JP4687273B2 - Electronic component mounting method - Google Patents

Electronic component mounting method Download PDF

Info

Publication number
JP4687273B2
JP4687273B2 JP2005183756A JP2005183756A JP4687273B2 JP 4687273 B2 JP4687273 B2 JP 4687273B2 JP 2005183756 A JP2005183756 A JP 2005183756A JP 2005183756 A JP2005183756 A JP 2005183756A JP 4687273 B2 JP4687273 B2 JP 4687273B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
electronic component
adhesive
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005183756A
Other languages
Japanese (ja)
Other versions
JP2007005557A (en
Inventor
恭一郎 中次
英昭 年岡
正道 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005183756A priority Critical patent/JP4687273B2/en
Publication of JP2007005557A publication Critical patent/JP2007005557A/en
Application granted granted Critical
Publication of JP4687273B2 publication Critical patent/JP4687273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

本発明は、ICチップ等の電子部品と回路基板とを、接着剤を介して接続する電子部品の実装方法に関する。   The present invention relates to an electronic component mounting method for connecting an electronic component such as an IC chip and a circuit board via an adhesive.

従来、ICチップ等の電子部品と回路基板との接続形態として、種々の方式が知られているが、近年の小型軽量化の要請から、ガラス基板に電子部品を直接実装するCOG(チップオングラス)方式が主流になりつつある。そして、このCOG方式では、一般に、半導体チップを、熱硬化性樹脂を主成分とする接着剤を介して、回路基板上に接続する方法が採用されている。   Conventionally, various methods are known as a connection form between an electronic component such as an IC chip and a circuit board. However, in recent years, a COG (chip-on-glass) that directly mounts an electronic component on a glass substrate has been demanded for reduction in size and weight. ) Method is becoming mainstream. In this COG method, generally, a method of connecting a semiconductor chip onto a circuit board via an adhesive mainly composed of a thermosetting resin is employed.

また、この際、電子部品の表面に突起電極(または、バンプ)を形成するとともに、回路基板の表面に配線電極を形成し、電子部品を下向き(フェースダウン)にして、上方から加熱加圧処理を行うことにより、接着剤を介して突起電極と配線電極を接続し、電子部品を回路基板上に実装するフリップチップ実装方式が採用されている。   At this time, a bump electrode (or bump) is formed on the surface of the electronic component, and a wiring electrode is formed on the surface of the circuit board. As a result, a flip chip mounting method is employed in which the protruding electrode and the wiring electrode are connected via an adhesive, and the electronic component is mounted on the circuit board.

ここで、上述の加熱加圧処理を行う際に、例えば、急激に加熱を行い、または、接着剤の流動性の高い期間に、圧力を大きくすると、接着剤の内部や、電子部品(または、配線基板)と接着剤の界面においてボイドが発生する。そうすると、配線電極と突起電極の接続位置のずれ等が生じてしまい、結果として、電極間の接続信頼性の低下や、製品の歩留まりの低下等の問題が生じていた。   Here, when performing the above-described heating and pressurizing treatment, for example, when heating is performed rapidly or the pressure is increased during a period of high fluidity of the adhesive, the inside of the adhesive or the electronic component (or, Voids are generated at the interface between the wiring board) and the adhesive. In this case, the connection position between the wiring electrode and the protruding electrode is shifted, resulting in problems such as a decrease in connection reliability between the electrodes and a decrease in product yield.

そこで、ボイドの発生を防止し、これらの問題点を解消すべく、種々の電子部品の実装方法が提案されている。例えば、異方導電性接着剤を介して、電子部品の突起電極と回路基板の配線電極を接続する電子部品の実装方法であって、2段階の加熱と、これらの加熱に対応した2段階の加圧を行うことにより、電子部品を回路基板に実装する方法が開示されている。より具体的には、異方導電性接着剤の軟度(流動性)の高い期間において、第1加熱温度で電子部品を第1押圧力により配線基板に押圧し、次いで、当該第1加熱温度よりも高い第2加熱温度において、第1押圧力よりも高い第2押圧力により電子部品を配線基板に押圧することにより、異方導電性接着剤を硬化させ、電子部品を配線基板に実装させる方法が開示されている。この方法により、異方導電性接着剤の内部や、当該異方導電性接着剤と電子部品(または、回路基板)との界面におけるボイドを外部に放出できるため、ボイドによる、接続位置のずれを防止でき、製品の歩留まりが向上できると記載されている(例えば、特許文献1参照)。   Therefore, various electronic component mounting methods have been proposed to prevent the generation of voids and to solve these problems. For example, an electronic component mounting method for connecting a protruding electrode of an electronic component and a wiring electrode of a circuit board via an anisotropic conductive adhesive, which includes two steps of heating and two steps corresponding to these heatings A method for mounting an electronic component on a circuit board by applying pressure is disclosed. More specifically, in a period of high softness (fluidity) of the anisotropic conductive adhesive, the electronic component is pressed against the wiring board with the first pressing temperature at the first heating temperature, and then the first heating temperature. By pressing the electronic component against the wiring board with a second pressing force higher than the first pressing force at a higher second heating temperature, the anisotropic conductive adhesive is cured and the electronic component is mounted on the wiring board. A method is disclosed. By this method, voids at the interface between the anisotropic conductive adhesive and the interface between the anisotropic conductive adhesive and the electronic component (or circuit board) can be released to the outside. It is described that it can be prevented and the yield of the product can be improved (for example, see Patent Document 1).

また、異方導電性接着剤を介して、電子部品の突起電極と回路基板の配線電極を接続する電子部品の実装方法であって、加熱温度を段階的に昇温させることにより、異方導電性接着剤をゆっくりと溶融させ、当該異方導電性接着剤の内部におけるボイドの発生を防止し、電極間の接続信頼性を向上する方法が開示されている(例えば、特許文献2参照)。
特開2003−204142号公報 特開平11−282547号公報
Also, there is provided a method for mounting an electronic component that connects a protruding electrode of an electronic component and a wiring electrode of a circuit board through an anisotropic conductive adhesive, and the anisotropic conductive property is obtained by gradually increasing the heating temperature. A method is disclosed in which the adhesive adhesive is slowly melted to prevent the generation of voids inside the anisotropic conductive adhesive and to improve the connection reliability between the electrodes (for example, see Patent Document 2).
JP 2003-204142 A JP-A-11-282547

しかし、上記従来の方法においては、図3に示すように、異方導電性接着剤の硬化時間tが経過すると、異方導電性接着剤の硬化温度Tの維持状態が開放され、冷却が開始されるが、この際、冷却の開始と同時に(または、冷却の開始直後に)、異方導電性接着剤の硬化時間tにおいて、電子部品を押圧するための圧力P(ここでは、1バンプあたりの圧力)の維持状態も開放される。そうすると、異方導電性接着剤を構成する熱硬化性樹脂の凝集力が十分に発現する前に、電子部品の突起電極と回路基板の配線電極が、当該樹脂からの反発力を受けることになり、結果として、電極間の接続信頼性が低下するという問題があった。   However, in the above conventional method, as shown in FIG. 3, when the anisotropic conductive adhesive curing time t elapses, the maintenance state of the anisotropic conductive adhesive curing temperature T is released and cooling starts. At this time, simultaneously with the start of cooling (or immediately after the start of cooling), the pressure P for pressing the electronic component (here, per bump) at the curing time t of the anisotropic conductive adhesive (Maintenance pressure) is also released. Then, before the cohesive force of the thermosetting resin constituting the anisotropic conductive adhesive is sufficiently developed, the protruding electrode of the electronic component and the wiring electrode of the circuit board receive a repulsive force from the resin. As a result, there is a problem that the connection reliability between the electrodes is lowered.

