JP4683681B2 - Polishing liquid for metal and substrate polishing method using the same - Google Patents

Polishing liquid for metal and substrate polishing method using the same Download PDF

Info

Publication number
JP4683681B2
JP4683681B2 JP30866699A JP30866699A JP4683681B2 JP 4683681 B2 JP4683681 B2 JP 4683681B2 JP 30866699 A JP30866699 A JP 30866699A JP 30866699 A JP30866699 A JP 30866699A JP 4683681 B2 JP4683681 B2 JP 4683681B2
Authority
JP
Japan
Prior art keywords
polishing
acid
metal
tantalum
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30866699A
Other languages
Japanese (ja)
Other versions
JP2001127020A (en
Inventor
靖 倉田
康雄 上方
剛 内田
裕樹 寺崎
明子 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP30866699A priority Critical patent/JP4683681B2/en
Publication of JP2001127020A publication Critical patent/JP2001127020A/en
Application granted granted Critical
Publication of JP4683681B2 publication Critical patent/JP4683681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、特に半導体デバイスの配線形成工程の研磨に使用される金属用研磨液及びそれを用いた基板の研磨方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路(以下LSIと記す)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下CMPと記す)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、例えば米国特許第4944836号公報に開示されている。
【0003】
また、最近はLSIを高性能化するために、配線材料として銅または銅合金の利用が試みられている。しかし、銅または銅合金は従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅或いは銅合金薄膜を堆積して埋め込み、溝部以外の銅或いは銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、例えば特開平2−278822号公報に開示されている。
【0004】
銅または銅合金等の金属CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用研磨液で浸し、基板の金属膜を形成した面を押し付けて、その裏面から所定の圧力(以下研磨圧力と記す)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。
CMPに用いられる金属用研磨液は、一般には酸化剤及び砥粒からなっており必要に応じてさらに酸化金属溶解剤、保護膜形成剤が添加される。まず酸化剤によって金属膜表面を酸化し、その酸化層を砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属表面の酸化層は研磨パッドにあまり触れず、砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基板表面は平坦化される。この詳細についてはジャ−ナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society)の第138巻11号(1991年発行)の3460〜3464頁に開示されている。
【0005】
CMPによる研磨速度を高める方法として酸化金属溶解剤を添加することが有効とされている。砥粒によって削り取られた金属酸化物の粒を研磨液に溶解(以下エッチングと記す)させてしまうと砥粒による削り取りの効果が増すためであるためと解釈できる。酸化金属溶解剤の添加によりCMPによる研磨速度は向上するが、一方、凹部の金属膜表面の酸化層もエッチング(溶解)されて金属膜表面が露出すると、酸化剤によって金属膜表面がさらに酸化され、これが繰り返されると凹部の金属膜のエッチングが進行してしまう。このため研磨後に埋め込まれた金属配線の表面中央部分が皿のように窪む現象(以下ディシングと記す)が発生し、平坦化効果が損なわれる。
【0006】
これを防ぐためにさらに保護膜形成剤が添加される。保護膜形成剤は金属膜表面の酸化層上に保護膜を形成し、酸化層の研磨液中への溶解を防止するものである。この保護膜は砥粒により容易に削り取ることが可能で、CMPによる研磨速度を低下させないことが望まれる。
銅または銅合金のディッシングや研磨中の腐食を抑制し、信頼性の高いLSI配線を形成するために、グリシン等のアミノ酢酸又はアミド硫酸からなる酸化金属溶解剤及び保護膜形成剤としてBTAを含有する金属用研磨液を用いる方法が提唱されている。この技術は、例えば特開平8−83780号公報に記載されている。
【0007】
銅または銅合金のダマシン配線形成やタングステン等のプラグ配線形成等の金属埋め込み形成においては、埋め込み部分以外に形成される層間絶縁膜である二酸化シリコン膜の研磨速度も大きい場合には、層間絶縁膜ごと配線の厚みが薄くなるシニングが発生する。その結果、配線抵抗の増加やパターン密度等により抵抗のばらつきが生じるために、研磨される金属膜に対して二酸化シリコン膜の研磨速度が十分小さい特性が要求される。そこで、酸の解離により生ずる陰イオンにより二酸化シリコンの研磨速度を抑制することにより、研磨液のpHをpKa−0.5よりも大きくする方法が提唱されている。この技術は、例えば特許第2819196号公報に記載されている。
【0008】
一方、配線の銅または銅合金等の下層には、層間絶縁膜中への銅拡散防止のためにバリア層として、タンタル、タンタル合金、窒化タンタル、その他のタンタル化合物等が形成される。したがって、銅または銅合金を埋め込む配線部分以外では、露出したバリア層をCMPにより取り除く必要がある。しかし、これらのバリア層導体は、銅または銅合金に比べ硬度が高いために、銅または銅合金用の研磨材料の組み合わせでは十分な研磨速度が得られない場合が多い。そこで、銅または銅合金を研磨する第1工程と、バリア層導体を研磨する第2工程からなる2段研磨方法が検討されている。
【0009】
第2工程であるバリア層のCMPでは、銅または銅合金埋め込み配線部のディシングを防止する必要があり、銅または銅合金の研磨速度及びエッチング速度を抑制するために、研磨液のpHを小さくすることはマイナス効果であると考えられていた。
【0010】
【発明が解決しようとする課題】
バリア層として用いられるタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物は、化学的に安定でエッチングが難しく、硬度が高いために機械的な研磨も銅及び銅合金ほど容易ではない。そこで、砥粒の硬度を上げた場合には、銅または銅合金に研磨キズが発生して電気特性不良の原因になったり、砥粒の粒子濃度を高くした場合には、二酸化シリコン膜の研磨速度が大きくなってしまいシニングが発生するという問題があった。
本発明は、銅または銅合金配線のディシング、シニング及び研磨キズ発生を抑制し、低砥粒濃度においてバリア層の高い研磨速度を実現し、信頼性の高い金属膜の埋め込みパタ−ン形成を可能とする金属用研磨液及びそれを用いた基板の研磨方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明者等は、バリア層導体として用いられるタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物の研磨速度が低砥粒濃度で極大を持ち、濃度が高すぎるとかえって低下することを見いだした。また、この現象は、低pH領域かつ低酸化剤濃度領域でタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物を研磨する際に顕著である。
本発明は、銅または銅合金配線のディシング、シニング及び研磨キズ発生を抑制し、低砥粒濃度においてバリア層の高い研磨速度を実現し、信頼性の高い金属膜の埋め込みパタ−ン形成を可能とするもので、(1)砥粒、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有する研磨液であり、砥粒濃度が0.05〜3.0重量%であることを特徴とする金属用研磨液である。
また、(2)砥粒は、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニアより選ばれた少なくとも1種である上記(1)に記載の金属用研磨液であることが好ましい。さらに、(3)砥粒が、コロイダルシリカまたはコロイダルアルミナである上記(1)または(2)の金属用研磨液であると好ましい。コロイダルシリカは、シリコンアルコキシドの加水分解により製造したものが好ましいが、珪酸ナトリウムを原料として製造したものも使用できる。平均粒径が、50nm以下であることが好ましい。
(4)金属用研磨液のpHは3以下、かつ酸化剤の濃度が0.01〜3重量%であることが好ましい。
(5)金属用研磨液には、さらに、水溶性高分子を含有することが好ましく、(6)水溶性高分子は、ポリアクリル酸またはその塩、ポリメタクリル酸またはその塩、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリアミド酸またはその塩からなる群から選ばれた少なくとも1種が好ましい。(7)その場合の導体の酸化剤の濃度は、0.01〜1.5重量%であることが好ましい。
(8)酸は、有機酸であることが好ましく、(9)マロン酸、リンゴ酸、酒石酸、グリコール酸及びクエン酸から選ばれた少なくとも1種であることがより好ましい。
(10)保護膜形成剤は、従来から広く用いられてきたベンゾトリアゾール(BTA)またはその誘導体から選ばれた少なくとも一種(BTA類)を用いることが好ましい。
(11)導体の酸化剤は、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水より選ばれた少なくとも1種であることが好ましい。
(12)導体は、銅、銅合金またはそれらの酸化物のバリア層であり、(13)バリア層は、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物であると好ましい。
【0012】
本発明の研磨方法は、(14)金属用研磨液を研磨定盤上の研磨パッドに供給し、被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨する研磨方法において、上記(1)〜(13)のいずれかの金属用研磨液を用いて、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物からなるバリア層を研磨する基板の研磨方法である。
また、本発明の研磨方法は、上記(1)〜(13)のいずれかの金属用研磨液を用いて、銅または銅合金とそのバリア層を含む面を研磨する基板の研磨方法である。
【0013】
本発明では、砥粒濃度が0.05〜3重量%の砥粒を含有し、研磨液を低pH領域、かつ、低酸化剤濃度領域にすることにより、銅または銅合金配線のディシングとシニング及び研磨キズ発生を抑制し、低砥粒濃度においてバリア層の高い研磨速度を実現する金属用研磨液とそれを用いた研磨方法を提供する。
バリア層を研磨する方法として、前記したように砥粒の硬度を上げた場合には、銅または銅合金に研磨キズが発生して電気特性不良の原因になったり、砥粒の粒子濃度を高くした場合には、二酸化シリコン膜の研磨速度が大きくなりシニングが発生してしまうという問題があった。
本発明者らは、バリア層として用いられるタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物の研磨が、低pH領域、低酸化剤濃度領域で容易に進行することを見出した。また、これらの研磨速度が最大になる砥粒濃度が、低濃度領域に存在することを見出した。このような研磨液を用いた場合は、酸化剤濃度が十分低い領域であるために、一般に低pH領域で問題になる銅または銅合金のエッチング速度の増加による配線のディシングも問題とならず、砥粒濃度が低いためにエロージョンも少ないことがわかった。
【0014】
【発明の実施の形態】
本発明においては、表面に二酸化シリコンの凹部を有する基板上にバリア層及び銅或いは銅合金を含む金属膜を形成・充填する。この基板をまず銅或いは銅合金/バリア層の研磨速度比が十分大きい銅及び銅合金用の研磨液を用いてCMPすると、基板の凸部のバリア層が表面に露出し、凹部に銅或いは銅合金膜が残された所望の導体パタ−ンが得られる。本発明の金属用研磨液は、砥粒、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有する研磨液であり、砥粒濃度が0.05〜3重量%である。また、pHが3以下、かつ、導体の酸化剤の濃度が0.01〜3重量%になるように調整することが好ましい。必要に応じて、水溶性高分子を添加してもよい。
本発明における金属用研磨液の砥粒濃度は、全重量に対して0.05重量%から3重量%であり、0.1〜1重量%の範囲であることがより好ましい。この配合量が0.05%未満では砥粒を入れる効果が少なく、3重量%を超えるとバリア層の研磨速度が逆に減少する傾向が見られるようになる。
【0015】
金属用研磨液のpHは、3を超えて大きいとタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物の研磨速度が小さい。pHは、酸の添加量により調整することができる。またアンモニア、水酸化ナトリウム、テトラメチルアンモニウムハイドライド等のアルカリ成分の添加によっても調整可能である。
【0016】
一方、本発明における金属用研磨液は、導体の酸化剤の濃度が0.15重量%付近でタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物の研磨速度が極大になる。酸化剤によりタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物等の導体膜表面に、機械的に研磨されやすい一次酸化層が形成され、高い研磨速度が得られる。一般にpHが3より小さい場合には、銅または銅合金膜のエッチング速度が大きく、保護膜形成剤でのエッチング抑制は困難である。しかし、本発明では、酸化剤の濃度が十分低いため、保護膜形成剤によるエッチング抑制が可能である。酸化剤の濃度が3重量%を超えて大きいと、銅または銅合金のエッチング速度が大きくなりディシング等が発生し易くなるだけでなく、タンタル、タンタル合金、窒化タンタル、その他のタンタル化合物等の導体膜表面に、一次酸化層よりも研磨されにくい二次酸化層が形成されるために研磨速度が低下する。酸化剤の濃度が0.01重量%未満であると、酸化層が充分形成されないために研磨速度が小さくなり、タンタル膜の剥離等が発生することもある。
【0017】
本発明における金属用研磨液の導体の酸化剤は、水溶性高分子を含有する場合には、濃度が0.01〜1.5重量%である。水溶性高分子は、タンタル、タンタル合金、窒化タンタル、その他のタンタル化合物、或いはその酸化膜表面に吸着するために、高い研磨速度が得られる酸化剤濃度範囲が小さくなる。また、水溶性高分子は、特に窒化タンタル膜、窒化チタン等の窒化化合物膜の表面に吸着し易いために、窒化タンタル膜、窒化チタン等の窒化化合物膜の研磨速度が小さくなる。一方、水溶性高分子は、金属の表面保護膜形成効果を持ち、ディシングやシニング等の平坦化特性を向上させる。
【0018】
本発明における導体の酸化剤としては、過酸化水素(H22)、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。基板が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染は望ましくないので、不揮発成分を含まない酸化剤が望ましい。但し、オゾン水は組成の時間変化が激しいので過酸化水素が最も適している。但し、適用対象の基板が半導体素子を含まないガラス基板などである場合は不揮発成分を含む酸化剤であっても差し支えない。
【0019】
本発明において用いる酸としては、有機酸が好ましく、ギ酸、酢酸、プロピオン酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等、及びこれらの有機酸のアンモニウム塩等の塩、硫酸、硝酸、アンモニア、アンモニウム塩類、例えば過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、クロム酸等又はそれらの混合物等が上げられる。これらの中では、実用的なCMP研磨速度が得られるという点でマロン酸、リンゴ酸、酒石酸、グリコール酸及びクエン酸が好ましい。
【0020】
本発明における保護膜形成剤は、ベンゾトリアゾール(BTA)、BTA誘導体、例えばBTAのベンゼン環の一つの水素原子をメチル基で置換したものトリルトリアゾールもしくはカルボキシル基等で置換したものベンゾトリアゾール−4−カルボン酸、そのメチル、エチル、プロピル、ブチル及びオクチルエステル、またはナフトトリアゾ−ル、ナフトトリアゾ−ル誘導体またはこれらを含む混合物の中から選ばれる。
【0021】
本発明において用いる水溶性高分子としては、以下の群から選ばれたものが好適である。ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアクリルアミド等のカルボキシル基を持つモノマーを基本構成単位とするポリマーまたはその塩、ポリビニルアルコール、ポリビニルピロリドン等のビニル基を持つモノマーを基本構成単位とするポリマーが挙げられる。但し、適用する基板が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基板がガラス基板等である場合はその限りではない。これらの水溶性高分子を添加することにより、保護膜形成剤によるエッチング抑止効果によりディシング特性を向上させることができる。
【0022】
本発明の金属用研磨液の砥粒としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒のいずれでもよいが、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数の少ない、平均粒径が50nm以下のコロイダルシリカ、コロイダルアルミナが好ましい。平均粒径は、バリア層の研磨速度がより大きくなり、二酸化シリコンの研磨速度がより小さくなる30nm以下がより好ましく、20nm以下が特に好ましい。コロイダルシリカはシリコンアルコキシドの加水分解または珪酸ナトリウムのイオン交換による製造方法が知られており、コロイダルアルミナは硝酸アルミニウムの加水分解による製造方法が知られている。
【0023】
本発明を適用する導体膜としては、銅または銅合金のバリア層であり、タンタル、タンタル合金、窒化タンタル、その他のタンタル化合物からなることが好ましい。。
【0024】
本発明における用いる酸の配合量は、導体の酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して、0.0001〜0.05molとすることが好ましく、0.001〜0.01molとすることがより好ましい。この配合量が0.05molを超えると、銅または銅合金のエッチングが増加する傾向がある。
【0025】
本発明において用いる保護膜形成剤の配合量は、導体の酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して、0.0001〜0.01molとすることが好ましく、0.0005〜0.005molとすることがより好ましい。この配合量が0.0001mol未満では、銅または銅合金のエッチングが増加する傾向があり、0.01molを超えても効果に変わりがない。
【0026】
本発明では水溶性高分子を添加することもでき、水溶性高分子の配合量は、導体の酸化剤、酸、保護膜形成剤、水溶性高分子及び水の総量100gに対して、0.001〜0.5重量%とすることが好ましく、0.01〜0.2重量%とすることがより好ましい。この配合量が0.001重量%未満では、エッチング抑制において保護膜形成剤との併用効果が現れない傾向があり、0.5重量%を超えると、CMPによる研磨速度が低下する傾向がある。
【0027】
【実施例】
以下、実施例により本発明を具体的に説明する。本発明はこれらの実施例により制限されるものではない。
【0028】
(実施例1〜3、比較例1)
(金属用研磨液の作製方法)
酸0.4重量%、保護膜形成剤としてベンゾトリアゾール(BTA)0.2重量%に水を加えて溶解し、導体の酸化剤として過酸化水素水(試薬特級、30%水溶液)を0.5重量%加えて得られたものを金属用研磨液とした。砥粒は、テトラエトキシシランのアンモニア溶液中での加水分解により作製した平均粒径30nmのコロイダルシリカを0.1〜5重量%添加し、それに合わせて水を98.8〜93.9重量%とした。使用したグリコール酸のpKaは、3.7である。
実施例1〜3、比較例1では、表1に砥粒濃度の上記金属用研磨液を用いてCMPした。

Figure 0004683681
(研磨品評価項目)
CMPによる研磨速度:膜のCMP前後での膜厚差を電気抵抗値から換算して求めた。
エッチング速度:25℃、100rpmで攪拌した金属用研磨液への浸漬前後の銅層厚差を電気抵抗値から換算して求めた。
ディシング量:二酸化シリコン中に深さ0.5μmの溝を形成して、公知のスパッタ法によってバリア層として厚さ50nmの窒化タンタル膜を形成し、同様にスパッタ法により銅膜を形成して公知の熱処理によって埋め込んだシリコン基板を基板として用いて2段研磨を行い、触針式段差計で配線金属部幅100μm、絶縁膜部幅100μmが交互に並んだストライプ状パターン部の表面形状から、絶縁膜部に対する配線金属部の膜減り量を求めた。銅用の1段目研磨液としては、窒化タンタルに対する銅の研磨速度比が十分大きい銅及び銅合金用の研磨液を使用して研磨した。1段研磨後に、絶縁膜部上にバリア層が露出した状態で測定したディシング量が、50nmになるように基板サンプルを作製し、絶縁膜部でバリア層がなくなるまで上記金属用研磨液を用いて2段研磨した。
シニング量:上記ディシング量評価用基板に形成された配線金属部幅45μm、絶縁膜部幅5μmが交互に並んだ総幅2.5mmのストライプ状パターン部の表面形状を触針式段差計により測定し、ストライプ状パターン周辺の絶縁膜フィールド部に対するパターン中央付近の絶縁膜部の膜減り量を求めた。1段研磨後に、絶縁膜部上にバリア層が露出した状態で測定したシニング量が、20nmになるように基板サンプルを作製し、絶縁膜部でバリア層がなくなるまで上記金属用研磨液を用いて2段研磨した。
実施例1〜3、比較例1における、CMPによる研磨速度を表1に示した。また、ディシング量及びシニング量を表2に示した。
【0029】
【表1】
Figure 0004683681
【0030】
【表2】
Figure 0004683681
【0031】
実施例1〜3では、バリア層導体であるタンタル、窒化タンタル膜の研磨速度が大きく、二酸化シリコン膜の研磨速度が比較的小さいので、良好なディシング及びシニング特性が得られる。それに対し、比較例1では、バリア層膜(特のタンタル膜)の研磨速度が小さく、二酸化シリコン膜の研磨速度がかなり大きくなるためにディシング及びシニング特性が悪化した。
【0032】
【発明の効果】
本発明の金属用研磨液は、砥粒濃度を0.05〜3重量%にしたので、バリア層として用いられるタンタル、タンタル合金、窒化タンタル、その他のタンタル化合物の研磨を可能にし、かつ、銅または銅合金配線のディシング、シニング、研磨キズ発生を抑制し、信頼性の高い金属膜の埋め込みパタ−ン形成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a metal polishing liquid used for polishing a wiring formation process of a semiconductor device and a substrate polishing method using the same.
[0002]
[Prior art]
In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (hereinafter referred to as LSIs). The chemical mechanical polishing (hereinafter referred to as CMP) method is one of them, and is a technique frequently used in the LSI manufacturing process, particularly in the multilayer wiring formation process, planarization of the interlayer insulating film, metal plug formation, and buried wiring formation. . This technique is disclosed in, for example, US Pat. No. 4,944,836.
[0003]
Recently, in order to improve the performance of LSIs, the use of copper or copper alloys as wiring materials has been attempted. However, it is difficult to finely process copper or a copper alloy by a dry etching method frequently used in the formation of a conventional aluminum alloy wiring. Therefore, a so-called damascene method is mainly used in which a copper or copper alloy thin film is deposited and embedded on an insulating film in which a groove is formed in advance, and the copper or copper alloy thin film other than the groove is removed by CMP to form a buried wiring. It has been adopted. This technique is disclosed, for example, in JP-A-2-278822.
[0004]
A general method of metal CMP such as copper or copper alloy is a surface on which a polishing pad is pasted on a circular polishing platen (platen), the surface of the polishing pad is immersed in a metal polishing liquid, and a metal film of a substrate is formed. Is pressed and a polishing surface plate is rotated with a predetermined pressure (hereinafter referred to as polishing pressure) applied from the back surface, and the metal film on the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film. Is.
The metal polishing liquid used in CMP is generally composed of an oxidizing agent and abrasive grains, and a metal oxide dissolving agent and a protective film forming agent are further added as necessary. First, it is considered that the basic mechanism is to oxidize the surface of a metal film with an oxidizing agent and scrape the oxidized layer with abrasive grains. Since the oxide layer on the metal surface of the recess does not touch the polishing pad so much and the effect of scraping off by the abrasive grains does not reach, the metal layer of the projection is removed and the substrate surface is flattened with the progress of CMP. The details are disclosed in Journal of Electrochemical Society, Vol. 138, No. 11 (published in 1991), pages 3460 to 3464.
[0005]
As a method for increasing the polishing rate by CMP, it is effective to add a metal oxide dissolving agent. It can be interpreted that if the metal oxide particles scraped by the abrasive grains are dissolved in the polishing liquid (hereinafter referred to as etching), the effect of scraping by the abrasive grains is increased. Although the polishing rate by CMP is improved by adding a metal oxide solubilizer, on the other hand, when the oxide layer on the metal film surface in the recess is also etched (dissolved) and the metal film surface is exposed, the metal film surface is further oxidized by the oxidant. If this is repeated, etching of the metal film in the recesses proceeds. For this reason, a phenomenon occurs in which the central portion of the surface of the metal wiring embedded after polishing is depressed like a dish (hereinafter referred to as “dicing”), and the planarization effect is impaired.
[0006]
In order to prevent this, a protective film forming agent is further added. The protective film forming agent forms a protective film on the oxide layer on the surface of the metal film and prevents dissolution of the oxide layer in the polishing liquid. This protective film can be easily scraped off by abrasive grains, and it is desirable not to reduce the polishing rate by CMP.
In order to suppress corrosion during dishing or polishing of copper or copper alloy, and to form a highly reliable LSI wiring, it contains BTA as a protective film forming agent and a metal oxide solubilizer composed of aminoacetic acid or amide sulfuric acid such as glycine A method using a metal polishing liquid is proposed. This technique is described in, for example, JP-A-8-83780.
[0007]
In metal embedding formation such as damascene wiring formation of copper or copper alloy or plug wiring formation of tungsten, etc., when the polishing rate of the silicon dioxide film that is an interlayer insulating film formed other than the embedded portion is high, the interlayer insulating film Thinning in which the thickness of each wiring is reduced occurs. As a result, resistance variation occurs due to an increase in wiring resistance, pattern density, and the like, so that a characteristic in which the polishing rate of the silicon dioxide film is sufficiently small with respect to the metal film to be polished is required. Accordingly, a method has been proposed in which the polishing rate of silicon dioxide is suppressed by anions generated by acid dissociation so that the polishing solution has a pH higher than pKa-0.5. This technique is described in, for example, Japanese Patent No. 2819196.
[0008]
On the other hand, tantalum, a tantalum alloy, tantalum nitride, other tantalum compounds, and the like are formed as a barrier layer to prevent copper diffusion into the interlayer insulating film in a lower layer such as copper or copper alloy of the wiring. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion in which copper or a copper alloy is embedded. However, since these barrier layer conductors have higher hardness than copper or copper alloys, a combination of polishing materials for copper or copper alloys cannot often provide a sufficient polishing rate. In view of this, a two-step polishing method comprising a first step of polishing copper or a copper alloy and a second step of polishing a barrier layer conductor has been studied.
[0009]
In the second step, CMP of the barrier layer, it is necessary to prevent the copper or copper alloy embedded wiring portion from being diced, and the pH of the polishing liquid is reduced in order to suppress the polishing rate and etching rate of copper or copper alloy. That was considered a negative effect.
[0010]
[Problems to be solved by the invention]
Tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds used as the barrier layer are chemically stable and difficult to etch, and have high hardness, so mechanical polishing is not as easy as copper and copper alloys. Therefore, if the hardness of the abrasive grains is increased, polishing scratches may occur in the copper or copper alloy, resulting in poor electrical characteristics, or if the abrasive grain concentration is increased, the silicon dioxide film is polished. There was a problem that the speed increased and thinning occurred.
The present invention suppresses the occurrence of dishing, thinning and polishing flaws in copper or copper alloy wiring, realizes a high polishing rate of the barrier layer at a low abrasive concentration, and enables the formation of a highly reliable metal film embedded pattern And a polishing method for a substrate using the same.
[0011]
[Means for Solving the Problems]
The present inventors have found that the polishing rate of tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds used as the barrier layer conductor has a maximum at a low abrasive concentration, and decreases when the concentration is too high. This phenomenon is remarkable when tantalum, a tantalum alloy, tantalum nitride, and other tantalum compounds are polished in a low pH region and a low oxidizing agent concentration region.
The present invention suppresses the occurrence of dishing, thinning and polishing flaws in copper or copper alloy wiring, realizes a high polishing rate of the barrier layer at a low abrasive concentration, and enables the formation of a highly reliable metal film embedded pattern (1) A polishing liquid containing abrasive grains, a conductor oxidizing agent, a protective film forming agent for metal surfaces, an acid and water, and an abrasive concentration of 0.05 to 3.0% by weight. This is a metal-polishing liquid.
Further, (2) the abrasive is preferably the metal polishing liquid according to the above (1), which is at least one selected from silica, alumina, ceria, titania, zirconia, and germania. Furthermore, it is preferable that (3) the abrasive is the metal polishing slurry according to (1) or (2) above, which is colloidal silica or colloidal alumina. The colloidal silica is preferably one produced by hydrolysis of silicon alkoxide, but one produced using sodium silicate as a raw material can also be used. The average particle size is preferably 50 nm or less.
(4) It is preferable that the pH of the metal polishing liquid is 3 or less and the concentration of the oxidizing agent is 0.01 to 3% by weight.
(5) It is preferable that the metal polishing liquid further contains a water-soluble polymer. (6) The water-soluble polymer includes polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polyacrylamide, and polyvinyl. At least one selected from the group consisting of alcohol, polyvinyl pyrrolidone, polyamic acid or a salt thereof is preferable. (7) It is preferable that the density | concentration of the oxidizing agent of the conductor in that case is 0.01 to 1.5 weight%.
(8) The acid is preferably an organic acid, and (9) more preferably at least one selected from malonic acid, malic acid, tartaric acid, glycolic acid and citric acid.
(10) As the protective film forming agent, it is preferable to use at least one kind (BTAs) selected from benzotriazole (BTA) or a derivative thereof widely used conventionally.
(11) The conductor oxidizing agent is preferably at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, and ozone water.
(12) The conductor is preferably a barrier layer of copper, a copper alloy, or an oxide thereof. (13) The barrier layer is preferably tantalum, tantalum nitride, a tantalum alloy, or other tantalum compounds.
[0012]
The polishing method of the present invention is (14) a polishing method in which a metal-polishing liquid is supplied to a polishing pad on a polishing platen and brought into contact with the surface to be polished, and the surface to be polished and the polishing pad are moved relative to each other for polishing. A method for polishing a substrate, comprising polishing a barrier layer made of tantalum, tantalum nitride, a tantalum alloy, and other tantalum compounds using the metal polishing liquid according to any one of (1) to (13) above.
In addition, the polishing method of the present invention is a method for polishing a substrate that polishes a surface containing copper or a copper alloy and its barrier layer using the metal polishing liquid according to any one of the above (1) to (13).
[0013]
In the present invention, it contains abrasive grains having an abrasive concentration of 0.05 to 3% by weight, and the polishing liquid is made to have a low pH region and a low oxidant concentration region, whereby copper or copper alloy wiring is diced and thinned. A metal polishing liquid that suppresses generation of polishing scratches and realizes a high polishing rate of the barrier layer at a low abrasive concentration and a polishing method using the same.
As a method of polishing the barrier layer, when the hardness of the abrasive grains is increased as described above, polishing scratches occur in the copper or copper alloy, resulting in poor electrical characteristics, or a high grain concentration of the abrasive grains. In such a case, there has been a problem that the polishing rate of the silicon dioxide film increases and thinning occurs.
The present inventors have found that polishing of tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds used as the barrier layer easily proceeds in a low pH region and a low oxidizing agent concentration region. Further, it has been found that the abrasive concentration at which the polishing rate is maximized exists in the low concentration region. When such a polishing liquid is used, since the oxidant concentration is a sufficiently low region, wiring dicing due to an increase in the etching rate of copper or copper alloy, which is generally a problem in a low pH region, does not become a problem. It was found that the erosion was small due to the low abrasive concentration.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a metal film containing a barrier layer and copper or copper alloy is formed and filled on a substrate having a silicon dioxide recess on the surface. When this substrate is first CMPed using a polishing solution for copper and copper alloy having a sufficiently high polishing rate ratio of copper or copper alloy / barrier layer, the barrier layer on the convex portion of the substrate is exposed on the surface, and the copper or copper in the concave portion is exposed. A desired conductor pattern in which the alloy film remains is obtained. The metal-polishing liquid of the present invention is a polishing liquid containing abrasive grains, a conductor oxidizing agent, a protective film-forming agent for metal surfaces, an acid and water, and has an abrasive concentration of 0.05 to 3% by weight. Moreover, it is preferable to adjust so that pH may be 3 or less and the density | concentration of the oxidizing agent of a conductor may be 0.01-3 weight%. A water-soluble polymer may be added as necessary.
In the present invention, the abrasive concentration of the metal polishing slurry is 0.05 to 3% by weight, more preferably 0.1 to 1% by weight, based on the total weight. If the blending amount is less than 0.05%, the effect of inserting abrasive grains is small, and if it exceeds 3% by weight, the polishing rate of the barrier layer tends to decrease.
[0015]
When the pH of the metal polishing liquid is greater than 3, the polishing rate of tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds is low. The pH can be adjusted by the amount of acid added. It can also be adjusted by adding alkali components such as ammonia, sodium hydroxide, tetramethylammonium hydride.
[0016]
On the other hand, the polishing liquid for metal in the present invention has the maximum polishing rate of tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds when the concentration of the oxidant of the conductor is around 0.15% by weight. A primary oxide layer that is easily mechanically polished is formed on the surface of the conductor film such as tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds by the oxidizing agent, and a high polishing rate can be obtained. In general, when the pH is less than 3, the etching rate of the copper or copper alloy film is high, and it is difficult to suppress the etching with the protective film forming agent. However, in the present invention, since the concentration of the oxidizing agent is sufficiently low, the etching suppression by the protective film forming agent is possible. If the concentration of the oxidizer exceeds 3% by weight, not only the etching rate of copper or copper alloy increases, but not only does dishing easily occur, but also conductors such as tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds. Since a secondary oxide layer that is harder to polish than the primary oxide layer is formed on the film surface, the polishing rate decreases. When the concentration of the oxidizing agent is less than 0.01% by weight, the oxide layer is not sufficiently formed, so that the polishing rate becomes low and the tantalum film may be peeled off.
[0017]
In the present invention, the oxidizing agent for the conductor of the metal polishing liquid has a concentration of 0.01 to 1.5% by weight when it contains a water-soluble polymer. The water-soluble polymer is adsorbed on the surface of tantalum, tantalum alloy, tantalum nitride, other tantalum compounds, or their oxide films, so that the oxidant concentration range in which a high polishing rate can be obtained is reduced. In addition, since the water-soluble polymer is easily adsorbed on the surface of a nitride compound film such as a tantalum nitride film or titanium nitride, the polishing rate of the nitride compound film such as a tantalum nitride film or titanium nitride is reduced. On the other hand, the water-soluble polymer has the effect of forming a metal surface protective film and improves planarization characteristics such as dishing and thinning.
[0018]
Examples of the oxidant for the conductor in the present invention include hydrogen peroxide (H 2 O 2 ), nitric acid, potassium periodate, hypochlorous acid, ozone water, etc. Among them, hydrogen peroxide is particularly preferable. When the substrate is a silicon substrate including an integrated circuit element, contamination by alkali metal, alkaline earth metal, halide, or the like is not desirable, and thus an oxidizing agent that does not include a nonvolatile component is desirable. However, hydrogen peroxide is most suitable because ozone water has a severe compositional change over time. However, in the case where the substrate to be applied is a glass substrate that does not include a semiconductor element, an oxidizing agent that includes a nonvolatile component may be used.
[0019]
The acid used in the present invention is preferably an organic acid, formic acid, acetic acid, propionic acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid. , N-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelin Acids, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, etc., and salts such as ammonium salts of these organic acids, sulfuric acid, nitric acid, ammonia, ammonium salts such as ammonium persulfate, ammonium nitrate, ammonium chloride, chromic acid, etc. Or the mixture etc. are raised. Among these, malonic acid, malic acid, tartaric acid, glycolic acid, and citric acid are preferable in that a practical CMP polishing rate can be obtained.
[0020]
The protective film forming agent in the present invention is benzotriazole (BTA), a BTA derivative, for example, one obtained by substituting one hydrogen atom of the benzene ring of BTA with a methyl group, substituted with a tolyltriazole or a carboxyl group, etc. benzotriazole-4- Carboxylic acid, its methyl, ethyl, propyl, butyl and octyl esters, or naphthotriazole, naphthotriazole derivatives or mixtures containing these.
[0021]
The water-soluble polymer used in the present invention is preferably selected from the following groups. Polymers having a basic structural unit as a monomer having a carboxyl group, such as polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyacrylamide, or the like Examples thereof include polymers having a monomer having a vinyl group such as a salt, polyvinyl alcohol, and polyvinylpyrrolidone as a basic structural unit. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, contamination with an alkali metal, an alkaline earth metal, a halide, or the like is not desirable, so an acid or an ammonium salt thereof is desirable. This is not the case when the substrate is a glass substrate or the like. By adding these water-soluble polymers, the dishing characteristics can be improved due to the effect of inhibiting etching by the protective film forming agent.
[0022]
The abrasive for the metal polishing liquid of the present invention may be any of inorganic abrasives such as silica, alumina, ceria, titania, zirconia, germania and silicon carbide, and organic abrasives such as polystyrene, polyacryl and polyvinyl chloride. However, colloidal silica and colloidal alumina having good dispersion stability in the polishing liquid, a small number of polishing scratches (scratches) generated by CMP, and an average particle diameter of 50 nm or less are preferable. The average particle size is more preferably 30 nm or less, and particularly preferably 20 nm or less, in which the polishing rate of the barrier layer becomes larger and the polishing rate of silicon dioxide becomes smaller. Colloidal silica is known for its production by hydrolysis of silicon alkoxide or ion exchange of sodium silicate, and colloidal alumina is known for its production by hydrolysis of aluminum nitrate.
[0023]
The conductor film to which the present invention is applied is a copper or copper alloy barrier layer, and is preferably made of tantalum, tantalum alloy, tantalum nitride, or other tantalum compounds. .
[0024]
The amount of the acid used in the present invention is preferably 0.0001 to 0.05 mol with respect to 100 g of the total amount of the conductor oxidizing agent, acid, protective film forming agent, water-soluble polymer and water, and is preferably 0.001 to 0.05 mol. More preferably, the content is 001 to 0.01 mol. When this compounding quantity exceeds 0.05 mol, there exists a tendency for the etching of copper or a copper alloy to increase.
[0025]
The blending amount of the protective film forming agent used in the present invention is preferably 0.0001 to 0.01 mol with respect to 100 g of the total amount of the conductor oxidizing agent, acid, protective film forming agent, water-soluble polymer and water. 0.0005 to 0.005 mol is more preferable. If the amount is less than 0.0001 mol, the etching of copper or copper alloy tends to increase, and the effect remains unchanged even if the amount exceeds 0.01 mol.
[0026]
In the present invention, a water-soluble polymer can also be added, and the amount of the water-soluble polymer is 0. It is preferable to set it as 001-0.5 weight%, and it is more preferable to set it as 0.01-0.2 weight%. If the blending amount is less than 0.001% by weight, the combined effect with the protective film forming agent tends not to appear in etching suppression, and if it exceeds 0.5% by weight, the polishing rate by CMP tends to decrease.
[0027]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. The present invention is not limited by these examples.
[0028]
(Examples 1 to 3, Comparative Example 1)
(Production method of metal polishing liquid)
Water was added to 0.4% by weight of acid and 0.2% by weight of benzotriazole (BTA) as a protective film forming agent to dissolve, and hydrogen peroxide (special grade, 30% aqueous solution) was added as an oxidizing agent for the conductor. What was obtained by adding 5% by weight was used as a metal polishing slurry. To the abrasive grains, 0.1 to 5% by weight of colloidal silica having an average particle diameter of 30 nm prepared by hydrolysis of tetraethoxysilane in an ammonia solution was added, and water was adjusted accordingly to 98.8 to 93.9% by weight. It was. The pKa of glycolic acid used is 3.7.
In Examples 1 to 3 and Comparative Example 1, CMP was performed in Table 1 using the above-described metal polishing slurry having an abrasive concentration.
Figure 0004683681
(Abrasive product evaluation items)
Polishing rate by CMP: The film thickness difference before and after CMP of the film was calculated from the electric resistance value.
Etching rate: The copper layer thickness difference before and after immersion in a metal polishing slurry stirred at 25 ° C. and 100 rpm was calculated from the electrical resistance value.
Dishing amount: A groove having a depth of 0.5 μm is formed in silicon dioxide, a tantalum nitride film having a thickness of 50 nm is formed as a barrier layer by a known sputtering method, and a copper film is similarly formed by sputtering. Two-step polishing is performed using a silicon substrate embedded by heat treatment as a substrate, and insulation is obtained from the surface shape of the stripe pattern portion in which the wiring metal portion width of 100 μm and the insulating film portion width of 100 μm are alternately arranged by a stylus type step gauge. The amount of reduction of the wiring metal part relative to the film part was determined. As the first-stage polishing liquid for copper, polishing was performed using a polishing liquid for copper and copper alloy having a sufficiently high polishing rate ratio of copper to tantalum nitride. After one-step polishing, a substrate sample is prepared so that the amount of dishing measured with the barrier layer exposed on the insulating film portion is 50 nm, and the above metal polishing solution is used until there is no barrier layer in the insulating film portion. And then polished in two steps.
Thinning amount: Measure the surface shape of the striped pattern part with a total width of 2.5mm in which the wiring metal part width of 45μm and the insulating film part width of 5μm are alternately formed on the above-mentioned substrate for evaluating the dishing amount with a stylus type step gauge Then, the amount of film reduction of the insulating film portion near the center of the pattern with respect to the insulating film field portion around the stripe pattern was obtained. After one-step polishing, a substrate sample was prepared so that the thinning amount measured with the barrier layer exposed on the insulating film portion was 20 nm, and the above metal polishing solution was used until the barrier layer disappeared in the insulating film portion. And then polished in two steps.
Table 1 shows the polishing rate by CMP in Examples 1 to 3 and Comparative Example 1. Table 2 shows the amount of dishing and the amount of thinning.
[0029]
[Table 1]
Figure 0004683681
[0030]
[Table 2]
Figure 0004683681
[0031]
In Examples 1 to 3, since the polishing rate of the tantalum and tantalum nitride films which are the barrier layer conductors is high and the polishing rate of the silicon dioxide film is relatively low, good dishing and thinning characteristics can be obtained. On the other hand, in Comparative Example 1, the polishing rate of the barrier layer film (special tantalum film) was low and the polishing rate of the silicon dioxide film was considerably high, so that the dishing and thinning characteristics deteriorated.
[0032]
【The invention's effect】
The metal polishing liquid of the present invention has an abrasive concentration of 0.05 to 3% by weight, so that tantalum, tantalum alloy, tantalum nitride, and other tantalum compounds used as a barrier layer can be polished, and copper Alternatively, it is possible to suppress the occurrence of dishing, thinning and polishing flaws in the copper alloy wiring, and to form a highly reliable embedded pattern of the metal film.

Claims (14)

少なくともバリア層を研磨するために用いられる金属用研磨液であって、
前記バリア層が、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物から選択されるものであり、
砥粒、導体の酸化剤、金属表面に対する保護膜形成剤、酸及び水を含有してなり、前記砥粒の濃度が0.05〜3.0重量%であり、金属用研磨液のpHが3以下であり、導体の酸化剤の濃度が0.01〜3.0重量%であることを特徴とする金属用研磨液。
A metal polishing liquid used to polish at least the barrier layer,
The barrier layer is selected from tantalum, tantalum nitride, tantalum alloy, and other tantalum compounds;
Abrasive grains, conductor oxidizer, protective film forming agent for metal surface, acid and water, the concentration of the abrasive grains is 0.05 to 3.0 wt%, and the pH of the metal polishing liquid is 3 or less, and the concentration of the oxidizing agent in the conductor is 0.01 to 3.0 % by weight.
砥粒が、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニアより選ばれた少なくとも1種である請求項1に記載の金属用研磨液。  The metal polishing slurry according to claim 1, wherein the abrasive is at least one selected from silica, alumina, ceria, titania, zirconia, and germania. 砥粒が、コロイダルシリカまたはコロイダルアルミナである請求項1または請求項2に記載の金属用研磨液。  The metal polishing slurry according to claim 1 or 2, wherein the abrasive grains are colloidal silica or colloidal alumina. 砥粒の平均粒径が50nm以下である請求項1ないし請求項3のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 3, wherein the average grain size of the abrasive grains is 50 nm or less. 水溶性高分子をさらに含有する請求項1ないし請求項4のいずれかに記載の金属用研磨液。  The metal-polishing liquid according to any one of claims 1 to 4, further comprising a water-soluble polymer. 水溶性高分子が、ポリアクリル酸またはその塩、ポリメタクリル酸またはその塩、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドンからなる群から選ばれた少なくとも1種である請求項5に記載の金属用研磨液。  The metal-polishing liquid according to claim 5, wherein the water-soluble polymer is at least one selected from the group consisting of polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polyacrylamide, polyvinyl alcohol, and polyvinylpyrrolidone. . 導体の酸化剤の濃度が0.01〜1.5重量%であることを特徴とする請求項1ないし請求項6のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 6, wherein the concentration of the oxidizing agent in the conductor is 0.01 to 1.5 wt%. 酸が、有機酸である請求項1ないし請求項7のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 7, wherein the acid is an organic acid. 有機酸が、マロン酸、リンゴ酸、酒石酸、グリコール酸及びクエン酸から選ばれた少なくとも1種である請求項8に記載の金属用研磨液。  The metal polishing slurry according to claim 8, wherein the organic acid is at least one selected from malonic acid, malic acid, tartaric acid, glycolic acid, and citric acid. 保護膜形成剤が、ベンゾトリアゾール(BTA)またはその誘導体から選ばれた少なくとも1種である請求項1ないし請求項9のいずれかに記載の金属用研磨液。  The metal polishing liquid according to any one of claims 1 to 9, wherein the protective film forming agent is at least one selected from benzotriazole (BTA) or a derivative thereof. 導体の酸化剤が、過酸化水素水、硝酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水より選ばれた少なくとも1種である請求項1ないし請求項10のいずれかに記載の金属用研磨液。  The metal polishing according to any one of claims 1 to 10, wherein the conductor oxidizing agent is at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, and ozone water. liquid. 導体が、銅、銅合金またはそれらの酸化物のバリア層である請求項1ないし請求項11のいずれかに記載の金属用研磨液。  The metal polishing slurry according to any one of claims 1 to 11, wherein the conductor is a barrier layer of copper, a copper alloy, or an oxide thereof. 表面に被研磨面を有する基板を研磨する研磨方法であって、
前記基板は、バリア層を有してなり、
前記バリア層はタンタル、窒化タンタル、タンタル合金、その他のタンタル化合物から選択され、
請求項1ないし請求項12のいずれかに記載の金属用研磨液を前記被研磨膜と研磨パッドとの間に供給しながら、前記研磨パッドによって前記被研磨面の研磨を行う工程を備える研磨方法。
A polishing method for polishing a substrate having a surface to be polished on the surface,
The substrate comprises a barrier layer;
The barrier layer is selected from tantalum, tantalum nitride, tantalum alloy, and other tantalum compounds,
A polishing method comprising a step of polishing the surface to be polished with the polishing pad while supplying the metal polishing liquid according to any one of claims 1 to 12 between the film to be polished and the polishing pad. .
前記被研磨面は、銅または銅合金とそのバリア層を有する請求項13に記載の基板の研磨方法。  The substrate polishing method according to claim 13, wherein the surface to be polished includes copper or a copper alloy and a barrier layer thereof.
JP30866699A 1999-10-29 1999-10-29 Polishing liquid for metal and substrate polishing method using the same Expired - Lifetime JP4683681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30866699A JP4683681B2 (en) 1999-10-29 1999-10-29 Polishing liquid for metal and substrate polishing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30866699A JP4683681B2 (en) 1999-10-29 1999-10-29 Polishing liquid for metal and substrate polishing method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009092374A Division JP2009152647A (en) 2009-04-06 2009-04-06 Metal polishing solution and substrate polishing method using the same

Publications (2)

Publication Number Publication Date
JP2001127020A JP2001127020A (en) 2001-05-11
JP4683681B2 true JP4683681B2 (en) 2011-05-18

Family

ID=17983831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30866699A Expired - Lifetime JP4683681B2 (en) 1999-10-29 1999-10-29 Polishing liquid for metal and substrate polishing method using the same

Country Status (1)

Country Link
JP (1) JP4683681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152647A (en) * 2009-04-06 2009-07-09 Hitachi Chem Co Ltd Metal polishing solution and substrate polishing method using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544901B1 (en) * 2002-09-25 2009-12-16 Seimi Chemical Co., Ltd. Polishing compound composition and polishing method
JP5695367B2 (en) 2010-08-23 2015-04-01 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
JP2013138053A (en) * 2011-12-28 2013-07-11 Fujimi Inc Polishing composition
JP5927059B2 (en) * 2012-06-19 2016-05-25 株式会社フジミインコーポレーテッド Polishing composition and method for producing substrate using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152647A (en) * 2009-04-06 2009-07-09 Hitachi Chem Co Ltd Metal polishing solution and substrate polishing method using the same

Also Published As

Publication number Publication date
JP2001127020A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
JP5472049B2 (en) Abrasives for chemical mechanical polishing
JP5567293B2 (en) Polishing composition for planarizing metal layers in both stages of chemical mechanical polishing process to remove copper in two stages
JP4206233B2 (en) Abrasive and polishing method
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
WO2008004534A1 (en) Polishing liquid for cmp
JP2002270546A (en) Polishing liquid for conductor and polishing method using the same
JP4555990B2 (en) CMP polishing liquid for semiconductor metal film and method for polishing substrate
JP4683681B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP4759779B2 (en) Substrate polishing method
JP2010010717A (en) Abrasive agent and polishing method
JP4164941B2 (en) Polishing liquid for metal and polishing method
JP4224221B2 (en) Polishing liquid for conductor and polishing method using the same
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JP2009152647A (en) Metal polishing solution and substrate polishing method using the same
JP2001068437A (en) Polishing liquid and polishing method for metal
JP4710915B2 (en) Polishing method
JP2006191132A (en) Abrasive powder for chemical mechanical polishing and method for polishing substrate
JP3902896B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP2004123931A (en) Polishing solution and polishing method
JP2004363141A (en) Liquid and method for polishing metal
JP2005203602A (en) One set of polishing solution for cmp and method for polishing substrate
JP2004014998A (en) Polishing precess of substrate
JP2009259950A (en) Polishing solution for cmp and polishing method of substrate using the same
JP2006216828A (en) Polishing method using polishing liquid for metal
JP2008118112A (en) Polishing solution for cmp and polishing method of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term