JP4690529B2 - Wiring connection method of photovoltaic power generation system - Google Patents

Wiring connection method of photovoltaic power generation system Download PDF

Info

Publication number
JP4690529B2
JP4690529B2 JP2000271738A JP2000271738A JP4690529B2 JP 4690529 B2 JP4690529 B2 JP 4690529B2 JP 2000271738 A JP2000271738 A JP 2000271738A JP 2000271738 A JP2000271738 A JP 2000271738A JP 4690529 B2 JP4690529 B2 JP 4690529B2
Authority
JP
Japan
Prior art keywords
power generation
positive
solar cell
negative
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000271738A
Other languages
Japanese (ja)
Other versions
JP2002083991A (en
Inventor
竜治 堀岡
和彦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000271738A priority Critical patent/JP4690529B2/en
Publication of JP2002083991A publication Critical patent/JP2002083991A/en
Application granted granted Critical
Publication of JP4690529B2 publication Critical patent/JP4690529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池モジュールを用いた太陽光発電システム及びその配線接続方法に関する。
【0002】
【従来の技術】
現状の住宅用太陽光発電システムでは太陽電池の出力電圧、すなわちパワーコンディショナーの入力電圧を200V程度とする必要がある。現在、市販の太陽電池モジュールはサイズにもよるが1モジュール当りの電圧は例えば30〜35V程度であるので、出力電圧200Vを得るためには6枚の電池を直列に接続する必要がある。
【0003】
例えば図16に示すように、上部6枚および下部6枚の太陽電池モジュールK1〜K6(1枚当りの電圧が約30〜35V(晴天時))をそれぞれ直列に接続する。各組の正極端をプラス側の配線ケーブル50にそれぞれ接続するとともに、各組の負極端をマイナス側の配線ケーブル50にそれぞれ接続すると、出力電圧が200Vとなる。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の発電システムにおいては、施工現場で直列に接続される太陽電池モジュールK1〜K6の枚数を組ごとに数えてそれを覚えておき、当該組の接続作業が完了した後に次の組の接続作業に移行して同じ枚数を数えなければならないので、作業内容が煩雑になり、屋根上等の危険な施工現場で作業者に精神的負担を強いることになる。従って、作業者にかかる精神的負担をできるだけ軽減するためには、太陽電池モジュールKを直列接続する回数数はできるだけ少ないほうが望ましい。
【0005】
また、図17に示すように、同一系統に直列接続された太陽電池モジュールを日照条件(方位、傾斜角)の異なる2つの屋根面4A,4Bにわたって取り付けると、その系統の発電能力は日照条件の悪いほうに、すなわち発電出力の小さいほうのモジュールの発電能力に抑えられてしまう。例えば日当たりの良い南向きの屋根面4Aの太陽電池モジュールK1〜K14のほうでは本来は高い電流値を得られるはずであるところを、日照条件が悪い西向きの屋根面4Bの太陽電池モジュールK15〜K21に直列接続されているために、その系統としては西面4Bの低い電流値に抑えられ、発電電力に大きな無駄を生じる。
【0006】
しかし、日本国内の一戸建て住宅は図17に示すような寄せ棟屋根構造の割合が高く、全屋根面積としては太陽光発電システムの設置に対して十分なスペースを確保できるか、同じ日照条件の1つの屋根面の面積としては小さくなり、結果として2つ以上の異なる屋根面にわたって多数の太陽電池モジュールKを直列に接続せざるをえないという問題がある。
【0007】
さらに、現在は規定により太陽電池の作動電圧は200V程度とされているが、将来的には規定が緩和されて作動電圧が300V程度まで引き上げられることが予想される。従って、今後の高電圧化に対応する必要がある。
【0008】
本発明は上記の課題を解決するためになされたものであって、現場での施工が容易であり、発電電力に無駄を生じなくなり、将来の高電圧化にも対応することができる太陽光発電システム及びその配線接続方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る太陽光発電システムの配線接続方法は、(a)太陽光を受けて所定の発電出力を発生し、該発電出力を取り出すための正負両極端子に接続された1対の第1の接続プラグを有する複数の太陽電池モジュールの所定の電圧のn倍(nは2以上の整数)のアレイ電圧を発生する電池アレイを形成するために、前記複数のモジュールをn個のグループに分け、該グループ毎に各該グループに属する前記太陽電池モジュールの少なくとも全数を接続可能な第2の接続プラグを有する正負1対の導線ケーブルをそれぞれ割り当てて屋根面上に配線し、(b)太陽光を受けて所定の電圧・発電出力を発生する複数のモジュールを屋根面に順次取り付け、(c)前記太陽電池モジュールの第1の接続プラグ各々を前記第2の接続プラグに接続することにより、各前記太陽電池モジュールを前記導線ケーブルにそれぞれ並列に接続し、(d)前記各グループを直列に接続し、一方端グループの正極導線ケーブルと他方端グループの負極導線ケーブルとの間に前記アレイ電圧を発生させ、(e)前記導線ケーブルと正負一対の中継ケーブルとを接続し、該中継ケーブルを介して前記アレイ電圧をパワーコンディショナに出力する出力回路を形成することを特徴とする。
【0011】
本発明においては、モジュールのプラグを対応する導線ケーブルのプラグに単純に差し込むだけでよいので、作業者は導線ケーブルとの接続が済んだモジュールの枚数を数えて記憶しておくことが不要になる。このため危険な屋根上での配線接続作業が簡略化され、作業者の精神的負担が大幅に軽減される。
【0012】
なお、当該区画領域と他の区画領域とを作業者が容易に識別できるように、目印として屋根面に境界線を引いておくことが望ましい。また、正極用の導線ケーブルとプラグを例えば赤色に着色し、負極用の導線ケーブルとプラグを例えば青色に着色するとともに、モジュールのプラグにも同様の着色をすることが望ましい。このように屋根面(又は下地面)、導線ケーブルおよびモジュールをそれぞれ識別可能としておくことによりプラグの差し違えが防止される。
【0013】
【発明の実施の形態】
以下、添付の図面を参照して本発明の種々の好ましい実施の形態について説明する。
【0014】
(第1の実施形態)
本実施形態の太陽光発電システムにおいては、図2に示すように、寄せ棟屋根の異なる2つの屋根面4A,4Bに3つのアレイ20A,20B,20Cを設置した。一方側の屋根面4Aには第1のアレイ20Aが設けられ、他方側の屋根面4Bには第2及び第3のアレイ20B,20Cがそれぞれ設けられている。各アレイ20A,20B,20Cの配線ケーブル18,19の端末は、接続箱17にそれぞれ接続され、接続箱17の内部で並列結線されて1対の正負極となり、中継ケーブル48,49を経由してパワーコンディショナー10の端子にそれぞれ接続されている。これらのアレイ20A,20B,20Cは、1枚当りの電圧が100Vの太陽電池モジュールK(以下、発電瓦ともいう)で構成され、各々が約1kWの発電能力を備えている。なお、第1及び第2のアレイ20A,20Bには実質的に同じ三角形状配列の44枚の発電瓦Kがそれぞれ設けられ、第3のアレイ20Cには逆三角形状配列の44枚の発電瓦Kが設けられている。また、屋根面4Bの右寄りの領域には発電しない一般の瓦材DMが葺かれている。図10、図11、図12に示すように一般の瓦材DMと発電瓦Kとが同じ屋根面上に混在して葺かれている。
【0015】
次に、図1および図3〜図12を参照しながら一系統の電池アレイについて屋根面4Aの第1のアレイ20Aを例にとって詳しく説明する。なお、屋根面4Bの第2及び第3のアレイ20B,20Cについての説明は省略する。
【0016】
図1(a)に示すように、屋根面4Aは図中に太い実線で示す境界線8により左右2つの領域に区画されている。屋根面4Aの左側の区画領域には全部で22枚の太陽電池モジュールK1〜K22と1枚の非発電瓦DMとが混ぜて葺かれ、右側の区画領域には全部で22枚の太陽電池モジュールK1〜K22が葺かれている。よって、一系統のアレイ20Aには合計44枚の太陽電池モジュールKが設置されている。これら44枚のモジュールKは2対の導線ケーブル12,13,14,15に差し込み方式のプラグ40a,40bを用いて接続されている。このうち左側区画領域の負極の導線ケーブル13と右側区画領域の正極の導線ケーブル14とはコネクタ41a,41bを介して接続ケーブル16により接続されている。また、左側区画領域の正極の導線ケーブル12は中継ケーブル18を介して接続箱17の正極端子に接続され、右側区画領域の負極の導線ケーブル15は中継ケーブル19を介して接続箱17の負極端子に接続されている。接続箱17内では各アレイ20A,20B,20Cの正負極端子が並列結線されて正負極1対となり、さらに接続箱17の正負両極端子は中継ケーブル48,49によりパワーコンディショナー10の正負両極端子にそれぞれ接続されている。
【0017】
図3に示すように、左側区画領域のモジュールK1〜K22は、正負の導線ケーブル12,13の間に並列に接続してなる発電回路を形成している。同様に右側区画領域のモジュールK1〜K22も正負の導線ケーブル14,15の間に並列に接続してなる発電回路を形成している。
【0018】
本実施形態では左側区画領域の発電回路と右側区画領域の発電回路とをケーブル16,18,19により直列に接続することにより出力電圧としての200Vを得るようにしている。
【0019】
屋根上での電池の接続作業は直列接続数が少ないほうが配線工事の労力が軽減されるので、このような回路をもつ一系統のアレイ20Aとした。なお、1枚当りの発電電圧が50VのモジュールKを用いることを想定すれば、出力電圧200Vを得るためには、屋根面4Aを4つの領域に区画することにより同様の方法を用いて4対の正負極ケーブルの間を三回だけ直列接続すればよい。また、1枚当りの発電電圧が20VのモジュールKを用いることを想定すれば、出力電圧200Vを得るためには、屋根面4Aを10の領域に区画することにより同様の方法を用いて10対の正負極ケーブルの間を九回にわたり直列接続することが必要になる。
【0020】
次に、図7〜図12を参照しながら本実施形態に用いた太陽電池モジュールKの概要について説明する。
【0021】
図7(a)に示すように発電瓦Kは電池本体2および電池ケース3からなり、電池本体2を電池ケース3の中に差し込み装着すると、図7(b)に示すように瓦型太陽電池モジュールとしての発電瓦Kとなる。電池本体2は発電部21および端子箱22を有し、端子箱22内の正負の端子にはリード線23を介してプラグ40a,40bがそれぞれ接続されている。
【0022】
電池ケース3は、電池本体2を支持する基台P1と、基台P1の両側に設けられた押え34を有する左右1対の水切りP2,P3と、基台P1の前部に設けられた前垂れP4と、基台P1の後部に設けられた後垂れP5とを備えている。基台P1の後部(電池本体2の挿入口側)には2つの釘穴31、凹所32、2つの戻り止め33がそれぞれ設けられている。凹所32は基台P1の幅中央に位置し、この両側に2つの戻り止め33が配置され、さらにその外側に2つの釘穴31が配置されている。
【0023】
水切りP2,P3はそれぞれ波形状に折り曲げ加工されている。これら左右1対の水切りP2,P3の波形状の曲率は基準となる一般の汎用瓦材DMと同じであり、隣り合うモジュールKの一方側の水切りP2を他方側の水切りP3に重ね合わせると、図12に示すように両者間にラビリンスシールが形成され、雨水の浸入が防止されるようになっている。また、モジュールKの一方側の水切りP2(P3)を一般の瓦材DMの水切りに重ね合わせると、両者間にラビリンスシールが形成され、雨水の浸入が防止されるようになっている。前垂れP4は当て止め35よりも更に前方側に設けられている。前垂れP4は横断面が略矩形の細長箱状に折り曲げ加工により形成されている。
【0024】
モジュールKは、図8に示すように同じものを前後左右に並べて屋根を葺くことができる他に、図10〜図12に示すように一般の瓦材DMと混在させて屋根を葺くこと(混ぜ葺き)ができる。例えば、図10に示すように非発電瓦DMの後部の上にモジュールKの前部が重なるように葺いてもよいし、これとは逆に図11に示すようにモジュールKの後部の上に非発電瓦DMの前部が重なるように葺いてもよい。また、図12に示すようにモジュールKが非発電瓦DMに水切りP2又はP3を介して隣接するように葺くこともできる。
【0025】
次に、図4〜図12を参照しながら太陽電池モジュールの取り付け施工および配線接続施工の方法について説明する。
【0026】
施工にあたっては、図4に示すように1つの屋根面4A,4Bの上に複数本の桟木5を略等ピッチ間隔に水平に取り付ける。電池ケース3の後垂れP5を桟木5に引っ掛け、釘穴31に釘6(又はネジ釘6)を打ち付け、電池ケース3を屋根面4に固定する。電池ケース3の取り付け施工は、下方の軒先の列から初めて天頂の列に向けて順次さかのぼるように行なう。
【0027】
図5は導線ケーブルの屋根取り付け施工例を示す模式図である。屋根面4Aの左側区画領域において第1組の導線ケーブル12,13は格段の桟木5に沿わせて取り付けられる。同様に、屋根面4Aの右側区画領域において第2組の導線ケーブル14,15は格段の桟木5に沿わせて取り付けられる。なお、導線ケーブル12,13,14,15は、電池ケース3の取り付け前に屋根面4に予め敷設しておくことが好ましいが、電池ケース3の取り付け中または取り付け後に敷設するようにしてもよい。桟木5には瓦葺き施工前に予め切欠や孔を形成しておくか又は施工時に切欠や孔を適宜に形成し、導線ケーブル12,13,14,15の通路とする。
【0028】
また、図5中では省略してあるが、第1組の導線ケーブル12,13には図6(a)および図9(a)(b)(c)に示す正負極接続用の各22個のプラグ40a,40bが分岐ケーブルにより取り付けられ、第2組の導線ケーブル14,15にも同様のプラグ40a,40bが分岐ケーブルにより取り付けられている。
【0029】
図9(a)は正極プラグ40bを負極プラグ40aに差し込んで接続した状態を示す断面図、図9(b)は正極プラグを示す断面図、図9(c)は負極プラグを示す断面図である。符号43は絶縁性の樹脂で形成した外筒であり、符号44は導体で形成され外筒43の軸心に設けられたコンタクトピンである。符号45は絶縁子であって、コンタクトピン44の先端に固定され、コンタクトピン44の外径と同径またはやや小さい径を有するチップ状の部材である。絶縁子45の先端は外筒43の先端よりも少し引っ込んだ位置に存在するように配置されている。符号43aは外筒43の内径部にリング状に設けた凹溝であり、コネクタ(図示せず)の三つのレセプタクルの何れかにプラグ40a,40bを所定位置まで挿入した場合に、レセプタクル部41の外周にそれぞれ形成したリング状の突起41aに係合し、両者を係止する位置に設けてある。このように正極プラグ40bを負極プラグ40aに差し込むと、導電部分が露出しないように絶縁被覆材からなる外筒43で覆われるようになっている。
【0030】
なお、図6(b)に示すように正負両極を一体化した一括接続型プラグ40cを用いるようにしてもよい。このような一括接続型プラグ40cは、一度の差し込み動作で接続が完了するので、配線接続作業が更に簡単になるという利点がある。
【0031】
施工にあたっては、各電池ケース3に電池本体2を次々に装着し、図1および図3に示すように、左側区画領域のモジュールK1〜K22のプラグ40a,40bは第1組の導線ケーブル12,13のほうに差し込み、右側区画領域のモジュールK1〜K22のプラグ40a,40bは第2組の導線ケーブル14,15のほうに差し込む。なお、屋根面4Aの左右区画領域を識別できるように図中に太線で示したように境界線8を目印として引いておくことが望ましい。また、正極用の導線ケーブル12,14およびプラグ40bを例えば赤色に着色し、負極用の導線ケーブル13,15およびプラグ40aを例えば青色に着色して作業者が両者を容易に識別できるようにしておくことが望ましい。さらに、モジュールKのプラグ40a,40bにも同様の色分け着色をしておくことが望ましい。このように屋根面(又は下地面)の各区画領域、導線ケーブルのプラグおよびモジュールのプラグをそれぞれ識別可能としておくことによりプラグの差し違えが防止される。
【0032】
プラグの差し込み作業が終了すると、接続ケーブル16および1対のコネクタ41a,41bを用いて負極の導線ケーブル13と正極の導線ケーブル14とを接続する。なお、導線ケーブル13と14とを直接接続することも可能であるので、接続ケーブル16を省略してもよい場合がある。さらに、中継ケーブル18およびコネクタ41aを用いて正極の導線ケーブル12を接続箱17の正極端子に接続する。同様に、中継ケーブル19およびコネクタ41bを用いて負極の導線ケーブル15を接続箱17の負極端子に接続する。
【0033】