また、上述の冷却の際に、異方導電性接着剤を構成する樹脂の平面方向(回路基板、または電子部品と接触する面の方向)における冷却速度(即ち、当該平面方向における、樹脂の、配線電極(または、突起電極)より内側の部分と外側の部分の冷却速度)が異なるため、樹脂の内部において温度差が生じる。その結果、樹脂において内部応力差が生じ、当該樹脂が変形することになるため、結果として、電極間の接続信頼性が低下するという問題があった。   Further, during the above cooling, the cooling rate in the plane direction of the resin constituting the anisotropic conductive adhesive (the direction of the surface in contact with the circuit board or the electronic component) (that is, the resin in the plane direction) Since the cooling rate between the inner part and the outer part of the wiring electrode (or the protruding electrode) is different, a temperature difference occurs inside the resin. As a result, an internal stress difference occurs in the resin and the resin is deformed. As a result, there is a problem that connection reliability between the electrodes is lowered.

そこで、本発明は、上述の問題に鑑みてなされたものであり、電子部品と回路基板を、接着剤を介して接続する際に、電子部品の突起電極と回路基板の配線電極の接続信頼性を向上することができる電子部品の実装方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and when connecting an electronic component and a circuit board via an adhesive, the connection reliability between the protruding electrode of the electronic component and the wiring electrode of the circuit board. It is an object of the present invention to provide an electronic component mounting method capable of improving the efficiency.

上記目的を達成するために、請求項1に記載の発明では、熱硬化性樹脂を主成分とする接着剤を介して、加熱加圧処理を行うことにより、熱硬化性樹脂を硬化させ、電子部品の突起電極を回路基板の配線電極に接続する工程を含む電子部品の実装方法において、加熱加圧処理が終了後、熱硬化性樹脂の冷却処理を行う際に、加熱加圧処理時の圧力を維持するとともに、熱硬化性樹脂の冷却速度を制御し、圧力の維持を終了するまでの冷却速度が、8℃/秒以下であることを特徴とする。 In order to achieve the above object, in the invention described in claim 1, the thermosetting resin is cured by performing a heat and pressure treatment through an adhesive mainly composed of a thermosetting resin, and an electron In the electronic component mounting method including the step of connecting the protruding electrode of the component to the wiring electrode of the circuit board, the pressure at the time of the heat and pressure treatment is performed when the thermosetting resin is cooled after the heat and pressure treatment is finished. In addition, the cooling rate of the thermosetting resin is controlled and the cooling rate until the completion of the pressure is 8 ° C./second or less .

請求項1に記載の構成によれば、接着剤を構成する熱硬化性樹脂の凝集力が十分に発現する前に、突起電極と配線電極が、当該熱硬化性樹脂からの反発力を受けることがなくなるため、結果として、配線電極と突起電極の間の接続信頼性が向上することになる。   According to the structure of Claim 1, before the cohesive force of the thermosetting resin which comprises an adhesive agent fully expresses, a protruding electrode and a wiring electrode receive the repulsive force from the said thermosetting resin. As a result, the connection reliability between the wiring electrode and the protruding electrode is improved.

また、当該熱硬化性樹脂の冷却時に、熱硬化性樹脂の平面方向における冷却速度差の発生を効果的に抑制することが可能になる。従って、熱硬化性樹脂の内部における温度差の発生を効果的に抑制することが可能になるため、熱硬化性樹脂の内部応力差の発生を回避することができ、熱硬化性樹脂の変形が防止されることになる。その結果、配線電極と突起電極の間の接続信頼性が向上することになる。
また、熱硬化性樹脂に対して、冷却が行われる際に、当該熱硬化性樹脂の応力緩和が行われるのに十分な時間を確保することができるため、熱硬化性樹脂の残留応力の増大を回避でき、結果として、配線電極と突起電極の間の接続信頼性を確実に向上させることが可能になる。
In addition, it is possible to effectively suppress the occurrence of a cooling rate difference in the plane direction of the thermosetting resin when the thermosetting resin is cooled. Therefore, since it becomes possible to effectively suppress the occurrence of the temperature difference inside the thermosetting resin, the occurrence of the internal stress difference of the thermosetting resin can be avoided, and the deformation of the thermosetting resin can be prevented. Will be prevented. As a result, the connection reliability between the wiring electrode and the protruding electrode is improved.
In addition, when the thermosetting resin is cooled, a sufficient time can be secured for stress relaxation of the thermosetting resin, thereby increasing the residual stress of the thermosetting resin. As a result, the connection reliability between the wiring electrode and the protruding electrode can be reliably improved.

請求項2に記載の発明は、請求項1に記載の電子部品の実装方法であって、冷却処理の際に、熱硬化性樹脂の温度が、動的粘弾性測定法(DMA法)により測定した熱硬化性樹脂の硬化物のガラス転移温度以下になった時に、圧力の維持を終了することを特徴とする。   The invention according to claim 2 is the electronic component mounting method according to claim 1, wherein the temperature of the thermosetting resin is measured by a dynamic viscoelasticity measurement method (DMA method) during the cooling process. When the temperature becomes lower than the glass transition temperature of the cured product of the thermosetting resin, the maintenance of the pressure is terminated.

請求項2に記載の構成によれば、熱硬化性樹脂の凝集力が十分に発現しており、当該熱硬化性樹脂は、ガラス状の硬い状態になっているため、配線電極と突起電極が、熱硬化性樹脂により反発力を受けることがなくなる。従って、配線電極と突起電極の間の接続信頼性が向上することになる。   According to the configuration of the second aspect, the cohesive force of the thermosetting resin is sufficiently expressed, and the thermosetting resin is in a glassy hard state. The thermosetting resin does not receive a repulsive force. Therefore, the connection reliability between the wiring electrode and the protruding electrode is improved.

請求項3に記載の発明は、請求項2に記載の電子部品の実装方法であって、熱硬化性樹脂の温度が、ガラス転移温度より60℃以上低い温度になった時に、圧力の維持を終了することを特徴とする。   Invention of Claim 3 is the mounting method of the electronic component of Claim 2, Comprising: When the temperature of a thermosetting resin becomes temperature lower 60 degreeC or more than a glass transition temperature, maintenance of a pressure is carried out. It is characterized by terminating.

請求項3に記載の構成によれば、熱硬化性樹脂の凝集力が確実に発現している状態で、加圧することが可能になるため、配線電極と突起電極に対する、熱硬化性樹脂の反発力の発生を確実に回避できることになる。その結果、配線電極と突起電極の間の接続信頼性が確実に向上することになる。   According to the configuration of claim 3, since it is possible to apply pressure in a state where the cohesive force of the thermosetting resin is reliably expressed, the repulsion of the thermosetting resin against the wiring electrode and the protruding electrode is possible. Generation of force can be reliably avoided. As a result, the connection reliability between the wiring electrode and the protruding electrode is reliably improved.

請求項4に記載の発明は、請求項1乃至請求項3のいずれかに記載の電子部品の実装方法であって、熱硬化性樹脂がエポキシ樹脂であることを特徴とする。請求項4に記載の構成によれば、接着剤のフィルム形成性、耐熱性、および接着力を向上させることが可能になる。 According to a fourth aspect of the present invention, there is provided the electronic component mounting method according to any one of the first to third aspects, wherein the thermosetting resin is an epoxy resin. According to the structure of Claim 4 , it becomes possible to improve the film formation property, heat resistance, and adhesive force of an adhesive agent.

請求項5に記載の発明は、請求項1乃至請求項4のいずれかに記載の電子部品の実装方法であって、接着剤が、異方導電性接着剤であることを特徴とする。請求項5に記載の構成によれば、隣り合う電極間の絶縁を維持して短絡を防止しつつ、多数の配線電極−突起電極間を一度に、かつ各々を独立して導電接続することが可能になる。 According to a fifth aspect of the present invention, there is provided the electronic component mounting method according to any one of the first to fourth aspects, wherein the adhesive is an anisotropic conductive adhesive. According to the configuration of the fifth aspect , while maintaining insulation between adjacent electrodes and preventing a short circuit, a plurality of wiring electrodes and protruding electrodes can be electrically conductively connected at once and each independently. It becomes possible.

本発明によれば、電子部品と回路基板を、接着剤を介して接続する際に、配線電極と突起電極の間の接続信頼性を確実に向上することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, when connecting an electronic component and a circuit board via an adhesive agent, it becomes possible to improve reliably the connection reliability between a wiring electrode and a protruding electrode.

以下に、本発明の好適な実施形態について説明する。
図1は、本発明に係る電子部品の実装方法により、電子部品を実装した回路基板を示す断面図である。本発明におけるICチップ等の電子部品の実装方法としては、上述のフリップチップ方式が採用され、熱硬化性樹脂を主成分とする接着剤を介して、加熱加圧処理を行うことにより、当該熱硬化性樹脂を硬化させ、電子部品の突起電極を回路基板の配線電極に接続する。
Hereinafter, a preferred embodiment of the present invention will be described.
FIG. 1 is a cross-sectional view showing a circuit board on which an electronic component is mounted by the electronic component mounting method according to the present invention. As a method for mounting an electronic component such as an IC chip in the present invention, the above-described flip chip method is adopted, and the heat and pressure treatment is performed through an adhesive mainly composed of a thermosetting resin. The curable resin is cured, and the protruding electrode of the electronic component is connected to the wiring electrode of the circuit board.

より具体的には、図1に示すように、ガラス基板等の回路基板1上に、エポキシ樹脂等の熱硬化性樹脂を主成分とする接着剤2を載置し、当該接着剤2を所定の温度に加熱した状態で、回路基板1の方向へ所定の圧力で加圧し、接着剤2を回路基板1上に仮接着する。次いで、電子部品3を下向き(フェースダウン)にした状態で、回路基板1の表面に形成された配線電極4と、電子部品3の表面に形成された突起電極5との位置合わせをしながら、電子部品3を接着剤2上に載置することにより、回路基板1と電子部品3との間に接着剤2を介在させる。次いで、接着剤2を所定の硬化温度に加熱した状態で、電子部品3を介して、当該接着剤2を回路基板1の方向へ所定の圧力で加圧することにより、接着剤2を加熱溶融させる。なお、上述のごとく、接着剤2は、熱硬化性樹脂を主成分としているため、当該接着剤2は、上述の硬化温度にて加熱をすると、一旦、軟化するが、当該加熱を継続することにより、硬化することになる。そして、予め設定した接着剤2の硬化時間が経過すると、接着剤2の硬化温度の維持状態を開放し、冷却を開始することにより、接着剤2を介して配線電極4と突起電極5を接続し、電子部品3を回路基板1上に実装する。   More specifically, as shown in FIG. 1, an adhesive 2 mainly composed of a thermosetting resin such as an epoxy resin is placed on a circuit board 1 such as a glass substrate, and the adhesive 2 is predetermined. In a state heated to the temperature of 1, a pressure is applied in the direction of the circuit board 1 with a predetermined pressure, and the adhesive 2 is temporarily bonded onto the circuit board 1. Next, with the electronic component 3 facing downward (face-down), while aligning the wiring electrode 4 formed on the surface of the circuit board 1 and the protruding electrode 5 formed on the surface of the electronic component 3, By placing the electronic component 3 on the adhesive 2, the adhesive 2 is interposed between the circuit board 1 and the electronic component 3. Next, in a state where the adhesive 2 is heated to a predetermined curing temperature, the adhesive 2 is heated and melted by pressing the adhesive 2 toward the circuit board 1 with a predetermined pressure via the electronic component 3. . As described above, since the adhesive 2 is mainly composed of a thermosetting resin, the adhesive 2 softens once when heated at the above-described curing temperature, but the heating is continued. Will be cured. When the preset curing time of the adhesive 2 elapses, the wiring electrode 4 and the protruding electrode 5 are connected via the adhesive 2 by releasing the maintenance state of the curing temperature of the adhesive 2 and starting cooling. Then, the electronic component 3 is mounted on the circuit board 1.

ここで、本発明においては、上述の加熱加圧処理が終了後、熱硬化性樹脂の冷却処理を行う際の、冷却速度の調整方法、および当該冷却時における圧力の調整方法に特徴がある。以下に、図面を参照して、本特徴を詳細に説明する。   Here, the present invention is characterized by a method for adjusting the cooling rate and a method for adjusting the pressure during the cooling when the thermosetting resin is cooled after the above-described heating and pressurizing process is completed. Hereinafter, this feature will be described in detail with reference to the drawings.

図2は、本発明に係る電子部品の実装方法における加熱加圧工程のプロファイルを示す図である。より具体的には、図2(a)は、本発明に係る電子部品の実装方法の加熱加圧工程における加熱プロファイルを示しており、横軸は時間(秒)を、縦軸は温度(℃)を示している。また、図2(b)は、本発明に係る電子部品の実装方法の加熱加圧工程における加圧プロファイルを示しており、横軸は時間(秒)を、縦軸は圧力(gf/バンプ)を示している。   FIG. 2 is a diagram showing a profile of a heating and pressing step in the electronic component mounting method according to the present invention. More specifically, FIG. 2A shows a heating profile in the heating and pressing step of the electronic component mounting method according to the present invention, where the horizontal axis represents time (seconds) and the vertical axis represents temperature (° C.). ). FIG. 2B shows a pressing profile in the heating and pressing step of the electronic component mounting method according to the present invention, where the horizontal axis represents time (seconds) and the vertical axis represents pressure (gf / bump). Is shown.

図2に示すように、本発明においては、接着剤2の硬化時間t1が経過し、当該接着剤2の加熱加圧処理が終了後、接着剤2を構成する熱硬化性樹脂の冷却処理を行う際に、上記加熱加圧処理時の圧力P1を、予め設定した時間t2の間、維持するとともに、当該熱硬化性樹脂の冷却速度を制御する構成としている。   As shown in FIG. 2, in the present invention, after the curing time t <b> 1 of the adhesive 2 has elapsed and the heating and pressurizing process of the adhesive 2 has been completed, the cooling process of the thermosetting resin constituting the adhesive 2 is performed. When performing, it is set as the structure which controls the cooling rate of the said thermosetting resin while maintaining the pressure P1 at the time of the said heating-pressing process for the preset time t2.

このように、圧力P1を維持することにより、接着剤2を構成する熱硬化性樹脂の凝集力が十分に発現する前に、電子部品3の突起電極5と回路基板1の配線電極4が、当該熱硬化性樹脂からの反発力を受けることがなくなるため、結果として、配線電極4と突起電極5の間の接続信頼性が向上することになる。   Thus, by maintaining the pressure P1, before the cohesive force of the thermosetting resin constituting the adhesive 2 is sufficiently developed, the protruding electrode 5 of the electronic component 3 and the wiring electrode 4 of the circuit board 1 are Since the repulsive force from the thermosetting resin is not received, the connection reliability between the wiring electrode 4 and the protruding electrode 5 is improved as a result.

また、接着剤2の加熱加圧処理が終了後、接着剤2を構成する熱硬化性樹脂の冷却速度を制御することにより、当該熱硬化性樹脂の冷却時に、熱硬化性樹脂の平面方向(熱硬化性樹脂が、回路基板1、または電子部品3と接触する面2aの方向)Xにおける冷却速度差(即ち、当該平面方向Xにおける、熱硬化性樹脂の、配線電極4(または、突起電極5)より内側の部分6と外側の部分7の冷却速度の差)の発生を効果的に抑制することが可能になる。従って、熱硬化性樹脂の内部における温度差の発生を効果的に抑制することが可能になるため、熱硬化性樹脂において、内部応力差の発生を回避することができ、熱硬化性樹脂の変形が防止されることになる。その結果、配線電極4と突起電極5の間の接続信頼性が向上することになる。   In addition, by controlling the cooling rate of the thermosetting resin constituting the adhesive 2 after the heat and pressure treatment of the adhesive 2 is finished, the plane direction of the thermosetting resin (when the thermosetting resin is cooled) ( The cooling electrode has a cooling rate difference in the direction X of the surface 2a in contact with the circuit board 1 or the electronic component 3 (that is, the wiring electrode 4 (or protruding electrode) of the thermosetting resin in the plane direction X). 5) Occurrence of the difference in cooling rate between the inner portion 6 and the outer portion 7) can be effectively suppressed. Therefore, it becomes possible to effectively suppress the occurrence of a temperature difference inside the thermosetting resin, so that the occurrence of an internal stress difference can be avoided in the thermosetting resin, and the deformation of the thermosetting resin can be avoided. Will be prevented. As a result, the connection reliability between the wiring electrode 4 and the protruding electrode 5 is improved.

