JP4693811B2 - Method for producing 1,3,3,3-tetrafluoropropene - Google Patents

Method for producing 1,3,3,3-tetrafluoropropene Download PDF

Info

Publication number
JP4693811B2
JP4693811B2 JP2007146981A JP2007146981A JP4693811B2 JP 4693811 B2 JP4693811 B2 JP 4693811B2 JP 2007146981 A JP2007146981 A JP 2007146981A JP 2007146981 A JP2007146981 A JP 2007146981A JP 4693811 B2 JP4693811 B2 JP 4693811B2
Authority
JP
Japan
Prior art keywords
tetrafluoropropene
producing
catalyst
reaction
pentafluoropropane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007146981A
Other languages
Japanese (ja)
Other versions
JP2008019243A5 (en
JP2008019243A (en
Inventor
冬彦 佐久
泰雄 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007146981A priority Critical patent/JP4693811B2/en
Publication of JP2008019243A publication Critical patent/JP2008019243A/en
Publication of JP2008019243A5 publication Critical patent/JP2008019243A5/ja
Application granted granted Critical
Publication of JP4693811B2 publication Critical patent/JP4693811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、医農薬、機能性材料の中間原料あるいは冷媒、溶融マグネシウム/マグネシウム合金製造防燃保護ガスなどとして有用な1,3,3,3−テトラフルオロプロペンの製造方法に関する。   The present invention relates to a method for producing 1,3,3,3-tetrafluoropropene which is useful as a medical agrochemical, an intermediate raw material for functional materials or a refrigerant, a flame retardant protective gas for producing molten magnesium / magnesium alloy, and the like.

1,3,3,3−テトラフルオロプロペンの製造方法としては、従来、1,3,3,3−テトラフルオロ−1−ヨウ化プロパンをアルコール性水酸化カリウムにより脱ヨウ化水素する方法(非特許文献1)、または1,1,1,3,3−ペンタフルオロプロパンをジブチルエーテル中で水酸化カリウムにより脱フッ化水素する方法(非特許文献2)などが知られている。また、特許文献1では1,1,1,3,3−ペンタフルオロプロパンをクロム/活性炭触媒で脱フッ化水素する方法が、特許文献2ではクロムベースの触媒との接触により1,1,1,3,3−ペンタフルオロプロパンから1,3,3,3−テトラフルオロプロペンを得る方法が開示されている。   As a method for producing 1,3,3,3-tetrafluoropropene, a conventional method in which 1,3,3,3-tetrafluoro-1-iodopropane is dehydroiodized with alcoholic potassium hydroxide (non- Patent Document 1) or a method of dehydrofluorinating 1,1,1,3,3-pentafluoropropane with potassium hydroxide in dibutyl ether (Non-Patent Document 2) is known. In Patent Document 1, 1,1,1,3,3-pentafluoropropane is dehydrofluorinated with a chromium / activated carbon catalyst. In Patent Document 2, 1,1,1 is obtained by contact with a chromium-based catalyst. A method for obtaining 1,3,3,3-tetrafluoropropene from 1,3,3-pentafluoropropane is disclosed.

一方、一般的なフルオロアルカン化合物における、気相中での脱フッ化水素反応の例として、特許文献3に1,1,1,3,3,3−ヘキサフルオロプロパンをガス状態にして活性炭又は酸化クロム触媒と接触させることで、対応するプロペンを製造する方法、そして特許文献4ではフルオロエタンを活性炭と接触させて熱分解する方法が開示されている。
特開平11−140002号公報 特開2000−63300公報 特開平9−67281号公報 米国特許2480560号明細書 R.N.Haszeldineら,J.Chem.Soc.1953,1199−1206; CA 48 5787f I.L.Knunyantsら,Izvest.Akad.Nauk S.S.S.R.,Otdel.Khim.Nauk.1960,1412−18;CA 55,349f
On the other hand, as an example of a dehydrofluorination reaction in a gas phase in a general fluoroalkane compound, Patent Document 3 discloses 1,1,1,3,3,3-hexafluoropropane in a gas state and activated carbon or A method for producing a corresponding propene by contacting with a chromium oxide catalyst and a method for thermally decomposing fluoroethane by contacting with activated carbon are disclosed in Patent Document 4.
Japanese Patent Laid-Open No. 11-140002 JP 2000-63300 A JP-A-9-67281 US Pat. No. 2,480,560 R. N. Haszeldine et al. Chem. Soc. 1953, 1199-1206; CA 48 5787f I. L. Knunants et al., Izbest. Akad. Nauk S.M. S. S. R. Otdel. Khim. Nauk. 1960, 1412-18; CA 55,349f

上記、非特許文献1や非特許文献2のような水酸化カリウムにより脱ハロゲン化水素する方法は、反応率および選択率に優れた方法ではあるが、溶媒を用いなければならないこと、水酸化カリウムが化学量論量以上必要であること、また反応の結果生成するカリウム塩が多大となること等から工業的に適用するには困難な点が多かった。   The method of dehalogenating with potassium hydroxide as described above in Non-Patent Document 1 and Non-Patent Document 2 is a method excellent in reaction rate and selectivity, but must use a solvent, potassium hydroxide However, there are many points that are difficult to apply industrially due to the necessity of more than the stoichiometric amount and the large amount of potassium salt generated as a result of the reaction.