接続箱17内では各アレイ20A,20B,20Cの正負の端子が並列結線され、正負極1対となり、さらに中継ケーブル48を用いて接続箱17の正極端子をパワーコンディショナー10の正極端子に接続する。同様に、中継ケーブル49を用いて接続箱17の負極端子をパワーコンディショナー10の負極端子に接続する。このようにして第1のアレイ20Aの回路がパワーコンディショナー10の入力側に接続される。
【0034】
このようにして構築された太陽光発電システムの最大出力電流値は15A、最大出力電圧値はDC200Vである。
【0035】
本実施形態の方法によれば、現場での施工が容易になり、発電電力に無駄を生じることなく、将来の高電圧化にも対応することができる。施工の際にモジュールのプラグを対応する配線ケーブルのプラグに単純に差し込むだけでよいので、作業者は配線ケーブルとの接続が済んだモジュールの枚数を数えて記憶しておくことが不要になる。このため危険な屋根上での配線接続作業が簡略化され、施工に要する工数が削減されるとともに、作業者の精神的負担が大幅に軽減される。
【0036】
また、本実施形態の方法によれば、作業者が当該区画領域を他の区画領域から容易に識別できるように目印として屋根面に境界線を引いておき、正極用の導線ケーブルとプラグを特定色に着色し、負極用の導線ケーブルとプラグを他の特定色に着色し、さらにモジュールのプラグにも同様の着色をしておくことによりプラグの差し違えを防止することができる。
【0037】
なお、モジュールKのサイズは、一般の瓦材(非発電瓦)DMと同じものとすることが好ましく、一般的には縦250〜350mm×横250〜2000mmの範囲で適宜選択することが好ましい。この場合に、左右に隣接して施工するモジュールKの幅方向のピッチ間隔は基準となる一般の瓦材DMのサイズの整数倍とすることが好ましい。なお、瓦の縦寸法(奥行き)は太陽電池モジュールと非発電瓦とで共通化することが望ましいが、瓦の横寸法(幅)は太陽電池モジュールと非発電瓦とで必ず共通化しなければならないというものではなく、太陽電池モジュールの横寸法を基準サイズのそれの二倍長または三倍長とするようにしてもよい。
【0038】
(第2の実施形態)
図13は第2の実施形態の施工例を示す図である。本実施形態では屋根面4の上に図15(a)に示す二倍長の太陽電池モジュール1A又は図15(b)に示す三倍長の太陽電池モジュール1Bを設置した。屋根面4の左側区画領域には5枚のモジュールK1,K3,K5,K7,K9を取り付け、右側区画領域にも5枚のモジュールK2,K4,K6,K8,K10を取り付けた。左側区画領域のモジュールK1,K3,K5,K7,K9はプラグ40a,40bを用いて1対の導線ケーブル12,13にそれぞれが並列に接続されている。同様に、右側区画領域のモジュールK2,K4,K6,K8,K10もプラグ40a,40bを用いて1対の導線ケーブル14,15にそれぞれが並列に接続されている。本実施形態におけるモジュールKの1枚当りの発電能力は約100V/0.24A(晴天時)である。屋根上での電池の接続作業は直列接続数が少ないほうが配線工事の労力が軽減されるので、このような配線回路とした。
【0039】
本実施形態の二倍長、三倍長の瓦型太陽電池モジュールは1つの屋根面上でのプラグの差し込み数が少なくなるので、配線作業の間違いが発生し難いという利点がある。
【0040】
(比較例)
図14は比較例としての施工例を示す図である。屋根面4の上に図15(a)に示す二倍長のモジュール1A又は図15(b)に示す三倍長のモジュール1Bを設置した。太陽電池出力電圧をインバータ入力制限電圧の200Vとするために2つの長いモジュール1A(1B)を直列に接続した発電単位をそれぞれ導線ケーブル12,13に並列に接続するようにした。
【0041】
上記第2実施形態の発電システムを比較例の発電システムと比べてみると、屋根上作業時間が短縮されるので、施工コストが大幅に削減される。
【0042】
【発明の効果】
本発明によれば、現場での施工が容易になり、発電電力に無駄を生じることなく、将来の高電圧化にも対応することができる。施工の際に太陽電池モジュールのプラグを対応する配線ケーブルのプラグに単純に差し込むだけでよいので、作業者は配線ケーブルとの接続が済んだ太陽電池モジュールの枚数を数えて記憶しておくことが不要になる。このため危険な屋根上での配線接続作業が単純化され、施工の際における作業者の精神的負担が大幅に軽減される。さらに、従来はモジュール間の直列接続が必要だったので、正負極端子は別々とする必要があったが、本発明では、モジュールの端子は配線ケーブルにつなぎ込むので、正負極端子を一体化でき、配線接続作業が正負各1回の計2回から、正負1対の1回になり、作業工数を削減できる。
【図面の簡単な説明】
【図1】(a)は本発明の第1の実施形態に係る太陽光発電システムを模式的に示す平面図、(b)は電池アレイの一部を拡大して導線ケーブルと各モジュールとの接続状態を示す部分拡大図。
【図2】本発明の第1の実施形態に係る太陽光発電システムを示す全体模式図。
【図3】電池アレイの回路図。
【図4】電池ケースの屋根取り付け施工例を示す断面模式図。
【図5】配線ケーブルの屋根取り付け施工例を示す模式図。
【図6】(a)は個別接続型プラグ(単一プラグ)に対応する配線ケーブルの概要図、(b)は一括接続型プラグ(二股プラグ)に対応する配線ケーブルの概要図。
【図7】(a)は組立前の発電瓦を示す分解斜視図、(b)は組立後の発電瓦を示す斜視図。
【図8】前後2枚のモジュールを示す斜視図。
【図9】(a)は正負両極を接続した状態の個別接続型プラグ(単一プラグ)を示す断面図、(b)は正極プラグを示す断面図、(c)は負極プラグを示す断面図。
【図10】モジュールと非発電瓦(一般の瓦材)との前後の重なり部分を示す拡大断面図。
【図11】モジュールと非発電瓦(一般の瓦材)との前後の重なり部分を示す拡大断面図。
【図12】モジュールと非発電瓦(一般の瓦材)との左右の重なり部分を示す拡大断面図。
【図13】本発明の第2の実施形態に係る太陽光発電システムを示す模式図。
【図14】比較例の太陽光発電システムを示す模式図。
【図15】(a)は二倍長のモジュールを示す斜視図、(b)は三倍長のモジュールを示す斜視図。
【図16】従来の太陽光発電システムを示す概略構成図。
【図17】従来の他の太陽光発電システムを示す概略構成図。
【符号の説明】
K,1,1A,1B…モジュール、
2,2A,2B…電池本体、
3,3A,3B…電池ケース、
4,4A,4B…屋根面、
5…桟木、
6…釘、
8…境界線、
10…パワーコンディショナー、
12,13,14,15…導線ケーブル、
16…接続ケーブル(接続手段)、
17…接続箱、
18,19,48,49…中継ケーブル、
20A,20B,20C…電池アレイ、
40a,40b,40c…プラグ、
41a,41b…コネクタ、
47…絶縁端末、
K1〜K22…発電瓦(太陽電池モジュール)、
DM…非発電瓦(一般の瓦材)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photovoltaic power generation system using a solar cell module and a wiring connection method thereof.
[0002]
[Prior art]
In the current residential solar power generation system, the output voltage of the solar cell, that is, the input voltage of the power conditioner needs to be about 200V. At present, although the commercially available solar cell module depends on the size, the voltage per module is, for example, about 30 to 35 V, so that in order to obtain an output voltage of 200 V, six cells need to be connected in series.
[0003]
For example, as shown in FIG. 16, six upper and six lower solar cell modules K1 to K6 (the voltage per one is about 30 to 35 V (when clear)) are connected in series. When the positive end of each set is connected to the plus side wiring cable 50 and the negative end of each set is connected to the minus side wiring cable 50, the output voltage becomes 200V.
[0004]
[Problems to be solved by the invention]
However, in the conventional power generation system, the number of the solar cell modules K1 to K6 connected in series at the construction site is counted for each group, and that is remembered. Since the same number of sheets must be counted after shifting to the connection work, the work contents become complicated, and a mental burden is imposed on the worker at a dangerous construction site such as on the roof. Therefore, in order to reduce the mental burden on the worker as much as possible, it is desirable that the number of solar cell modules K connected in series is as small as possible.
[0005]
Moreover, as shown in FIG. 17, when the solar cell modules connected in series in the same system are mounted over two roof surfaces 4A and 4B having different sunshine conditions (directions and inclination angles), the power generation capacity of the system is the same as the sunshine condition. On the other hand, the power generation capacity of the module with the smaller power generation output is limited. For example, the solar cell modules K1 to K14 having a sunny south facing roof surface 4A should originally be able to obtain a higher current value, but the solar cell modules K15 to K21 having a west facing roof surface 4B having poor sunlight conditions. Are connected in series to each other, the system is suppressed to a low current value on the west surface 4B, resulting in a great waste of generated power.
[0006]
However, single-family houses in Japan have a high percentage of the roof structure as shown in Fig. 17, and the total roof area can secure enough space for the installation of the solar power generation system, or 1 under the same sunshine conditions. There is a problem in that the area of one roof surface is reduced, and as a result, a large number of solar cell modules K must be connected in series across two or more different roof surfaces.
[0007]
Furthermore, although the operating voltage of the solar cell is currently set to about 200V by regulation, it is expected that the regulation will be relaxed and the operating voltage will be raised to about 300V in the future. Therefore, it is necessary to cope with future high voltage.
[0008]
The present invention has been made in order to solve the above-described problems, and is a photovoltaic power generation that can be easily installed on site, is not wasted in generated power, and can cope with future higher voltages. It is an object to provide a system and a wiring connection method thereof.
[0009]
[Means for Solving the Problems]
A wiring connection method for a photovoltaic power generation system according to the present invention includes: (a) a pair of first electrodes connected to positive and negative bipolar terminals for receiving a sunlight to generate a predetermined power generation output and taking out the power generation output; In order to form a battery array that generates an array voltage that is n times (n is an integer of 2 or more) a predetermined voltage of a plurality of solar cell modules having connection plugs, the plurality of modules are divided into n groups, A pair of positive and negative conductive cables each having a second connection plug capable of connecting at least all of the solar cell modules belonging to each of the groups is assigned to each group and wired on the roof surface; and (b) sunlight. A plurality of modules receiving and generating predetermined voltage and power generation output are sequentially attached to the roof surface, and (c) each of the first connection plugs of the solar cell module is connected to the second connection plug. The solar cell modules are connected in parallel to the conductor cables, respectively, (d) the groups are connected in series, and between the positive conductor cable of one end group and the negative conductor cable of the other end group. Generating the array voltage, and (e) connecting the conductor cable and a pair of positive and negative relay cables to form an output circuit for outputting the array voltage to a power conditioner via the relay cable. .
[0011]
In the present invention, it is only necessary to simply insert the module plug into the corresponding conductor cable plug, so that the operator does not need to count and store the number of modules connected to the conductor cable. . For this reason, wiring connection work on a dangerous roof is simplified, and the mental burden on the worker is greatly reduced.
[0012]
In addition, it is desirable to draw a boundary line on the roof surface as a mark so that the operator can easily identify the partitioned area and other partitioned areas. Further, it is desirable that the positive lead wire cable and the plug are colored, for example, red, the negative lead wire cable and the plug are colored, for example, blue, and the module plug is similarly colored. In this way, by making the roof surface (or the ground surface), the conductive wire cable, and the module identifiable, it is possible to prevent the plug from being inserted.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[0014]
(First embodiment)
In the solar power generation system of this embodiment, as shown in FIG. 2, three arrays 20A, 20B, and 20C are installed on two roof surfaces 4A and 4B having different roofs. The first array 20A is provided on the roof surface 4A on one side, and the second and third arrays 20B and 20C are provided on the roof surface 4B on the other side. The terminals of the wiring cables 18 and 19 of the arrays 20A, 20B, and 20C are connected to the connection box 17 and connected in parallel inside the connection box 17 to form a pair of positive and negative electrodes via the relay cables 48 and 49. Are connected to terminals of the power conditioner 10, respectively. Each of these arrays 20A, 20B, and 20C is composed of a solar cell module K (hereinafter also referred to as a power generation tile) having a voltage of 100 V, and each has a power generation capacity of about 1 kW. The first and second arrays 20A and 20B are each provided with 44 power generating tiles K having substantially the same triangular arrangement, and the third array 20C has 44 power generating tiles having an inverted triangular arrangement. K is provided. In addition, a general tile material DM that does not generate power is sown in an area on the right side of the roof surface 4B. As shown in FIGS. 10, 11, and 12, the general tile material DM and the power generation tile K are mixed and spread on the same roof surface.
[0015]
Next, with reference to FIG. 1 and FIGS. 3 to 12, a battery array of one system will be described in detail by taking the first array 20A of the roof surface 4A as an example. In addition, description about the 2nd and 3rd arrays 20B and 20C of the roof surface 4B is abbreviate | omitted.
[0016]
As shown in FIG. 1A, the roof surface 4A is divided into two regions on the left and right by a boundary line 8 indicated by a thick solid line in the drawing. A total of 22 solar cell modules K1 to K22 and one non-power generating tile DM are mixed in the left partition area of the roof surface 4A, and a total of 22 solar cell modules are mixed in the right partition area. K1 to K22 are sown. Therefore, a total of 44 solar cell modules K are installed in one array 20A. These 44 modules K are connected to two pairs of conductor cables 12, 13, 14, 15 using plug-type plugs 40a, 40b. Among these, the negative lead cable 13 in the left partition region and the positive lead cable 14 in the right partition region are connected by a connection cable 16 via connectors 41a and 41b. Further, the positive lead cable 12 in the left partition region is connected to the positive terminal of the connection box 17 via the relay cable 18, and the negative lead cable 15 in the right partition region is connected to the negative terminal of the connection box 17 via the relay cable 19. It is connected to the. In the connection box 17, the positive and negative terminals of the arrays 20A, 20B, and 20C are connected in parallel to form a pair of positive and negative electrodes, and the positive and negative terminals of the connection box 17 are connected to the positive and negative terminals of the power conditioner 10 by the relay cables 48 and 49. Each is connected.
[0017]
As shown in FIG. 3, the modules K <b> 1 to K <b> 22 in the left partition region form a power generation circuit that is connected in parallel between the positive and negative conductor cables 12 and 13. Similarly, the modules K1 to K22 in the right partition region also form a power generation circuit that is connected in parallel between the positive and negative conductive cables 14 and 15.
[0018]
In this embodiment, the power generation circuit in the left partition region and the power generation circuit in the right partition region are connected in series by cables 16, 18, and 19 to obtain 200V as an output voltage.
[0019]
The battery connection work on the roof reduces the labor of wiring work when the number of serial connections is smaller, so a single-system array 20A having such a circuit is formed. Assuming that a module K having a power generation voltage of 50 V per sheet is used, in order to obtain an output voltage of 200 V, four pairs of the roof surface 4A are divided into four regions using the same method. It is only necessary to connect the positive and negative cables three times in series. Assuming that a module K having a power generation voltage of 20 V per sheet is used, in order to obtain an output voltage of 200 V, the roof surface 4A is divided into 10 regions by using the same method. It is necessary to connect the positive and negative cables in series 9 times.
[0020]
Next, the outline | summary of the solar cell module K used for this embodiment is demonstrated, referring FIGS. 7-12.
[0021]
As shown in FIG. 7 (a), the power generation roof K is composed of a battery body 2 and a battery case 3. When the battery body 2 is inserted into the battery case 3 and attached, the roof tile solar cell is shown in FIG. 7 (b). It becomes the power generation tile K as a module. The battery body 2 includes a power generation unit 21 and a terminal box 22, and plugs 40 a and 40 b are connected to positive and negative terminals in the terminal box 22 via lead wires 23, respectively.
[0022]
The battery case 3 includes a base P1 that supports the battery body 2, a pair of left and right drains P2, P3 having pressers 34 provided on both sides of the base P1, and a front sag provided on the front of the base P1. P4 and a trailing sag P5 provided at the rear of the base P1. Two nail holes 31, a recess 32, and two detents 33 are provided at the rear part of the base P1 (on the insertion opening side of the battery body 2). The recess 32 is located in the center of the width of the base P1, two detents 33 are arranged on both sides, and two nail holes 31 are arranged on the outside thereof.
[0023]
The drainers P2 and P3 are each bent into a wave shape. The wave shape curvature of the pair of left and right drainers P2 and P3 is the same as that of a general general-purpose roof tile DM as a reference, and when the drainer P2 on one side of the adjacent module K is superimposed on the drainer P3 on the other side, As shown in FIG. 12, a labyrinth seal is formed between the two to prevent rainwater from entering. Moreover, when the drainage P2 (P3) on one side of the module K is overlapped with the drainage of the general roof tile DM, a labyrinth seal is formed between the two so that the intrusion of rainwater is prevented. The front sag P4 is provided further forward than the stopper 35. The front sag P4 is formed by bending into an elongated box having a substantially rectangular cross section.
[0024]
As shown in FIG. 8, the module K can be lined up in the front, back, left, and right, and can be laid on the roof. In addition, as shown in FIGS. (Mixing) can be done. For example, as shown in FIG. 10, the front part of the module K may be laid on the rear part of the non-power generating roof tile DM, or conversely, on the rear part of the module K as shown in FIG. You may bend so that the front part of non-power generation tile DM may overlap. In addition, as shown in FIG. 12, the module K can be laid so as to be adjacent to the non-power generating roof tile DM through the drainer P2 or P3.
[0025]
Next, the solar cell module mounting construction and wiring connection construction methods will be described with reference to FIGS.
[0026]
At the time of construction, as shown in FIG. 4, a plurality of piers 5 are horizontally attached at substantially equal pitch intervals on one roof surface 4A, 4B. The rear sag P5 of the battery case 3 is hooked on the pier 5 and a nail 6 (or a screw nail 6) is driven into the nail hole 31 to fix the battery case 3 to the roof surface 4. The battery case 3 is installed in such a manner that it goes back in order from the lower eave row to the zenith row for the first time.
[0027]
FIG. 5 is a schematic diagram showing a roof cable installation work example of a conductive wire cable. In the left partition region of the roof surface 4A, the first set of conductive cables 12 and 13 are attached along the exceptional pier 5. Similarly, the 2nd set of conducting wire cables 14 and 15 are attached along the remarkable pier 5 in the right division area of roof surface 4A. The conductive cables 12, 13, 14, and 15 are preferably laid in advance on the roof surface 4 before the battery case 3 is attached, but may be laid during or after the battery case 3 is attached. . Cuts and holes are formed in the pier 5 in advance prior to roofing work, or cuts and holes are appropriately formed at the time of construction to provide paths for the conductor cables 12, 13, 14, and 15.
[0028]
Although omitted in FIG. 5, each of the first set of conductor cables 12 and 13 has 22 wires for connecting positive and negative electrodes shown in FIGS. 6 (a), 9 (a), 9 (b) and 9 (c). The plugs 40a and 40b are attached by branch cables, and the same plugs 40a and 40b are attached to the second set of conductor cables 14 and 15 by branch cables.
[0029]
9A is a cross-sectional view showing a state in which the positive electrode plug 40b is inserted and connected to the negative electrode plug 40a, FIG. 9B is a cross-sectional view showing the positive electrode plug, and FIG. 9C is a cross-sectional view showing the negative electrode plug. is there. Reference numeral 43 is an outer cylinder formed of an insulating resin, and reference numeral 44 is a contact pin formed of a conductor and provided at the axial center of the outer cylinder 43. Reference numeral 45 denotes an insulator, which is a chip-like member that is fixed to the tip of the contact pin 44 and has a diameter that is the same as or slightly smaller than the outer diameter of the contact pin 44. The tip of the insulator 45 is arranged so as to exist at a position slightly retracted from the tip of the outer cylinder 43. Reference numeral 43a denotes a concave groove provided in a ring shape in the inner diameter portion of the outer cylinder 43. When the plugs 40a and 40b are inserted into any one of the three receptacles of the connector (not shown), the receptacle portion 41 is inserted. Are engaged with ring-shaped protrusions 41a formed on the outer periphery of each of the two, and are provided at positions where they are locked. Thus, when the positive electrode plug 40b is inserted into the negative electrode plug 40a, the outer cylinder 43 made of an insulating coating material is covered so that the conductive portion is not exposed.
[0030]
Note that, as shown in FIG. 6B, a batch connection type plug 40c in which both positive and negative electrodes are integrated may be used. Such a batch connection type plug 40c has an advantage that the wiring connection work is further simplified since the connection is completed by a single insertion operation.
[0031]
In the construction, the battery main bodies 2 are sequentially attached to each battery case 3, and the plugs 40a and 40b of the modules K1 to K22 in the left partition region are connected to the first set of conducting wire cables 12, as shown in FIGS. 13 and the plugs 40a and 40b of the modules K1 to K22 in the right partition area are inserted into the second set of conductor cables 14 and 15. In addition, it is desirable to draw the boundary line 8 as a mark as shown by a thick line in the drawing so that the left and right partition areas of the roof surface 4A can be identified. Also, the positive conductor cables 12 and 14 and the plug 40b are colored, for example, in red, and the negative conductor cables 13, 15 and plug 40a are colored in, for example, blue so that the operator can easily identify both. It is desirable to keep it. Further, it is desirable that the plugs 40a and 40b of the module K are similarly colored and colored. Thus, by making each partition area of the roof surface (or base surface), the conductor cable plug, and the module plug identifiable, it is possible to prevent the plugs from being mistaken.
[0032]
When the plug insertion operation is completed, the negative conductive cable 13 and the positive conductive cable 14 are connected using the connection cable 16 and the pair of connectors 41a and 41b. In addition, since it is also possible to connect the conducting wire cables 13 and 14 directly, the connection cable 16 may be omitted in some cases. Further, the positive conductor cable 12 is connected to the positive terminal of the connection box 17 using the relay cable 18 and the connector 41a. Similarly, the negative conductor cable 15 is connected to the negative terminal of the connection box 17 using the relay cable 19 and the connector 41b.
[0033]
In the connection box 17, the positive and negative terminals of each array 20 </ b> A, 20 </ b> B, 20 </ b> C are connected in parallel to form a pair of positive and negative electrodes, and the positive terminal of the connection box 17 is connected to the positive terminal of the power conditioner 10 using the relay cable 48. . Similarly, the negative terminal of the connection box 17 is connected to the negative terminal of the power conditioner 10 using the relay cable 49. In this way, the circuit of the first array 20A is connected to the input side of the power conditioner 10.
[0034]
The maximum output current value of the photovoltaic power generation system constructed in this way is 15A, and the maximum output voltage value is DC 200V.
[0035]
According to the method of the present embodiment, construction at the site becomes easy, and it is possible to cope with future high voltage without wasting the generated power. Since it is only necessary to simply insert the module plug into the corresponding cable plug at the time of construction, the operator does not need to count and store the number of modules that have been connected to the cable. For this reason, wiring connection work on a dangerous roof is simplified, the number of man-hours required for construction is reduced, and the mental burden on the worker is greatly reduced.
[0036]
Further, according to the method of the present embodiment, a boundary line is drawn on the roof surface as a mark so that the operator can easily identify the partition area from other partition areas, and the lead wire cable and plug for positive electrode are specified. It is possible to prevent plugs from being mistaken by coloring them into colors, coloring the negative lead wires and plugs into other specific colors, and further coloring the module plugs in the same manner.
[0037]
Note that the size of the module K is preferably the same as that of a general roof tile (non-power generation roof tile) DM, and in general, it is preferably selected as appropriate within a range of 250 to 350 mm in length and 250 to 2000 mm in width. In this case, it is preferable that the pitch interval in the width direction of the module K to be installed adjacent to the left and right is an integral multiple of the size of the standard roof tile DM. The vertical dimension (depth) of the tile is preferably shared by the solar cell module and the non-power generation tile, but the horizontal dimension (width) of the tile must be shared by the solar cell module and the non-power generation tile. Instead, the lateral dimension of the solar cell module may be twice or three times that of the reference size.
[0038]
(Second Embodiment)
FIG. 13 is a diagram showing a construction example of the second embodiment. In the present embodiment, a double-length solar cell module 1A shown in FIG. 15A or a triple-length solar cell module 1B shown in FIG. Five modules K1, K3, K5, K7, and K9 were attached to the left compartment area of the roof surface 4, and five modules K2, K4, K6, K8, and K10 were also attached to the right compartment area. Modules K1, K3, K5, K7, and K9 in the left partition area are connected in parallel to a pair of conductor cables 12 and 13 using plugs 40a and 40b, respectively. Similarly, the modules K2, K4, K6, K8, and K10 in the right partition region are also connected in parallel to the pair of conductive cables 14 and 15 using plugs 40a and 40b, respectively. The power generation capacity per module K in the present embodiment is about 100 V / 0.24 A (when the weather is clear). The battery connection work on the roof is made with such a wiring circuit because the labor of wiring work is reduced when the number of serial connections is smaller.
[0039]
The double and triple long tile solar cell modules of the present embodiment have the advantage that the number of plugs inserted on one roof surface is small, so that an error in wiring work is unlikely to occur.
[0040]
(Comparative example)
FIG. 14 is a diagram showing a construction example as a comparative example. On the roof surface 4, the double-length module 1A shown in FIG. 15 (a) or the triple-length module 1B shown in FIG. 15 (b) was installed. In order to set the solar cell output voltage to the inverter input limit voltage of 200 V, the power generation units in which two long modules 1A (1B) are connected in series are connected in parallel to the conductor cables 12, 13, respectively.
[0041]
When the power generation system of the second embodiment is compared with the power generation system of the comparative example, the work time on the roof is shortened, so that the construction cost is greatly reduced.
[0042]
【The invention's effect】
According to the present invention, construction at the site becomes easy, and it is possible to cope with future high voltage without causing waste in generated power. Since it is only necessary to simply insert the plug of the solar cell module into the plug of the corresponding distribution cable at the time of construction, the operator may count and memorize the number of solar cell modules that have been connected to the distribution cable. It becomes unnecessary. For this reason, wiring connection work on a dangerous roof is simplified, and the mental burden on the worker during construction is greatly reduced. Furthermore, in the past, since it was necessary to connect the modules in series, the positive and negative terminals had to be separated, but in the present invention, since the module terminals are connected to the wiring cable, the positive and negative terminals can be integrated. The wiring connection work is changed from a total of two times, one each for positive and negative, to one time for a pair of positive and negative, thereby reducing the work man-hours.
[Brief description of the drawings]
FIG. 1A is a plan view schematically showing a photovoltaic power generation system according to a first embodiment of the present invention, and FIG. 1B is an enlarged view of a part of a battery array between a conductor cable and each module. The elements on larger scale which show a connection state.
FIG. 2 is an overall schematic diagram showing the photovoltaic power generation system according to the first embodiment of the present invention.
FIG. 3 is a circuit diagram of a battery array.
FIG. 4 is a schematic sectional view showing an example of battery case roof mounting construction.
FIG. 5 is a schematic view showing an example of installation of a wiring cable on a roof.
6A is a schematic diagram of a wiring cable corresponding to an individual connection type plug (single plug), and FIG. 6B is a schematic diagram of a wiring cable corresponding to a batch connection type plug (bifurcated plug).
7A is an exploded perspective view showing a power generation roof before assembly, and FIG. 7B is a perspective view showing the power generation roof after assembly.
FIG. 8 is a perspective view showing two front and rear modules.
9A is a cross-sectional view showing an individual connection type plug (single plug) in a state where both positive and negative electrodes are connected, FIG. 9B is a cross-sectional view showing a positive electrode plug, and FIG. 9C is a cross-sectional view showing a negative electrode plug; .
FIG. 10 is an enlarged cross-sectional view showing an overlapping portion of the module and a non-power generation tile (general tile material) before and after.
FIG. 11 is an enlarged cross-sectional view showing a front and rear overlapping portion between a module and a non-power generation tile (general tile material).
FIG. 12 is an enlarged cross-sectional view showing left and right overlapping portions between a module and a non-power generation tile (general tile material).
FIG. 13 is a schematic diagram showing a photovoltaic power generation system according to a second embodiment of the present invention.
FIG. 14 is a schematic diagram showing a photovoltaic power generation system of a comparative example.
15A is a perspective view showing a double-length module, and FIG. 15B is a perspective view showing a triple-length module.
FIG. 16 is a schematic configuration diagram showing a conventional photovoltaic power generation system.
FIG. 17 is a schematic configuration diagram showing another conventional photovoltaic power generation system.
[Explanation of symbols]
K, 1, 1A, 1B ... module,
2, 2A, 2B ... Battery body,
3, 3A, 3B ... battery case,
4, 4A, 4B ... Roof surface,
5 ... pier,
6 ... Nails,
8 ... boundary line,
10 ... Power conditioner,
12, 13, 14, 15 ... conducting wire cable,
16: Connection cable (connection means),
17 ... junction box,
18, 19, 48, 49 ... relay cable,
20A, 20B, 20C ... battery array,
40a, 40b, 40c ... plugs,
41a, 41b ... connectors,
47. Insulated terminal,
K1 to K22 ... Power generation tile (solar cell module),
DM: Non-power generation tile (general tile material).

Claims (1)

(a)太陽光を受けて所定の発電出力を発生し、該発電出力を取り出すための正負両極端子に接続された1対の第1の接続プラグを有する複数の太陽電池モジュールの所定の電圧のn倍(nは2以上の整数)のアレイ電圧を発生する電池アレイを形成するために、前記複数のモジュールをn個のグループに分け、該グループ毎に各該グループに属する前記太陽電池モジュールの少なくとも全数を接続可能な第2の接続プラグを有する正負1対の導線ケーブルをそれぞれ割り当てて屋根面上に配線し、
(b)太陽光を受けて所定の電圧・発電出力を発生する複数のモジュールを屋根面に順次取り付け、
(c)前記太陽電池モジュールの第1の接続プラグ各々を前記第2の接続プラグに接続することにより、各前記太陽電池モジュールを前記導線ケーブルにそれぞれ並列に接続し、
(d)前記各グループを直列に接続し、一方端グループの正極導線ケーブルと他方端グループの負極導線ケーブルとの間に前記アレイ電圧を発生させ、
(e)前記導線ケーブルと正負一対の中継ケーブルとを接続し、該中継ケーブルを介して前記アレイ電圧をパワーコンディショナに出力する出力回路を形成することを特徴とする太陽光発電システムの配線接続方法。
(A) A predetermined voltage of a plurality of solar cell modules having a pair of first connection plugs connected to positive and negative bipolar terminals for receiving a sunlight and generating a predetermined power generation output and taking out the power generation output In order to form a battery array that generates an array voltage n times (n is an integer of 2 or more ), the plurality of modules are divided into n groups, and the solar cell modules belonging to each group are divided into groups. A pair of positive and negative conductive cables each having at least a second connection plug that can be connected to each other are allotted and wired on the roof surface;
(B) A plurality of modules that generate sunlight and generate a predetermined voltage and power generation output are sequentially attached to the roof surface,
(C) By connecting each of the first connection plugs of the solar cell module to the second connection plug, each of the solar cell modules is connected in parallel to the conductor cable,
(D) connecting the groups in series, generating the array voltage between a positive electrode cable of one end group and a negative electrode cable of the other end group;
(E) Connecting the conductor cable and a pair of positive and negative relay cables, and forming an output circuit that outputs the array voltage to a power conditioner via the relay cables. Method.
JP2000271738A 2000-09-07 2000-09-07 Wiring connection method of photovoltaic power generation system Expired - Fee Related JP4690529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271738A JP4690529B2 (en) 2000-09-07 2000-09-07 Wiring connection method of photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271738A JP4690529B2 (en) 2000-09-07 2000-09-07 Wiring connection method of photovoltaic power generation system

Publications (2)

Publication Number Publication Date
JP2002083991A JP2002083991A (en) 2002-03-22
JP4690529B2 true JP4690529B2 (en) 2011-06-01

Family

ID=18757979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271738A Expired - Fee Related JP4690529B2 (en) 2000-09-07 2000-09-07 Wiring connection method of photovoltaic power generation system

Country Status (1)

Country Link
JP (1) JP4690529B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518973B2 (en) * 2005-02-16 2010-08-04 シャープ株式会社 Solar cell and method for manufacturing the same
CN102137976B (en) 2008-09-10 2014-05-28 株式会社钟化 Solar cell module and solar cell array
JP5382326B2 (en) * 2009-05-15 2014-01-08 第一精工株式会社 Socket connector device
JP2010278284A (en) * 2009-05-29 2010-12-09 I-Pex Co Ltd Socket connector device
JP5429466B2 (en) * 2009-08-05 2014-02-26 第一精工株式会社 Connectable socket device
CN112599626A (en) * 2020-12-15 2021-04-02 保定嘉盛光电科技股份有限公司 Photovoltaic module and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131045A (en) * 1993-06-23 1995-05-19 Kubota Corp Electric member for solar cell generator
JPH07202240A (en) * 1993-12-28 1995-08-04 Misawa Homes Co Ltd Solar power generator
JPH08153883A (en) * 1994-11-25 1996-06-11 Canon Inc Solar cell
JPH09275644A (en) * 1996-04-01 1997-10-21 Omron Corp Solar battery module and solar power generation system using it
JPH1012911A (en) * 1996-04-22 1998-01-16 Showa Shell Sekiyu Kk Triangular solar battery module, trapezoidal solar battery module and solar battery array using the solar battery module
JPH10131441A (en) * 1996-11-05 1998-05-19 Misawa Homes Co Ltd Panel for installing roof
JPH11310997A (en) * 1998-01-13 1999-11-09 Sekisui Chem Co Ltd Roof with solar cell, execution method thereof, and relay box used therefor
JPH11330521A (en) * 1998-03-13 1999-11-30 Canon Inc Solar battery module, solar battery array, photovolatic power plant, and method of specifying fault of solar battery module
JP2000058896A (en) * 1998-08-03 2000-02-25 Kubota Corp Solar battery
JP2000077700A (en) * 1998-08-31 2000-03-14 Matsushita Battery Industrial Co Ltd Solar battery device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131045A (en) * 1993-06-23 1995-05-19 Kubota Corp Electric member for solar cell generator
JPH07202240A (en) * 1993-12-28 1995-08-04 Misawa Homes Co Ltd Solar power generator
JPH08153883A (en) * 1994-11-25 1996-06-11 Canon Inc Solar cell
JPH09275644A (en) * 1996-04-01 1997-10-21 Omron Corp Solar battery module and solar power generation system using it
JPH1012911A (en) * 1996-04-22 1998-01-16 Showa Shell Sekiyu Kk Triangular solar battery module, trapezoidal solar battery module and solar battery array using the solar battery module
JPH10131441A (en) * 1996-11-05 1998-05-19 Misawa Homes Co Ltd Panel for installing roof
JPH11310997A (en) * 1998-01-13 1999-11-09 Sekisui Chem Co Ltd Roof with solar cell, execution method thereof, and relay box used therefor
JPH11330521A (en) * 1998-03-13 1999-11-30 Canon Inc Solar battery module, solar battery array, photovolatic power plant, and method of specifying fault of solar battery module
JP2000058896A (en) * 1998-08-03 2000-02-25 Kubota Corp Solar battery
JP2000077700A (en) * 1998-08-31 2000-03-14 Matsushita Battery Industrial Co Ltd Solar battery device

Also Published As

Publication number Publication date
JP2002083991A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
AU2009292594B2 (en) Solar cell module, installation structure for solar cell module, and installation method for solar cell module
EP1039361B1 (en) Photovoltaic generation system, wiring apparatus for photovoltaic generation system, and wiring structure therefor
JP2002009326A (en) Double-pole water-proof connector and wiring structure of solar battery module used therein
JP2002289893A (en) Solar cell module, photovoltaic power generation system and method of implementing the same
JP4690529B2 (en) Wiring connection method of photovoltaic power generation system
JP3832652B2 (en) Roofing material integrated solar cell module and wiring method thereof
JP2002070271A (en) Roof tile type solar cell module
CN215186637U (en) Photovoltaic board wire jumper wiring structure
JP2706985B2 (en) Solar power generator for roof installation
JP6195541B2 (en) Solar cell module
KR102237579B1 (en) A solar power system with integrated windows and its installation methods
JP2004241789A (en) Photovoltaic power generating system, solar cell module and method for constructing photovoltaic power generating system
JP2004221151A (en) Solar cell module integral with roof material
JP2003298100A (en) Connection cable for solar cell module, method for connecting solar cell modules using the same, and photovoltaic power generation system
JP2004349507A (en) Solar cell module terminal box and solar cell module wiring structure
JP2006032501A (en) Solar battery module and its inspecting method
JP4117850B1 (en) Current collecting cable
JP3877551B2 (en) Series string of solar cell modules
JP4169490B2 (en) Solar cell module wiring cable and solar cell module wiring structure using the cable
JP2003158280A (en) Wiring structure of solar cell module
EP4276917A1 (en) Solar panel
JP2004186548A (en) Solar battery module
JP3354374B2 (en) Solar cell module and solar cell module group
CN215773039U (en) Photovoltaic plate structure, photovoltaic tile and photovoltaic tile assembly
JP3573637B2 (en) Roof with solar cell, method of constructing the same, and relay box used therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees