JP4692348B2 - Discharge plasma generation auxiliary device - Google Patents

Discharge plasma generation auxiliary device Download PDF

Info

Publication number
JP4692348B2
JP4692348B2 JP2006086409A JP2006086409A JP4692348B2 JP 4692348 B2 JP4692348 B2 JP 4692348B2 JP 2006086409 A JP2006086409 A JP 2006086409A JP 2006086409 A JP2006086409 A JP 2006086409A JP 4692348 B2 JP4692348 B2 JP 4692348B2
Authority
JP
Japan
Prior art keywords
discharge plasma
protective member
electron source
potential
plasma generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006086409A
Other languages
Japanese (ja)
Other versions
JP2007265682A (en
Inventor
勉 櫟原
浩一 相澤
崇 幡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006086409A priority Critical patent/JP4692348B2/en
Publication of JP2007265682A publication Critical patent/JP2007265682A/en
Application granted granted Critical
Publication of JP4692348B2 publication Critical patent/JP4692348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放電プラズマを利用する放電プラズマ装置に用いる放電プラズマ生成補助装置に関するものである。   The present invention relates to a discharge plasma generation auxiliary device used in a discharge plasma device using discharge plasma.

従来の蛍光ランプは、透光性気密容器内に封入した水銀を含む放電媒体を放電により励起させて紫外線を発生させ、透光性気密容器の内面に被着した蛍光体層を励起させて発光させるものである。   Conventional fluorescent lamps emit light by exciting a discharge medium containing mercury enclosed in a light-transmitting hermetic container by discharging to generate ultraviolet rays and exciting a phosphor layer deposited on the inner surface of the light-transmitting hermetic container. It is something to be made.

これに対して、近年、地球の環境問題に対する関心が高まるにつれて、水銀を利用せずに例えばキセノンガスなどの希ガスを放電ガス(放電媒体)として用いた希ガス蛍光ランプのような無水銀蛍光ランプが各所で研究開発されている。   On the other hand, in recent years, as interest in environmental problems on the earth has increased, mercury-free mercury-free fluorescent lamps such as rare gas fluorescent lamps using a rare gas such as xenon gas as a discharge gas (discharge medium) without using mercury. Lamps are being researched and developed in various places.

しかしながら、希ガス蛍光ランプは、水銀を利用した従来の蛍光ランプに比べて、効率が低く、従来の蛍光ランプと同等の輝度を得るためには、透光性気密容器内に配置された一対の放電用電極間により高い電圧を印加しなければならないという問題があった。   However, the rare gas fluorescent lamp is less efficient than the conventional fluorescent lamp using mercury, and in order to obtain the same luminance as the conventional fluorescent lamp, a pair of rare gas fluorescent lamps arranged in a light-transmitting hermetic container is used. There was a problem that a higher voltage had to be applied between the discharge electrodes.

これに対して、放電ガスとしてキセノンガスが封入された透光性気密容器と、透光性気密容器内に配置された一対の放電用電極とを備えた放電プラズマ装置に用いる放電プラズマ生成補助装置として、電界放射型の電子源を透光性気密容器内における一対の放電用電極間の放電プラズマ生成空間の外に配置し、一対の放電用電極間に電圧を印加する前に電子源を駆動して電子を放出させることにより、放電開始電圧を低減する技術が提案されており(例えば、特許文献1参照)、放電開始電圧を半分程度まで低減できることが知られている。   On the other hand, a discharge plasma generation auxiliary device used in a discharge plasma apparatus comprising a light-transmitting airtight container filled with xenon gas as a discharge gas and a pair of discharge electrodes arranged in the light-transmitting airtight container The field emission type electron source is disposed outside the discharge plasma generation space between the pair of discharge electrodes in the translucent airtight container, and the electron source is driven before applying the voltage between the pair of discharge electrodes. Thus, a technique for reducing the discharge start voltage by emitting electrons has been proposed (see, for example, Patent Document 1), and it is known that the discharge start voltage can be reduced to about half.

ここにおいて、上述の放電プラズマ装置では、一対の放電用電極間の放電プラズマ生成空間の外に電子源を配置することで、放電プラズマに起因したダメージが電子源に発生するのを抑制していた。
特開2002−150944号公報
Here, in the above-described discharge plasma apparatus, the electron source is disposed outside the discharge plasma generation space between the pair of discharge electrodes, so that damage caused by the discharge plasma is suppressed from occurring in the electron source. .
JP 2002-150944 A

しかしながら、上述の放電プラズマ装置では、放電開始電圧を更に低減するためにより大きな電流を流すと、放電プラズマが電子源の電子放出面に達したり、放電用電極と電子源との間で放電が起こって、電子源の電子放出面にイオンが衝突することにより電子源に損傷が発生し、電子源の寿命が短くなって、結果的に放電プラズマ生成補助装置の寿命が短くなってしまうという懸念があった。   However, in the above-described discharge plasma apparatus, if a larger current is applied to further reduce the discharge start voltage, the discharge plasma reaches the electron emission surface of the electron source or a discharge occurs between the discharge electrode and the electron source. There is a concern that the collision of ions with the electron emission surface of the electron source causes damage to the electron source, shortening the life of the electron source, and consequently shortening the life of the discharge plasma generation auxiliary device. there were.

そこで、放電プラズマ生成補助装置に、電子源に対向配置され電子源を保護する保護部材として導電性材料により形成された網状体を設けることによって、電子源の電子放出面へのイオンの衝突を抑制することが考えられるが、電子源へのイオンの衝突を抑制するには網状体の網目のサイズを小さくする必要があり、電子源から放出された電子の一部が網状体に衝突したり捕らえられたりし、放電ガスであるキセノンガス中への電子の供給量が減少し、放電開始電圧が高くなってしまう。   Therefore, by providing the discharge plasma generation auxiliary device with a mesh body made of a conductive material as a protective member that is placed facing the electron source and protects the electron source, collision of ions with the electron emission surface of the electron source is suppressed. However, in order to suppress the collision of ions with the electron source, it is necessary to reduce the mesh size of the network, and some of the electrons emitted from the electron source collide with or be captured by the network. In other words, the amount of electrons supplied to the xenon gas, which is the discharge gas, decreases, and the discharge start voltage increases.

