigerant is sucked into the compressor 31a through the waste heat recovery unit 38a, so that it is sufficiently vaporized by the engine waste heat and does not cause liquid compression in the compressor 31a. Since the connecting pipe 16b is provided at a predetermined height of the liquid receiver 36b, when the liquid level in the liquid receiver 36b is lower than this height, gas refrigerant flows through the connecting pipe 16b. Become. If the gas refrigerant flows through the communication pipe 16b, it can be determined that the refrigerant surplus in the outdoor unit 3b has been eliminated and the refrigerant shortage in the outdoor unit 3a has been eliminated. Then, the setting is returned from the refrigerant recovery operation to the heating operation of one outdoor unit 3a.

このように、図1および図2に示す冷媒回収運転において、空調装置1は、リキッドレシーバ36b内の余剰または寝込み冷媒を、液側内外連絡管11を利用したルートと、外外連絡管13を利用したルートの2系統から回収して室外機3aの冷媒不足を解消することができるので、暖房能力を保ちながら効率良く迅速に余剰冷媒の回収ができることとなる。   As described above, in the refrigerant recovery operation shown in FIG. 1 and FIG. 2, the air conditioner 1 uses the liquid-side internal / external communication pipe 11 and the external / external communication pipe 13 for the excess or stagnant refrigerant in the liquid receiver 36b. Since it can be recovered from the two systems of the route used and the refrigerant shortage of the outdoor unit 3a can be solved, the excess refrigerant can be recovered efficiently and quickly while maintaining the heating capacity.

また、リキッドレシーバ36bの所定高さの位置に設けられる連結管16bの位置を調整しておくことで、回収される液冷媒がガス冷媒へと変化するので、冷媒回収の終了時の見極めを簡単に行うことができる。なお、冷媒回収終了時の見極めは、この連結管16bを流れる液冷媒がガス冷媒へと変化することを見極めるものに限定されるものではなく、例えば、リキッドレシーバ36b内の液レベルをセンサで検出するものであっても良いし、冷媒不足側のリキッドレシーバ36a内またはこれに近接して設けられるセンサからの温度と圧力から求められるリキッドレシーバ36a出口の過冷却度から判断するものであってもよい。   In addition, by adjusting the position of the connecting pipe 16b provided at a predetermined height of the liquid receiver 36b, the recovered liquid refrigerant changes into a gas refrigerant, so that it is easy to determine when the refrigerant recovery is completed. Can be done. Note that the determination at the end of refrigerant recovery is not limited to the determination that the liquid refrigerant flowing through the connecting pipe 16b changes to a gas refrigerant. For example, the liquid level in the liquid receiver 36b is detected by a sensor. Or may be determined from the degree of supercooling at the outlet of the liquid receiver 36a obtained from the temperature and pressure from the sensor provided in or near the refrigerant-deficient liquid receiver 36a. Good.

さらに、図1および図2に示す冷媒回収運転において、空調装置1は、オイルセパレータ32a,32bと四方弁33a,33bとの間の冷媒流路と、リキッドレシーバ36a,36bとの間にバイパス管14a,14b、逆止弁CV4a,CV4b、分流管15a,15b、逆止弁CV54a,CV54b、および開閉弁SV54a,SV54bが設けられているが、これらは、圧縮機31a,31bまたはガス側内外連絡管12からのガス冷媒によってリキッドレシーバ36a,36b内の冷媒を押し出すことができれば良いので、特にこの位置に設けることに限定されるものではなく、オイルセパレータ32a,32bと閉鎖弁BV2a,BV2bとの間の冷媒流路の何処に設けられていてもよい。   Further, in the refrigerant recovery operation shown in FIGS. 1 and 2, the air conditioner 1 includes a bypass pipe between the refrigerant flow path between the oil separators 32a and 32b and the four-way valves 33a and 33b and the liquid receivers 36a and 36b. 14a and 14b, check valves CV4a and CV4b, branch pipes 15a and 15b, check valves CV54a and CV54b, and on-off valves SV54a and SV54b, which are connected to the compressors 31a and 31b or the gas side inside / outside. Since it is sufficient that the refrigerant in the liquid receivers 36a and 36b can be pushed out by the gas refrigerant from the pipe 12, it is not particularly limited to be provided at this position, and the oil separators 32a and 32b and the shutoff valves BV2a and BV2b It may be provided anywhere in the refrigerant flow path.

図3は、暖房運転中の室外機3aが冷媒不足傾向にあって、停止中の室外機3bが冷媒残留状況から、冷媒回収運転を行なう他の状態を示している。図8の一台暖房運転時から冷媒回収運転に切り替える際の変更点としては、冷媒残留状況にある停止室外機3bにおいて、過冷却器37bの出口と廃熱回収器38bとの間の冷媒流路から、外外連絡管13へと連絡する冷媒流路に設けられた開閉弁SV52bが閉じられ、連絡管16bに設けられた開閉弁SV53bが開かれ、閉鎖弁BV1bとブリッジ回路35bとの間に設けられた開閉弁SV58が閉じられる。   FIG. 3 shows another state in which the outdoor unit 3a in the heating operation has a refrigerant shortage tendency and the stopped outdoor unit 3b performs the refrigerant recovery operation from the refrigerant remaining state. The change when switching from the single unit heating operation to the refrigerant recovery operation in FIG. 8 is that the refrigerant flow between the outlet of the supercooler 37b and the waste heat recovery unit 38b in the stopped outdoor unit 3b in the refrigerant remaining state. The on-off valve SV52b provided in the refrigerant flow path communicating with the external / external communication pipe 13 from the road is closed, the on-off valve SV53b provided on the communication pipe 16b is opened, and between the close-off valve BV1b and the bridge circuit 35b. The on-off valve SV58 provided in is closed.

これにより、停止中の室外機3bでは、液側内外連絡管11から室外機3bへと流入しようとする冷媒が開閉弁SV58によって遮断され、リキッドレシーバ36b内へのさらなる冷媒の寝込みを防止できる。   As a result, in the stopped outdoor unit 3b, the refrigerant that is about to flow into the outdoor unit 3b from the liquid side internal / external communication pipe 11 is blocked by the on-off valve SV58, and further stagnation of the refrigerant into the liquid receiver 36b can be prevented.

また、この開閉弁SV58を閉じることによってリキッドレシーバ36bが密閉されるので、このリキッドレシーバ36b内の内圧によって、リキッドレシーバ36b内の残留冷媒は、連絡管16bから外外連絡管13を介して室外機3aへと回収される。室外機3aへと導かれた冷媒は、開閉弁SV52aから廃熱回収器38aを介して圧縮機31aへと吸引される。この際、冷媒は、廃熱回収器38aを介して圧縮機31aへと吸引されることにより、エンジン廃熱により十分に気化して圧縮機31aで液圧縮を起こさないようになされている。連絡管16bは、リキッドレシーバ36bの所定高さの位置に設けているので、リキッドレシーバ36b内の冷媒液面が、この高さよりも低くなった場合、連絡管16bにはガス冷媒が流れることとなる。この連絡管16bにガス冷媒が流れるようになったら、室外機3bの冷媒余剰が解消され、室外機3aの冷媒不足が解消されたものと判断することができる。そして、冷媒回収運転から、一台の室外機3aの暖房運転へと設定が戻される。   In addition, since the liquid receiver 36b is sealed by closing the on-off valve SV58, the residual refrigerant in the liquid receiver 36b is discharged from the communication pipe 16b through the outer / outer communication pipe 13 by the internal pressure in the liquid receiver 36b. It is collected into the machine 3a. The refrigerant guided to the outdoor unit 3a is sucked from the on-off valve SV52a to the compressor 31a via the waste heat recovery unit 38a. At this time, the refrigerant is sucked into the compressor 31a through the waste heat recovery unit 38a, so that it is sufficiently vaporized by the engine waste heat and does not cause liquid compression in the compressor 31a. Since the connecting pipe 16b is provided at a predetermined height of the liquid receiver 36b, when the liquid level in the liquid receiver 36b is lower than this height, gas refrigerant flows through the connecting pipe 16b. Become. If the gas refrigerant flows through the communication pipe 16b, it can be determined that the refrigerant surplus in the outdoor unit 3b has been eliminated and the refrigerant shortage in the outdoor unit 3a has been eliminated. Then, the setting is returned from the refrigerant recovery operation to the heating operation of one outdoor unit 3a.

この図3に示す冷媒回収運転は、運転中の室外機3aからガス側内外連絡管12を介して供給される冷媒の一部を、停止した室外機3bへと導入することなく、冷媒回収することができるので、二台の室外機3a,3bの暖房運転時から一台の室外機3aの暖房運転へと移行する際に、停止しようとする室外機3bのリキッドレシーバ36bに所定量以上の冷媒が滞留しているような場合に、簡易に冷媒回収を行うことができて有効である。   In the refrigerant recovery operation shown in FIG. 3, the refrigerant is recovered without introducing a part of the refrigerant supplied from the operating outdoor unit 3a through the gas side internal / external communication pipe 12 to the stopped outdoor unit 3b. Therefore, when shifting from the heating operation of the two outdoor units 3a and 3b to the heating operation of the one outdoor unit 3a, the liquid receiver 36b of the outdoor unit 3b to be stopped is more than a predetermined amount. When the refrigerant is stagnant, the refrigerant can be easily recovered and effective.

また、図3では、暖房運転時の場合について述べているが、図4に示すように、冷房運転時の場合であってもよい。   Moreover, although FIG. 3 describes the case of heating operation, it may be the case of cooling operation as shown in FIG.

図4は、冷房運転中の室外機3aが冷媒不足傾向にあって、停止中の室外機3bが冷媒残留状況から、冷媒回収運転を行なう他の状態を示している。図7の一台冷房運転時から冷媒回収運転に切り替える際の変更点としては、冷媒残留状況にある停止室外機3bにおいて、過冷却器37bの出口と廃熱回収器38bとの間の冷媒流路から、外外連絡管13へと連絡する冷媒流路に設けられた開閉弁SV52bが閉じられ、連絡管16bに設けられた開閉弁SV53bが開かれ、閉鎖弁BV1bとブリッジ回路35bとの間に設けられた開閉弁SV58が閉じられる。余剰冷媒の回収は、上記図3の場合と同様であるので説明を省略する。   FIG. 4 shows another state in which the outdoor unit 3a in the cooling operation is in a refrigerant shortage tendency and the stopped outdoor unit 3b performs the refrigerant recovery operation from the state of refrigerant remaining. The change point when switching from the single unit cooling operation to the refrigerant recovery operation in FIG. 7 is that the refrigerant flow between the outlet of the supercooler 37b and the waste heat recovery unit 38b in the stopped outdoor unit 3b in the refrigerant remaining state. The on-off valve SV52b provided in the refrigerant flow path communicating with the external / external communication pipe 13 from the road is closed, the on-off valve SV53b provided on the communication pipe 16b is opened, and between the close-off valve BV1b and the bridge circuit 35b. The on-off valve SV58 provided in is closed. The recovery of the surplus refrigerant is the same as in the case of FIG.

この図4に示す冷媒回収運転は、リキッドレシーバ36b内の内圧によって、リキッドレシーバ36b内の残留冷媒を、連絡管16bから外外連絡管13を介して室外機3aへと回収することができるので、二台の室外機3a,3bの冷房運転時から一台の室外機3aの冷房運転へと移行する際に、停止しようとする室外機3bのリキッドレシーバ36bに所定量以上の冷媒が滞留しているような場合に、簡易に冷媒回収を行うことができて有効である。   In the refrigerant recovery operation shown in FIG. 4, the residual refrigerant in the liquid receiver 36b can be recovered from the communication pipe 16b to the outdoor unit 3a through the external / external communication pipe 13 by the internal pressure in the liquid receiver 36b. When a transition is made from the cooling operation of the two outdoor units 3a and 3b to the cooling operation of the single outdoor unit 3a, a predetermined amount or more of the refrigerant stays in the liquid receiver 36b of the outdoor unit 3b to be stopped. In such a case, the refrigerant can be easily recovered and effective.

上記した図3および図4の冷媒回収運転を行う場合の冷媒回路は、閉鎖弁BV1bとブリッジ回路35bとの間に設けられた開閉弁SV58の有無以外は、上記した図1および図2の冷媒回収運転を行う場合の冷媒回路と同じ構成である。したがって、この開閉弁SV58を設けていない空調装置1の場合は、上記した図1および図2の冷媒回収運転に対応することができ、開閉弁SV58を設けた空調装置1の場合は、上記した図1ないし図4の何れの冷媒回収運転にも対応することができる。   The refrigerant circuit in the case of performing the refrigerant recovery operation of FIG. 3 and FIG. 4 described above is the refrigerant of FIG. 1 and FIG. 2 described above except for the presence or absence of the on-off valve SV58 provided between the closing valve BV1b and the bridge circuit 35b. The configuration is the same as that of the refrigerant circuit in the case of performing the recovery operation. Therefore, in the case of the air conditioner 1 that is not provided with the on-off valve SV58, the refrigerant recovery operation of FIGS. 1 and 2 described above can be handled, and in the case of the air-conditioner 1 that is provided with the on-off valve SV58, the above-mentioned Any one of the refrigerant recovery operations shown in FIGS. 1 to 4 can be handled.

なお、室外機3a,3bが冷媒不足傾向になったり、冷媒余剰傾向になったりする要因としては、例えば、各室外機3a,3bの設置高低差であったり、各リキッドレシーバ36a,36bの底部と連通する電子膨張弁EV1またはEV2の開度差であったり、各室外機3a,3bの運転容量差であったりするといったことが挙げられる。本実施の形態では、これらのどのような要因に基づく場合であっても、冷媒回収運転を行うことができる。   Note that factors that cause the outdoor units 3a and 3b to have a refrigerant shortage tendency or a refrigerant surplus tendency include, for example, a difference in installation height between the outdoor units 3a and 3b, and bottom portions of the liquid receivers 36a and 36b. For example, there may be a difference in opening between the electronic expansion valves EV1 and EV2 communicating with the vehicle, or a difference in operating capacity between the outdoor units 3a and 3b. In the present embodiment, the refrigerant recovery operation can be performed regardless of any of these factors.

また、本実施の形態において、室外機3a,3bは二台が並列接続されているが、三台以上が並列接続された場合であってもよい。室内機2a,2aについても本実施の形態では二台しか開示されていないが、三台以上が接続されていてもよい。   In this embodiment, two outdoor units 3a and 3b are connected in parallel, but three or more outdoor units may be connected in parallel. Although only two indoor units 2a and 2a are disclosed in the present embodiment, three or more indoor units may be connected.

さらに、本発明の実施例のようにリキッドレシーバ36a,36bの所定高さ位置に連絡管16a,16bを設ける構成によって冷媒不足側の室外機2に冷媒を供給する場合でも供給側の過剰供給を防止することが可能となる。冷媒供給側のリキッドレシーバ36の冷媒液面が連絡管16の取付位置よりも下がれば供給側から液冷媒が流出しなくなるからである。   Further, as in the embodiment of the present invention, the supply pipes 16a and 16b are provided at predetermined height positions of the liquid receivers 36a and 36b. It becomes possible to prevent. This is because the liquid refrigerant does not flow out from the supply side when the liquid level of the liquid receiver 36 on the refrigerant supply side falls below the attachment position of the connecting pipe 16.

冷媒回収運転が必要とされる複数台の室外機を並列接続した各種の空調装置に利用できる。   It can be used in various air conditioners in which a plurality of outdoor units that require refrigerant recovery operation are connected in parallel.

本発明に係る空調装置の二台の室外機で暖房した際の冷媒回収運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant at the time of refrigerant recovery operation at the time of heating with two outdoor units of the air conditioner concerning the present invention. 本発明に係る空調装置の一台の室外機で暖房した際の冷媒回収運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit diagram explaining the flow of the refrigerant | coolant at the time of the refrigerant | coolant collection | recovery driving | operation at the time of heating with one outdoor unit of the air conditioner which concerns on this invention. 本発明に係る空調装置の一台の室外機で暖房した際の他の冷媒回収運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit diagram explaining the flow of the refrigerant | coolant at the time of the other refrigerant | coolant collection | recovery driving | operation at the time of heating with one outdoor unit of the air conditioner which concerns on this invention. 本発明に係る空調装置の一台の室外機で冷房した際の冷媒回収運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit diagram explaining the flow of the refrigerant | coolant at the time of the refrigerant | coolant collection | recovery driving | operation at the time of cooling with one outdoor unit of the air conditioner which concerns on this invention. 本発明に係る空調装置の二台の室外機による通常冷房運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant at the time of normal cooling operation by two outdoor units of the air conditioner concerning the present invention. 本発明に係る空調装置の二台の室外機による通常暖房運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant at the time of normal heating operation by two outdoor units of the air conditioner concerning the present invention. 本発明に係る空調装置の一台の室外機による通常冷房運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit diagram explaining the flow of the refrigerant | coolant at the time of normal cooling operation by the one outdoor unit of the air conditioner which concerns on this invention. 本発明に係る空調装置の一台の室外機による通常暖房運転時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant at the time of normal heating operation by one outdoor unit of the air-conditioner concerning the present invention.

符号の説明Explanation of symbols

1 空調装置
2a 室内機
2b 室内機
3a 室外機
3b 室外機
36a リキッドレシーバ
36b リキッドレシーバ
11 液側内外連絡管
12 ガス側内外連絡管
13 外外連絡管
14a バイパス管
14b バイパス管
16a 連絡管
16b 連絡管
SV58 開閉弁
DESCRIPTION OF SYMBOLS 1 Air conditioner 2a Indoor unit 2b Indoor unit 3a Outdoor unit 3b Outdoor unit 36a Liquid receiver 36b Liquid receiver 11 Liquid side inside / outside connecting pipe 12 Gas side inside / outside connecting pipe 13 Outer / outside connecting pipe 14a Bypass pipe 14b Bypass pipe 16a Connecting pipe 16b Connecting pipe SV58 open / close valve

Claims (3)

室内機と室外機とを接続する内外連絡管に各々レシーバを有する複数の室外機を並列接続する空調装置において、
全室外機による暖房運転時に、冷媒余剰側の室外機で吐出冷媒が、自機のレシーバに迂回する構成としたことを特徴とする空調装置。
In an air conditioner that connects in parallel a plurality of outdoor units each having a receiver to an internal / external communication pipe that connects the indoor unit and the outdoor unit,
An air conditioner characterized in that, during heating operation by all outdoor units, the refrigerant discharged in the outdoor unit on the refrigerant surplus side bypasses the receiver of the own unit.
室内機と室外機とを接続する内外連絡管に各々レシーバを有する複数の室外機を並列接続する空調装置において、
停止室外機が存在する暖房運転時に、運転室外機よりガス側内外連絡管経由で吐出冷媒が停止室外機のレシーバに流入する構成とし、停止室外機のレシーバ内の冷媒を液側内外連絡管および各室外機の圧縮機吸入ライン同士を連絡する外外連絡管を介して運転室外機に回収する構成としたことを特徴とする空調装置。
In an air conditioner that connects in parallel a plurality of outdoor units each having a receiver to an internal / external communication pipe that connects the indoor unit and the outdoor unit,
During heating operation in which a stop outdoor unit exists, the refrigerant discharged from the operation outdoor unit flows into the receiver of the stop outdoor unit via the gas side internal / external connection pipe, and the refrigerant in the receiver of the stop outdoor unit passes through the liquid side internal / external connection pipe and An air conditioner characterized in that the air conditioner is configured to be recovered to the cab outdoor unit via an external communication pipe that connects the compressor suction lines of the outdoor units.
室内機と室外機とを接続する内外連絡管に各々レシーバを有する複数の室外機を並列接続する空調装置において、
各室外機に液側内外連絡管への自動開閉弁を設け、各室外機の圧縮機吸入ライン同士を連絡する外外連絡管を設け、各室外機のレシーバ所定位置と外外連絡管とを接続する構成として、停止室外機が存在する暖房または冷房運転時に、停止室外機の前記自動開閉弁を閉じて停止室外機のレシーバ内圧で外外連絡管へ冷媒を押し出す構成としたことを特徴とする空調装置。
In an air conditioner that connects in parallel a plurality of outdoor units each having a receiver to an internal / external communication pipe that connects the indoor unit and the outdoor unit,
Each outdoor unit is provided with an automatic open / close valve to the liquid side internal / external communication pipe, an external / external communication pipe is provided to connect the compressor suction lines of each outdoor unit, and a predetermined receiver position of the outdoor unit and the external / external communication pipe are connected. As a configuration to be connected, at the time of heating or cooling operation in which a stop outdoor unit exists, the automatic open / close valve of the stop outdoor unit is closed and the refrigerant is pushed out to the external / external communication pipe by the receiver internal pressure of the stop outdoor unit. Air conditioner to do.
JP2007090246A 2007-03-30 2007-03-30 Air conditioner Active JP4695113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090246A JP4695113B2 (en) 2007-03-30 2007-03-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090246A JP4695113B2 (en) 2007-03-30 2007-03-30 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008249227A JP2008249227A (en) 2008-10-16
JP4695113B2 true JP4695113B2 (en) 2011-06-08

Family

ID=39974384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090246A Active JP4695113B2 (en) 2007-03-30 2007-03-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP4695113B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403044B (en) * 2016-11-03 2019-05-31 广东美的暖通设备有限公司 The determination method of multi-line system and its indoor unit heating capacity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097481A (en) * 1999-09-28 2000-04-04 Sanyo Electric Co Ltd Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966634B2 (en) * 1992-02-28 1999-10-25 三洋電機株式会社 Air conditioner refrigerant recovery device
JPH10281576A (en) * 1997-04-01 1998-10-23 Mitsubishi Heavy Ind Ltd Multizone heat pump type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097481A (en) * 1999-09-28 2000-04-04 Sanyo Electric Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2008249227A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US8899056B2 (en) Air conditioner
JP4475278B2 (en) Refrigeration apparatus and air conditioner
KR100743344B1 (en) Air conditioner
JP6613759B2 (en) Engine-driven air conditioner
WO2007097238A1 (en) Air conditioner and heat source unit
JP4553761B2 (en) Air conditioner
US9689589B2 (en) Refrigeration apparatus
JP2007127326A (en) Engine drive type heat pump comprising refrigerant filling circuit
WO2009150798A1 (en) Freezer device
JP2006046779A (en) Air conditioner
JP2007078268A (en) Engine drive type heat pump
JP2008111585A (en) Air conditioner
JP4695113B2 (en) Air conditioner
JP4764850B2 (en) Air conditioner
JP2002061992A (en) Air conditioner
KR101695543B1 (en) An air conditioner
KR20140125141A (en) An air conditioning system
JP4422570B2 (en) Air conditioner
JP4700025B2 (en) Air conditioner
JP4532517B2 (en) Air conditioner
JP2008249231A (en) Air conditioner
JP5765278B2 (en) Outdoor multi-type air conditioner
JP5683934B2 (en) Engine-driven air conditioner
AU2007225990A1 (en) Method for the recovery of refrigeration oil
JP2005043025A (en) Refrigerating air-conditioner, and renewal method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4695113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150304

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350