また、気相中でのフルオロアルカン化合物の脱フッ化水素反応は、反応条件が過酷である割には、転化率がそれほど高くないのが一般的であった。例えば特許文献3の方法は、1,1,1,3,3,3−ヘキサフルオロプロパンを、ガス状態にして活性炭または酸化クロム触媒によって行う方法であるが、選択率はほぼ定量的であるが、転化率が4%〜50%程度であった。   In addition, the dehydrofluorination reaction of a fluoroalkane compound in the gas phase generally has a low conversion rate although the reaction conditions are severe. For example, the method of Patent Document 3 is a method in which 1,1,1,3,3,3-hexafluoropropane is converted into a gas state and activated with activated carbon or a chromium oxide catalyst, but the selectivity is almost quantitative. The conversion was about 4% to 50%.

Figure 0004693811
Figure 0004693811

また、特許文献4では、750〜900℃程度の、かなりの高温にて熱分解を行っているが、この方法でも転化率も40%程度である。   Moreover, in patent document 4, although thermal decomposition is performed at quite high temperature of about 750-900 degreeC, the conversion rate is also about 40% also by this method.

Figure 0004693811
Figure 0004693811

上述のような脱ハロゲン化水素において、転化率を向上させるには反応条件をさらに過酷なものにしなければならず、また、高温での反応であることからも、生成物のタール化、炭化、反応器の耐久性等、工業的に製造することは相当な困難を強いられることが予想される。   In the dehydrohalogenation as described above, the reaction conditions must be made more severe in order to improve the conversion rate, and since the reaction is performed at a high temperature, the product is tarned, carbonized, It is expected that the industrial production such as the durability of the reactor will be considerably difficult.

これらのことから、本発明の目的物である1,3,3,3−テトラフルオロプロペンの製造方法に関しては、かなり困難であり、該目的物を工業的規模で効率的に、かつ高収率で得る製造方法の確立が望まれていた。   From these facts, the production method of 1,3,3,3-tetrafluoropropene, which is the object of the present invention, is quite difficult, and the object is efficiently produced on an industrial scale with a high yield. It was desired to establish a production method obtained in

本発明者らは、上記課題を解決するため鋭意検討したところ、気相中、1,1,1,3,3−ペンタフルオロプロパンを脱フッ化水素反応させて1,3,3,3−テトラフルオロプロペンを製造する方法において、触媒としてジルコニウム系化合物を用いることが特に好適であることを見いだし、本発明に到達した。   The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, 1,1,1,3,3-pentafluoropropane is subjected to dehydrofluorination reaction in the gas phase, and 1,3,3,3- It has been found that it is particularly preferable to use a zirconium-based compound as a catalyst in the method for producing tetrafluoropropene, and the present invention has been achieved.

ここで本発明は、触媒としてジルコニウム系化合物、すなわち、ジルコニウム化合物を金属酸化物又は活性炭に担持したジルコニウム化合物担持触媒又はジルコニアを用いることが特徴である。ジルコニウム化合物を担持せずに、他の金属を担持した触媒を用いた場合には、高選択率で該目的物である1,3,3,3−テトラフルオロプロペンは得られるが、従来技術と同様、転化率は非常に低かった(後述の比較例1−8参照)。   Here, the present invention is characterized in that a zirconium-based compound, that is, a zirconium compound-supported catalyst or zirconia in which a zirconium compound is supported on a metal oxide or activated carbon is used as a catalyst. When a catalyst supporting other metal without supporting a zirconium compound is used, 1,3,3,3-tetrafluoropropene, which is the target product, can be obtained with high selectivity. Similarly, the conversion was very low (see Comparative Example 1-8 described later).

ところが本発明者らは、触媒としてジルコニウム化合物を担持した触媒又はジルコニアを用いたところ、比較例と比べても高選択率かつ高転化率で該目的物を得るといった、工業的規模で製造する上で非常に効率的で、かつ実用的に有利な知見を得た(後述の実施例1−3参照)。   However, the present inventors used a catalyst carrying a zirconium compound or a zirconia as a catalyst, and produced the product on an industrial scale such that the target product was obtained with a high selectivity and a high conversion rate as compared with the comparative example. Thus, a very efficient and practically advantageous finding was obtained (see Example 1-3 described later).

また、本発明者らは、詳細は後述するが、反応条件を適宜調整することで、副生成物の生成をさらに抑える知見も得た。   In addition, although the details will be described later, the present inventors have also obtained knowledge that the production of by-products is further suppressed by appropriately adjusting the reaction conditions.

クロム系触媒では微量ではあるが目的化合物の沸点に近い副生成物が生成し、蒸留精製の負荷が大きくなるが、ジルコニア系触媒では殆ど副生成物が見られず、蒸留精製の負荷が小さいという特徴がある。これは、クロム系触媒では異性化、不均化反応活性等が知られており、副生成物が生成しやすいことによるものと推定される。   By-products close to the boiling point of the target compound are produced with a chromium-based catalyst, but the load of distillation purification increases. However, with a zirconia-based catalyst, almost no by-product is seen, and the load of distillation purification is small. There are features. This is presumed to be due to the fact that isomerization, disproportionation reaction activity, and the like are known for chromium-based catalysts, and by-products are easily generated.

このように、従来の液相での反応や気相での反応と比べ、ジルコニウム化合物担持触媒又はジルコニアを用いることで、従来技術よりも高収率で目的化合物を製造することができることとなった。生産性にも負荷がかからず、非常に優れた方法である。   Thus, compared with the conventional reaction in the liquid phase and the reaction in the gas phase, the use of the zirconium compound-supported catalyst or zirconia enabled the production of the target compound in a higher yield than the conventional technique. . Productivity is not burdened and is a very good method.

すなわち、本発明は、気相中、触媒存在下、1,1,1,3,3−ペンタフルオロプロパンを脱フッ化水素反応させて1,3,3,3−テトラフルオロプロペンを製造する方法において、ジルコニウム化合物を金属酸化物又は活性炭に担持したジルコニウム化合物担持触媒を用いることを特徴とする、1,3,3,3−テトラフルオロプロペンの製造方法である。   That is, the present invention provides a method for producing 1,3,3,3-tetrafluoropropene by dehydrofluorinating 1,1,1,3,3-pentafluoropropane in the gas phase in the presence of a catalyst. In the method for producing 1,3,3,3-tetrafluoropropene, wherein a zirconium compound-supported catalyst in which a zirconium compound is supported on a metal oxide or activated carbon is used.

上記製造方法において、金属酸化物は、アルミナ、ジルコニア、チタニア、マグネシアからなる群より選ばれる少なくとも1種である。また、ジルコニウム化合物は、酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物からなる群より選ばれる少なくとも1種である。   In the manufacturing method, the metal oxide is at least one selected from the group consisting of alumina, zirconia, titania, and magnesia. The zirconium compound is at least one selected from the group consisting of oxides, fluorides, chlorides, fluorinated chlorides, oxyfluorides, oxychlorides, and oxyfluorinated chlorides.

また、本発明は、気相中、触媒存在下、1,1,1,3,3−ペンタフルオロプロパンを脱フッ化水素反応させて1,3,3,3−テトラフルオロプロペンを製造する方法において、触媒としてジルコニアを用いることを特徴とする、1,3,3,3−テトラフルオロプロペンの製造方法である。   The present invention also relates to a method for producing 1,3,3,3-tetrafluoropropene by dehydrofluorinating 1,1,1,3,3-pentafluoropropane in the gas phase in the presence of a catalyst. In the method for producing 1,3,3,3-tetrafluoropropene, wherein zirconia is used as a catalyst.

本発明によれば、1,1,1,3,3−ペンタフルオロプロパンを原料とし、触媒としてジルコニウム化合物担持触媒又はジルコニアを用いて反応させることで、穏和な条件下で高収率及び高選択率で1,3,3,3−テトラフルオロプロペンが得られることが可能である。また、連続的に1,3,3,3−テトラフルオロプロペンを製造できるので、工業的な製造法としても有用である。   According to the present invention, 1,1,1,3,3-pentafluoropropane is used as a raw material, and the reaction is performed using a zirconium compound-supported catalyst or zirconia as a catalyst. It is possible to obtain 1,3,3,3-tetrafluoropropene at a rate. Moreover, since 1,3,3,3-tetrafluoropropene can be continuously produced, it is useful as an industrial production method.

本発明に使用する原料である1,1,1,3,3−ペンタフルオロプロパン(HFC−245fa)は、硬質ポリウレタンフォームの発泡剤等として工業的に生産されており容易に入手できる物質である。   1,1,1,3,3-Pentafluoropropane (HFC-245fa), which is a raw material used in the present invention, is an industrially produced material that can be easily obtained as a foaming agent for rigid polyurethane foam. .

本発明にかかるジルコニウム系触媒は、ジルコニウム化合物を金属酸化物または活性炭に担持したジルコニウム化合物担持触媒、もしくはジルコニアである。ジルコニウム化合物担持触媒の調製時に用いられるジルコニウム化合物は、ジルコニウムの酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物からなる群より選ばれる少なくとも1種である。   The zirconium-based catalyst according to the present invention is a zirconium compound-supported catalyst in which a zirconium compound is supported on a metal oxide or activated carbon, or zirconia. The zirconium compound used in the preparation of the zirconium compound supported catalyst is at least one selected from the group consisting of zirconium oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride, and oxyfluorinated chloride. is there.

また、担体として有用な金属酸化物は、アルミナ、ジルコニア、チタニア、マグネシアからなる群より選ばれる少なくとも一種である。また、もう一つの担体として有用な活性炭は、各種のものが市販されているのでそれらのうちから選んで使用すればよい。例えば、瀝青炭から製造された活性炭(例えば、カルゴン粒状活性炭CAL(東洋カルゴン(株)製)、椰子殻炭(例えば、武田薬品工業(株)製)などを挙げることができるが、当然これらの種類、製造業者に限られることはない。   Further, the metal oxide useful as a carrier is at least one selected from the group consisting of alumina, zirconia, titania and magnesia. In addition, various activated carbons useful as another carrier are commercially available, and may be selected and used. For example, activated carbon manufactured from bituminous coal (for example, Calgon granular activated carbon CAL (manufactured by Toyo Calgon Co., Ltd.), coconut shell charcoal (eg, manufactured by Takeda Pharmaceutical Co., Ltd.), etc. can be mentioned. , Not limited to manufacturers.

本発明にかかるジルコニウム化合物担持触媒を調製する方法は限定されないが、担体として用いられる金属酸化物、活性炭、またはそれらを予めフッ化水素、塩化水素、塩素化フッ素化炭化水素などによりハロゲンで修飾処理した化合物に、ジルコニウムの可溶性化合物を溶解した溶液を含浸するか、スプレーすることで調製できる。   The method for preparing the zirconium compound-supported catalyst according to the present invention is not limited, but metal oxide used as a support, activated carbon, or a modification treatment with halogen in advance using hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, or the like. The obtained compound can be prepared by impregnating or spraying a solution in which a soluble compound of zirconium is dissolved.

ジルコニウム化合物担持量は、担体との合計量に占める割合が、0.1〜80wt%、好ましくは1〜40wt%が適当である。担体に担持させるジルコニウムの可溶性化合物としては、水、塩酸、アンモニア水、エタノール、アセトンなどの溶媒に溶解する該当金属の硝酸塩、リン酸塩、塩化物、酸化物、オキシ塩化物、オキシフッ化物、などが挙げられる。   The proportion of the zirconium compound supported in the total amount with the carrier is suitably 0.1 to 80 wt%, preferably 1 to 40 wt%. Zirconium soluble compounds to be supported on the carrier include nitrates, phosphates, chlorides, oxides, oxychlorides, oxyfluorides of the corresponding metals that dissolve in solvents such as water, hydrochloric acid, aqueous ammonia, ethanol, acetone, etc. Is mentioned.

担持させる金属化合物として、ジルコニウムのほかに、クロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、鉄、モリブデン、ニオブ、タンタル、イリジウム、錫、ハフニウム、バナジウムの中から選ばれる少なくとも1種の金属化合物をジルコニウムと共存させて担持することができる。   As the metal compound to be supported, in addition to zirconium, at least one metal compound selected from chromium, titanium, aluminum, manganese, nickel, cobalt, iron, molybdenum, niobium, tantalum, iridium, tin, hafnium, and vanadium is used. It can be supported together with zirconium.

何れの方法で金属を担持した触媒も、使用の前に所定の反応温度以上の温度で予めフッ化水素、フッ素化炭化水素などのフッ素化剤で処理し、触媒の活性化を行うことが有効である。触媒の活性化においては、あらかじめ塩素化炭化水素で処理後、フッ素化する方法を用いることもできる。また、反応中に酸素、塩素、フッ素化または塩素化炭化水素などを反応器中に供給することは触媒寿命の延長、反応率、反応収率の向上のため有効な手段である。   It is effective to activate the catalyst by treating the metal-supported catalyst by any method with a fluorinating agent such as hydrogen fluoride or fluorinated hydrocarbon in advance at a temperature equal to or higher than the predetermined reaction temperature before use. It is. In the activation of the catalyst, a method of treating with chlorinated hydrocarbon and then fluorinating can be used. Further, supplying oxygen, chlorine, fluorinated or chlorinated hydrocarbons into the reactor during the reaction is an effective means for extending the catalyst life, improving the reaction rate, and the reaction yield.

反応温度は200〜600℃、好ましくは200〜500℃であり、より好ましくは200℃〜400℃である。反応温度が200℃よりも低ければ反応は遅く実用的ではない。反応温度が600℃を超えると触媒寿命が短くなり、また、反応は速く進行するが分解生成物などが生成し、1,3,3,3−テトラフルオロプロペンの選択率が低下するので好ましくない。   The reaction temperature is 200 to 600 ° C, preferably 200 to 500 ° C, more preferably 200 ° C to 400 ° C. If the reaction temperature is lower than 200 ° C, the reaction is slow and impractical. When the reaction temperature exceeds 600 ° C., the catalyst life is shortened, and the reaction proceeds rapidly but decomposition products are generated, which is not preferable because the selectivity of 1,3,3,3-tetrafluoropropene is lowered. .

なお、本発明では目的物である1,3,3,3−テトラフルオロプロペンの他に、これがさらに脱ハロゲン化水素反応が進行した3,3,3−トリフルオロプロピンが、反応系内に副生成物として生成することもあった。   In the present invention, in addition to 1,3,3,3-tetrafluoropropene, which is the target product, 3,3,3-trifluoropropyne, which has undergone further dehydrohalogenation reaction, is contained in the reaction system. Sometimes produced as a product.

Figure 0004693811
Figure 0004693811

本発明者らは、上記反応温度で行うことにより、3,3,3−トリフルオロプロピンの生成をさらに抑えることができることを見出した。例えば、実施例1−3において、反応温度を300〜350℃にすることは、特に好ましい態様の一つである。   The present inventors have found that the production of 3,3,3-trifluoropropyne can be further suppressed by carrying out at the above reaction temperature. For example, in Example 1-3, setting the reaction temperature to 300 to 350 ° C. is one of the particularly preferred embodiments.

本発明の方法において、反応領域へ供給する1,1,1,3,3−ペンタフルオロプロパンは、窒素、ヘリウム、アルゴンなどの不活性ガスを同時に供給してもよい。また、フッ化水素を共存させてもよい。   In the method of the present invention, 1,1,1,3,3-pentafluoropropane supplied to the reaction zone may be supplied simultaneously with an inert gas such as nitrogen, helium, or argon. Further, hydrogen fluoride may coexist.

反応圧力は特に限定されないが、装置の面から0.1〜10kg/cm2で行うのが好ましい。また、系内に存在する原料有機物とフッ化水素が、反応系内で液化しないような条件を選ぶことが望ましい。接触時間は、通常0.1〜300秒、好ましくは5〜200秒である。 Although reaction pressure is not specifically limited, It is preferable to carry out at 0.1-10 kg / cm < 2 > from the surface of an apparatus. Further, it is desirable to select conditions so that the raw material organic matter and hydrogen fluoride present in the system do not liquefy in the reaction system. The contact time is usually 0.1 to 300 seconds, preferably 5 to 200 seconds.

本発明で用いる反応器は、耐熱性とフッ化水素、塩化水素などに対する耐食性を有する材質で作られれば良く、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。   The reactor used in the present invention may be made of a material having heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride and the like, and stainless steel, hastelloy, monel, platinum and the like are preferable. It can also be made from materials lined with these metals.

本発明の方法により処理されて反応器より流出する1,3,3,3−テトラフルオロプロペンを含む生成物は、公知の方法で精製されて製品となる。精製方法は限定されないが、例えば、予め回収されるべきフッ化水素を分離した生成物を最初に水またはアルカリ性水溶液で洗浄して塩化水素、フッ化水素などの酸性物質を除去し、乾燥の後、蒸留に付して有機不純物を除くことで行うことができる。   The product containing 1,3,3,3-tetrafluoropropene treated by the method of the present invention and discharged from the reactor is purified to a product by a known method. Although the purification method is not limited, for example, the product from which hydrogen fluoride to be recovered in advance is separated is first washed with water or an alkaline aqueous solution to remove acidic substances such as hydrogen chloride and hydrogen fluoride, and after drying. It can be performed by subjecting it to distillation and removing organic impurities.

以下、実施例により本発明をさらに詳細に説明するが、これらの実施態様に限られない。ここで、組成分析値の「%」とは、反応混合物を直接ガスクロマトグラフィー(特に記述のない場合、検出器はFID)によって測定して得られた組成の「面積%」を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, it is not restricted to these embodiments. Here, “%” of the composition analysis value represents “area%” of the composition obtained by directly measuring the reaction mixture by gas chromatography (the detector is FID unless otherwise specified).

「実施例」
[調製例1]4.5gの特級試薬ZrOCl2・8H2Oをエタノールに溶かした。この溶液に直径5mm、球状アルミナ50ミリリットルを浸漬し、一昼夜放置した。次に溶媒を留去し150℃減圧下乾燥した。得られたジルコニウム担持アルミナを、電気炉を備えた直径2cm・長さ40cmの円筒形SUS316製反応管に充填し、窒素ガスを流しながら200℃まで昇温し、水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高めた。充填されたジルコニウム化合物担持アルミナのフッ素化によるホットスポットが反応管出口端に達したところで反応器温度を450℃に上げ、その状態を1時間保ち触媒の調製を行った。
[調製例2]3.3gの特級試薬ZrOCl2・8H2Oをエタノールに溶かした溶液に、直径4〜6mmの粒状活性炭(武田薬品工業、粒状白鷺GX)50ミリリットルを浸漬し、一昼夜放置した。次に溶媒を留去し150℃減圧下乾燥した。得られたジルコニウム化合物担持活性炭を、電気炉を備えた直径2cm・長さ40cmの円筒形SUS316製反応管に充填し、窒素ガスを流しながら200℃まで昇温し、水の排出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させその濃度を徐々に高め、反応器温度を450℃に上げ、その状態を1時間保ち触媒の調製を行った。
[調製例3]特級試薬MoCl5、TiCl4、IrCl4、SnCl4を用い、エタノール又は水に溶かした溶液にした他は、調整例2と同様の条件にて触媒の調製を行った。
"Example"
[Preparation Example 1] 4.5 g of a special grade reagent ZrOCl 2 · 8H 2 O was dissolved in ethanol. In this solution, 50 ml of spherical alumina having a diameter of 5 mm was immersed and left overnight. Next, the solvent was distilled off, followed by drying at 150 ° C. under reduced pressure. The obtained zirconium-supported alumina was filled in a cylindrical SUS316 reaction tube having a diameter of 2 cm and a length of 40 cm equipped with an electric furnace, and the temperature was raised to 200 ° C. while flowing nitrogen gas. At that time, nitrogen gas was accompanied by hydrogen fluoride, and the concentration was gradually increased. When the hot spot due to fluorination of the filled zirconium compound-supported alumina reached the outlet end of the reaction tube, the reactor temperature was raised to 450 ° C., and the state was maintained for 1 hour to prepare a catalyst.
[Preparation Example 2] 50 ml of granular activated carbon (Takeda Pharmaceutical Co., Ltd., granular white birch GX) having a diameter of 4 to 6 mm was immersed in a solution obtained by dissolving 3.3 g of the special grade reagent ZrOCl 2 · 8H 2 O in ethanol, and left overnight. . Next, the solvent was distilled off, followed by drying at 150 ° C. under reduced pressure. The obtained activated carbon loaded with zirconium compound is filled into a cylindrical SUS316 reaction tube with a diameter of 2 cm and a length of 40 cm equipped with an electric furnace, heated to 200 ° C. while flowing nitrogen gas, and no water discharge is observed. At that time, the concentration of hydrogen fluoride was gradually increased with nitrogen gas, the reactor temperature was raised to 450 ° C., and this state was maintained for 1 hour to prepare a catalyst.
[Preparation Example 3] A catalyst was prepared under the same conditions as in Preparation Example 2, except that a special grade reagent MoCl 5 , TiCl 4 , IrCl 4 , and SnCl 4 was used and the solution was dissolved in ethanol or water.

外部加熱装置により加熱する円筒形反応管からなる気相反応装置(SUS316製、直径2cm・長さ40cm)のおよそ中央に触媒として調製例1で調製した触媒を40ミリリットル充填した。約200ml/分の流量で窒素ガスを流しながら反応管の温度を300℃に上げ、フッ化水素を約0.2g/分の速度で1時間にわたり導入し続けた。フッ化水素および窒素ガスの導入を停止し、原料有機物として1,1,1,3,3−ペンタフルオロプロパンを予め気化させて0.15g/分の速度で反応器へ供給開始した。   About 40 ml of the catalyst prepared in Preparation Example 1 was packed as a catalyst at the center of a gas phase reactor (made of SUS316, diameter 2 cm, length 40 cm) composed of a cylindrical reaction tube heated by an external heating device. The temperature of the reaction tube was raised to 300 ° C. while flowing nitrogen gas at a flow rate of about 200 ml / min, and hydrogen fluoride was continuously introduced at a rate of about 0.2 g / min for 1 hour. The introduction of hydrogen fluoride and nitrogen gas was stopped, 1,1,1,3,3-pentafluoropropane was vaporized in advance as a raw material organic substance, and the supply to the reactor was started at a rate of 0.15 g / min.

反応開始1時間後には反応は安定したので、反応器から排出する生成ガスを水中に吹き込み酸性ガスを除去した後、ドライアイス−アセトン−トラップで捕集した。捕集した有機物をガスクロマトグラフィーで分析した結果を表1に示した。   Since the reaction was stable 1 hour after the start of the reaction, the product gas discharged from the reactor was blown into water to remove acidic gas, and then collected with a dry ice-acetone trap. Table 1 shows the results of analyzing the collected organic matter by gas chromatography.

外部加熱装置により加熱する円筒形反応管からなる気相反応装置(SUS316製、直径2cm・長さ40cm)のおよそ中央に触媒として調製例2で調製した触媒を40ミリリットル充填した。約200ml/分の流量で窒素ガスを流しながら反応管の温度を400℃に上げ、フッ化水素を約0.2g/分の速度で1時間にわたり導入し続けた。反応管の温度を350℃に下げ、フッ化水素および窒素ガスの導入を停止し、原料有機物として1,1,1,3,3−ペンタフルオロプロパンを予め気化させて0.15g/分の速度で反応器へ供給開始した。結果を表1に示した。   About 40 ml of the catalyst prepared in Preparation Example 2 was filled as a catalyst at the center of a gas phase reactor (made of SUS316, diameter 2 cm, length 40 cm) composed of a cylindrical reaction tube heated by an external heating device. The temperature of the reaction tube was raised to 400 ° C. while flowing nitrogen gas at a flow rate of about 200 ml / min, and hydrogen fluoride was continuously introduced at a rate of about 0.2 g / min for 1 hour. The temperature of the reaction tube is lowered to 350 ° C., the introduction of hydrogen fluoride and nitrogen gas is stopped, and 1,1,1,3,3-pentafluoropropane is vaporized in advance as a raw material organic material at a rate of 0.15 g / min. Then, the supply to the reactor was started. The results are shown in Table 1.

外部加熱装置により加熱する円筒形反応管からなる気相反応装置(SUS316製、直径2cm・長さ40cm)に3×6mmの柱状に成形されたジルコニアを40ミリリットル充填した。約400ml/分の流量で窒素ガスを流しながら反応管の温度を400℃に上げ、フッ化水素を約0.2g/分の速度で1時間にわたり導入し続けた。反応管の温度を350℃に下げ、フッ化水素および窒素ガスの導入を停止し、原料有機物として1,1,1,3,3−ペンタフルオロプロパンを予め気化させて0.15g/分の速度で反応器へ供給開始した。結果を表1に示した。   A gas phase reaction apparatus (made of SUS316, diameter 2 cm, length 40 cm) composed of a cylindrical reaction tube heated by an external heating apparatus was filled with 40 ml of zirconia formed into a 3 × 6 mm column shape. While flowing nitrogen gas at a flow rate of about 400 ml / min, the temperature of the reaction tube was raised to 400 ° C., and hydrogen fluoride was continuously introduced at a rate of about 0.2 g / min for 1 hour. The temperature of the reaction tube is lowered to 350 ° C., the introduction of hydrogen fluoride and nitrogen gas is stopped, and 1,1,1,3,3-pentafluoropropane is vaporized in advance as a raw material organic material at a rate of 0.15 g / min. Then, the supply to the reactor was started. The results are shown in Table 1.

Figure 0004693811
Figure 0004693811

このように、実施例1−3では、ジルコニウム化合物を金属酸化物又は活性炭に担持したジルコニウム化合物担持触媒を用いることで、比較例と比べて高転化率及び高選択率で該目的物を得ることができる。
[比較例1−8]
1,1,1,3,3−ペンタフルオロプロパンを反応管の温度をそれぞれ300℃、350℃とし、調製例3で調整した触媒(比較例1−2;5%Mo/C、比較例3−4;5%Ti/C、比較例5−6;5%Ir/C、比較例7−8;5%Sn/C)を用いた他は、実施例2と同様に反応を行い、結果を同じく表1にそれぞれ示した。
Thus, in Example 1-3, by using a zirconium compound-supported catalyst in which a zirconium compound is supported on a metal oxide or activated carbon, the target product can be obtained with a higher conversion rate and higher selectivity than in the comparative example. Can do.
[Comparative Example 1-8]
Catalysts prepared in Preparation Example 3 with 1,1,1,3,3-pentafluoropropane at 300 ° C. and 350 ° C. respectively (Comparative Example 1-2; 5% Mo / C, Comparative Example 3) -4; 5% Ti / C, Comparative Example 5-6; 5% Ir / C, Comparative Example 7-8; 5% Sn / C). Are also shown in Table 1.

他の金属を担持した例では、選択率としては良好ではあるが、転化率がかなり低く、反応を良好に進行させるためには、反応条件をさらに過酷なものにしなければならず、工業的に製造する上でいくぶん難がある。   In the case of supporting other metals, the selectivity is good, but the conversion rate is considerably low, and in order to make the reaction proceed well, the reaction conditions must be made more severe, and industrially There is some difficulty in manufacturing.

医農薬、機能性材料の中間原料、プロペラント、マグネシウム製造の保護ガス、発泡剤、エアゾールあるいは冷媒等として有用な1,3,3,3−テトラフルオロプロペンを製造できる。


It is possible to produce 1,3,3,3-tetrafluoropropene which is useful as a medical agrochemical, an intermediate raw material for functional materials, a propellant, a protective gas for producing magnesium, a foaming agent, an aerosol, or a refrigerant.


Claims (6)

気相中、触媒存在下、1,1,1,3,3−ペンタフルオロプロパンを脱フッ化水素反応させて1,3,3,3−テトラフルオロプロペンを製造する方法において、ジルコニウム化合物を金属酸化物又は活性炭に担持したジルコニウム化合物担持触媒を用いることを特徴とする、1,3,3,3−テトラフルオロプロペンの製造方法。 In a method for producing 1,3,3,3-tetrafluoropropene by dehydrofluorinating 1,1,1,3,3-pentafluoropropane in the gas phase in the presence of a catalyst, A method for producing 1,3,3,3-tetrafluoropropene, comprising using a zirconium compound-supported catalyst supported on an oxide or activated carbon. 金属酸化物がアルミナ、ジルコニア、チタニア、マグネシアからなる群より選ばれる少なくとも1種である、請求項1に記載の1,3,3,3−テトラフルオロプロペンの製造方法。 The method for producing 1,3,3,3-tetrafluoropropene according to claim 1, wherein the metal oxide is at least one selected from the group consisting of alumina, zirconia, titania, and magnesia. ジルコニウム化合物が、酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物、オキシフッ化塩化物からなる群より選ばれる少なくとも1種である、請求項1又は請求項2に記載の1,3,3,3−テトラフルオロプロペンの製造方法。 The zirconium compound is at least one selected from the group consisting of oxides, fluorides, chlorides, fluoride chlorides, oxyfluorides, oxychlorides, and oxyfluoride chlorides. A process for producing 1,3,3,3-tetrafluoropropene. 気相中、触媒存在下、1,1,1,3,3−ペンタフルオロプロパンを脱フッ化水素反応させて1,3,3,3−テトラフルオロプロペンを製造する方法において、触媒としてジルコニアを用いることを特徴とする、1,3,3,3−テトラフルオロプロペンの製造方法。 In a method for producing 1,3,3,3-tetrafluoropropene by dehydrofluorinating 1,1,1,3,3-pentafluoropropane in the gas phase in the presence of a catalyst, zirconia is used as a catalyst. A method for producing 1,3,3,3-tetrafluoropropene, which is characterized by using. 金属酸化物が、フッ化水素、塩化水素、又は塩素化フッ素化炭化水素で修飾処理されたものであることを特徴とする、請求項1乃至3の何れかに記載の1,3,3,3−テトラフルオロプロペンの製造方法。The metal oxide is modified with hydrogen fluoride, hydrogen chloride, or chlorinated fluorinated hydrocarbons, 1, 3, 3, according to any one of claims 1 to 3, A method for producing 3-tetrafluoropropene. 1,1,1,3,3−ペンタフルオロプロパンの脱フッ化水素反応により得られた、1,3,3,3−テトラフルオロプロペンを含む生成物からフッ化水素を分離し、分離後の該生成物を水またはアルカリ性水溶液で洗浄して酸性物質を除去し、乾燥の後、蒸留に付して有機不純物を除くことを特徴とする、請求項1乃至5の何れかに記載の1,3,3,3−テトラフルオロプロペンの製造方法。Hydrogen fluoride was separated from the product containing 1,3,3,3-tetrafluoropropene obtained by the dehydrofluorination reaction of 1,1,1,3,3-pentafluoropropane. The product according to any one of claims 1 to 5, wherein the product is washed with water or an aqueous alkaline solution to remove acidic substances, dried and then subjected to distillation to remove organic impurities. A method for producing 3,3,3-tetrafluoropropene.
JP2007146981A 2006-06-13 2007-06-01 Method for producing 1,3,3,3-tetrafluoropropene Active JP4693811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146981A JP4693811B2 (en) 2006-06-13 2007-06-01 Method for producing 1,3,3,3-tetrafluoropropene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006163485 2006-06-13
JP2006163485 2006-06-13
JP2007146981A JP4693811B2 (en) 2006-06-13 2007-06-01 Method for producing 1,3,3,3-tetrafluoropropene

Publications (3)

Publication Number Publication Date
JP2008019243A JP2008019243A (en) 2008-01-31
JP2008019243A5 JP2008019243A5 (en) 2011-02-17
JP4693811B2 true JP4693811B2 (en) 2011-06-01

Family

ID=39075484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146981A Active JP4693811B2 (en) 2006-06-13 2007-06-01 Method for producing 1,3,3,3-tetrafluoropropene

Country Status (1)

Country Link
JP (1) JP4693811B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2802124T3 (en) * 2006-08-24 2021-01-15 Honeywell Int Inc Integrated HFC trans-1234ze manufacturing process
JP5277813B2 (en) * 2008-09-11 2013-08-28 セントラル硝子株式会社 Method for producing fluorinated propene
GB0918069D0 (en) * 2009-10-15 2009-12-02 Ineos Fluor Holdings Ltd Process
US8293954B2 (en) * 2010-03-10 2012-10-23 Honeywell International Inc. Catalyst life improvement for the vapor phase manufacture of 1-chloro-3,3,3-trifluoropropene
JP5990990B2 (en) 2012-04-16 2016-09-14 セントラル硝子株式会社 Method for producing cis-1,3,3,3-tetrafluoropropene
GB201207666D0 (en) * 2012-05-02 2012-06-13 Mexichem Amanco Holding Sa Process
JP6107466B2 (en) 2012-06-28 2017-04-05 セントラル硝子株式会社 Method for purifying trans-1,3,3,3-tetrafluoropropene
JP6182989B2 (en) * 2012-06-28 2017-08-23 セントラル硝子株式会社 Method for producing 1,3,3,3-tetrafluoropropene
JP6107467B2 (en) 2012-06-29 2017-04-05 セントラル硝子株式会社 Process for producing 1-chloro-3,3,3-trifluoropropene
JP6251992B2 (en) 2012-06-29 2017-12-27 セントラル硝子株式会社 Method for producing cis-1,3,3,3-tetrafluoropropene
US9187386B2 (en) * 2013-05-23 2015-11-17 The Chemours Company Fc, Llc Catalytic process of making 1,3,3,3-tetrafluoropropene
CN104945221B (en) * 2015-06-11 2017-07-18 浙江衢州巨新氟化工有限公司 A kind of method of the tetrafluoropropene of coproduction 2,3,3,3 and 1,3,3,3 tetrafluoropropenes
CN116143583B (en) * 2023-04-19 2023-07-07 山东澳帆新材料有限公司 Co-production preparation method of 2, 3-tetrafluoropropene and 1, 3-tetrafluoropropene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019142A1 (en) * 2003-08-13 2005-03-03 Great Lakes Chemical Corporation Systems and methods for producing fluorocarbons

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886229B2 (en) * 1997-11-11 2007-02-28 セントラル硝子株式会社 Method for producing 1,3,3,3-tetrafluoropropene
US20050119512A1 (en) * 2003-04-29 2005-06-02 Central Glass Company, Limited Fluorobutene derivatives and process for producing same
EP1814837B1 (en) * 2004-10-18 2010-02-24 Central Glass Co., Ltd. A method for producing 4,4,4-trifluorobutane-2-one

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019142A1 (en) * 2003-08-13 2005-03-03 Great Lakes Chemical Corporation Systems and methods for producing fluorocarbons

Also Published As

Publication number Publication date
JP2008019243A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4693811B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
KR101057583B1 (en) Method for preparing 1,3,3,3-tetrafluoropropene
JP5453757B2 (en) Process for producing trans-1,3,3,3-tetrafluoropropene
JP5277813B2 (en) Method for producing fluorinated propene
JP3886229B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP6687780B2 (en) Catalyst for dehydrochlorination of 2-chloro-1,1,1,2-tetrafluoropropane
JP5562638B2 (en) High-pressure catalyst activation method and catalyst produced thereby
JP5790438B2 (en) Process for producing trans-1-chloro-3,3,3-trifluoropropene
JP5750917B2 (en) Process for producing cis-1-chloro-3,3,3-trifluoropropene
JP3465865B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP6245013B2 (en) Process for producing 1,2-dichloro-3,3,3-trifluoropropene
JP5515555B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP6251992B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JPH09194404A (en) Production of 1-chloro-3,3,3-trifluoropropene
KR20180042281A (en) A novel process for producing 2-chloro-3,3,3-trifluoropropene from 1,2-dichloro-3,3,3-trifluoropropene
JPH11152237A (en) Production of perhalogenated cyclopentene
JP4271415B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP2009091301A (en) Method for producing cis-1,2,3,3,3-pentafluoropropene
JPH1067693A (en) Production of 1-chloro-3,3,3-trifluoropropene
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene
JPH11106358A (en) Production of halopropane
JPH09268140A (en) Production of 1,1,1,3,3-pentafluoropropane
JPH09268139A (en) Production of 1,1,1,3,3-pentafluoropropane
JP2002102708A (en) Method for reactivating catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101229

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250