本発明は上記事由に鑑みて為されたものであり、その目的は、放電開始電圧を低減でき且つ長寿命化を図れる放電プラズマ生成補助装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a discharge plasma generation auxiliary device that can reduce the discharge start voltage and extend the life.

請求項1の発明は、放電ガスが封入された気密容器と、気密容器内に配置されたアノード電極およびカソード電極とを備えた放電プラズマ装置に用いられ放電プラズマの生成を補助する放電プラズマ生成補助装置であって、気密容器内において放電プラズマ生成空間の外側でカソード電極の近くに配置され放電ガス中へ電子を供給する電子源と、電子源から放出された電子の通る開口部を有し且つ気密容器内で生成された放電プラズマのイオンから電子源を保護する2つの保護部材とを備え、両保護部材がそれぞれ導電性材料により形成されるとともに電子源の電子放出方向において離間して配置され、電子源に近い側の保護部材である第1の保護部材の電位が電子源よりも高電位となり且つ第1の保護部材と電子源から遠い側の保護部材である第2の保護部材との電位が互いに異なるように第1の保護部材と第2の保護部材との電位関係が設定され、第2の保護部材の電位が、アノード電極の電位よりも低く且つカソード電極の電位よりも高い電位に設定されてなることを特徴とする。   According to a first aspect of the present invention, there is provided a discharge plasma generation auxiliary for use in a discharge plasma apparatus including an airtight container in which a discharge gas is sealed, and an anode electrode and a cathode electrode disposed in the airtight container. An apparatus, comprising an electron source disposed near a cathode electrode outside a discharge plasma generation space in an airtight container and supplying electrons into a discharge gas, and an opening through which electrons emitted from the electron source pass. Two protective members for protecting the electron source from the ions of the discharge plasma generated in the hermetic container, both of the protective members being formed of a conductive material and spaced apart in the electron emission direction of the electron source. The potential of the first protective member, which is the protective member on the side close to the electron source, is higher than that of the electron source, and the first protective member and the protective member on the side far from the electron source. The potential relationship between the first protection member and the second protection member is set so that the potentials of the second protection member are different from each other, and the potential of the second protection member is lower than the potential of the anode electrode and It is characterized by being set to a potential higher than the potential of the cathode electrode.

この発明によれば、電子源の電子放出方向において離間して配置された第1の保護部材および第2の保護部材それぞれが電子源から放出された電子の通る開口部を有しているので、第1の保護部材および第2の保護部材それぞれの開口率を適宜設定することで電子源へのイオンの衝突を抑制しつつ電子源から放出された電子が各保護部材に衝突したり捕らえられたりするのを抑制できて放電開始電圧を低減でき、しかも、第2の保護部材の電位がアノード電極の電位よりも低く且つカソード電極の電位よりも高い電位に設定されているので、第2の保護部材とアノード電極およびカソード電極との間それぞれでの不要な放電プラズマが起こるのを防止することができるから、電子源に損傷が発生するのを抑制できて長寿命化を図れる。   According to the present invention, each of the first protective member and the second protective member that are spaced apart in the electron emission direction of the electron source has an opening through which electrons emitted from the electron source pass. By appropriately setting the aperture ratio of each of the first protective member and the second protective member, the electrons emitted from the electron source collide with or be captured by each protective member while suppressing the collision of ions with the electron source. Since the potential of the second protective member is set lower than the potential of the anode electrode and higher than the potential of the cathode electrode, the second protection member can be reduced. Since it is possible to prevent unnecessary discharge plasma from occurring between the member and the anode electrode and the cathode electrode, it is possible to suppress the occurrence of damage to the electron source and to extend the life.

請求項2の発明は、請求項1の発明において、前記第2の保護部材の電位が前記第1の保護部材よりも低電位となるように前記電位関係が設定されてなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the potential relationship is set so that the potential of the second protective member is lower than that of the first protective member. .

この発明によれば、前記第1の保護部材の開口部を通った電子が前記第2の保護部材に捕らえられるのを抑制しつつ、前記気密容器内において前記アノード電極と前記カソード電極との間で発生する放電プラズマのイオンに起因した前記電子源のダメージを低減することができる。   According to the present invention, the electrons passing through the opening of the first protective member are restrained from being caught by the second protective member, and the gap between the anode electrode and the cathode electrode is within the hermetic container. It is possible to reduce the damage of the electron source caused by the ions of the discharge plasma generated in step (b).

請求項3の発明は、請求項1または請求項2の発明において、前記第2の保護部材は、前記第1の保護部材よりも開口率が低いことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the second protective member has a lower aperture ratio than the first protective member.

この発明によれば、前記気密容器内において前記アノード電極と前記カソード電極との間で発生する放電プラズマのイオンに起因した前記電子源のダメージをより低減できる。   According to the present invention, damage to the electron source due to discharge plasma ions generated between the anode electrode and the cathode electrode in the hermetic container can be further reduced.

請求項4の発明は、請求項3の発明において、前記第1の保護部材は、前記開口部が前記電子源の電子放出面に対応する形状に開口されてなることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the first protection member is characterized in that the opening is opened in a shape corresponding to an electron emission surface of the electron source.

この発明によれば、前記電子源から放出された電子を前記第1の保護部材と前記電子源との間の電界によって加速しつつ、前記電子源から放出された電子が前記第1の保護部材に捕獲される確率を低減することができる。   According to this invention, the electrons emitted from the electron source are accelerated by the electric field between the first protection member and the electron source while the electrons emitted from the electron source are accelerated by the electric field between the first protection member and the electron source. The probability of being trapped in can be reduced.

請求項5の発明は、請求項1ないし請求項4の発明において、前記第2の保護部材は、前記カソード電極との距離をd、前記カソード電極との間の空間での電子増倍率をα、前記気密容器内で発生する放電プラズマのイオンによる二次電子放出係数をγとするとき、γが、
γ≦1/(eαd−1)
の関係を満たす材料により形成されてなることを特徴とする。
According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, the second protective member has a distance d from the cathode electrode, and an electron multiplication factor α in the space between the cathode electrodes. , Where γ is a secondary electron emission coefficient due to ions of discharge plasma generated in the hermetic vessel ,
γ ≦ 1 / (e αd −1)
It is characterized by being formed of a material satisfying the above relationship.

この発明によれば、前記第2の保護部材と前記カソード電極との間で不要な放電プラズマが発生するのを防止することができ、前記電子源の長寿命化を図れる。   According to the present invention, unnecessary discharge plasma can be prevented from being generated between the second protective member and the cathode electrode, and the life of the electron source can be extended.

請求項6の発明は、請求項1ないし請求項4の発明において、前記第2の保護部材は、前記カソード電極との距離をd、前記カソード電極との間の空間での電子増倍率をα、前記気密容器内で発生する放電プラズマのイオンによる二次電子放出係数をγとするとき、αが、
α≦ln{(1/γ)+1}/d
の関係を満たすように電位が設定されてなることを特徴とする。
According to a sixth aspect of the present invention, in the first to fourth aspects of the present invention, the second protective member has a distance d from the cathode electrode, and an electron multiplication factor α in the space between the cathode electrodes. When the secondary electron emission coefficient due to the ions of the discharge plasma generated in the hermetic vessel is γ , α is
α ≦ ln {(1 / γ) +1} / d
The potential is set so as to satisfy the relationship.

この発明によれば、前記第2の保護部材と前記カソード電極との間で不要な放電プラズマが発生するのを防止することができ、前記電子源の長寿命化を図れる。   According to the present invention, unnecessary discharge plasma can be prevented from being generated between the second protective member and the cathode electrode, and the life of the electron source can be extended.

請求項1の発明では、放電開始電圧を低減でき且つ長寿命化を図れるという効果がある。   According to the first aspect of the present invention, the discharge start voltage can be reduced and the life can be extended.

本実施形態における放電プラズマ装置は、図1(a)に示すように、放電ガス(ここでは、Xeガス)が封入された気密容器1と、気密容器1内に配置されたアノード電極2bおよびカソード電極2aとを有する放電ランプLaを備えている。なお、放電ガスはXeガスに限らず、例えば、Arガス、Heガス、Neガス、Krガス、Nガス、COガス、Hg蒸気やそれらの二種以上からなる混合ガスなどを放電プラズマ装置の用途などに応じて適宜採用すればよい。 As shown in FIG. 1A, the discharge plasma apparatus according to the present embodiment includes an airtight container 1 in which a discharge gas (here, Xe gas) is sealed, an anode electrode 2b disposed in the airtight container 1, and a cathode. A discharge lamp La having an electrode 2a is provided. Note that the discharge gas is not limited to the Xe gas, but, for example, Ar gas, He gas, Ne gas, Kr gas, N 2 gas, CO gas, Hg vapor, or a mixed gas composed of two or more of them may be used in the discharge plasma apparatus. What is necessary is just to employ | adopt suitably according to a use etc.

また、本実施形態における放電プラズマ装置は、放電プラズマの生成を補助する放電プラズマ生成補助装置として、図1(a),(b)に示すように、気密容器1内においてアノード電極2bとカソード電極2aとの間の所望の放電プラズマ生成空間3の外側でカソード電極2aの近くに配置され放電ガス中へ電子を供給する電子源10と、気密容器1内の放電プラズマ生成空間3で生成された放電プラズマのイオンから電子源10を保護する2つの保護部材21,22とを備えている。ここにおいて、各保護部材21,22は、それぞれ導電性材料により形成されていて電子源10から放出された電子を加速するためのグリッド電極を兼ねており、電子源10の電子放出方向において離間して配置されている。また、各保護部材21,22は、電子源10から放出された電子の通る複数の開口部21a,22aが形成されている。   In addition, the discharge plasma apparatus according to the present embodiment is a discharge plasma generation auxiliary apparatus that assists the generation of discharge plasma, as shown in FIGS. 1A and 1B, in an airtight container 1, an anode electrode 2b and a cathode electrode. An electron source 10 that is arranged near the cathode electrode 2a outside the desired discharge plasma generation space 3 between 2a and supplies electrons into the discharge gas, and is generated in the discharge plasma generation space 3 in the hermetic vessel 1 Two protective members 21 and 22 that protect the electron source 10 from ions of discharge plasma are provided. Here, each of the protective members 21 and 22 is also formed of a conductive material and serves as a grid electrode for accelerating electrons emitted from the electron source 10, and is separated in the electron emission direction of the electron source 10. Are arranged. Each of the protective members 21 and 22 has a plurality of openings 21a and 22a through which electrons emitted from the electron source 10 pass.

本実施形態における放電ランプLaは、直管形の放電ランプであり、気密容器1が透光性材料(例えば、ガラス、透光性セラミックなど)により円筒状に形成され、気密容器1の長手方向の一端部(図1における左端部)にアノード電極2bが配置され、上記長手方向の他端部(図1における右端部)にカソード電極2aが配置されている。また、放電ランプLaは、上述の放電プラズマ生成補助装置が、カソード電極2aの近くでカソード電極2aに対してアノード電極2b側とは反対側に配置されている(要するに、電子源10および各保護部材21,22は、気密容器1内において放電プラズマ生成空間3の外に配置されている)。   The discharge lamp La in the present embodiment is a straight tube discharge lamp, and the airtight container 1 is formed in a cylindrical shape from a light-transmitting material (for example, glass, light-transmitting ceramic, etc.), and the longitudinal direction of the airtight container 1 is The anode electrode 2b is disposed at one end portion (left end portion in FIG. 1), and the cathode electrode 2a is disposed at the other end portion in the longitudinal direction (right end portion in FIG. 1). In the discharge lamp La, the above-described discharge plasma generation assisting device is disposed near the cathode electrode 2a on the opposite side of the cathode electrode 2a from the anode electrode 2b side (in short, the electron source 10 and each protection device). The members 21 and 22 are disposed outside the discharge plasma generation space 3 in the hermetic container 1).

電子源10は、図1(a),(b)に示すように、矩形板状の絶縁性基板(例えば、絶縁性を有するガラス基板、絶縁性を有するセラミック基板など)14の一表面上に金属膜(例えば、タングステン膜など)からなる下部電極15が形成され、下部電極15上に強電界ドリフト層16が形成され、強電界ドリフト層16上に導電性薄膜(例えば、金薄膜)よりなる表面電極17が形成されている。なお、表面電極17を構成する導電性薄膜の膜厚は10〜15nm程度に設定することが望ましいが、当該導電性薄膜は単層膜に限らず多層膜でもよい。   As shown in FIGS. 1A and 1B, the electron source 10 is formed on one surface of a rectangular plate-like insulating substrate 14 (for example, an insulating glass substrate, an insulating ceramic substrate, etc.). A lower electrode 15 made of a metal film (for example, a tungsten film) is formed, a strong electric field drift layer 16 is formed on the lower electrode 15, and a conductive thin film (for example, a gold thin film) is formed on the strong electric field drift layer 16. A surface electrode 17 is formed. Although the thickness of the conductive thin film constituting the surface electrode 17 is desirably set to about 10 to 15 nm, the conductive thin film is not limited to a single layer film but may be a multilayer film.