また、本発明においては、硬化時間t1の経過後、圧力P1の維持を終了する温度T2を、接着剤2を構成する熱硬化性樹脂のガラス転移温度Tgより低い温度に設定する構成としている。   In the present invention, the temperature T2 at which the maintenance of the pressure P1 is finished after the curing time t1 has elapsed is set to a temperature lower than the glass transition temperature Tg of the thermosetting resin constituting the adhesive 2.

より具体的には、図2(a)、(b)に示すように、熱硬化性樹脂の冷却処理の際に、熱硬化性樹脂の温度が、動的粘弾性測定法(DMA法)により測定した熱硬化性樹脂の硬化物のガラス転移温度Tg以下になった時に、圧力Pの維持を終了する構成としている。即ち、硬化時間t1の経過後、冷却時の温度が、加熱加圧処理時の温度T1から、ガラス転移温度Tgより低い温度T2になるまでの時間t2においても、硬化時間t1と同様に、圧力Pを維持する構成としている。この場合、図2(b)に示すように、合計で、時間t3(=t1+t2)の間、圧力Pを維持することになる。   More specifically, as shown in FIGS. 2A and 2B, when the thermosetting resin is cooled, the temperature of the thermosetting resin is measured by a dynamic viscoelasticity measurement method (DMA method). The maintenance of the pressure P is terminated when the measured temperature of the cured thermosetting resin is equal to or lower than the glass transition temperature Tg. That is, after the elapse of the curing time t1, the pressure at the time of cooling until the temperature T2 lower than the glass transition temperature Tg from the temperature T1 at the time of the heat and pressure treatment is the same as the curing time t1. P is maintained. In this case, as shown in FIG. 2B, the pressure P is maintained for a total time t3 (= t1 + t2).

圧力P1の維持を終了する温度T2が、ガラス転移温度Tgより高い場合は、接着剤2を構成する熱硬化性樹脂の凝集力が十分に発現しておらず、当該熱硬化性樹脂が弾性を有しているため、配線電極4と突起電極5が、熱硬化性樹脂により反発力を受けることになる。一方、圧力P1の維持を終了する温度T2が、ガラス転移温度Tgより低い場合は、接着剤2を構成する熱硬化性樹脂の凝集力が十分に発現しており、当該熱硬化性樹脂は、ガラス状の硬い状態になっている。従って、配線電極4と突起電極5が、熱硬化性樹脂により反発力を受けることがなくなるため、結果として、配線電極4と突起電極5の間の接続信頼性が向上することになる。   When the temperature T2 at which the maintenance of the pressure P1 is finished is higher than the glass transition temperature Tg, the cohesive force of the thermosetting resin constituting the adhesive 2 is not sufficiently developed, and the thermosetting resin exhibits elasticity. Therefore, the wiring electrode 4 and the protruding electrode 5 receive a repulsive force by the thermosetting resin. On the other hand, when the temperature T2 for ending the maintenance of the pressure P1 is lower than the glass transition temperature Tg, the cohesive force of the thermosetting resin constituting the adhesive 2 is sufficiently expressed, and the thermosetting resin is It is in a glassy hard state. Accordingly, the wiring electrode 4 and the protruding electrode 5 are not subjected to repulsive force by the thermosetting resin, and as a result, the connection reliability between the wiring electrode 4 and the protruding electrode 5 is improved.

なお、硬化時間t1の経過後、冷却時の熱硬化性樹脂の温度が、ガラス転移温度Tgより60℃以上低い温度T2(即ち、Tg−T2≧60℃)になるまでの時間t2の間、加熱加圧処理時の圧力P1を維持することが好ましい。即ち、熱硬化性樹脂の温度が、ガラス転移温度より60℃以上低い温度になった時に、圧力P1の維持を終了する。このような構成とすることにより、接着剤2を構成する熱硬化性樹脂の凝集力が確実に発現している状態で、加圧することが可能になるため、配線電極4と突起電極5に対する、熱硬化性樹脂の反発力の発生を確実に回避できることになる。その結果、配線電極4と突起電極5の間の接続信頼性が確実に向上することになる。   In addition, during the time t2 until the temperature of the thermosetting resin at the time of cooling becomes a temperature T2 that is 60 ° C. or more lower than the glass transition temperature Tg (that is, Tg−T2 ≧ 60 ° C.) after the lapse of the curing time t1. It is preferable to maintain the pressure P1 during the heat and pressure treatment. That is, when the temperature of the thermosetting resin reaches 60 ° C. or more lower than the glass transition temperature, the maintenance of the pressure P1 is finished. By setting it as such, since it becomes possible to pressurize in the state where the cohesive force of the thermosetting resin constituting the adhesive 2 is surely expressed, the wiring electrode 4 and the protruding electrode 5 are Generation of the repulsive force of the thermosetting resin can be surely avoided. As a result, the connection reliability between the wiring electrode 4 and the protruding electrode 5 is reliably improved.

また、本発明においては、硬化時間t1の経過後、冷却時の熱硬化性樹脂の温度が、圧力P1の維持を終了する温度T2に達成するまでの冷却速度(即ち、図2(a)に示す時間t2における冷却速度)を8℃/秒以下に設定することが好ましい。これは、一般に、熱膨張係数の異なる回路基板1、および電子部品3に挟まれた熱硬化性樹脂に対して冷却が行われた場合、上述のガラス転移温度Tgまでの冷却においては、応力緩和が行われるが、8℃/秒より大きい速度で冷却を行うと、冷却速度が速すぎるため、上述の応力緩和が行われるのに十分な時間を確保することができない。その結果、熱硬化性樹脂の残留応力が増大するため、配線電極4と突起電極5の間の接続信頼性が低下する場合がある。一方、8℃/秒以下の速度で冷却を行うと、上述の応力緩和が行われるのに十分な時間を確保することができるため、熱硬化性樹脂の残留応力の増大を回避でき、結果として、配線電極4と突起電極5の間の接続信頼性を確実に向上させることが可能になる。   In the present invention, after the elapse of the curing time t1, the cooling rate until the temperature of the thermosetting resin at the time of cooling reaches the temperature T2 at which the maintenance of the pressure P1 is finished (that is, in FIG. 2A). It is preferable to set the cooling rate at the indicated time t2) to 8 ° C./second or less. In general, when cooling is performed on the thermosetting resin sandwiched between the circuit board 1 and the electronic component 3 having different thermal expansion coefficients, the stress relaxation is performed in the cooling to the glass transition temperature Tg. However, if the cooling is performed at a rate higher than 8 ° C./second, the cooling rate is too high, so that a sufficient time cannot be secured for the stress relaxation described above. As a result, since the residual stress of the thermosetting resin increases, the connection reliability between the wiring electrode 4 and the protruding electrode 5 may be lowered. On the other hand, if the cooling is performed at a rate of 8 ° C./second or less, a sufficient time can be secured for the above-described stress relaxation, so that an increase in the residual stress of the thermosetting resin can be avoided. Thus, it is possible to reliably improve the connection reliability between the wiring electrode 4 and the protruding electrode 5.

本発明の配線電極4としては、例えば、回路基板1上に形成されたITO電極が使用される。また、突起電極5は、例えば、電子部品3上にバリアメタル(不図示)を形成するとともに、当該バリアメタル上に、所定の開口パターンを有するフォトレジスト(不図示)を形成し、当該フォトレジストをマスクとして、金をメッキ(例えば、電解メッキ)することにより形成される。   As the wiring electrode 4 of the present invention, for example, an ITO electrode formed on the circuit board 1 is used. The protruding electrode 5 is formed, for example, by forming a barrier metal (not shown) on the electronic component 3 and forming a photoresist (not shown) having a predetermined opening pattern on the barrier metal. Is used as a mask to plate gold (for example, electrolytic plating).

また、本発明に使用される接着剤2としては、従来、回路基板1と電子部品3の接続に使用されてきた、エポキシ樹脂等の熱硬化性樹脂を主成分とし、潜在性硬化剤を含有する接着剤が使用できる。特に、熱硬化性樹脂としてエポキシ樹脂を使用することにより、接着剤2のフィルム形成性、耐熱性、および接着力を向上させることが可能になる。   In addition, as the adhesive 2 used in the present invention, a thermosetting resin such as an epoxy resin, which has been conventionally used for connection between the circuit board 1 and the electronic component 3, is mainly contained, and a latent curing agent is contained. Can be used. In particular, by using an epoxy resin as the thermosetting resin, it is possible to improve the film formability, heat resistance, and adhesive strength of the adhesive 2.

なお、使用するエポキシ樹脂は、特に制限はないが、例えば、ビスフェノールA型、F型、S型、またはAD型のエポキシ樹脂や、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等を使用することができる。また、高分子量エポキシ樹脂であるフェノキシ樹脂を用いることもできる。   The epoxy resin to be used is not particularly limited. For example, bisphenol A type, F type, S type, or AD type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, diphenyl type epoxy resin, A cyclopentadiene type epoxy resin or the like can be used. A phenoxy resin that is a high molecular weight epoxy resin can also be used.

エポキシ樹脂の分子量は、電子部品実装用の接着剤2に要求される性能を考慮して、適宜選択することができる。高分子量のエポキシ樹脂を使用すると、フィルム形成性が高く、また、接続温度における樹脂の溶解粘度を高くでき、後述の導電性粒子の配向を乱すことなく接続できる効果がある。一方、低分子量のエポキシ樹脂を使用すると、架橋密度が高まって耐熱性が向上するとともに、樹脂の凝集力が高まるため、接着力が高くなるという効果が得られる。従って、分子量が15000以上の高分子量エポキシ樹脂と分子量が2000以下の低分子量エポキシ樹脂とを組み合わせて使用することにより、性能のバランスが取れるため、好ましい。なお、高分子量エポキシ樹脂と低分子量エポキシ樹脂の配合量は、適宜、選択することができる。   The molecular weight of the epoxy resin can be appropriately selected in consideration of the performance required for the adhesive 2 for mounting electronic components. When a high molecular weight epoxy resin is used, the film-forming property is high, the melt viscosity of the resin at the connection temperature can be increased, and there is an effect that the connection can be made without disturbing the orientation of conductive particles described later. On the other hand, when a low molecular weight epoxy resin is used, the crosslink density is increased and the heat resistance is improved, and the cohesive force of the resin is increased. Therefore, it is preferable to use a combination of a high molecular weight epoxy resin having a molecular weight of 15000 or more and a low molecular weight epoxy resin having a molecular weight of 2000 or less in order to balance performance. In addition, the compounding quantity of a high molecular weight epoxy resin and a low molecular weight epoxy resin can be selected suitably.

また、本発明に使用される潜在性硬化剤は、低温での貯蔵安定性に優れ、室温では殆ど効果反応を起こさないが、加熱等により、所定の条件とすることにより、速やかに効果反応を行う硬化剤である。この潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、アミンイミド、ポリアミン系、第3級アミン、アルキル尿素系等のアミン系、ジシアンジアミド系、および、これらの変性物が例示され、これらは単独または2種以上の混合物として使用できる。   In addition, the latent curing agent used in the present invention is excellent in storage stability at low temperatures and hardly causes an effective reaction at room temperature. It is a curing agent to be performed. Examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, amine imide, polyamine series, tertiary amine, alkyl urea series and other amine series, dicyandiamide series, and modified products thereof. These can be used alone or as a mixture of two or more.

また、特に、これらの潜在性硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質や、ニッケル、銅等の金属薄膜およびケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは、長期保存性と速硬化性という矛盾した特性の両立を図ることができるため、好ましい。従って、マイクロカプセル型イミダゾール系潜在性硬化剤が、特に好ましい。   In particular, these latent curing agents coated with a polymer material such as polyurethane and polyester, a metal thin film such as nickel and copper, and an inorganic material such as calcium silicate, This is preferable because it is possible to achieve both contradictory properties of storage stability and fast curability. Therefore, a microcapsule type imidazole-based latent curing agent is particularly preferable.

また、接着剤2として、導電性粒子を含まない絶縁性接着剤を使用することができるが、導電性粒子を含む異方導電性接着剤も使用することができる。ここで、異方導電性接着剤の導電性粒子としては、金属粉末が使用でき、例えば、球状の金属粒子や金属でメッキされた球状の樹脂粒子を使用することができるが、微細な金属粒が多数、直鎖状に繋がった形状、または針形状である、所謂アスペクト比が大きい形状を有するものを使用することもできる。そして、これらの粒子は、異方導電性接着剤を形成する時点で異方導電性接着剤の厚み方向Yにかけた磁場の中を通過させることにより、厚み方向(磁場方向)Yに配向させて用いるのが好ましい。このような配向することにより、異方導電性接着剤の面方向における高い導電抵抗によって隣り合う電極間の絶縁を維持して短絡を防止しつつ、異方導電性接着剤の厚み方向Yにおける低い導電抵抗によって多数の配線電極4−突起電極5間を一度に、かつ各々を独立して導電接続することが可能になる。   Moreover, although the insulating adhesive which does not contain electroconductive particle can be used as the adhesive agent 2, the anisotropic electroconductive adhesive agent which contains electroconductive particle can also be used. Here, as the conductive particles of the anisotropic conductive adhesive, metal powder can be used, for example, spherical metal particles or spherical resin particles plated with metal can be used. However, it is also possible to use a shape having a large so-called aspect ratio, such as a linear shape or a needle shape. These particles are oriented in the thickness direction (magnetic field direction) Y by passing through a magnetic field applied in the thickness direction Y of the anisotropic conductive adhesive at the time of forming the anisotropic conductive adhesive. It is preferable to use it. By such orientation, the anisotropic conductive adhesive is low in the thickness direction Y while maintaining the insulation between the adjacent electrodes by the high conductive resistance in the surface direction of the anisotropic conductive adhesive and preventing short circuit. The conductive resistance makes it possible to electrically connect a large number of wiring electrodes 4 to the protruding electrodes 5 at a time and independently.

従って、用いる金属粉末は、その一部に磁性金属が含まれるものが良く、強磁性を有する金属単体、強磁性を有する2種類以上の合金、強磁性を有する金属と他の金属との合金および磁性を有する金属を含む複合体のいずれかであることが好ましい。これは、磁性を有する金属が、互いに引き合うことにより、溶融流動時に導電性物質が電極間に挟まれた導電性物質に集合しやすいためである。例えば、Ni、鉄、コバルトおよびこれらのうち2種類以上の合金等を挙げることができる。   Accordingly, the metal powder to be used preferably contains a magnetic metal in a part thereof, a simple metal having ferromagnetism, two or more kinds of alloys having ferromagnetism, an alloy of a metal having ferromagnetism and another metal, and It is preferably one of composites containing a metal having magnetism. This is because the metal having magnetism attracts each other, so that the conductive substance is likely to gather in the conductive substance sandwiched between the electrodes during the melt flow. For example, Ni, iron, cobalt, and two or more of these alloys can be used.

なお、本発明においては、上述のごとく、接着剤2の硬化時の圧力P1を維持しつつ、接着剤2の冷却速度を制御する構成としている。従って、接着剤2として、異方導電性接着剤を使用した場合であっても、熱硬化性樹脂の冷却処理時において、導電性物質の配向が乱れるのを効果的に防止することが可能になる。   In the present invention, as described above, the cooling rate of the adhesive 2 is controlled while maintaining the pressure P1 when the adhesive 2 is cured. Therefore, even when an anisotropic conductive adhesive is used as the adhesive 2, it is possible to effectively prevent the orientation of the conductive material from being disturbed during the cooling treatment of the thermosetting resin. Become.

以下に、本発明を実施例、参考例、比較例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。 Below, this invention is demonstrated based on an Example, a reference example, and a comparative example. In addition, this invention is not limited to these Examples, These Examples can be changed and changed based on the meaning of this invention, and they are excluded from the scope of the present invention. is not.

(実施例1)
(接着剤の作製)
導電性粒子として3μmから11μmまでの鎖長分布を有する直鎖状ニッケル微粒子を用いた。樹脂としては、ビスフェノールA型の固形エポキシ樹脂〔ジャパンエポキシレジン(株)製、商品名エピコート1256、およびエピコート1002〕、ビスフェノールA型の液状エポキシ樹脂〔ジャパンエポキシレジン(株)製、商品名エピコート828US〕と、マイクロカプセル型イミダゾール系硬化剤〔旭化成エポキシ(株)製、商品名ノバキュアHX3941〕とを重量比で40/20/40/35の割合で用いた。
Example 1
(Production of adhesive)
As the conductive particles, linear nickel fine particles having a chain length distribution from 3 μm to 11 μm were used. Examples of the resin include a bisphenol A type solid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., trade name Epicoat 1256 and Epicoat 1002), and a bisphenol A type liquid epoxy resin [manufactured by Japan Epoxy Resin Co., Ltd., trade name Epicoat 828US. And a microcapsule type imidazole-based curing agent [trade name NOVACURE HX3941 manufactured by Asahi Kasei Epoxy Co., Ltd.] in a weight ratio of 40/20/40/35.

これらの樹脂を酢酸ブチルに溶解後、三本ロールによる混練を行い、樹脂濃度が40重量%である溶液を作製した。この溶液に、固形分の総量(Ni粉末+樹脂)に占める割合で表される金属充填率が、1体積%となるように上記Ni粉末を添加した後、遠心攪拌ミキサーを用いて攪拌することによりNi粉末を均一に分散し、接着剤用の複合材料を作製した。次いで、この複合材料を離型処理したPETフィルム上にドクターナイフを用いて塗布した後、磁束密度100mTの磁場中、60℃で30分間、乾燥、固化させることにより、膜中の直鎖状粒子が磁場方向に配向した、厚さ25μmの異方導電性接着剤を作製した。   These resins were dissolved in butyl acetate and then kneaded with a three-roll to prepare a solution having a resin concentration of 40% by weight. To this solution, the Ni powder is added so that the metal filling ratio represented by the ratio to the total amount of solids (Ni powder + resin) becomes 1% by volume, and then stirred using a centrifugal mixer. Thus, Ni powder was uniformly dispersed to produce a composite material for an adhesive. Next, after applying this composite material on a PET film subjected to a release treatment using a doctor knife, it is dried and solidified at 60 ° C. for 30 minutes in a magnetic field having a magnetic flux density of 100 mT, whereby linear particles in the film are obtained. An anisotropic conductive adhesive with a thickness of 25 μm was prepared in the direction of the magnetic field.

また、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー株式会社、EXSTAR6000 DMS)を使用して、昇温速度10℃/分、周波数1Hz、加重5gの条件の下、動的粘弾性測定法(DMA法)により、作製した接着剤を構成する樹脂の硬化物のガラス転移温度を測定したところ、120℃であった。なお、硬化物のサンプルとして、幅2mm、長さ10mmのものを使用した。   In addition, using a dynamic viscoelasticity measuring apparatus (SII Nanotechnology Inc., EXSTAR6000 DMS), a dynamic viscoelasticity measurement method (with a temperature rising rate of 10 ° C./min, a frequency of 1 Hz, and a weight of 5 g) ( It was 120 degreeC when the glass transition temperature of the hardened | cured material of resin which comprises the produced adhesive agent was measured by DMA method. In addition, the sample of width 2mm and length 10mm was used as a sample of hardened | cured material.

(加熱加圧処理)
ガラス基板として、幅20μm、長さ100μm、高さ0.15μmのITO電極が10μm間隔で480個形成されたものを用意した。そして、このガラス基板上に作製した接着剤を載置し、50℃に加熱しながら、4MPaの圧力で2秒間加圧して仮接着させた。その後、接着剤から、離型処理したPETフィルムを剥がし、幅15μm、長さ100μm、高さ16μmの金メッキバンプが15μm間隔で480個配列されたICチップを、ITO電極と金メッキバンプの位置合わせをしながら、接着剤上に載置して、このICチップとガラス基板の間に作製した接着剤を挟み込む状態にして、180℃に加熱しながら、1バンプあたり20gfの圧力で30秒間加圧して接着させた。
(Heat and pressure treatment)
A glass substrate having 480 ITO electrodes having a width of 20 μm, a length of 100 μm, and a height of 0.15 μm formed at intervals of 10 μm was prepared. And the produced adhesive agent was mounted on this glass substrate, and it pressure-bonded for 2 second by the pressure of 4 MPa, heating at 50 degreeC, and was temporarily bonded. After that, the release-treated PET film is peeled off from the adhesive, and the alignment of the ITO electrode and the gold plating bump is performed on the IC chip in which 480 gold plating bumps having a width of 15 μm, a length of 100 μm, and a height of 16 μm are arranged at intervals of 15 μm. However, it was placed on the adhesive, and the adhesive prepared between the IC chip and the glass substrate was sandwiched between the IC chip and the glass substrate, and was heated at 180 ° C. for 30 seconds with a pressure of 20 gf per bump. Glued.

(冷却処理)
次いで、上述の圧力を維持した状態で、冷却速度を8℃/秒に設定し、接着剤を構成する樹脂の温度が60℃になるまで冷却を行い、ICチップとガラス基板の接合体を得た。なお、樹脂の温度が、180℃から60℃になるまでの時間は、15秒であった。
(Cooling process)
Next, with the above pressure maintained, the cooling rate is set to 8 ° C./second, and cooling is performed until the temperature of the resin constituting the adhesive reaches 60 ° C. to obtain a bonded body of the IC chip and the glass substrate. It was. The time until the resin temperature changed from 180 ° C. to 60 ° C. was 15 seconds.

(抵抗評価)
次いで、この接合体の、ITO電極、接着剤、および金バンプを介して接続された連続する480個の電極の抵抗値を四端子法により求め、求めた値を480で除することにより、1電極あたりの接続抵抗を求めた。そして、この評価を10回繰り返し、接続抵抗の平均値を求め、これを初期接続抵抗とした。また、耐熱・耐湿試験として、上記のICチップとガラス基板の接合体を、温度を60℃、湿度を90%に設定した恒温恒湿槽中に200時間放置した後、接合体を恒温恒湿槽から取り出し、再び抵抗値を測定した。その結果を表1に示す。
(Resistance evaluation)
Next, the resistance value of the continuous 480 electrodes connected via the ITO electrode, the adhesive, and the gold bump of this joined body is obtained by a four-terminal method, and the obtained value is divided by 480 to obtain 1 The connection resistance per electrode was determined. And this evaluation was repeated 10 times, the average value of connection resistance was calculated | required, and this was made into initial stage connection resistance. In addition, as a heat and humidity resistance test, the joined body of the IC chip and the glass substrate was left in a constant temperature and humidity chamber set at a temperature of 60 ° C. and a humidity of 90% for 200 hours, and then the bonded body was maintained at a constant temperature and humidity It was taken out from the tank and the resistance value was measured again. The results are shown in Table 1.

(実施例2)
加熱加圧後、上述の圧力を維持した状態で、樹脂の温度が90℃になるまで冷却を行ったこと以外は、上述の実施例1と同様にして、ICチップとガラス基板の接合体を得た。その後、上述の実施例1と同一条件により、抵抗評価を行った。以上の結果を表1に示す。
(Example 2)
After the heating and pressurization, the bonded assembly of the IC chip and the glass substrate was formed in the same manner as in Example 1 except that the resin was cooled until the temperature of the resin reached 90 ° C. while maintaining the pressure. Obtained. Then, resistance evaluation was performed on the same conditions as the above-mentioned Example 1. The results are shown in Table 1.

(実施例3)
加熱加圧後、上述の圧力を維持した状態で、樹脂の温度が140℃になるまで冷却を行ったこと以外は、上述の実施例1と同様にして、ICチップとガラス基板の接合体を得た。その後、上述の実施例1と同一条件により、抵抗評価を行った。以上の結果を表1に示す。
(Example 3)
After the heating and pressurization, the bonded assembly of the IC chip and the glass substrate was formed in the same manner as in Example 1 except that cooling was performed until the temperature of the resin reached 140 ° C. while maintaining the above pressure. Obtained. Then, resistance evaluation was performed on the same conditions as the above-mentioned Example 1. The results are shown in Table 1.

(実施例4)
加熱加圧後、上述の圧力を維持した状態で、樹脂の冷却速度を4℃/秒に設定して冷却を行ったこと以外は、上述の実施例1と同様にして、ICチップとガラス基板の接合体を得た。その後、上述の実施例1と同一条件により、抵抗評価を行った。以上の結果を表1に示す。
Example 4
After heating and pressurizing, the IC chip and the glass substrate were the same as in the above-described Example 1 except that the cooling was performed by setting the cooling rate of the resin to 4 ° C./second while maintaining the above pressure. A zygote was obtained. Then, resistance evaluation was performed on the same conditions as the above-mentioned Example 1. The results are shown in Table 1.

参考例1
加熱加圧後、上述の圧力を維持した状態で、樹脂の冷却速度を24℃/秒に設定して冷却を行ったこと以外は、上述の実施例1と同様にして、ICチップとガラス基板の接合体を得た。その後、上述の実施例1と同一条件により、抵抗評価を行った。以上の結果を表1に示す。
( Reference Example 1 )
After heating and pressurizing, the IC chip and the glass substrate were the same as in the above-described Example 1 except that the cooling was performed by setting the cooling rate of the resin to 24 ° C./second while maintaining the above pressure. A zygote was obtained. Then, resistance evaluation was performed on the same conditions as the above-mentioned Example 1. The results are shown in Table 1.

(比較例1)
加熱加圧後、上述の圧力維持を行わず、かつ、樹脂の冷却速度の制御を行わなかったこと以外は、上述の実施例1と同様にして、ICチップとガラス基板の接合体を得た。その後、上述の実施例1と同一条件により、抵抗評価を行った。以上の結果を表1に示す。
(Comparative Example 1)
After heating and pressurizing, the above-mentioned pressure maintenance was not performed and the cooling rate of the resin was not controlled, and the joined body of the IC chip and the glass substrate was obtained in the same manner as in Example 1 above. . Then, resistance evaluation was performed on the same conditions as the above-mentioned Example 1. The results are shown in Table 1.

Figure 0004687273
Figure 0004687273

表1に示すように、実施例1〜4、参考例1、および比較例1のいずれの場合においても、初期接続抵抗に殆ど差がなかった。しかし、温度を60℃、湿度を90%に設定した恒温恒湿槽中に200時間放置した後は、実施例1〜4および参考例1のいずれの場合においても、比較例1に比し、接続抵抗が小さいことが判る。 As shown in Table 1, in any case of Examples 1 to 4, Reference Example 1 and Comparative Example 1, there was almost no difference in initial connection resistance. However, after being left in a constant temperature and humidity chamber set at a temperature of 60 ° C. and a humidity of 90% for 200 hours, in any of Examples 1 to 4 and Reference Example 1 , compared to Comparative Example 1, It can be seen that the connection resistance is small.

これは、実施例1〜4および参考例1においては、接着剤の加熱加圧処理が終了後、接着剤を構成する樹脂の冷却処理を行う際に、加熱加圧処理時の圧力を維持しつつ、樹脂の冷却速度を制御する構成としているため、ICチップのバンプとガラス基板のITO電極が、樹脂からの反発力を受けることがなくなり、また、樹脂における内部応力差の発生を回避することができたためであるものと考えられる。 In Examples 1 to 4 and Reference Example 1 , the pressure during the heat and pressure treatment is maintained when the resin constituting the adhesive is cooled after the heat and pressure treatment of the adhesive is completed. However, since the cooling rate of the resin is controlled, the bump of the IC chip and the ITO electrode of the glass substrate do not receive a repulsive force from the resin, and avoid the occurrence of the internal stress difference in the resin. This is probably because of

また、加熱加圧後、圧力を維持した状態で、樹脂の温度が、ガラス転移温度(120℃)よりも60℃低い温度(即ち、60℃)になるまで冷却を行った実施例1は、当該ガラス転移温度よりも30℃低い温度(即ち、90℃)になるまで冷却を行った実施例2、および、当該ガラス転移温度よりも20℃高い温度(即ち、140℃)になるまで冷却を行った実施例3に比し、上述の200時間放置後の接続抵抗が小さいことが判る。   In addition, Example 1 in which cooling was performed until the temperature of the resin became 60 ° C. lower than the glass transition temperature (120 ° C.) (that is, 60 ° C.) while maintaining the pressure after the heating and pressurization, Example 2 in which cooling was performed until the temperature was 30 ° C. lower than the glass transition temperature (ie, 90 ° C.), and cooling was performed until the temperature was 20 ° C. higher than the glass transition temperature (ie, 140 ° C.). It can be seen that the connection resistance after leaving for 200 hours as described above is smaller than that of Example 3.

また、加熱加圧後、圧力を維持した状態で、冷却速度を8℃/秒に設定した実施例1、および、当該冷却速度を4℃/秒に設定した実施例4は、当該冷却速度を24℃/秒に設定した参考例1に比し、上述の200時間放置後の接続抵抗が小さいことが判る。 In addition, Example 1 in which the cooling rate was set to 8 ° C./second and Example 4 in which the cooling rate was set to 4 ° C./second in the state where the pressure was maintained after the heating and pressurization were performed. It can be seen that the connection resistance after leaving for 200 hours is smaller than that of Reference Example 1 set at 24 ° C./second.

本発明の活用例としては、ICチップ等の電子部品と回路基板とを、接着剤を介して接続する電子部品の実装方法が挙げられる。   As an application example of the present invention, there is an electronic component mounting method in which an electronic component such as an IC chip and a circuit board are connected via an adhesive.

本発明に係る電子部品の実装方法により、電子部品を実装した回路基板を示す断面図である。It is sectional drawing which shows the circuit board which mounted the electronic component by the mounting method of the electronic component which concerns on this invention. 図2(a)は、本発明に係る電子部品の実装方法の加熱加圧工程における加熱プロファイルを示す図であり、図2(b)は、本発明に係る電子部品の実装方法の加熱加圧工程における加圧プロファイルを示す図である。FIG. 2A is a diagram showing a heating profile in the heating and pressing step of the electronic component mounting method according to the present invention, and FIG. 2B is a heating and pressurizing method of the electronic component mounting method according to the present invention. It is a figure which shows the pressurization profile in a process. 図3(a)は、従来の電子部品の実装方法の加熱加圧工程における加熱プロファイルを示す図であり、図3(b)は、従来の電子部品の実装方法の加熱加圧工程における加圧プロファイルを示す図である。FIG. 3A is a diagram showing a heating profile in the heating and pressing process of the conventional electronic component mounting method, and FIG. 3B is a pressing process in the heating and pressing process of the conventional electronic component mounting method. It is a figure which shows a profile.

符号の説明Explanation of symbols

1…回路基板、2…接着剤、3…電子部品、4…配線電極、5…突起電極、P1…加熱加圧処理時の圧力、T1…加熱加圧処理時の温度、T2…圧力の維持を終了する温度、Tg…ガラス転移温度、t1…接着剤の硬化時間、t2…加熱加圧処理時の温度から、ガラス転移温度より低い温度になるまでの時間、t3…圧力を維持する時間 DESCRIPTION OF SYMBOLS 1 ... Circuit board, 2 ... Adhesive, 3 ... Electronic component, 4 ... Wiring electrode, 5 ... Projection electrode, P1 ... Pressure at the time of a heat pressurization process, T1 ... Temperature at the time of a heat pressurization process, T2 ... Maintenance of a pressure , Tg ... Glass transition temperature, t1 ... Adhesive curing time, t2 ... Time from the temperature during heating and pressurization to a temperature lower than the glass transition temperature, t3 ... Time for maintaining pressure

Claims (5)

熱硬化性樹脂を主成分とする接着剤を介して、加熱加圧処理を行うことにより、前記熱硬化性樹脂を硬化させ、電子部品の突起電極を回路基板の配線電極に接続する工程を含む電子部品の実装方法において、
前記加熱加圧処理が終了後、前記熱硬化性樹脂の冷却処理を行う際に、前記加熱加圧処理時の圧力を維持するとともに、前記熱硬化性樹脂の冷却速度を制御し、前記圧力の維持を終了するまでの前記冷却速度が、8℃/秒以下であることを特徴とする電子部品の実装方法。
Including a step of curing the thermosetting resin by performing a heat and pressure treatment through an adhesive mainly composed of a thermosetting resin, and connecting the protruding electrode of the electronic component to the wiring electrode of the circuit board. In the mounting method of electronic components,
When the thermosetting resin is cooled after the heat and pressure treatment is completed, the pressure during the heat and pressure treatment is maintained, the cooling rate of the thermosetting resin is controlled, and the pressure The method of mounting an electronic component, wherein the cooling rate until the end of the maintenance is 8 ° C./second or less .
前記冷却処理の際に、前記熱硬化性樹脂の温度が、動的粘弾性測定法(DMA法)により測定した前記熱硬化性樹脂の硬化物のガラス転移温度以下になった時に、前記圧力の維持を終了することを特徴とする請求項1に記載の電子部品の実装方法。   During the cooling treatment, when the temperature of the thermosetting resin becomes equal to or lower than the glass transition temperature of the cured product of the thermosetting resin measured by a dynamic viscoelasticity measurement method (DMA method), The electronic component mounting method according to claim 1, wherein the maintenance is terminated. 前記熱硬化性樹脂の温度が、前記ガラス転移温度より60℃以上低い温度になった時に、前記圧力の維持を終了することを特徴とする請求項2に記載の電子部品の実装方法。   The electronic component mounting method according to claim 2, wherein the maintenance of the pressure is terminated when the temperature of the thermosetting resin reaches 60 ° C. or more lower than the glass transition temperature. 前記熱硬化性樹脂がエポキシ樹脂であることを特徴とする請求項1乃至請求項3のいずれかに記載の電子部品の実装方法。 Electronic part mounting method according to any one of claims 1 to 3 wherein the thermosetting resin is characterized in that the epoxy resin. 前記接着剤が、異方導電性接着剤であることを特徴とする請求項1乃至請求項4のいずれかに記載の電子部品の実装方法。 Wherein the adhesive mounting method of electronic components according to any one of claims 1 to 4, characterized in that anisotropic conductive adhesive.
JP2005183756A 2005-06-23 2005-06-23 Electronic component mounting method Expired - Fee Related JP4687273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183756A JP4687273B2 (en) 2005-06-23 2005-06-23 Electronic component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183756A JP4687273B2 (en) 2005-06-23 2005-06-23 Electronic component mounting method

Publications (2)

Publication Number Publication Date
JP2007005557A JP2007005557A (en) 2007-01-11
JP4687273B2 true JP4687273B2 (en) 2011-05-25

Family

ID=37690874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183756A Expired - Fee Related JP4687273B2 (en) 2005-06-23 2005-06-23 Electronic component mounting method

Country Status (1)

Country Link
JP (1) JP4687273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990059B2 (en) * 2007-08-06 2012-08-01 株式会社ブリヂストン Gasket forming material for hard disk device and gasket for hard disk device using the same
CN102057475B (en) * 2008-06-05 2013-01-02 住友电木株式会社 Manufacturing method for semiconductor device and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297831A (en) * 1988-05-25 1989-11-30 Hitachi Ltd Manufacture of semiconductor plastic package and device therefor
JPH0684988A (en) * 1992-09-05 1994-03-25 Apic Yamada Kk Device for annealing resin molded package
JP2002057186A (en) * 2000-05-31 2002-02-22 Nippon Avionics Co Ltd Flip chip packaging method and printed wiring board
JP2004031885A (en) * 2002-04-30 2004-01-29 Toray Eng Co Ltd Bonding method and apparatus therefor
JP2004282098A (en) * 1994-03-18 2004-10-07 Hitachi Chem Co Ltd Manufacturing method for semiconductor package
JP2004356662A (en) * 2000-05-31 2004-12-16 Nippon Avionics Co Ltd Flip chip mounting method and printed circuit board
JP2005142397A (en) * 2003-11-07 2005-06-02 International Display Technology Kk Bonding method and its device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297831A (en) * 1988-05-25 1989-11-30 Hitachi Ltd Manufacture of semiconductor plastic package and device therefor
JPH0684988A (en) * 1992-09-05 1994-03-25 Apic Yamada Kk Device for annealing resin molded package
JP2004282098A (en) * 1994-03-18 2004-10-07 Hitachi Chem Co Ltd Manufacturing method for semiconductor package
JP2002057186A (en) * 2000-05-31 2002-02-22 Nippon Avionics Co Ltd Flip chip packaging method and printed wiring board
JP2004356662A (en) * 2000-05-31 2004-12-16 Nippon Avionics Co Ltd Flip chip mounting method and printed circuit board
JP2004031885A (en) * 2002-04-30 2004-01-29 Toray Eng Co Ltd Bonding method and apparatus therefor
JP2005142397A (en) * 2003-11-07 2005-06-02 International Display Technology Kk Bonding method and its device

Also Published As

Publication number Publication date
JP2007005557A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP5151902B2 (en) Anisotropic conductive film
US7341642B2 (en) Manufacturing method for electric device
KR102467618B1 (en) Adhesive composition
JP6209313B2 (en) Anisotropic conductive film, connection structure, method for manufacturing connection structure, and connection method
JP5838674B2 (en) Film-like anisotropic conductive adhesive
JP2008094908A (en) Adhesive for electrode connection
JP2009074020A (en) Anisotropic conductive film
TW202006750A (en) Anisotropic conductive film, method for producing same, and method for producing connection structure
JP5200744B2 (en) Adhesive and electrode connection method using the same
JP2007056209A (en) Adhesive for circuit connection
EP2592127A1 (en) Anisotropic conductive adhesive, process for producing same, connection structure, and process for producing same
TW201933964A (en) Connection structure and method for producing same
JP5972564B2 (en) Connection method, connection structure, anisotropic conductive film, and manufacturing method thereof
JP2007317563A (en) Circuit connecting adhesive
JP4687273B2 (en) Electronic component mounting method
JP2010024416A (en) Adhesive for connecting electrodes
JP2005146043A (en) Anisotropic conductive adhesive
JP5274744B2 (en) Film adhesive and semiconductor device using the same
JP2005146044A (en) Anisotropic conductive adhesive
JP6505423B2 (en) Method of manufacturing mounting body, and anisotropic conductive film
JP2009037928A (en) Adhesive for electrode connection
JP4918908B2 (en) Anisotropic conductive film
JP5273514B2 (en) Electrode connecting adhesive and method for producing the same
JP2009004603A (en) Method of manufacturing substrate
JP2010280871A (en) Film-like adhesive and film-like anisotropically conductive adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees