JP4685474B2 - Oil-free screw air compressor - Google Patents

Oil-free screw air compressor Download PDF

Info

Publication number
JP4685474B2
JP4685474B2 JP2005063551A JP2005063551A JP4685474B2 JP 4685474 B2 JP4685474 B2 JP 4685474B2 JP 2005063551 A JP2005063551 A JP 2005063551A JP 2005063551 A JP2005063551 A JP 2005063551A JP 4685474 B2 JP4685474 B2 JP 4685474B2
Authority
JP
Japan
Prior art keywords
compressed air
stage compressor
compressor body
heat exchanger
pressure stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005063551A
Other languages
Japanese (ja)
Other versions
JP2006249934A (en
Inventor
広志 太田
仁 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2005063551A priority Critical patent/JP4685474B2/en
Publication of JP2006249934A publication Critical patent/JP2006249934A/en
Application granted granted Critical
Publication of JP4685474B2 publication Critical patent/JP4685474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、無給油式スクリュー空気圧縮機に係わり、さらに詳しくは、圧縮空気を冷却する熱交換器を備えた無給油式スクリュー空気圧縮機に関する。   The present invention relates to an oil-free screw air compressor, and more particularly to an oil-free screw air compressor including a heat exchanger that cools compressed air.

単段無給油式スクリュー空気圧縮機は、非接触かつ無給油で回転可能な一対の雄ロータ及び雌ロータを有する圧縮機本体を備えており、雄ロータ及び雌ロータの回転駆動により無給油状態で空気を圧縮する。この空気圧縮に要する動力が熱に変化し、生成した圧縮空気の温度は非常に高くなり、例えば約300〜350℃まで上昇する。そこで従来、圧縮機本体から吐出された圧縮空気を冷却するチューブ式熱交換器を備えた構成が開示されている(例えば、特許文献1参照)。   The single-stage oil-free screw air compressor has a compressor body having a pair of male and female rotors that can rotate in a non-contact and oil-free manner. Compress the air. The power required for this air compression changes to heat, and the temperature of the generated compressed air becomes very high, for example, rises to about 300 to 350 ° C. Therefore, conventionally, a configuration including a tube heat exchanger that cools compressed air discharged from a compressor body has been disclosed (see, for example, Patent Document 1).

また2段無給油式スクリュー圧縮機では、無給油状態で空気を圧縮する低圧段圧縮機本体と、この低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体とを備えており、低圧段圧縮機本体及び高圧段圧縮機本体で生成した圧縮空気の温度は、それぞれ例えば約160〜250℃まで上昇する。そこで従来、低圧段圧縮機本体から吐出された圧縮空気を冷却して高圧段圧縮機本体に流出するチューブ式熱交換器(インタークーラ)と、高圧段圧縮機本体から吐出された圧縮空気を冷却するチューブ式熱交換器(アフタークーラ)とを備えた構成が開示されている(例えば、特許文献2参照)。   In the two-stage oilless screw compressor, a low-pressure compressor main body that compresses air in an oil-free state, and a high-pressure compressor main body that further compresses air compressed in the low-pressure compressor main body in an oil-free state. The temperature of the compressed air generated by the low-pressure stage compressor main body and the high-pressure stage compressor main body rises to, for example, about 160 to 250 ° C. Therefore, conventionally, a tube-type heat exchanger (intercooler) that cools the compressed air discharged from the low-pressure stage compressor body and flows out to the high-pressure stage compressor body, and cools the compressed air discharged from the high-pressure stage compressor body. The structure provided with the tube-type heat exchanger (aftercooler) to perform is disclosed (for example, refer patent document 2).

上記チューブ式熱交換器は、例えばシェル内に複数のU字管を設けた構造であり、U字管内に圧縮空気を流しシェル内に冷却水(冷却液)を流し(逆に、U字管内に冷却水を流しシェル内に圧縮空気を流してもよい)、圧縮空気と冷却水が熱交換することにより圧縮空気を冷却するようになっている。また、シェル内のU字管は、熱による伸縮を吸収し熱応力の影響を回避するので、耐熱温度が比較的高い構造である。   The tube heat exchanger has a structure in which, for example, a plurality of U-shaped tubes are provided in a shell, and compressed air is flowed into the U-shaped tube and cooling water (coolant) is flowed into the shell (reversely, inside the U-shaped tube The compressed air may be allowed to flow in the shell and the compressed air may flow in the shell), and the compressed air is cooled by heat exchange between the compressed air and the cooling water. Further, the U-shaped tube in the shell has a structure with a relatively high heat-resistant temperature because it absorbs expansion and contraction due to heat and avoids the influence of thermal stress.

特開平3−290089号公報JP-A-3-290089 特開2001−153080号公報JP 2001-153080 A

しかしながら、上記従来技術には以下のような改善の余地があった。
すなわち、無給油式スクリュー空気圧縮機においては、上記チューブ式熱交換器の容積が大きな割合を占めており、熱交換器を小型化することで圧縮機全体の小型化を図ることが可能である。ところが、チューブ式熱交換器では、U字管の径寸法を小さくして本数を増加したり、熱伝達率のよい材質に変更したり、若しくはU字管の肉厚を小さくする等の方法により小型化が図れるものの、その小型化には限界があった。
However, the above prior art has room for improvement as follows.
That is, in the oil-free screw air compressor, the volume of the tube heat exchanger occupies a large proportion, and it is possible to reduce the size of the entire compressor by downsizing the heat exchanger. . However, in the tube heat exchanger, the diameter of the U-shaped tube is reduced to increase the number, the material is changed to a material having a good heat transfer coefficient, or the thickness of the U-shaped tube is decreased. Although the size can be reduced, there is a limit to the size reduction.

本発明の目的は、耐熱性を確保しつつ大幅な小型化を図ることができる無給油式スクリュー圧縮機を提供することにある。   An object of the present invention is to provide an oil-free screw compressor that can achieve a significant reduction in size while ensuring heat resistance.

)上記目的を達成するために、本発明は、無給油状態で空気を圧縮する低圧段圧縮機本体と、前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、前記プレート式熱交換器は、前記高圧段圧縮機本体の圧縮空気が下方向に流れる第1の圧縮空気流路と、前記低圧段圧縮機本体の圧縮空気が上方向に流れる第2の圧縮空気流路と、前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が上方向に流れる第1の冷却流路と、前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が下方向に流れる第2の冷却流路とを備える。 ( 1 ) In order to achieve the above object, the present invention provides a low pressure stage compressor body that compresses air in an oil-free state, and a high pressure that further compresses air compressed in the low pressure stage compressor body in an oil-free state. A main stage compressor body, a low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat that cools the compressed air of the high pressure stage compressor body An oil-free screw air compressor including a plate-type heat exchanger integrally configured with an exchanger, wherein the plate-type heat exchanger is a first where the compressed air of the high-pressure stage compressor body flows downward. A compressed air flow path, a second compressed air flow path through which the compressed air of the low pressure stage compressor body flows upward, and a cooling liquid that cools the compressed air of the high pressure stage compressor body flows upward. 1 cooling flow path and the first cooling flow path in series Is, coolant for cooling the compressed air of the low pressure stage compressor body and a second cooling channel flowing downward.

)上記目的を達成するために、本発明は、無給油状態で空気を圧縮する低圧段圧縮機本体と、前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、前記プレート式熱交換器は、前記高圧段圧縮機本体の圧縮空気が下方向に流れる第1の圧縮空気流路と、前記低圧段圧縮機本体の圧縮空気が下方向に流れる第2の圧縮空気流路と、前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が上方向に流れる第1の冷却流路と、前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が下方向に流れる第2の冷却流路とを備える。 ( 2 ) In order to achieve the above object, the present invention provides a low pressure stage compressor body that compresses air in an oilless state, and a high pressure that further compresses air compressed in the low pressure stage compressor body in an oilless state. A main stage compressor body, a low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat that cools the compressed air of the high pressure stage compressor body An oil-free screw air compressor including a plate-type heat exchanger integrally configured with an exchanger, wherein the plate-type heat exchanger is a first where the compressed air of the high-pressure stage compressor body flows downward. A compressed air flow path, a second compressed air flow path through which the compressed air of the low-pressure stage compressor body flows downward, and a coolant that cools the compressed air of the high-pressure stage compressor body flows upward. 1 cooling flow path and the first cooling flow path in series Is, coolant for cooling the compressed air of the low pressure stage compressor body and a second cooling channel flowing downward.

)上記(1)又は(2)において、好ましくは、前記低圧段圧縮機本体からの圧縮空気及び前記高圧段圧縮機本体からの圧縮空気のうちいずれか一方又は両方を一次冷却して前記プレート式熱交換器へ流出するチューブ式熱交換器を備える。
(4)上記目的を達成するために、本発明は、無給油状態で空気を圧縮する低圧段圧縮機本体と、前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、前記プレート式熱交換器は、前記高圧段圧縮機本体の圧縮空気が流れる第1の圧縮空気流路と、前記低圧段圧縮機本体の圧縮空気が流れる第2の圧縮空気流路と、前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第1の冷却流路と、前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第2の冷却流路とを備え、前記第1の圧縮空気流路の流れ方向と前記第1の冷却流路の流れ方向とが対向流となるように、かつ前記第2の圧縮空気流路の流れ方向と前記第2の冷却流路の流れ方向とが対向流となるように構成しており、前記低圧段圧縮機本体からの圧縮空気及び前記高圧段圧縮機本体からの圧縮空気のうちいずれか一方又は両方を前記プレート式熱交換器の耐熱温度まで一次冷却して前記プレート式熱交換器へ流出するチューブ式熱交換器を備える。
(5)上記目的を達成するために、本発明は、無給油状態で空気を圧縮する低圧段圧縮機本体と、前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、前記プレート式熱交換器は、前記高圧段圧縮機本体の圧縮空気が流れる第1の圧縮空気流路と、前記低圧段圧縮機本体の圧縮空気が流れる第2の圧縮空気流路と、前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第1の冷却流路と、前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第2の冷却流路とを備え、前記第2の圧縮空気流路の流れ方向と前記第2の冷却流路の流れ方向とが平行流となるように構成しており、前記低圧段圧縮機本体からの圧縮空気及び前記高圧段圧縮機本体からの圧縮空気のうちいずれか一方又は両方を前記プレート式熱交換器の耐熱温度まで一次冷却して前記プレート式熱交換器へ流出するチューブ式熱交換器を備える。
( 3 ) In the above (1) or (2) , preferably, one or both of the compressed air from the low-pressure stage compressor body and the compressed air from the high-pressure stage compressor body are primarily cooled to A tube heat exchanger that flows out to the plate heat exchanger is provided.
(4) In order to achieve the above object, the present invention provides a low pressure stage compressor body that compresses air in an oil-free state, and a high pressure that further compresses air compressed in the low pressure stage compressor body in an oil-free state. A main stage compressor body, a low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat that cools the compressed air of the high pressure stage compressor body An oil-free screw air compressor including a plate heat exchanger integrally configured with an exchanger, wherein the plate heat exchanger is a first compressed air through which the compressed air of the high-pressure stage compressor body flows. A flow path, a second compressed air flow path through which the compressed air of the low-pressure stage compressor body flows, a first cooling flow path through which a coolant that cools the compressed air of the high-pressure stage compressor body, and the first The low-pressure stage compressor A second cooling flow path through which a cooling liquid for cooling the compressed air flows, and the flow direction of the first compressed air flow path and the flow direction of the first cooling flow path are opposed to each other. And the flow direction of the second compressed air flow path and the flow direction of the second cooling flow path are opposed to each other, the compressed air from the low-pressure stage compressor body and the high pressure A tube-type heat exchanger is provided that primarily cools one or both of the compressed air from the main stage compressor body to the heat-resistant temperature of the plate-type heat exchanger and flows out to the plate-type heat exchanger.
(5) In order to achieve the above object, the present invention provides a low pressure stage compressor body that compresses air in an oil-free state, and a high pressure that further compresses air compressed in the low pressure stage compressor body in an oil-free state. A main stage compressor body, a low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat that cools the compressed air of the high pressure stage compressor body An oil-free screw air compressor including a plate heat exchanger integrally configured with an exchanger, wherein the plate heat exchanger is a first compressed air through which the compressed air of the high-pressure stage compressor body flows. A flow path, a second compressed air flow path through which the compressed air of the low-pressure stage compressor body flows, a first cooling flow path through which a coolant that cools the compressed air of the high-pressure stage compressor body, and the first The low-pressure stage compressor A second cooling flow path through which a cooling liquid for cooling the compressed air flows, and the flow direction of the second compressed air flow path and the flow direction of the second cooling flow path are parallel flows The plate is configured such that one or both of the compressed air from the low-pressure stage compressor body and the compressed air from the high-pressure stage compressor body are primarily cooled to the heat resistant temperature of the plate heat exchanger. A tube-type heat exchanger that flows out to the heat exchanger is provided.

本発明によれば、従来のチューブ式熱交換器のみを設ける場合に比べ、耐熱性を確保しつつ大幅な小型化を図ることができる。   According to this invention, compared with the case where only the conventional tube type heat exchanger is provided, it can attain large size reduction, ensuring heat resistance.

以下、本発明の実施形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の第の実施形態を図〜図により説明する。本実施形態は、プレート式熱交換器を二段無給油式スクリュー空気圧縮機に設けた実施形態である。 The first embodiment of the present invention will be described with reference to FIGS. 1 to 3. This embodiment is an embodiment in which a plate heat exchanger is provided in a two-stage oilless screw air compressor.

は、本実施形態による無給油スクリュー空気圧縮機の全体構造を表す模式図であり、図は、本実施形態におけるプレート式熱交換機の概略構造を表す模式図であり、図は、本実施形態におけるプレート式熱交換器の構造を一例として表す斜視分解図である。なお、図及び図において、白抜きの矢印は圧縮空気の流れ、黒塗りの矢印は潤滑油の流れ、細線の矢印は冷却水の流れ、斜線塗りの矢印は冷却風の流れを示している。 Figure 1 is a schematic view showing the overall structure of the oil-free screw air compressor according to the present embodiment, FIG. 2 is a schematic view showing the schematic structure of a plate heat exchanger according to this embodiment, FIG. 3, It is a perspective exploded view showing the structure of the plate type heat exchanger in this embodiment as an example. 1 and 2 , the white arrow indicates the flow of compressed air, the black arrow indicates the flow of lubricating oil, the thin arrow indicates the flow of cooling water, and the hatched arrow indicates the flow of cooling air. Yes.

本実施形態による無給油式スクリュー圧縮機は二段圧縮機であり、電動機(モータ)44と、この電動機44の回転動力がギヤ装置45を介し伝達されて駆動する低圧段圧縮機本体46及び高圧段圧縮機本体47と、これら低圧段圧縮機本体46及び高圧段圧縮機本体47で生成した圧縮空気をそれぞれ冷却するプレート式熱交換器48とを備えている。   The oil-free screw compressor according to the present embodiment is a two-stage compressor, and includes an electric motor (motor) 44, a low-pressure compressor main body 46 that drives the rotational power of the electric motor 44 transmitted through a gear device 45, and a high-pressure compressor. A stage compressor body 47 and plate type heat exchangers 48 for cooling the compressed air generated by the low pressure stage compressor body 46 and the high pressure stage compressor body 47 are provided.

低圧段圧縮機本体46は、一対の雄ロータ49及び雌ロータ50を有し、これら雄ロータ49及び雌ロータ50の一方側(図3中左側)端部に設けられたタイミングギヤ51,52が噛合している。これにより、雄ロータ49及び雌ロータ50は、非接触かつ無給油で回転するようになっている。同様に、高圧段圧縮機本体47は、一対の雄ロータ53及び雌ロータ54を有し、これら雄ロータ53及び雌ロータ54の一方側(図3中左側)端部に設けられたタイミングギヤ55,56が噛合している。これにより、雄ロータ53及び雌ロータ54は、非接触かつ無給油で回転するようになっている。   The low-pressure compressor main body 46 has a pair of male rotor 49 and female rotor 50, and timing gears 51 and 52 provided at one end (left side in FIG. 3) of the male rotor 49 and female rotor 50 are provided. Meshed. Thereby, the male rotor 49 and the female rotor 50 rotate without contact and without oiling. Similarly, the high-pressure stage compressor body 47 has a pair of male rotors 53 and female rotors 54, and a timing gear 55 provided at one end (left side in FIG. 3) of the male rotors 53 and female rotors 54. 56 are engaged. Thereby, the male rotor 53 and the female rotor 54 rotate without contact and without oiling.

ギヤ装置45は、下部に油溜め57を有するギヤケーシング58と、このギヤケーシング58に回転自在に支持されブルギヤ59を有する伝達軸60とを備えている。電動機44の回転軸と伝達軸60がカップリング61等を介し連結され、雄ロータ51,53の他方側(図3中右側)端部にそれぞれ設けたピニオンギヤ62,63と伝達軸60のブルギヤ59とが噛合している。これにより、電動機44の回転動力が伝達軸60、ブルギヤ59、及びピニオンギヤ62,63を介し雄ロータ51,53に伝達され、雄ロータ51,53が回転駆動するようになっている。なお、ピニオンギヤ62,63及びブルギヤ59は、ギヤケーシング58内に収納されている。   The gear device 45 includes a gear casing 58 having an oil sump 57 at a lower portion and a transmission shaft 60 having a bull gear 59 that is rotatably supported by the gear casing 58. The rotation shaft of the electric motor 44 and the transmission shaft 60 are connected via a coupling 61 and the like, and pinion gears 62 and 63 provided on the other end (right side in FIG. 3) of the male rotors 51 and 53 and a bull gear 59 of the transmission shaft 60, respectively. Is engaged. Thereby, the rotational power of the electric motor 44 is transmitted to the male rotors 51 and 53 through the transmission shaft 60, the bull gear 59, and the pinion gears 62 and 63, and the male rotors 51 and 53 are rotationally driven. Note that the pinion gears 62 and 63 and the bull gear 59 are housed in a gear casing 58.

また、電動機等によって駆動するオイルポンプ64が設けられており、このオイルポンプ64の駆動により、ギヤケーシング58内の油溜め57からストレーナ65を介し吸い込まれた潤滑油は、潤滑油用熱交換器(オイルクーラ)66及びオイルフィルタ67等を介し、低圧段圧縮機本体46及び高圧段圧縮機本体47のタイミングギヤ51,52,55,56及び軸受(図示せず)等に供給され、その後ギヤケーシング58内の油溜め57に戻って循環するようになっている。   Further, an oil pump 64 driven by an electric motor or the like is provided, and the lubricating oil sucked from the oil reservoir 57 in the gear casing 58 through the strainer 65 by the driving of the oil pump 64 is a heat exchanger for lubricating oil. (Oil cooler) 66, oil filter 67 and the like are supplied to the timing gears 51, 52, 55, 56 and bearings (not shown) of the low pressure stage compressor body 46 and the high pressure stage compressor body 47, and then the gears. It returns to the oil sump 57 in the casing 58 and circulates.

低圧段圧縮機本体46の吸込み側(図3中上側)には、吸気フィルタ68と、吸込み空気量を調整する吸込み絞り弁69とが設けられている。また、吸込み絞り弁69に連動し、高圧段圧縮機本体47の圧縮空気をサイレンサ70を介し放出する放気弁71が設けられている。そして、負荷運転時は、吸気フィルタ68及び吸込み絞り弁69を介し低圧段圧縮機本体46に圧縮用空気(外気)が吸込まれて所定の圧力まで圧縮され、この圧縮空気が吐出配管72を介しプレート式熱交換器48の低圧側熱交換器48a側に吐出され、プレート式熱交換器48の低圧側熱交換器48a側で冷却された圧縮空気が導出配管73を介し高圧段圧縮機本体47に導入されて圧縮され、この圧縮空気が吐出配管74を介しプレート式熱交換器48の高圧側熱交換器48b側に吐出され、プレート式熱交換器48の高圧側熱交換器48bで冷却された圧縮空気が供給配管75を介し外部の機器等(図示せず)に供給されるようになっている。また無負荷運転時は、吸込み絞り弁69を閉じ状態、放気弁71を開き状態として、低圧段圧縮機本体46及び高圧段圧縮機本体47が運転するようになっている。なお、吐出配管74には逆止弁76が設けられており、この逆止弁78の上流側で分岐接続された放気配管77が放気弁71に接続されている。また、導出配管73及び供給配管75の下方側にはドレン配管78,79がそれぞれ接続され、これらドレン配管78,79を介し圧縮空気の冷却の際に生じたドレンを排出するようになっている。 An intake filter 68 and a suction throttle valve 69 for adjusting the amount of intake air are provided on the suction side (upper side in FIG. 3) of the low-pressure compressor main body 46. Further, an air release valve 71 that releases the compressed air of the high-pressure compressor main body 47 through the silencer 70 is provided in conjunction with the suction throttle valve 69. During load operation, compression air (outside air) is sucked into the low-pressure compressor main body 46 through the intake filter 68 and the suction throttle valve 69 and compressed to a predetermined pressure, and this compressed air passes through the discharge pipe 72. The compressed air discharged to the low pressure side heat exchanger 48 a side of the plate heat exchanger 48 and cooled on the low pressure side heat exchanger 48 a side of the plate type heat exchanger 48 is connected to the high pressure stage compressor main body 47 via the outlet pipe 73. The compressed air is discharged to the high pressure side heat exchanger 48b side of the plate heat exchanger 48 through the discharge pipe 74 and cooled by the high pressure side heat exchanger 48b of the plate heat exchanger 48. The compressed air is supplied to an external device or the like (not shown) via the supply pipe 75. Further, during no-load operation, the low-pressure stage compressor body 46 and the high-pressure stage compressor body 47 are operated with the suction throttle valve 69 closed and the vent valve 71 open. The discharge pipe 74 is provided with a check valve 76, and an air discharge pipe 77 branched and connected upstream of the check valve 78 is connected to the air discharge valve 71. Further, drain pipes 78 and 79 are connected to the lower side of the outlet pipe 73 and the supply pipe 75, respectively, and drains generated during cooling of the compressed air are discharged through the drain pipes 78 and 79. .

プレート式熱交換器48は、低圧段圧縮機本体46からの圧縮空気を冷却して高圧段圧縮機本体48へ流出する上記低圧側熱交換器48aと、高圧段圧縮機本体47からの圧縮空気を冷却する上記高圧側熱交換器48bとが一体構成されている。詳細には、例えば図5に示すように、積層された複数(図5では8枚)のチャンネルプレート80と、低圧側熱交換器48a及び高圧側熱交換器48bを仕切るために配設された仕切りプレート81と、チャンネルプレート80の両外側に配設されたカバープレート82A,82Bとを備えており、これら複数のチャンネルプレート80、仕切りプレート81及びカバープレート82A,82Bが例えば銅等によってブレージング(ろう付け)されている。チャンネルプレート80は、例えばステンレス製薄板でヘリンボーン(V字)形状に加工されており、積層されたチャンネルプレート80の間には、圧縮空気が流れる圧縮空気流路83a又は83bと、冷却水が流れる冷却流路84a又は84bとが交互に形成されている。これら圧縮空気流路83a,83b及び冷却流路84a,84bは複雑な流路形状(詳細は省略)となり、流路内は乱流となって熱交換率(冷却効率)が高められる。   The plate heat exchanger 48 cools the compressed air from the low-pressure stage compressor body 46 and flows out to the high-pressure stage compressor body 48, and the compressed air from the high-pressure stage compressor body 47. The high pressure side heat exchanger 48b for cooling the air is integrally formed. Specifically, as shown in FIG. 5, for example, the plurality of stacked (8 in FIG. 5) channel plates 80 are arranged to partition the low-pressure side heat exchanger 48a and the high-pressure side heat exchanger 48b. A partition plate 81 and cover plates 82A and 82B disposed on both outer sides of the channel plate 80 are provided. The plurality of channel plates 80, the partition plate 81, and the cover plates 82A and 82B are brazed with, for example, copper ( Brazed). The channel plate 80 is made of, for example, a stainless steel thin plate and processed into a herringbone (V shape). Between the stacked channel plates 80, a compressed air flow path 83a or 83b through which compressed air flows and cooling water flow. The cooling flow paths 84a or 84b are alternately formed. The compressed air flow paths 83a and 83b and the cooling flow paths 84a and 84b have complicated flow path shapes (details are omitted), and turbulent flow is generated in the flow paths to increase the heat exchange rate (cooling efficiency).

低圧段側熱交換器48aを構成するカバープレート82Aの隅角には、上側に圧縮空気入口ポート85a、下側に圧縮空気出口ポート85b及び冷却水入口ポート85cが設けられ、高圧段側熱交換器48bを構成するカバープレート82Bの隅角には、上側に圧縮空気出口ポート86a、下側に圧縮空気入口ポート86b及び冷却水出口ポート86cが設けられている。また、ポート85a〜85c,86a〜86cに対応するように複数のチャンネルプレート80及び仕切りプレート81に貫通孔87が形成され、これら貫通孔87が圧縮空気流路83a又は83b、若しくは冷却流路84a又は84bにそれぞれ連通するようになっている。そして、冷却水入口ポート86cから流入した冷却水が高圧側熱交換器48bの冷却流路84bを上向きに流れ、仕切りプレート81の貫通孔87を経て、低圧側熱交換器48aの冷却流路84aを下向きに流れて冷却水出口ポート85cから流出するようになっている(言い換えれば、高圧側熱交換器48bの冷却流路84bと低圧側熱交換器48aの冷却流路84aは、直列接続されている)。また低圧側熱交換器48aでは、圧縮空気入口ポート85bから流入した圧縮空気が圧縮空気流路83aを上向きに流れて圧縮空気出口ポート85aから流出し、高圧側熱交換器48bでは、圧縮空気入口ポート86aから流入した圧縮空気が圧縮空気流路83bを下向きに流れて圧縮空気出口ポート86bから流出するようになっている。これにより、低圧側熱交換器48a及び高圧側熱交換器48bにおいて、チャンネルプレート80を介し圧縮空気と冷却水が熱交換して圧縮空気が冷却されるようになっている。   At the corner of the cover plate 82A constituting the low pressure stage side heat exchanger 48a, a compressed air inlet port 85a is provided on the upper side, a compressed air outlet port 85b and a cooling water inlet port 85c are provided on the lower side, and the high pressure stage side heat exchange is provided. A compressed air outlet port 86a is provided on the upper side, and a compressed air inlet port 86b and a cooling water outlet port 86c are provided on the lower side at the corners of the cover plate 82B constituting the vessel 48b. Further, through holes 87 are formed in the plurality of channel plates 80 and the partition plate 81 so as to correspond to the ports 85a to 85c and 86a to 86c, and these through holes 87 serve as the compressed air flow paths 83a or 83b or the cooling flow paths 84a. Or 84b. And the cooling water which flowed in from the cooling water inlet port 86c flows upward through the cooling flow path 84b of the high pressure side heat exchanger 48b, passes through the through hole 87 of the partition plate 81, and the cooling flow path 84a of the low pressure side heat exchanger 48a. (In other words, the cooling flow path 84b of the high-pressure side heat exchanger 48b and the cooling flow path 84a of the low-pressure side heat exchanger 48a are connected in series. ing). In the low pressure side heat exchanger 48a, the compressed air flowing in from the compressed air inlet port 85b flows upward through the compressed air passage 83a and flows out from the compressed air outlet port 85a. In the high pressure side heat exchanger 48b, the compressed air inlet The compressed air flowing in from the port 86a flows downward in the compressed air flow path 83b and flows out from the compressed air outlet port 86b. Thereby, in the low pressure side heat exchanger 48a and the high pressure side heat exchanger 48b, the compressed air and the cooling water exchange heat through the channel plate 80 to cool the compressed air.

なお、上述の内容からわかるように、低圧側熱交換器48aにおける圧縮空気流路83aと冷却流路84a、高圧側熱交換器48bにおける圧縮空気流路83bと冷却流路84bはともに対向流となっている。そのためには、圧縮空気流路83a,83bのいずれか一方を上向きの流れとする必要があるが、本実施形態では、圧縮空気中にドレンが比較的発生しにくい(又は無負荷運転・停止時にドレンの逆流が生じない)低圧側熱交換器48aの圧縮空気流路83aを上向きとしている。   As can be seen from the above description, the compressed air flow path 83a and the cooling flow path 84a in the low-pressure side heat exchanger 48a and the compressed air flow path 83b and the cooling flow path 84b in the high-pressure side heat exchanger 48b are both opposed flow. It has become. For this purpose, either one of the compressed air flow paths 83a and 83b needs to be an upward flow, but in this embodiment, drain is relatively difficult to generate in the compressed air (or during no-load operation / stop). The compressed air passage 83a of the low pressure side heat exchanger 48a is directed upward.

また、上記した潤滑油用熱交換器66、プレート式熱交換器48、低圧段圧縮機本体46の冷却ジャケット、及び高圧段圧縮機本体の47の冷却ジャケットに冷却水を流通する冷却水配管88が設けられている。この冷却水配管88は、まず潤滑油用熱交換器66に冷却水を流通する配管系統88aとプレート式熱交換器48に冷却水を流通する配管系統88bとで分岐され、その後配管系統88a,88bが合流してから、低圧段圧縮機本体46の冷却ジャケットに冷却水を流通する配管系統88cと高圧段圧縮機本体47の冷却ジャケットに冷却水を流通する配管系統88dとで分岐され、その後配管系統88c,88dが合流するように構成されている。また、冷却風を誘起する冷却ファン89が設けられており、この冷却ファン89の駆動により圧縮機全体を冷却するようになっている。   Further, the above-described lubricating oil heat exchanger 66, plate heat exchanger 48, cooling jacket of the low-pressure stage compressor body 46, and cooling water pipe 88 for circulating cooling water to the 47 cooling jacket of the high-pressure stage compressor body. Is provided. The cooling water pipe 88 is first branched into a piping system 88a for circulating cooling water to the lubricating oil heat exchanger 66 and a piping system 88b for circulating cooling water to the plate heat exchanger 48, and then the piping systems 88a, 88a, After the 88b merges, it is branched by a piping system 88c that distributes cooling water to the cooling jacket of the low-pressure stage compressor body 46 and a piping system 88d that distributes cooling water to the cooling jacket of the high-pressure stage compressor body 47. The piping systems 88c and 88d are configured to merge. In addition, a cooling fan 89 for inducing cooling air is provided, and the entire compressor is cooled by driving the cooling fan 89.

次に、本実施形態の動作及び作用効果を説明する。
例えば外部の機器等に供給する圧縮空気を生成する場合、電動機44が駆動し、電動機44の回転力が低圧段圧縮機本体46の雄ロータ49に伝達されると、雄ロータ49及び雌ロータ50が非接触かつ無給油で回転駆動する。これと同時に、電動機44の回転力が高圧段圧縮機本体47の雄ロータ53に伝達されて、雄ロータ53及び雌ロータ54が非接触かつ無給油で回転駆動する。これにより、負荷運転時は、吸込みフィルタ68及び吸込み絞り弁69を介し低圧段圧縮機本体46に圧縮用空気を吸い込んで所定の圧力まで圧縮する。このとき、低圧段圧縮機本体46で生成した圧縮空気の温度は例えば約160〜250℃であり、また負荷運転及び無負荷運転が繰り返されると熱による繰り返し応力が発生するものの、これら圧縮空気の温度及び熱による繰り返し応力を考慮しても、プレート式熱交換器48の耐熱温度の許容範囲となる場合がある。このような場合に、低圧段圧縮機本体46からの圧縮空気をプレート式熱交換器48の低圧側熱交換器48aで冷却し、高圧段圧縮機本体47でさらに圧縮する。このとき、高圧段圧縮機本体47で生成した圧縮空気の温度も例えば約160〜250℃であり、圧縮空気の温度及び熱による繰り返し応力を考慮しても、プレート式熱交換器48の耐熱温度の許容範囲となる場合がある。このような場合に、高圧段圧縮機本体47からの圧縮空気をプレート式熱交換器48の高圧側熱交換器48bで冷却し、供給配管75を介し外部の機器等に供給する。
Next, the operation and effect of this embodiment will be described.
For example, when generating compressed air to be supplied to an external device or the like, when the electric motor 44 is driven and the rotational force of the electric motor 44 is transmitted to the male rotor 49 of the low-pressure stage compressor body 46, the male rotor 49 and the female rotor 50. Rotates without contact and without lubrication. At the same time, the rotational force of the electric motor 44 is transmitted to the male rotor 53 of the high-pressure compressor main body 47, and the male rotor 53 and the female rotor 54 are rotationally driven without contact and without lubrication. Thus, during the load operation, the compression air is sucked into the low-pressure stage compressor body 46 through the suction filter 68 and the suction throttle valve 69 and compressed to a predetermined pressure. At this time, the temperature of the compressed air generated in the low-pressure stage compressor body 46 is, for example, about 160 to 250 ° C., and repeated stress due to heat is generated when the load operation and the no-load operation are repeated. Even if the repeated stress due to temperature and heat is taken into account, the allowable temperature limit of the plate heat exchanger 48 may be acceptable. In such a case, the compressed air from the low pressure stage compressor body 46 is cooled by the low pressure side heat exchanger 48 a of the plate heat exchanger 48 and further compressed by the high pressure stage compressor body 47. At this time, the temperature of the compressed air generated in the high-pressure compressor main body 47 is also about 160 to 250 ° C., for example, and the heat resistance temperature of the plate heat exchanger 48 is considered even if the temperature of the compressed air and the repeated stress due to heat are taken into consideration. May be acceptable. In such a case, the compressed air from the high-pressure stage compressor main body 47 is cooled by the high-pressure side heat exchanger 48b of the plate heat exchanger 48 and supplied to an external device or the like via the supply pipe 75.

本実施形態においては、低圧段圧縮機本体46の圧縮空気を冷却する低圧側熱交換器48a、及び高圧段圧縮機本体47の圧縮空気を冷却する高圧側熱交換器48bを一体構成したプレート式熱交換器48を設ける。これにより、従来のようにチューブ式熱交換器を低圧側熱交換器及び高圧熱交換器としてそれぞれ設ける場合に比べ、大幅な小型化を図ることができる。   In the present embodiment, a plate type in which a low-pressure side heat exchanger 48 a that cools the compressed air of the low-pressure stage compressor body 46 and a high-pressure side heat exchanger 48 b that cools the compressed air of the high-pressure stage compressor body 47 are integrally configured. A heat exchanger 48 is provided. Thereby, compared with the case where a tube type heat exchanger is each provided as a low voltage | pressure side heat exchanger and a high voltage | pressure heat exchanger like the past, significant miniaturization can be achieved.

また、プレート式熱交換器48は、低圧側熱交換器48aの冷却流路84aと高圧側熱交換器48bの冷却流路84bを直列接続する。これにより、冷却流路84a,84bを並列接続する場合よりも、冷却水流量を低減しかつ冷却水流速を速くし、ゴミやスケールの付着を防止できる。また、プレート式熱交換器48は、低圧側熱交換器48a及び高圧側熱交換器48bを一体構成とするので、冷却流路48a,48bを接続する配管を削減することができる。また、低圧側熱交換器48aにおける圧縮空気流路83aと冷却流路84a、高圧側熱交換器48bにおける圧縮空気流路83bと冷却流路84bをともに対向流とするため、プレート式熱交換器48の冷却性能が向上し小型化が図れる。   The plate heat exchanger 48 connects the cooling flow path 84a of the low-pressure side heat exchanger 48a and the cooling flow path 84b of the high-pressure side heat exchanger 48b in series. Thereby, compared with the case where the cooling flow paths 84a and 84b are connected in parallel, the flow rate of the cooling water can be reduced and the flow rate of the cooling water can be increased, thereby preventing the attachment of dust and scale. Moreover, since the plate-type heat exchanger 48 is configured integrally with the low-pressure side heat exchanger 48a and the high-pressure side heat exchanger 48b, piping connecting the cooling channels 48a and 48b can be reduced. In addition, since both the compressed air flow path 83a and the cooling flow path 84a in the low pressure side heat exchanger 48a and the compressed air flow path 83b and the cooling flow path 84b in the high pressure side heat exchanger 48b are opposed to each other, the plate heat exchanger The cooling performance of 48 can be improved and the size can be reduced.

本発明の第の実施形態を図により説明する。本実施形態は、二段無給油式スクリュー空気圧縮機においてチューブ式熱交換器及びプレート式熱交換器を設けた実施形態である。 The second embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment in which a tube heat exchanger and a plate heat exchanger are provided in a two-stage oilless screw air compressor.

は、本実施形態による無給油スクリュー空気圧縮機の全体構造を表す模式図である。この図において、上記第の実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。 FIG. 4 is a schematic diagram showing the entire structure of the oil-free screw air compressor according to the present embodiment. In FIG. 4, the same reference numerals are assigned to the first embodiment and like parts of the explanation is suitably omitted.

例えば上記高圧段圧縮機本体47で生成した圧縮空気の温度が上記プレート式熱交換器48の耐熱温度を超えるような場合(詳細には、高圧段圧縮機本体47の圧縮率が高い場合)があるため、本実施形態では、吐出配管74における放気配管77の分岐部より上流側に配設されたチューブ式熱交換器90を備えている。このチューブ式熱交換器90で高圧段圧縮機本体47からの圧縮空気を一次冷却し、上記プレート式熱交換器48の高圧側熱交換器48aに導入されて二次冷却されるようになっている。   For example, there is a case where the temperature of the compressed air generated by the high pressure stage compressor body 47 exceeds the heat resistance temperature of the plate heat exchanger 48 (specifically, when the compression rate of the high pressure stage compressor body 47 is high). Therefore, in this embodiment, the tube-type heat exchanger 90 provided in the upstream of the branch part of the discharge pipe 74 in the discharge pipe 74 is provided. The tube-type heat exchanger 90 primarily cools the compressed air from the high-pressure stage compressor main body 47, and is introduced into the high-pressure side heat exchanger 48a of the plate-type heat exchanger 48 to be secondary-cooled. Yes.

チューブ式熱交換器90は、シェル91内に例えば耐熱・耐蝕性が優れた複数のステンレス製U字管92を複数(図6では便宜上2つのみ図示)設けており、それらU字管92は熱による伸縮を吸収するため耐熱温度が比較的高い構造となっている。そして、U字管92内に高圧段圧縮機本体47からの圧縮空気が流れシェル91内に冷却水が流れて、圧縮空気と冷却水が熱交換することにより圧縮空気が一次冷却されるようになっている。   The tube heat exchanger 90 is provided with a plurality of stainless steel U-shaped tubes 92 (for example, only two are shown in FIG. 6 for convenience) provided in the shell 91, for example, having excellent heat resistance and corrosion resistance. In order to absorb expansion and contraction due to heat, the heat resistant temperature is relatively high. Then, the compressed air from the high-pressure stage compressor body 47 flows in the U-shaped pipe 92 and the cooling water flows in the shell 91, and the compressed air is primarily cooled by heat exchange between the compressed air and the cooling water. It has become.

また、上記潤滑油用熱交換器66、プレート式熱交換器48、チューブ式熱交換器90、低圧段圧縮機本体46の冷却ジャケット、及び高圧段圧縮機本体の47の冷却ジャケットに冷却水を流通する冷却水配管93が設けられている。この冷却水配管93は、まず潤滑油用熱交換器66に冷却水を流通する配管系統93aと、プレート式熱交換器48及びチューブ式熱交換器90の順序で冷却水を流通する配管系統93bとで分岐され、低圧段圧縮機本体46の冷却ジャケットに流通する配管系統93cが前記配管系統93bにおけるチューブ式熱交換器90の下流側に分岐接続され、配管系統93a,93bが合流して高圧段圧縮機本体47の冷却ジャケットに冷却水を流通する配管系統93dが接続され、その後配管系統93c,93dが合流するように構成されている。   Further, cooling water is supplied to the lubricating oil heat exchanger 66, the plate heat exchanger 48, the tube heat exchanger 90, the cooling jacket of the low pressure stage compressor main body 46, and the cooling jacket of the high pressure stage compressor main body 47. A circulating cooling water pipe 93 is provided. The cooling water pipe 93 includes a piping system 93a that distributes the cooling water to the lubricant heat exchanger 66, and a piping system 93b that distributes the cooling water in the order of the plate heat exchanger 48 and the tube heat exchanger 90. Are connected to the downstream side of the tube-type heat exchanger 90 in the piping system 93b, and the piping systems 93a and 93b merge to generate a high pressure. A piping system 93d for circulating cooling water is connected to the cooling jacket of the stage compressor main body 47, and then the piping systems 93c, 93d are joined.

以上のように構成された本実施形態においては、耐熱温度が比較的高いチューブ式熱交換器90で高圧段圧縮機本体47からの圧縮空気を一次冷却し、圧縮空気の温度をプレート式熱交換器48の耐熱温度まで下げてから、プレート式熱交換器48に導入し二次冷却する。このようにチューブ式熱交換器90及びプレート式熱交換器48を併用することにより、従来のチューブ式熱交換器のみを設ける場合に比べ、耐熱性を確保しつつ大幅な小型化を図ることができる。   In the present embodiment configured as described above, the compressed air from the high-pressure compressor main body 47 is primarily cooled by the tube heat exchanger 90 having a relatively high heat resistance temperature, and the temperature of the compressed air is changed to the plate heat exchange. The temperature is lowered to the heat resistant temperature of the vessel 48 and then introduced into the plate heat exchanger 48 for secondary cooling. In this way, by using the tube heat exchanger 90 and the plate heat exchanger 48 in combination, it is possible to significantly reduce the size while ensuring heat resistance as compared with the case where only the conventional tube heat exchanger is provided. it can.

なお、上記第の実施形態においては、高圧段圧縮機本体47からの圧縮空気をチューブ式熱交換器90で一次冷却し、プレート式熱交換器48の高圧側熱交換器48bで二次冷却する構成を例にとって説明したが、これに限られず、例えば低圧段圧縮機本体46からの圧縮空気をチューブ式熱交換器で一次冷却し、プレート式熱交換器48の低圧側熱交換器48aで二次冷却する構成としてもよいし、また例えば低圧段圧縮機本体46及び高圧段圧縮機本体47からの圧縮空気を各チューブ式熱交換器で一次冷却し、プレート式熱交換器48で二次冷却する構成としてもよい。これらの場合も、上記同様の効果を得ることができる。 In the second embodiment, the compressed air from the high pressure stage compressor main body 47 is primarily cooled by the tube heat exchanger 90 and is secondarily cooled by the high pressure side heat exchanger 48 b of the plate heat exchanger 48. However, the present invention is not limited to this. For example, the compressed air from the low-pressure stage compressor main body 46 is primarily cooled by a tube heat exchanger, and the plate-type heat exchanger 48 has a low-pressure side heat exchanger 48a. It is good also as a structure which carries out secondary cooling, for example, compressed air from the low pressure stage compressor main body 46 and the high pressure stage compressor main body 47 is primarily cooled by each tube type heat exchanger, and is secondary by the plate type heat exchanger 48. It is good also as a structure to cool. In these cases, the same effect as described above can be obtained.

また、上記第及び第の実施形態においては、プレート式熱交換器48は、低圧側熱交換器48aにおける圧縮空気流路83aと冷却流路84a、高圧側熱交換器48bにおける圧縮空気流路83bと冷却流路84bをともに対向流とする場合を例にとって説明したが、これに限られない。すなわち、例えば低圧側熱交換器48aにおける圧縮空気流路83aと冷却流路84a、高圧側熱交換器48bにおける圧縮空気流路83bと冷却流路84bのうちいずれか一方又は両方を平行流としてもよい。このような変形例を図により説明する。 Further, in the first and second embodiments, the plate heat exchanger 48 has the compressed air flow path 83a and the cooling flow path 84a in the low pressure side heat exchanger 48a, and the compressed air flow in the high pressure side heat exchanger 48b. Although the case where the channel 83b and the cooling channel 84b are both opposed flows has been described as an example, the present invention is not limited to this. That is, for example, one or both of the compressed air flow path 83a and the cooling flow path 84a in the low pressure side heat exchanger 48a and the compressed air flow path 83b and the cooling flow path 84b in the high pressure side heat exchanger 48b may be parallel flows. Good. Such modification will be described with reference to FIG.

は、本変形例によるプレート式熱交換器の概略構造を表す模式図である。この図において、上記実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。 FIG. 5 is a schematic diagram showing a schematic structure of a plate heat exchanger according to this modification. In FIG. 5 , parts that are the same as in the above embodiment are given the same reference numerals, and descriptions thereof are omitted as appropriate.

本変形例によるプレート式熱交換器48’では、上記実施形態同様、冷却水入口ポートから流入した冷却水が高圧側熱交換器48bの冷却流路84bを上向きに流れ、その後、低圧側熱交換器48aの冷却流路84aを下向きに流れて冷却水出口ポートから流出するようになっている(言い換えれば、高圧側熱交換器48bの冷却流路84bと低圧側熱交換器48aの冷却流路84aは、直列接続されている)。また低圧側熱交換器48a’では、圧縮空気入口ポートから流入した圧縮空気が圧縮空気流路83a’を下向きに流れて圧縮空気出口ポートから流出し、高圧側熱交換器48bでは、圧縮空気入口ポートから流入した圧縮空気が圧縮空気流路83bを下向きに流れて圧縮空気出口ポートから流出するようになっている。すなわち、圧縮空気流路83a’,83bの圧縮空気の流れをともに下向きとするため、低圧側熱交換器48a’における圧縮空気流路83aと冷却流路84aは平行流となり、高圧側熱交換器48bにおける圧縮空気流路83bと冷却流路84bは対向流となっている。   In the plate heat exchanger 48 ′ according to the present modification, the cooling water flowing in from the cooling water inlet port flows upward through the cooling flow path 84b of the high-pressure side heat exchanger 48b, and then the low-pressure side heat exchange, as in the above embodiment. The cooling flow path 84a of the cooler 48a flows downward and flows out of the cooling water outlet port (in other words, the cooling flow path 84b of the high pressure side heat exchanger 48b and the cooling flow path of the low pressure side heat exchanger 48a). 84a is connected in series). In the low pressure side heat exchanger 48a ′, the compressed air flowing in from the compressed air inlet port flows downward in the compressed air flow path 83a ′ and flows out from the compressed air outlet port. In the high pressure side heat exchanger 48b, the compressed air inlet port The compressed air flowing in from the port flows downward in the compressed air flow path 83b and flows out from the compressed air outlet port. That is, since the compressed air flows in the compressed air flow paths 83a ′ and 83b are both directed downward, the compressed air flow path 83a and the cooling flow path 84a in the low pressure side heat exchanger 48a ′ become parallel flows, and the high pressure side heat exchanger The compressed air flow path 83b and the cooling flow path 84b in 48b are counterflows.

このような変形例においては、圧縮空気流路83a’,83bの圧縮空気がともに下方向に流れるため、圧縮空気中に発生したドレンが滞留するのを防止することができる。また、低圧側熱交換器48a’における圧縮空気流路83aと冷却流路84aを平行流とすることにより、冷却能力は低下するものの、ドレンの発生を抑えて高圧段圧縮機本体47に発錆が生じるのを防止することができる。また、低圧側熱交換器48’が若干大きく(言い換えれば、低圧側熱交換器48aを構成するチャンネルプレート80が若干多く)なったとしても、低圧側の圧縮空気のほうがその体積が大きく、圧力損失の影響を低減できるので好ましい。   In such a modification, since the compressed air in the compressed air flow paths 83a 'and 83b flows downward, it is possible to prevent the drain generated in the compressed air from staying. Further, by making the compressed air flow path 83a and the cooling flow path 84a in the low-pressure side heat exchanger 48a 'parallel flow, the cooling capacity is reduced, but the generation of drain is suppressed, and the high pressure stage compressor main body 47 is rusted. Can be prevented from occurring. Even if the low-pressure side heat exchanger 48 'is slightly larger (in other words, the channel plate 80 constituting the low-pressure side heat exchanger 48a is slightly larger), the compressed air on the low-pressure side has a larger volume, This is preferable because the influence of loss can be reduced.

発明の無給油式スクリュー空気圧縮機の第の実施形態の全体構造を表す模式図である。It is a mimetic diagram showing the whole structure of a 1st embodiment of an oil-free screw air compressor of the present invention. 本発明の無給油式スクリュー空気圧縮機の第の実施形態を構成するプレート式熱交換器の概略構造を表す模式図である。It is a schematic diagram showing the schematic structure of the plate type heat exchanger which comprises 1st Embodiment of the oil-free screw air compressor of this invention. 本発明の無給油式スクリュー空気圧縮機の第の実施形態を構成するプレート式熱交換器の構造を一例として表す斜視分解図である。It is a perspective exploded view showing the structure of the plate type heat exchanger which constitutes the 1st embodiment of the oil-free screw air compressor of the present invention as an example. 本発明の無給油式スクリュー空気圧縮機の第の実施形態の全体構造を表す模式図である。It is a schematic diagram showing the whole structure of 2nd Embodiment of the oil-free screw air compressor of this invention. 本発明の無給油式スクリュー空気圧縮機の一変形例を構成するプレート式熱交換器の概略構造を表す模式図である。It is a schematic diagram showing the schematic structure of the plate-type heat exchanger which comprises the modification of the oilless type screw air compressor of this invention.

符号の説明Explanation of symbols

6 低圧段圧縮機本体
47 高圧段圧縮機本体
48 プレート式熱交換器
48a 低圧側熱交換器
48b 高圧側熱交換器
83a 圧縮空気流路(第1の圧縮空気流路)
83b 圧縮空気流路(第2の圧縮空気流路)
84a 第1の冷却流路(第1の冷却流路)
84b 第2の冷却流路(第2の冷却流路)
90 チューブ式熱交換器
4 6 Low pressure stage compressor body 47 High pressure stage compressor body 48 Plate type heat exchanger 48a Low pressure side heat exchanger 48b High pressure side heat exchanger 83a Compressed air flow path (first compressed air flow path)
83b Compressed air flow path (second compressed air flow path)
84a First cooling flow path (first cooling flow path)
84b Second cooling flow path (second cooling flow path)
90 Tube heat exchanger

Claims (5)

無給油状態で空気を圧縮する低圧段圧縮機本体と、
前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、
前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、
前記プレート式熱交換器は、
前記高圧段圧縮機本体の圧縮空気が下方向に流れる第1の圧縮空気流路と、
前記低圧段圧縮機本体の圧縮空気が上方向に流れる第2の圧縮空気流路と、
前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が上方向に流れる第1の冷却流路と、
前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が下方向に流れる第2の冷却流路とを備えたことを特徴とする無給油式スクリュー空気圧縮機。
A low-pressure compressor body that compresses air in an oil-free state;
A high-pressure stage compressor body that further compresses the air compressed by the low-pressure stage compressor body in an oil-free state;
A low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat exchanger that cools the compressed air of the high pressure stage compressor body are integrally configured. An oil-free screw air compressor equipped with a plate heat exchanger,
The plate heat exchanger is
A first compressed air flow path through which the compressed air of the high-pressure stage compressor body flows downward;
A second compressed air flow path through which the compressed air of the low-pressure stage compressor body flows upward;
A first cooling flow path in which a coolant for cooling the compressed air of the high-pressure stage compressor body flows upward;
An oil-free screw comprising: a second cooling flow path that is connected in series to the first cooling flow path and in which a cooling liquid that cools the compressed air of the low-pressure stage compressor body flows downward. air compressor.
無給油状態で空気を圧縮する低圧段圧縮機本体と、
前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、
前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、
前記プレート式熱交換器は、
前記高圧段圧縮機本体の圧縮空気が下方向に流れる第1の圧縮空気流路と、
前記低圧段圧縮機本体の圧縮空気が下方向に流れる第2の圧縮空気流路と、
前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が上方向に流れる第1の冷却流路と、
前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が下方向に流れる第2の冷却流路とを備えたことを特徴とする無給油式スクリュー空気圧縮機。
A low-pressure compressor body that compresses air in an oil-free state;
A high-pressure stage compressor body that further compresses the air compressed by the low-pressure stage compressor body in an oil-free state;
A low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat exchanger that cools the compressed air of the high pressure stage compressor body are integrally configured. An oil-free screw air compressor equipped with a plate heat exchanger,
The plate heat exchanger is
A first compressed air flow path through which the compressed air of the high-pressure stage compressor body flows downward;
A second compressed air passage through which the compressed air of the low-pressure stage compressor body flows downward;
A first cooling flow path in which a coolant for cooling the compressed air of the high-pressure stage compressor body flows upward;
An oil-free screw comprising: a second cooling flow path that is connected in series to the first cooling flow path and in which a cooling liquid that cools the compressed air of the low-pressure stage compressor body flows downward. air compressor.
請求項1又は2記載の無給油式スクリュー空気圧縮機において、前記低圧段圧縮機本体からの圧縮空気及び前記高圧段圧縮機本体からの圧縮空気のうちいずれか一方又は両方を一次冷却して前記プレート式熱交換器へ流出するチューブ式熱交換器を備えたことを特徴とする無給油式スクリュー空気圧縮機。 The oilless screw air compressor according to claim 1 or 2 , wherein either one or both of compressed air from the low-pressure stage compressor body and compressed air from the high-pressure stage compressor body is primarily cooled, and An oil-free screw air compressor comprising a tube heat exchanger that flows out to a plate heat exchanger. 無給油状態で空気を圧縮する低圧段圧縮機本体と、A low-pressure compressor body that compresses air in an oil-free state;
前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、A high-pressure stage compressor body that further compresses the air compressed by the low-pressure stage compressor body in an oil-free state;
前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、  A low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat exchanger that cools the compressed air of the high pressure stage compressor body are integrally configured. An oil-free screw air compressor equipped with a plate heat exchanger,
前記プレート式熱交換器は、The plate heat exchanger is
前記高圧段圧縮機本体の圧縮空気が流れる第1の圧縮空気流路と、A first compressed air passage through which the compressed air of the high-pressure stage compressor body flows;
前記低圧段圧縮機本体の圧縮空気が流れる第2の圧縮空気流路と、A second compressed air flow path through which the compressed air of the low-pressure stage compressor body flows;
前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第1の冷却流路と、A first cooling flow path through which a cooling liquid for cooling the compressed air of the high-pressure stage compressor body flows;
前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第2の冷却流路とを備え、A second cooling channel that is connected in series to the first cooling channel and through which a coolant that cools the compressed air of the low-pressure stage compressor body flows,
前記第1の圧縮空気流路の流れ方向と前記第1の冷却流路の流れ方向とが対向流となるように、かつ前記第2の圧縮空気流路の流れ方向と前記第2の冷却流路の流れ方向とが対向流となるように構成しており、The flow direction of the first compressed air flow path and the flow direction of the first cooling flow path are opposite to each other, and the flow direction of the second compressed air flow path and the second cooling flow are It is configured so that the flow direction of the road is counterflow,
前記低圧段圧縮機本体からの圧縮空気及び前記高圧段圧縮機本体からの圧縮空気のうちいずれか一方又は両方を前記プレート式熱交換器の耐熱温度まで一次冷却して前記プレート式熱交換器へ流出するチューブ式熱交換器を備えたことを特徴とする無給油式スクリュー空気圧縮機。Either or both of the compressed air from the low-pressure stage compressor body and the compressed air from the high-pressure stage compressor body are primarily cooled to the heat resistant temperature of the plate heat exchanger to the plate heat exchanger. An oil-free screw air compressor comprising a tube-type heat exchanger that flows out.
無給油状態で空気を圧縮する低圧段圧縮機本体と、A low-pressure compressor body that compresses air in an oil-free state;
前記低圧段圧縮機本体で圧縮された空気をさらに無給油状態で圧縮する高圧段圧縮機本体と、A high-pressure stage compressor body that further compresses the air compressed by the low-pressure stage compressor body in an oil-free state;
前記低圧段圧縮機本体の圧縮空気を冷却して前記高圧段圧縮機本体へ流出する低圧側熱交換器、及び前記高圧段圧縮機本体の圧縮空気を冷却する高圧側熱交換器を一体構成したプレート式熱交換器とを備えた無給油式スクリュー空気圧縮機であって、A low pressure side heat exchanger that cools the compressed air of the low pressure stage compressor body and flows out to the high pressure stage compressor body, and a high pressure side heat exchanger that cools the compressed air of the high pressure stage compressor body are integrally configured. An oil-free screw air compressor equipped with a plate heat exchanger,
前記プレート式熱交換器は、The plate heat exchanger is
前記高圧段圧縮機本体の圧縮空気が流れる第1の圧縮空気流路と、A first compressed air passage through which the compressed air of the high-pressure stage compressor body flows;
前記低圧段圧縮機本体の圧縮空気が流れる第2の圧縮空気流路と、A second compressed air flow path through which the compressed air of the low-pressure stage compressor body flows;
前記高圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第1の冷却流路と、A first cooling flow path through which a cooling liquid for cooling the compressed air of the high-pressure stage compressor body flows;
前記第1の冷却流路に直列接続され、前記低圧段圧縮機本体の圧縮空気を冷却する冷却液が流れる第2の冷却流路とを備え、A second cooling channel that is connected in series to the first cooling channel and through which a coolant that cools the compressed air of the low-pressure stage compressor body flows,
前記第2の圧縮空気流路の流れ方向と前記第2の冷却流路の流れ方向とが平行流となるように構成しており、The flow direction of the second compressed air flow path and the flow direction of the second cooling flow path are configured to be parallel flows,
前記低圧段圧縮機本体からの圧縮空気及び前記高圧段圧縮機本体からの圧縮空気のうちいずれか一方又は両方を前記プレート式熱交換器の耐熱温度まで一次冷却して前記プレート式熱交換器へ流出するチューブ式熱交換器を備えたことを特徴とする無給油式スクリュー空気圧縮機。Either or both of the compressed air from the low-pressure stage compressor body and the compressed air from the high-pressure stage compressor body are primarily cooled to the heat resistant temperature of the plate heat exchanger to the plate heat exchanger. An oil-free screw air compressor comprising a tube-type heat exchanger that flows out.
JP2005063551A 2005-03-08 2005-03-08 Oil-free screw air compressor Active JP4685474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063551A JP4685474B2 (en) 2005-03-08 2005-03-08 Oil-free screw air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063551A JP4685474B2 (en) 2005-03-08 2005-03-08 Oil-free screw air compressor

Publications (2)

Publication Number Publication Date
JP2006249934A JP2006249934A (en) 2006-09-21
JP4685474B2 true JP4685474B2 (en) 2011-05-18

Family

ID=37090702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063551A Active JP4685474B2 (en) 2005-03-08 2005-03-08 Oil-free screw air compressor

Country Status (1)

Country Link
JP (1) JP4685474B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110882B2 (en) 2007-01-05 2012-12-26 株式会社日立産機システム Oil-free screw compressor
JP4991408B2 (en) 2007-06-19 2012-08-01 株式会社日立産機システム Water-cooled air compressor
JP4885077B2 (en) 2007-07-03 2012-02-29 株式会社日立産機システム Oil-free screw compressor
JP4717048B2 (en) * 2007-10-26 2011-07-06 株式会社神戸製鋼所 Screw compressor
JP5706681B2 (en) * 2010-12-24 2015-04-22 株式会社日立産機システム Multistage compressor
JP5568591B2 (en) * 2012-05-11 2014-08-06 株式会社日立産機システム Oil-free screw compressor
CN105673498A (en) * 2016-04-01 2016-06-15 浙江开山凯文螺杆机械有限公司 Screw compressor with normally-open intake valve, and start method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115973U (en) * 1981-12-27 1982-07-17
JPS6126983U (en) * 1984-07-25 1986-02-18 株式会社日立製作所 Pre-cooler for single-stage oilless rotary compressor
JPH0391695A (en) * 1989-08-31 1991-04-17 Hisaka Works Ltd Plate type heat exchanger
JP2002130172A (en) * 2000-10-25 2002-05-09 Hitachi Ltd Water-cooled oil-free screw compressor
JP2003106782A (en) * 2001-09-28 2003-04-09 Hisaka Works Ltd Welded plate type heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115973U (en) * 1981-12-27 1982-07-17
JPS6126983U (en) * 1984-07-25 1986-02-18 株式会社日立製作所 Pre-cooler for single-stage oilless rotary compressor
JPH0391695A (en) * 1989-08-31 1991-04-17 Hisaka Works Ltd Plate type heat exchanger
JP2002130172A (en) * 2000-10-25 2002-05-09 Hitachi Ltd Water-cooled oil-free screw compressor
JP2003106782A (en) * 2001-09-28 2003-04-09 Hisaka Works Ltd Welded plate type heat exchanger

Also Published As

Publication number Publication date
JP2006249934A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP5110882B2 (en) Oil-free screw compressor
JP4685474B2 (en) Oil-free screw air compressor
US20100303658A1 (en) Water-Cooled Oil-Free Air Compressor
JP2013083371A (en) Screw compressor
JP5774455B2 (en) Oil-free compressor
EP3372835B1 (en) Compressor module for compressing gas and compressor equipped therewith
JP2007332826A (en) Centrifugal compressor
JP5014880B2 (en) Single screw multistage compressor and refrigeration / cooling system using the same
JP5568591B2 (en) Oil-free screw compressor
JP3457165B2 (en) Air-cooled two-stage oil-free screw compressor
JP6125375B2 (en) Screw compressor
JP6051271B2 (en) Oil-free screw compressor
CN110382863B (en) Compressor module for compressing a gas and compressor equipped with said compressor module
JP6607960B2 (en) Gas compressor
JP5802161B2 (en) Screw compressor
JP2019526009A (en) Geared turbomachine
CN216922491U (en) Water-cooled type screw vacuum pump
JP7267798B2 (en) Compressor and shell-and-tube heat exchanger
JP4038330B2 (en) Water-cooled oil-free screw compressor
JP6002485B2 (en) Multistage centrifugal compressor
JPH07217580A (en) Two-stage oilless screw compressor
JPH06159280A (en) Cooling type two-stage oil-feedless type screw compressor
JPH01116297A (en) Air cooled oil free rotary compressor
CN218991975U (en) A kind of compressor
CN212643048U (en) Two-stage compression screw type air compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150