本実施形態における電子源10では、強電界ドリフト層16が電子通過層を構成しており、下部電極15と電子通過層たる強電界ドリフト層16と表面電極17とで表面電極17を通して電子を放出する電子源素子10aを構成している。   In the electron source 10 in the present embodiment, the strong electric field drift layer 16 constitutes an electron passage layer, and electrons are emitted through the surface electrode 17 by the lower electrode 15, the strong electric field drift layer 16 serving as the electron passage layer, and the surface electrode 17. The electron source element 10a is configured.

電子源素子10aの強電界ドリフト層16は、図2に示すように、少なくとも、下部電極15の表面側に列設された柱状の多結晶シリコンのグレイン(半導体結晶)51と、グレイン51の表面に形成された薄いシリコン酸化膜52と、グレイン51間に介在する多数のナノメータオーダのシリコン微結晶(半導体微結晶)63と、各シリコン微結晶63の表面に形成され当該シリコン微結晶63の結晶粒径よりも小さな膜厚の絶縁膜である多数のシリコン酸化膜64とから構成されている。ここに、各グレイン51は、下部電極15の厚み方向に延びている(つまり、絶縁性基板14の厚み方向に延びている)。   As shown in FIG. 2, the strong electric field drift layer 16 of the electron source element 10 a includes at least columnar polycrystalline silicon grains (semiconductor crystals) 51 arranged on the surface side of the lower electrode 15 and the surface of the grain 51. A thin silicon oxide film 52 formed on the surface, a number of nanometer order silicon microcrystals (semiconductor microcrystals) 63 interposed between the grains 51, and a crystal of the silicon microcrystal 63 formed on the surface of each silicon microcrystal 63. It is composed of a large number of silicon oxide films 64 which are insulating films having a film thickness smaller than the grain size. Here, each grain 51 extends in the thickness direction of the lower electrode 15 (that is, extends in the thickness direction of the insulating substrate 14).

上述の電子源素子10aから電子を放出させるには、表面電極17が下部電極15に対して高電位側となるように表面電極17と下部電極15との間に駆動電圧を駆動電源(図示せず)から印加すれば、下部電極15から強電界ドリフト層16へ注入された電子が強電界ドリフト層16をドリフトし表面電極17を通して放出される。   In order to emit electrons from the electron source element 10a described above, a driving voltage is applied between the surface electrode 17 and the lower electrode 15 so that the surface electrode 17 is on the high potential side with respect to the lower electrode 15 (not shown). The electrons injected from the lower electrode 15 to the strong electric field drift layer 16 drift through the strong electric field drift layer 16 and are emitted through the surface electrode 17.

ここに、本実施形態における電子源素子10aでは、表面電極17と下部電極15との間に印加する駆動電圧を10〜20V程度の低電圧としても電子を放出させることができる。なお、本実施形態の電子源素子10aは、電子放出特性の真空度依存性が小さく且つ電子放出時にポッピング現象が発生せず安定して電子を高い電子放出効率で放出することができるという特徴を有している。   Here, in the electron source element 10a in the present embodiment, electrons can be emitted even when the driving voltage applied between the surface electrode 17 and the lower electrode 15 is a low voltage of about 10 to 20V. The electron source element 10a of the present embodiment is characterized in that the electron emission characteristics are less dependent on the degree of vacuum, and a popping phenomenon does not occur during electron emission, and electrons can be stably emitted with high electron emission efficiency. Have.

本実施形態における電子源素子10aの基本構成は周知であり、次のようなモデルで電子放出が起こると考えられる。すなわち、表面電極17と下部電極15との間に表面電極17を高電位側として電圧を印加することにより、下部電極15から強電界ドリフト層16へ電子eが注入される。一方、強電界ドリフト層16に印加された電界の大部分はシリコン酸化膜64にかかるから、注入された電子eはシリコン酸化膜64にかかっている強電界により加速され、強電界ドリフト層16におけるグレイン51の間の領域を表面に向かって図2中の矢印の向き(図2における上向き)へドリフトし、表面電極17をトンネルし放出される。しかして、強電界ドリフト層16では下部電極15から注入された電子がシリコン微結晶63でほとんど散乱されることなくシリコン酸化膜64にかかっている電界で加速されてドリフトし、表面電極17を通して放出され(弾道型電子放出現象)、強電界ドリフト層16で発生した熱がグレイン51を通して放熱されるから、電子放出時にポッピング現象が発生せず、安定して電子を放出することができる。 The basic configuration of the electron source element 10a in this embodiment is well known, and it is considered that electron emission occurs in the following model. That is, by applying a voltage between the surface electrode 17 and the lower electrode 15 with the surface electrode 17 being on the high potential side, electrons e are injected from the lower electrode 15 into the strong electric field drift layer 16. On the other hand, since most of the electric field applied to the strong electric field drift layer 16 is applied to the silicon oxide film 64, the injected electrons e are accelerated by the strong electric field applied to the silicon oxide film 64, and the strong electric field drift layer 16. 2 drifts in the direction of the arrow in FIG. 2 (upward in FIG. 2) toward the surface, and the surface electrode 17 is tunneled and emitted. Thus, in the strong electric field drift layer 16, electrons injected from the lower electrode 15 are almost scattered by the silicon microcrystal 63, are accelerated by the electric field applied to the silicon oxide film 64, and drift through the surface electrode 17. Thus, since the heat generated in the strong electric field drift layer 16 is dissipated through the grains 51, no popping phenomenon occurs during electron emission, and electrons can be stably emitted.

なお、上述の電子源10では、表面電極17が電子放出部を構成している。また、上述の強電界ドリフト層16では、シリコン酸化膜64が絶縁膜を構成しており絶縁膜の形成に酸化プロセスを採用しているが、酸化プロセスの代わりに窒化プロセスないし酸窒化プロセスを採用してもよく、窒化プロセスを採用した場合には各シリコン酸化膜52,64がいずれもシリコン窒化膜となり、酸窒化プロセスを採用した場合には各シリコン酸化膜52,64がいずれもシリコン酸窒化膜となる。   In the electron source 10 described above, the surface electrode 17 constitutes an electron emission portion. Further, in the above-described strong electric field drift layer 16, the silicon oxide film 64 constitutes an insulating film, and an oxidation process is employed for forming the insulating film, but a nitriding process or an oxynitriding process is employed instead of the oxidation process. Alternatively, when the nitriding process is adopted, each of the silicon oxide films 52 and 64 becomes a silicon nitride film, and when the oxynitriding process is adopted, each of the silicon oxide films 52 and 64 is silicon oxynitride. Become a film.

また、上述の各保護部材21,22は、上記導電性材料(例えば、ニッケル、アルミニウム、ステンレスなど)により網状の形状に形成されており、該網状の各網目それぞれの部分が電子源10から放出された電子の通る開口部21a,22aを構成している。なお、本実施形態では、各保護部材21,22を網状の形状に形成してあるが、各保護部材21,22は、網状の形状に限らず、例えば、平板状の導電性基材に開口部21a,22aを設けたものでもよい。   Each of the protective members 21 and 22 is formed in a net-like shape from the conductive material (for example, nickel, aluminum, stainless steel, etc.), and each part of the net-like mesh is emitted from the electron source 10. The openings 21a and 22a through which the electrons pass are formed. In this embodiment, the protective members 21 and 22 are formed in a net-like shape. However, the protective members 21 and 22 are not limited to the net-like shape, and for example, an opening is formed in a flat conductive substrate. What provided the parts 21a and 22a may be used.

本実施形態の放電プラズマ生成補助装置では、上記駆動電源から電子源10の表面電極17と下部電極15との間に例えば14V程度の直流電圧を印加するとともに、第1の加速用電源(図示せず)から第1の保護部材21と表面電極17との間に例えば100V程度の直流電圧を印加し、第2の加速用電源(図示せず)から第2の保護部材22と表面電極17との間に例えば90V程度の直流電圧を印加することにより、電子源10から放出された電子が第1の保護部材21および第2の保護部材22それぞれで加速されてアノード電極2bとカソード電極2aとの間の放電プラズマ生成空間3へ供給される。ここで、放電プラズマ生成補助装置を駆動する際の各構成要素の電位は、第1の保護部材21と第2の保護部材22との電位が互いに異なるように第1の保護部材21と第2の保護部材22との電位関係が設定され、第2の保護部材22の電位が、アノード電極2bの電位よりも低く且つカソード電極2aの電位よりも高い電位に設定されている。ここにおいて、第2の保護部材22の電位は、第2の保護部材22とアノード電極2bとの間の電位差(以下、第1の電位差と称す)が第2の保護部材22とアノード電極2bとの間の放電開始電圧よりも小さく、且つ、第2の保護部材22とカソード電極2aとの間の電位差(以下、第2の電位差と称す)が第2の保護部材22とカソード電極2aとの間の放電開始電圧よりも小さくなるように設定するのが望ましく、上記各電位差それぞれを放電開始電圧よりも低い放電維持電圧よりも小さくなるように設定するのがより望ましい。   In the discharge plasma generation auxiliary device of the present embodiment, a DC voltage of about 14 V, for example, is applied between the driving power supply between the surface electrode 17 and the lower electrode 15 of the electron source 10 and a first acceleration power supply (not shown). For example, a DC voltage of about 100 V is applied between the first protective member 21 and the surface electrode 17, and the second protective member 22 and the surface electrode 17 are supplied from a second acceleration power source (not shown). For example, by applying a DC voltage of about 90V between the electrons, the electrons emitted from the electron source 10 are accelerated by the first protective member 21 and the second protective member 22, respectively, and the anode electrode 2b and the cathode electrode 2a Is supplied to the discharge plasma generation space 3. Here, the potential of each component when driving the discharge plasma generation auxiliary device is such that the potentials of the first protective member 21 and the second protective member 22 are different from each other. The potential relationship with the protective member 22 is set, and the potential of the second protective member 22 is set lower than the potential of the anode electrode 2b and higher than the potential of the cathode electrode 2a. Here, the potential of the second protective member 22 is such that the potential difference between the second protective member 22 and the anode electrode 2b (hereinafter referred to as the first potential difference) is the second protective member 22 and the anode electrode 2b. And a potential difference between the second protective member 22 and the cathode electrode 2a (hereinafter referred to as a second potential difference) is smaller than the discharge starting voltage between the second protective member 22 and the cathode electrode 2a. It is desirable to set the voltage difference so as to be smaller than the discharge start voltage, and it is more desirable to set each potential difference to be smaller than the discharge sustain voltage lower than the discharge start voltage.

なお、本実施形態では、アノード電極2bとカソード電極2aとの間に電圧を印加する電源VAK、上記駆動電源、上記第1の加速用電源、上記第2の加速用電源それぞれの出力電圧を例えばマイクロコンピュータからなる制御部(図示せず)によって制御しており、各保護部材21,22、アノード電極2b、カソード電極2aそれぞれの電位を上記制御部によって制御することで、上記電位関係を満足させるようにしてある。 In the present embodiment, the output voltages of the power supply V AK for applying a voltage between the anode electrode 2b and the cathode electrode 2a, the drive power supply, the first acceleration power supply, and the second acceleration power supply are respectively determined. For example, it is controlled by a control unit (not shown) composed of a microcomputer, and the potential relationship is satisfied by controlling the potentials of the protective members 21, 22, anode electrode 2b, and cathode electrode 2a by the control unit. I am trying to make it.

以上説明した本実施形態の放電プラズマ生成補助装置によれば、電子源10の電子放出方向において離間して配置された第1の保護部材21および第2の保護部材22それぞれが電子源10から放出された電子の通る開口部21a,22aを有しているので、第1の保護部材21および第2の保護部材22それぞれの開口率を適宜設定することで電子源10へのイオンの衝突を抑制しつつ電子源10から放出された電子が各保護部材21,22に衝突したり捕らえられたりするのを抑制できて放電開始電圧を低減でき、しかも、第2の保護部材22の電位がアノード電極2bの電位よりも低く且つカソード電極2aの電位よりも高い電位に設定されているので、第2の保護部材22とアノード電極2bおよびカソード電極2aとの間それぞれでの不要な放電プラズマが起こるのを防止することができるから、電子源10に損傷が発生するのを抑制できて長寿命化を図れる。また、第2の保護部材22の電位が第1の保護部材21よりも低電位となるように上記電位関係が設定されているので、第1の保護部材21の開口部21aを通った電子が第2の保護部材22に捕らえられるのを抑制しつつ、気密容器1内においてアノード電極2bとカソード電極2aとの間で発生する放電プラズマのイオンに起因した電子源10のダメージを低減することができる。   According to the discharge plasma generation auxiliary device of the present embodiment described above, the first protective member 21 and the second protective member 22 that are spaced apart in the electron emission direction of the electron source 10 emit from the electron source 10. Since the apertures 21a and 22a through which the electrons are transmitted pass, the collision of ions to the electron source 10 is suppressed by appropriately setting the aperture ratios of the first protective member 21 and the second protective member 22, respectively. However, it is possible to suppress the electrons emitted from the electron source 10 from colliding with or being captured by the protective members 21 and 22, thereby reducing the discharge start voltage, and the potential of the second protective member 22 is the anode electrode. Since the potential is set lower than the potential of 2b and higher than the potential of the cathode electrode 2a, the second protective member 22, and the anode electrode 2b and the cathode electrode 2a, respectively. Since it is possible to prevent an unnecessary discharge plasma from occurring in, can be suppressed damage from occurring to the electron source 10 attained a long life. Further, since the potential relationship is set so that the potential of the second protective member 22 is lower than that of the first protective member 21, electrons passing through the opening 21a of the first protective member 21 are It is possible to reduce damage to the electron source 10 caused by ions of discharge plasma generated between the anode electrode 2b and the cathode electrode 2a in the hermetic container 1 while suppressing being caught by the second protective member 22. it can.

また、本実施形態の放電プラズマ生成補助装置では、第2の保護部材22の開口率を第1の保護部材21の開口率よりも低くしてあるので、気密容器1内においてアノード電極2bとカソード電極2aとの間で発生する放電プラズマのイオンに起因した電子源10のダメージをより低減できる。ここにおいて、第1の保護部材21の開口部21aを電子源10の電子放出面に対応する形状に開口しておけば、電子源10から放出された電子を第1の保護部材21と電子源10との間の電界によって加速しつつ、電子源10から放出された電子が第1の保護部材21に捕獲される確率を低減することができる。   Further, in the discharge plasma generation assisting device of the present embodiment, since the opening ratio of the second protective member 22 is lower than the opening ratio of the first protective member 21, the anode electrode 2 b and the cathode in the hermetic container 1. The damage of the electron source 10 due to the ions of the discharge plasma generated between the electrodes 2a can be further reduced. Here, if the opening 21a of the first protective member 21 is opened in a shape corresponding to the electron emission surface of the electron source 10, the electrons emitted from the electron source 10 are allowed to flow to the first protective member 21 and the electron source. The probability that electrons emitted from the electron source 10 are captured by the first protective member 21 can be reduced while being accelerated by an electric field between the first and second electrons.

ところで、アノード電極2bとカソード電極2aとの間で放電プラズマが発生するのは、アノード電極2bとカソード電極2aとの間の距離をd、電子増倍率をα、カソード電極2aのイオンによる二次電子放出係数をγとすると、
γ>1/(eαd−1)
の関係を満たしたときであり、カソード電極2aにイオンが衝突して二次電子を発生させることでアノード電極2bとカソード電極2aとの間で放電が維持されるが、この原理はカソード電極2aと第2の保護部材22との間でも同様である。
By the way, the discharge plasma is generated between the anode electrode 2b and the cathode electrode 2a because the distance between the anode electrode 2b and the cathode electrode 2a is d, the electron multiplication factor is α, and the secondary by the ions of the cathode electrode 2a. If the electron emission coefficient is γ,
γ> 1 / (e αd −1)
In this case, the discharge is maintained between the anode electrode 2b and the cathode electrode 2a by the collision of ions with the cathode electrode 2a to generate secondary electrons. This principle is based on the cathode electrode 2a. This also applies to the second protective member 22.

そこで、第2の保護部材22とカソード電極2aとの距離をd、第2の保護部材22とカソード電極2aとの間の空間での電子増倍率をα、気密容器1内で発生する放電プラズマのイオンによる二次電子放出係数をγとするとき、第2の保護部材22の材料を、
γ≦1/(eαd−1)
の関係を満たす材料により形成すれば、第2の保護部材22とカソード電極2aとの間で不要な放電プラズマが発生するのを防止することができ、電子源10の長寿命化を図れる。
Therefore, the distance between the second protective member 22 and the cathode electrode 2a is d, the electron multiplication factor in the space between the second protective member 22 and the cathode electrode 2a is α, and the discharge plasma generated in the hermetic vessel 1 When the secondary electron emission coefficient by the ions of γ is γ, the material of the second protective member 22 is
γ ≦ 1 / (e αd −1)
If the material satisfying the above relationship is used, unnecessary discharge plasma can be prevented from being generated between the second protective member 22 and the cathode electrode 2a, and the life of the electron source 10 can be extended.

ここにおいて、γを低くするには、イオンに対する二次電子放出効率の低い材料を用いればよく、この種の材料としては、例えば、Fe,Co,Ni,Cu,Zn,Ga,Ge,C,Si,Mo,Tc,Ru,Rh,Pd,Ag,Cd,In,Sn,Sb,Te,Re,Os,Ir,Pt,Au,Hg,Tl,Pb,Bi,Poなどや、これらの酸化物、窒化物、炭化物などを用いることが望ましい。   Here, in order to reduce γ, a material having low secondary electron emission efficiency for ions may be used. Examples of this type of material include Fe, Co, Ni, Cu, Zn, Ga, Ge, C, Si, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, and their oxides It is desirable to use nitride, carbide or the like.

また、第2の保護部材22の材料として、上述の材料以外の材料を用いても、αが、
α≦ln{(1/γ)+1}/d
の関係を満たすように第2の保護部材22の電位を設定することで、第2の保護部材22とカソード電極2aとの間で不要な放電プラズマが発生するのを防止することができ、電子源10の長寿命化を図れる。ここで、第2の保護部材22は、イオンに対する二次電子放出効率が低い方が望ましいが、放電プラズマ生成補助装置からの電子放出効率を向上させるためには、電子に対する二次電子放出効率が高い方が望ましい。
Further, even when a material other than the above-described materials is used as the material of the second protective member 22, α is
α ≦ ln {(1 / γ) +1} / d
By setting the potential of the second protection member 22 so as to satisfy the relationship, it is possible to prevent unnecessary discharge plasma from being generated between the second protection member 22 and the cathode electrode 2a, and The life of the source 10 can be extended. Here, it is desirable that the second protective member 22 has a low secondary electron emission efficiency with respect to ions. However, in order to improve the electron emission efficiency from the discharge plasma generation auxiliary device, the secondary electron emission efficiency with respect to the electrons is low. Higher is desirable.

上述の実施形態における電子源10は、弾道型電子放出現象により電子を放出する電子源であって弾道電子面放出型電子源(Ballistic electron Surface-emitting Device:BSD)と呼ばれている。ここにおいて、電子源10はBSDに限らず、例えば、上述の電子通過層として強電界ドリフト層16に代えて絶縁体層を採用したMIM(Metal-Insulator-Metal)型の電子源、上述の電子通過層として強電界ドリフト層16に代えて下部電極15側の半導体層と表面電極17側の絶縁体層とを採用したMIS(Metal-Insulator-Semiconductor)型の電子源、スピント型の電子源、SCE(Surface Conduction Electron emitter)型の電子源、カーボンナノチューブエミッタを用いた電子源などを用いてもよいが、電子源10としてBSDを用いれば放電ガス中でも安定して電子を放出することができるので、電子源10としてBSDを用いることが望ましい。   The electron source 10 in the above-described embodiment is an electron source that emits electrons by a ballistic electron emission phenomenon, and is called a ballistic electron surface-emitting device (BSD). Here, the electron source 10 is not limited to the BSD, and for example, an MIM (Metal-Insulator-Metal) type electron source employing an insulator layer instead of the strong electric field drift layer 16 as the above-described electron passage layer, MIS (Metal-Insulator-Semiconductor) type electron source adopting a semiconductor layer on the lower electrode 15 side and an insulator layer on the side of the surface electrode 17 instead of the strong electric field drift layer 16 as a passing layer, a Spindt type electron source, An electron source using an SCE (Surface Conduction Electron Emitter) type electron source or a carbon nanotube emitter may be used. However, if BSD is used as the electron source 10, electrons can be stably emitted even in a discharge gas. It is desirable to use BSD as the electron source 10.

実施形態を示し、(a)は放電プラズマ装置の概略構成図、(b)は放電プラズマ生成補助装置の概略断面図である。1A is a schematic configuration diagram of a discharge plasma apparatus, and FIG. 2B is a schematic cross-sectional view of a discharge plasma generation auxiliary apparatus. 同上に用いる電子源の動作説明図である。It is operation | movement explanatory drawing of the electron source used for the same as the above.

符号の説明Explanation of symbols

1 気密容器
2a カソード電極
2b アノード電極
3 放電プラズマ生成空間
10 電子源
21 第1の保護部材
21a 開口部
22 第2の保護部材
22a 開口部
La 放電ランプ
DESCRIPTION OF SYMBOLS 1 Airtight container 2a Cathode electrode 2b Anode electrode 3 Discharge plasma production space 10 Electron source 21 1st protection member 21a Opening part 22 2nd protection member 22a Opening part La Discharge lamp

Claims (6)

放電ガスが封入された気密容器と、気密容器内に配置されたアノード電極およびカソード電極とを備えた放電プラズマ装置に用いられ放電プラズマの生成を補助する放電プラズマ生成補助装置であって、気密容器内において放電プラズマ生成空間の外側でカソード電極の近くに配置され放電ガス中へ電子を供給する電子源と、電子源から放出された電子の通る開口部を有し且つ気密容器内で生成された放電プラズマのイオンから電子源を保護する2つの保護部材とを備え、両保護部材がそれぞれ導電性材料により形成されるとともに電子源の電子放出方向において離間して配置され、電子源に近い側の保護部材である第1の保護部材の電位が電子源よりも高電位となり且つ第1の保護部材と電子源から遠い側の保護部材である第2の保護部材との電位が互いに異なるように第1の保護部材と第2の保護部材との電位関係が設定され、第2の保護部材の電位が、アノード電極の電位よりも低く且つカソード電極の電位よりも高い電位に設定されてなることを特徴とする放電プラズマ生成補助装置。   A discharge plasma generation assisting device for assisting the generation of discharge plasma used in a discharge plasma apparatus comprising an airtight container filled with a discharge gas, and an anode electrode and a cathode electrode arranged in the airtight container, the airtight container The electron source is disposed outside the discharge plasma generation space in the vicinity of the cathode electrode and supplies electrons into the discharge gas, and has an opening through which electrons emitted from the electron source pass and is generated in an airtight container. Two protective members for protecting the electron source from the ions of the discharge plasma, both of the protective members being made of a conductive material and spaced apart in the electron emission direction of the electron source, on the side close to the electron source The second protective member, which is a protective member on the side farther from the first protective member and the electron source, with the potential of the first protective member being the protective member being higher than that of the electron source. The potential relationship between the first protection member and the second protection member is set so that the potentials of the second protection member are different from each other, and the potential of the second protection member is lower than the potential of the anode electrode and higher than the potential of the cathode electrode A discharge plasma generation auxiliary device characterized by being set to a potential. 前記第2の保護部材の電位が前記第1の保護部材よりも低電位となるように前記電位関係が設定されてなることを特徴とする請求項1記載の放電プラズマ生成補助装置。   2. The discharge plasma generation auxiliary device according to claim 1, wherein the potential relationship is set so that the potential of the second protective member is lower than that of the first protective member. 前記第2の保護部材は、前記第1の保護部材よりも開口率が低いことを特徴とする請求項1または請求項2記載の放電プラズマ生成補助装置。   3. The discharge plasma generation auxiliary device according to claim 1, wherein the second protective member has an aperture ratio lower than that of the first protective member. 前記第1の保護部材は、前記開口部が前記電子源の電子放出面に対応する形状に開口されてなることを特徴とする請求項3記載の放電プラズマ生成補助装置。   4. The discharge plasma generation auxiliary device according to claim 3, wherein the opening portion of the first protective member has a shape corresponding to an electron emission surface of the electron source. 前記第2の保護部材は、前記カソード電極との距離をd、前記カソード電極との間の空間での電子増倍率をα、前記気密容器内で発生する放電プラズマのイオンによる二次電子放出係数をγとするとき、γが、
γ≦1/(eαd−1)
の関係を満たす材料により形成されてなることを特徴とする請求項1ないし請求項4のいずれかに記載の放電プラズマ生成補助装置。
The second protective member includes a distance d from the cathode electrode, an electron multiplication factor α in the space between the cathode electrode and a secondary electron emission coefficient due to discharge plasma ions generated in the hermetic vessel. Where γ is
γ ≦ 1 / (e αd −1)
The discharge plasma generation auxiliary device according to any one of claims 1 to 4, wherein the discharge plasma generation auxiliary device is formed of a material satisfying the above relationship.
前記第2の保護部材は、前記カソード電極との距離をd、前記カソード電極との間の空間での電子増倍率をα、前記気密容器内で発生する放電プラズマのイオンによる二次電子放出係数をγとするとき、αが、
α≦ln{(1/γ)+1}/d
の関係を満たすように電位が設定されてなることを特徴とする請求項1ないし請求項4のいずれかに記載の放電プラズマ生成補助装置。
The second protective member includes a distance d from the cathode electrode, an electron multiplication factor α in the space between the cathode electrode and a secondary electron emission coefficient due to discharge plasma ions generated in the hermetic vessel. Is γ , α is
α ≦ ln {(1 / γ) +1} / d
5. The discharge plasma generation auxiliary device according to claim 1, wherein the potential is set so as to satisfy the relationship.
JP2006086409A 2006-03-27 2006-03-27 Discharge plasma generation auxiliary device Expired - Fee Related JP4692348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086409A JP4692348B2 (en) 2006-03-27 2006-03-27 Discharge plasma generation auxiliary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086409A JP4692348B2 (en) 2006-03-27 2006-03-27 Discharge plasma generation auxiliary device

Publications (2)

Publication Number Publication Date
JP2007265682A JP2007265682A (en) 2007-10-11
JP4692348B2 true JP4692348B2 (en) 2011-06-01

Family

ID=38638479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086409A Expired - Fee Related JP4692348B2 (en) 2006-03-27 2006-03-27 Discharge plasma generation auxiliary device

Country Status (1)

Country Link
JP (1) JP4692348B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944502B2 (en) * 2006-06-09 2012-06-06 パナソニック株式会社 Discharge lighting device and lighting fixture.
JP4944503B2 (en) * 2006-06-09 2012-06-06 パナソニック株式会社 Discharge lighting device and lighting apparatus using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040477A (en) * 1998-07-16 2000-02-08 Internatl Business Mach Corp <Ibm> Electron source and display device
JP2003513415A (en) * 1999-10-28 2003-04-08 コミツサリア タ レネルジー アトミーク Method of controlling structure with field-effect electron source
JP2005071993A (en) * 2003-08-27 2005-03-17 Korea Electronics Telecommun Field emission element
JP2006054129A (en) * 2004-08-13 2006-02-23 Quantum 14:Kk Plasma igniter and device loading the same
JP2006164648A (en) * 2004-12-03 2006-06-22 Quantum 14:Kk Plasma igniter and device with the same mounted thereon
JP2007059355A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Discharge plasma generation assist device
JP2007207517A (en) * 2006-01-31 2007-08-16 Matsushita Electric Works Ltd Discharge plasma device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040477A (en) * 1998-07-16 2000-02-08 Internatl Business Mach Corp <Ibm> Electron source and display device
JP2003513415A (en) * 1999-10-28 2003-04-08 コミツサリア タ レネルジー アトミーク Method of controlling structure with field-effect electron source
JP2005071993A (en) * 2003-08-27 2005-03-17 Korea Electronics Telecommun Field emission element
JP2006054129A (en) * 2004-08-13 2006-02-23 Quantum 14:Kk Plasma igniter and device loading the same
JP2006164648A (en) * 2004-12-03 2006-06-22 Quantum 14:Kk Plasma igniter and device with the same mounted thereon
JP2007059355A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Discharge plasma generation assist device
JP2007207517A (en) * 2006-01-31 2007-08-16 Matsushita Electric Works Ltd Discharge plasma device

Also Published As

Publication number Publication date
JP2007265682A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US5663611A (en) Plasma display Panel with field emitters
JP2002150944A (en) Luminous device having electron emitter
US7915800B2 (en) Field emission cathode capable of amplifying electron beam and methods of controlling electron beam density
CN102089853B (en) Light emitting device
JP4692348B2 (en) Discharge plasma generation auxiliary device
US20080111466A1 (en) Electron emission material and electron emission display device having the same
JP2004146365A (en) Light emitting device
JP4618145B2 (en) Discharge plasma equipment
US7965024B2 (en) Electron emission device and method of manufacturing the same
US7855500B2 (en) Electron emission device having a sealing member in contact with electrodes
JP4631716B2 (en) Discharge plasma generation auxiliary device
JP5237538B2 (en) Discharge plasma equipment
JP2002304968A (en) High-pressure discharge lamp and its starting method
JP4944502B2 (en) Discharge lighting device and lighting fixture.
JP5102442B2 (en) Discharge plasma generation auxiliary device
JP4876779B2 (en) Discharge device
US7687982B2 (en) Electron emission device, electron emission display device including the electron emission device, and method of driving the electron emission device
JP2007087937A (en) Electric discharge plasma generation auxiliary device
JP2002334674A (en) Fluorescent display tube and its drive method and drive circuit
JP4944503B2 (en) Discharge lighting device and lighting apparatus using the same
JP2005310681A (en) Ion generator
JP2005149779A (en) Arc tube, flat luminescent panel, and image display element using it
WO2007023945A1 (en) Discharge plasma generation auxiliary device
JP2006004954A (en) Light emitting device with electron emitter
JP5346310B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees