JP4680633B2 - High-hardness irregular shaped carbide particles and wear-resistant material using the same - Google Patents

High-hardness irregular shaped carbide particles and wear-resistant material using the same Download PDF

Info

Publication number
JP4680633B2
JP4680633B2 JP2005057316A JP2005057316A JP4680633B2 JP 4680633 B2 JP4680633 B2 JP 4680633B2 JP 2005057316 A JP2005057316 A JP 2005057316A JP 2005057316 A JP2005057316 A JP 2005057316A JP 4680633 B2 JP4680633 B2 JP 4680633B2
Authority
JP
Japan
Prior art keywords
wear
hardness
resistant material
carbide particles
holding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005057316A
Other languages
Japanese (ja)
Other versions
JP2006241505A (en
Inventor
肇 河津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ING Shoji Co Ltd
Original Assignee
ING Shoji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ING Shoji Co Ltd filed Critical ING Shoji Co Ltd
Priority to JP2005057316A priority Critical patent/JP4680633B2/en
Publication of JP2006241505A publication Critical patent/JP2006241505A/en
Application granted granted Critical
Publication of JP4680633B2 publication Critical patent/JP4680633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、主に粉砕機のテーブルやローラのような高面圧摩擦を受ける用途に使用される耐摩耗性材料に関し、より詳しくは、耐磨耗材の耐磨耗性を向上させるために耐磨耗材中に混合される高硬度異形炭化物粒子及びこれを用いた耐摩耗材に関する。   The present invention relates to a wear-resistant material mainly used in applications subject to high surface pressure friction such as a table or roller of a crusher, and more particularly, to improve the wear resistance of the wear-resistant material. The present invention relates to high-hardness irregular shaped carbide particles mixed in the wear material and wear-resistant material using the same.

従来、粉砕機のローラやテーブル等における破砕面の肉盛には、耐摩耗性に優れた高炭素高クロム鋳鉄系の合金が用いられてきた。その組成は例えばC3〜6%、Cr14〜35%を主成分とし、Nb,Mo,W,V,B,Ti等の高硬度炭化物を形成する合金元素を単独に又は複数種混合して含有させたものであり、代表的なものとしてはC5.5%−Cr22%−Nb7%−Mo7%−W2%−V1.5%がある。   Conventionally, a high-carbon high-chromium cast iron alloy having excellent wear resistance has been used for building up a crushing surface of a roller, a table or the like of a crusher. Its composition is, for example, C3-6%, Cr14-35% as a main component, and alloy elements that form high-hardness carbides such as Nb, Mo, W, V, B, and Ti are contained alone or in combination. Typical examples include C5.5% -Cr22% -Nb7% -Mo7% -W2% -V1.5%.

高炭素高クロム鋳鉄系の肉盛用合金は、肉盛金属に多数の割れを生じ、破砕面に大きい衝撃が加わると剥離する危険性をもつものの、現時点では最も耐摩耗性に優れることから、やむを得ず使用されているのが実情である。ちなみに、高硬度炭化物形成元素を含有していない単なるマルテンサイト系合金やマンガンオーステナイト系合金、Mn−Crオーステナイト系合金等は、剥離脱落の危険性はないものの、低面圧下での使用では十分な耐摩耗性を示さないことが知られている。   High-carbon high-chromium cast iron-based alloy for overlaying has a risk of peeling when a large impact is applied to the crushing surface, which causes many cracks in the overlaying metal, but at the present time, it has the highest wear resistance, The situation is unavoidably used. Incidentally, mere martensitic alloys, manganese austenitic alloys, Mn-Cr austenitic alloys, etc. that do not contain high-hardness carbide-forming elements are sufficient for use at low surface pressures, although there is no risk of peeling off. It is known not to exhibit wear resistance.

このような状況下で本発明者は、マンガンオーステナイト系合金をマトリックスとする高性能な耐磨耗材を開発した(特許文献1)。   Under such circumstances, the present inventor has developed a high-performance wear-resistant material having a manganese austenitic alloy as a matrix (Patent Document 1).

特許第3066390号公報Japanese Patent No. 30663390

この耐磨耗材は、別途製造された高硬度炭化物粒子を前記マトリックス中に分散して混合させたものであり、マンガンオーステナイト系合金の長所を生かしつつ弱点を克服した複合材である。すなわち、マンガンオーステナイト系合金は高炭素高クロム鋳鉄系に比べて耐磨耗性に劣るものの優れた靱性を保有しており、その優れた靱性を維持しつつ耐磨耗性の低さを高硬度炭化物粒子により補ったのが、この複合耐磨耗材である。この耐磨耗材は大入熱を用いた経済的な単層立て向き溶接による肉盛も可能であり、100mm以上の硬化肉盛層を必要とする巨大粉砕ローラの製作をも可能にする。   This wear-resistant material is a composite material in which high-hardness carbide particles produced separately are dispersed and mixed in the matrix, and the weak point is overcome while taking advantage of the manganese austenitic alloy. In other words, manganese austenitic alloys possess superior toughness, although they are inferior in wear resistance compared to high-carbon, high-chromium cast iron systems, while maintaining low toughness while maintaining excellent toughness. It is this composite wear-resistant material that is supplemented by carbide particles. This wear-resistant material can be built up by economical single-layer standing welding using large heat input, and can also produce a huge crushing roller that requires a hardened layer of 100 mm or more.

これとは別に、本発明者は長寿命で破砕性能に優れた破砕面部材を先に開発し、各種の粉砕機ローラに適用してこれまでに大きな実績を上げている(特許文献2)。   Apart from this, the present inventor has developed a crushing surface member having a long life and excellent crushing performance and applied it to various crusher rollers, and has achieved great results so far (Patent Document 2).

特許第1618574号公報Japanese Patent No. 1618574

この破砕面部材は、少なくとも表層部に耐磨耗性の高い材料と耐磨耗性の低い材料とを噛み込み方向に沿って交互に配置したものであり、例えば破砕機ローラの場合は、ローラ母材の表面に、耐磨耗性の低い材料として高さが20〜30mm、厚みが9mmのSS400フラットバーを母材の周方向に40〜50mmの間隔で溶接し、隣接するフラットバー間に耐磨耗性の高い材料として硬化肉盛金属を充填することにより構成される。硬化肉盛金属は、ローラ部材だけでなく両側のフラットバーとも溶接溶融している。   This crushing surface member is formed by alternately arranging a material with high wear resistance and a material with low wear resistance at least on the surface layer portion along the biting direction. For example, in the case of a crusher roller, a roller On the surface of the base metal, an SS400 flat bar having a height of 20 to 30 mm and a thickness of 9 mm as a low wear resistance material is welded at intervals of 40 to 50 mm in the circumferential direction of the base material, and between adjacent flat bars. It is configured by filling a hardfacing metal as a material with high wear resistance. The hardfacing metal is welded and melted not only with the roller member but also with the flat bars on both sides.

この破砕面部材においては、粉砕作業中に耐磨耗性の低い材料が選択磨耗を受け、その表面が凹状に窪むことにより、粉砕性能が上がる。前述した複合耐磨耗材は、このような破砕面部材における耐磨耗性の高い材料としても有効であり、実際、本発明者はこの複合耐磨耗材を耐磨耗性の高い材料に適用した各種粉砕機ローラを作製し、実用に供した。その結果、この複合耐磨耗材には、以下の問題のあることが判明した。   In this crushing surface member, a material having low wear resistance is subjected to selective wear during the crushing operation, and the surface is recessed in a concave shape, so that the crushing performance is improved. The composite wear-resistant material described above is also effective as a material having high wear resistance in such a crushing surface member. In fact, the present inventors applied this composite wear-resistant material to a material with high wear resistance. Various pulverizer rollers were prepared and put to practical use. As a result, it was found that this composite wear-resistant material has the following problems.

使用により耐磨耗性の低い材料が磨耗を受けると、その結果として耐磨耗性の高い材料が突出する。特に突出当初は、耐磨耗性の低い材料と接する側のエッジ部が磨耗面に露出する。この耐磨耗性の高い材料も長期的には磨耗が進むが、その材料が前述した複合耐磨耗材であると、まずマトリックス金属が磨耗し、その結果、マトリックス金属の表面に高硬度炭化物粒子が露出し突出し始める。そうなると、粉砕負荷を集中的に受け、マトリックスからの脱落が促進され、期待するような寿命が得られなくなる。   When a material with low wear resistance is worn by use, the material with high wear resistance protrudes as a result. In particular, at the beginning of protrusion, the edge portion on the side in contact with the material having low wear resistance is exposed to the wear surface. Although this highly wear-resistant material also wears in the long term, if the material is the above-mentioned composite wear-resistant material, the matrix metal first wears, and as a result, high-hardness carbide particles are formed on the surface of the matrix metal. Begins to protrude. When this happens, the grinding load is intensively applied, the falling out of the matrix is promoted, and the expected life cannot be obtained.

特に前述したエッジ部は粉砕負荷を集中的に受け、元々欠けなどを生じやすい箇所であるため、高硬度炭化物粒子の脱落も顕著であり、結果、複合耐磨耗材の磨耗を促進し、その特質を十分に活用できない結果になっていた。また、マトリックス金属が前述したマンガンオーステナイト系合金の場合、延性を確保するために炭素量が1.8重量%以下に制限されるが、その結果として磨耗が早くなり、高硬度炭化物粒子の露出、脱落も早くなる傾向があった。   In particular, the edge portion described above is intensively subjected to crushing load, and is originally prone to chipping, etc., so the falling of high-hardness carbide particles is also remarkable, and as a result, the wear of the composite wear-resistant material is promoted and its characteristics It was a result that could not be fully utilized. In addition, when the matrix metal is the above-described manganese austenitic alloy, the carbon content is limited to 1.8% by weight or less in order to ensure ductility, but as a result, wear is accelerated and the high-hardness carbide particles are exposed. Dropout tended to be faster.

本発明の目的は、高硬度炭化物粒子がマトリックス金属中に分散した複合耐磨耗材の耐磨耗性を更に改善し得る高硬度異形炭化物粒子及びこれを用いた高耐磨耗性の耐摩耗材を提供することにある。   An object of the present invention is to provide a high-hardness deformed carbide particle capable of further improving the wear resistance of a composite wear-resistant material in which high-hardness carbide particles are dispersed in a matrix metal, and a high wear-resistant wear-resistant material using the same. It is to provide.

上記目的を達成するために、本発明の高硬度異形炭化物粒子は、耐磨耗性を向上させるために耐磨耗材中に分散して混合される高硬度炭化物粒子であり、耐磨耗材中からの脱離を抑制するために耐磨耗材中へ食い込むように球状の本体表面の一部から突出した1個の保持部を有しており、当該保持部は前記本体との直径比が0.25〜1倍の球体であって、且つ前記本体との間にくびれが生じるように、当該保持部の半径をRとし、当該保持部の前記球体への侵入量をオーバーラップ量Sとして1/2R以上、R未満のオーバーラップ量Sをもって前記本体と一体化されているIn order to achieve the above object, the high-hardness irregular shaped carbide particles of the present invention are high-hardness carbide particles dispersed and mixed in the wear-resistant material in order to improve the wear resistance. desorption and have a one holding portion protruding from a portion of the surface of the spherical body so as bite to abrasion material in order to suppress, the holding portion has a diameter ratio of the body 0 The radius of the holding portion is R and the amount of penetration of the holding portion into the sphere is 1 as the overlap amount S so that a constriction occurs between the sphere and the main body. It is integrated with the main body with an overlap amount S of 2R or more and less than R.

また、本発明の耐磨耗材は、耐磨耗摩擦を受ける面部材に使用されて優れた耐摩耗性を示す耐摩耗材であって、マトリックス金属中に本発明の高硬度異形炭化物粒子を、断面積比で20〜70%となるように分散して混合した複合材である。   The wear-resistant material of the present invention is a wear-resistant material that is used for a surface member that receives wear-resistant friction and exhibits excellent wear resistance, and the high-hardness deformed carbide particles of the present invention are cut in the matrix metal. It is a composite material dispersed and mixed so that the area ratio is 20 to 70%.

本発明における高硬度異形炭化物粒子は、本体とその表面の一部から突出した保持部とを有している。本体の形状は球である。保持部は本体と同じ形状、すなわち球体であり、本体とは同じサイズでもいし、本体より小さいものでもよい。保持部は又、本体と直接連結しており、棒状部等の連結部を介して本体と連結してはいないThe high-hardness irregular shaped carbide particles in the present invention have a main body and a holding portion protruding from a part of the surface thereof. The shape of the main body is a sphere . Holding portion is the same shape, i.e. a sphere with the body, good even at the same size as the main body, may be smaller than the body. The holding portion is also directly connected to the main body and is not connected to the main body via a connecting portion such as a rod-like portion.

本発明の高硬度異形炭化物粒子が例えば直径が異なる2個の球体が連結した雪だるま形状の場合、大径の球体が本体、小径の球体が保持部となるが、本体が表面に露出しても保持部がアンカー効果によりマトリックス金属中に深く食い込むため、当該粒子は容易には離脱しない。保持部の方が先に露出した場合も本体がアンカー効果によりマトリックス金属中に深く食い込むため、容易には離脱しない。このため保持部の方も耐磨耗性を考慮した形状、例えば本体と同じ形状が好ましく、この観点から保持部も球体とした。 For example, when the high-hardness deformed carbide particles of the present invention are in the shape of a snowman in which two spheres having different diameters are connected, a large-diameter sphere serves as a main body and a small-diameter sphere serves as a holding portion. Since the holding part bites deeply into the matrix metal due to the anchor effect, the particles do not easily detach. Even when the holding portion is exposed first, the main body bites deeply into the matrix metal due to the anchor effect, so that the holding portion is not easily detached. For this reason, the shape of the holding portion taking into consideration wear resistance , for example, the same shape as the main body is preferable, and the holding portion is also a sphere from this viewpoint.

高硬度異形炭化物粒子としては、材質面からはタングステン炭化物が耐磨耗性の点からも経済性の点からも好ましく、製法面からは焼結材が経済性の点から好ましい。タングステン炭化物以外の炭化物としては、B炭化物,Ti炭化物,Cr炭化物,Nb炭化物,V炭化物,Mo炭化物、Zr炭化物を挙げることができる。   As the high-hardness irregular shaped carbide particles, tungsten carbide is preferable from the viewpoint of the material from the viewpoint of wear resistance and economy, and sintered material is preferable from the viewpoint of the manufacturing process from the viewpoint of economy. Examples of carbides other than tungsten carbide include B carbide, Ti carbide, Cr carbide, Nb carbide, V carbide, Mo carbide, and Zr carbide.

球状本体の大きさは、直径で1〜10mmの範囲が好ましい。体積で表せば1.5〜1500mm3 の範囲が好ましく、10〜500mm3 の範囲が特に好ましい。球状本体が小さすぎる場合は高温の溶接アーク熱により溶融しやすくなり、大きすぎる場合はそれを保持するマトリックス金属の占める割合が減少して破壊が生じやすくなる。保持部である球体の大きさは直径比で本体の直径の0.25〜1倍であり、体積比で本体の0.2〜1倍が好ましい。保持部が小さすぎる場合は保持効果が低下すると共に、溶接アーク熱により溶融しやすくなる。逆に大きすぎる場合は保持部に対するマトリックス金属のなじみ不良が生じやすくなる。 The size of the spherical body is preferably in the range of 1 to 10 mm in diameter . Range 1.5~1500Mm 3 is preferably, if indicated by the volume range of 10 to 500 mm 3 is especially preferred. If the spherical body is too small, it is easily melted by the high-temperature welding arc heat, and if it is too large, the proportion of the matrix metal that holds it is reduced and breakage tends to occur. The size of the sphere as the holding portion is 0.25 to 1 times the diameter of the main body in terms of diameter ratio, and preferably 0.2 to 1 times that of the main body in terms of volume ratio. When the holding portion is too small, the holding effect is lowered and the melting is easily caused by welding arc heat. On the other hand, if the size is too large, the familiarity of the matrix metal with the holding portion tends to occur.

マトリックス金属としては、マンガンを主な合成成分とするマンガンオーステナイト系合金が好適である。これは、高クロム鋳鉄系の合金と比較して、低面圧の場合の耐摩耗性は良くないが、高面圧の場合の耐摩耗性はほぼ同等であり、そして何よりも靱性が格段に良好であるからである。   As the matrix metal, a manganese austenitic alloy containing manganese as a main synthetic component is suitable. Compared to high chromium cast iron alloys, the wear resistance at low contact pressure is not good, but the wear resistance at high contact pressure is almost the same, and above all, the toughness is remarkably higher. It is because it is good.

マンガンオーステナイト系合金は、JISではG5131に規定されており、重衝撃摩耗に強く靱性に著しく優れるので、従来から粉砕機やブルドーザーのツース等に適用されてきた。例えば14%マンガン鋼はエレクトロスラグ溶接法を適用して肉盛された場合、巨大入熱を与えられ緩慢冷却されるので肉盛金属が脆化しやすいが、例え脆化を生じても前記に示した高クロム鋳鉄系肉盛合金に発生する割れから判断して、このマトリックスと比較すれば遙かに耐摩耗性や破壊抵抗を保持しており、靱性に優れている。その脆化の程度は約300℃で1時間連続加熱した場合でさえ、引張強度や硬度は常温と比較しても殆ど変化なく伸びや絞りが約10%低下するに過ぎない。   Manganese austenitic alloys are stipulated in JIS G5131, and have been applied to pulverizers, bulldozer teeth, and the like since they are resistant to heavy impact wear and extremely tough. For example, when 14% manganese steel is overlaid by applying electroslag welding, it is subject to huge heat input and slowly cooled, so that the built-up metal is easily embrittled. Judging from the cracks that occur in the high chromium cast iron surfacing alloy, it has much higher wear resistance and fracture resistance than this matrix, and has excellent toughness. Even when the degree of embrittlement is continuously heated at about 300 ° C. for 1 hour, the tensile strength and hardness hardly change even when compared with room temperature, and the elongation and squeezing only decrease by about 10%.

本発明に用いられるマンガンオーステナイト系合金は、JIS G5131をベースとしたものであり、Mn以外の合金元素としてはオーステナイト組織を安定化させるNi、変形抵抗を高めるMoおよびCr、炭化物を形成しやすいNb,V,WおよびB等を適宜添加することができる。マンガンオーステナイト系合金がもつ基本的な性質に悪影響を及ぼさなければ如何なる合金元素の添加も可能であるが、例えばP,S等はマンガンオーステナイト系合金を脆化させるので、極力少なくするのが望ましい。望ましい成分組成は以下の通りである。   The manganese austenitic alloy used in the present invention is based on JIS G5131, and as alloy elements other than Mn, Ni that stabilizes the austenite structure, Mo and Cr that increase deformation resistance, and Nb that easily forms carbides. , V, W, and B can be added as appropriate. Any alloying element can be added as long as the basic properties of the manganese austenitic alloy are not adversely affected. For example, P, S, etc., make the manganese austenitic alloy brittle, so it is desirable to reduce it as much as possible. A desirable component composition is as follows.

C:0.2〜1.8wt%
Cは硬度、耐摩耗性の確保に有効である。0.2%未満であると変形抵抗が大幅に減少し且つ耐摩耗性が減少する。Cが1.8%を超えると著しく靱性を減じるし、粒界に炭化物を析出し易い。又、エレクトロスラグ溶接においてはこれ以上の炭素量になるとスラグが不安定になり安定した溶接が困難になる。特に望ましいC量は0.5〜1.2%である。
C: 0.2-1.8 wt%
C is effective for ensuring hardness and wear resistance. If it is less than 0.2%, the deformation resistance is greatly reduced and the wear resistance is reduced. When C exceeds 1.8%, the toughness is remarkably reduced and carbides are likely to precipitate at the grain boundaries. In addition, in electroslag welding, if the carbon amount exceeds this value, the slag becomes unstable and stable welding becomes difficult. A particularly desirable amount of C is 0.5 to 1.2%.

Cr:25wt%以下
Crは変形抵抗を増すために非常に有効な元素であるが25%以上を超えると肉盛金属の伸びが減少し靱性か損なわれるようになる。あまりクロム含有量が多くなるとフェライト組織を高めるのでこれを限界とする。特に望ましいCr量は1.5〜20%である。
Cr: 25 wt% or less Cr is an extremely effective element for increasing the deformation resistance. However, if it exceeds 25%, the growth of the overlay metal decreases and the toughness is impaired. If the chromium content is too high, the ferrite structure is increased, so this is the limit. A particularly desirable Cr content is 1.5 to 20%.

Mn:5〜30wt%
Mn単独では通常11%以下では十分な引張強度を得ることができないが、18%Cr,Ni8%の添加で十分な強度が得られていることは公知である。従って、5%以上が引張強度を得るために必要である。Mnが30%を超えると引張強度、硬度が上昇し靱性が損なわれるようになる。従って、Mn含有量の上限は30%までとする。特に望ましいMn量は11〜25%である。
Mn: 5 to 30 wt%
It is known that sufficient tensile strength cannot be obtained with Mn alone at 11% or less, but sufficient strength is obtained with the addition of 18% Cr and Ni 8%. Therefore, 5% or more is necessary to obtain the tensile strength. If Mn exceeds 30%, the tensile strength and hardness increase and the toughness is impaired. Therefore, the upper limit of the Mn content is up to 30%. A particularly desirable amount of Mn is 11 to 25%.

Ni:10wt%以下
Niはオーステナイト組織を安定させるので好ましい合金元素であるが、10%以上になる耐摩耗性が悪くなり当初の目的とする高面圧下における耐摩耗性を持つマトリックスが得られない。特に望ましいNi量は0.3〜5%である。
Ni: 10 wt% or less Ni is a preferable alloy element because it stabilizes the austenite structure. However, the wear resistance of 10% or more is deteriorated and a matrix having wear resistance under a high surface pressure, which is an initial purpose, cannot be obtained. . A particularly desirable amount of Ni is 0.3 to 5%.

Si:2.5wt%以下
Siは2%までは引張強さや摩耗抵抗を増すが2.5%を超えると急激に粘り強さや強度が低下する。特に望ましいSi量は0.3〜1.0%である。
Si: 2.5 wt% or less Si increases the tensile strength and wear resistance up to 2%, but if it exceeds 2.5%, the tenacity and strength rapidly decrease. A particularly desirable Si content is 0.3 to 1.0%.

その他、オーステナイト組織を安定にするために窒素が添加されることもある。その他、不可避不純物のP,S等が考えられるが、基本成分であるMn−オーステナイト系鋼の基本的性質に悪影響を与えない程度に含有されるのはやむを得ない。P<0.100%、S<0.050%がJISにて規定されている。   In addition, nitrogen may be added to stabilize the austenite structure. In addition, inevitable impurities such as P and S are conceivable, but it is unavoidable that they are contained to the extent that they do not adversely affect the basic properties of the basic component Mn-austenitic steel. P <0.100% and S <0.050% are defined by JIS.

V,Mo,W,B,Ti等の元素は炭化物形成元素として添加されるが、一部マトリックスに溶解する。溶解によるマトリックスへの含有量は複数の元素の合計が10%を超えるとマトリックスの粘さや衝撃抵抗が損なわれる。   Elements such as V, Mo, W, B, and Ti are added as carbide forming elements, but partially dissolve in the matrix. When the total content of the plurality of elements exceeds 10%, the matrix viscosity and impact resistance are impaired.

マトリックス中の炭化物は、マトリックス金属の耐摩耗性を高めるために、断面面積比率で20〜70%占めるように添加される。マトリックス金属の硬度が軟らかい場合には炭化物の添加量を多くし、硬度が高い場合には添加量を少なめに調整される。又、破砕面が受ける面圧が非常に高い場合に炭化物の量があまりに多いと、脱落現象を発生するので、面圧に応じて炭化物の量を調整しなければならない。炭化物が20%未満ならば十分な耐摩耗性を与えることができず、70%を超えると靱性の有るマトリックス金属の量が不足して使用中の高面圧を受けると炭化物がマトリックス金属から脱落しやすくなり早期摩耗を発生しやすい。   The carbide in the matrix is added so as to occupy 20 to 70% of the cross-sectional area ratio in order to increase the wear resistance of the matrix metal. When the hardness of the matrix metal is soft, the addition amount of carbide is increased, and when the hardness is high, the addition amount is adjusted to be small. In addition, when the surface pressure received by the crushing surface is very high, if the amount of carbide is too large, a dropping phenomenon occurs, so the amount of carbide must be adjusted according to the surface pressure. If the carbide is less than 20%, sufficient wear resistance cannot be provided, and if it exceeds 70%, the amount of tough matrix metal is insufficient and the carbide falls off the matrix metal when subjected to high surface pressure during use. Easier to wear and premature wear.

本発明の耐摩耗材は50kg/cm2 以上、特に100kg/cm2 以上の高面圧摩擦を受ける面部材に適する。破砕面の場合、破砕面の原料との接触面積をS,破砕面に付加される全荷重をMとすると、M/Sにより面圧が算出される。接触面積Sは破砕面が偏摩耗を発生して交換された時点で最も粉砕に寄与した想定される破砕面を取り上げ、その部分の面積を計測することにより求めることが可能である。接触面の荷重とはローラの重量以外にローラを保持するシャフト類等の全ての荷重が含まれる。又、ローラに外部から負荷される圧力も含めた荷重を採用する。 The wear-resistant material of the present invention is suitable for a surface member that receives high surface pressure friction of 50 kg / cm 2 or more, particularly 100 kg / cm 2 or more. In the case of the crushing surface, if the contact area of the crushing surface with the raw material is S and the total load applied to the crushing surface is M, the surface pressure is calculated by M / S. The contact area S can be obtained by taking up an assumed crushing surface that contributed most to the crushing when the crushing surface is changed due to uneven wear and measuring the area of the crushing surface. The load on the contact surface includes all loads such as shafts that hold the roller in addition to the weight of the roller. Further, a load including a pressure applied to the roller from the outside is adopted.

具体的な用途としては、粉砕機のローラやテーブル、タイヤ等があり、さらに具体的には2個の相対抗する破砕面で、例えば製鉄所のスラグ、セメント工場のクリンカー、石炭、石灰等を高面圧で粉砕する粉砕機の破砕面がある。しかし、高面圧を摩耗面に受ける用途ならば粉砕機の破砕面以外に適用しても良い。例えばブルドーザーのショベルの底板やツース等にも適用可能である。また、従来、オーステナイトマンガン鋼溶接棒やワイヤを使用して肉盛していた用途において、例えその用途が低応力研磨耗を受ける場合であっても炭化物が多量含有されているので以前に比べ優れた耐磨耗性を与えることが出来る。   Specific applications include crusher rollers, tables, tires, etc. More specifically, two opposing crushing surfaces, such as ironworks slag, cement factory clinker, coal, lime, etc. There is a crushing surface of a crusher that crushes at high surface pressure. However, it may be applied to other than the crushing surface of the pulverizer if it is used for receiving a high surface pressure on the wear surface. For example, it can be applied to a bottom plate or a tooth of a bulldozer excavator. Also, in applications that have traditionally been built up using austenitic manganese steel welding rods and wires, even if the application is subject to low stress abrasive wear, it contains a large amount of carbide, so it is superior to the previous one. Abrasion resistance can be given.

本発明の耐摩耗材の製造に関しては、エレクトロスラグ、エレクトロガス、エレクトロノンガス等の大入熱溶接を用いた単層立て向き肉盛溶接を用いることが望ましいが、従来の下向き溶接姿勢で使用することも可能であり、その場合は1層当りの肉厚を厚く肉盛ができて能率を向上させることが可能である。   For the production of the wear-resistant material of the present invention, it is desirable to use a single layer vertical build-up welding using high heat input welding such as electroslag, electrogas, electronon gas, etc., but use it in a conventional downward welding position. In this case, it is possible to increase the thickness per layer and improve the efficiency.

肉盛金属の厚さは10mm以上が望ましく、50mm以上が更に望ましく、100mm以上も可能である。このような極厚の単層肉盛も行い得ることに本発明の一つの意義がある。   The thickness of the overlay metal is preferably 10 mm or more, more preferably 50 mm or more, and can be 100 mm or more. One of the significance of the present invention is that such an extremely thick single-layer build-up can be performed.

マトリックス金属の線膨張係数は、肉盛母材金属の線膨張係数より大きいのが望ましい。線膨張係数の差異により発生する内部応力により肉盛金属と母材金属との境界面に故意に融合不良を発生させれば、肉盛金属に発生する割れを軽減しもしくは防止し、さらに溶接内部応力の蓄積を軽減して、例え粉砕時に高面圧摩耗を受けても溶着金属の微小剥離を抑えることができる。また、溶け込み不良により肉盛金属が母材金属から脱落する事故は溶け込み線の投錨効果を与える形状により回避することができる。   The linear expansion coefficient of the matrix metal is preferably larger than the linear expansion coefficient of the build-up base metal. By deliberately causing poor fusion at the interface between the build-up metal and the base metal due to the internal stress generated by the difference in linear expansion coefficient, cracks generated in the build-up metal can be reduced or prevented, Accumulation of stress can be reduced, and even if it is subjected to high surface pressure wear during pulverization, it is possible to suppress minute peeling of the deposited metal. In addition, an accident in which the build-up metal falls off from the base metal due to poor penetration can be avoided by the shape that gives the penetration effect of the penetration line.

マトリックス金属への各種炭化物の添加は、管状溶接ワイヤの内に当初から包合させておく他、マトリックスと炭化物とを別に添加する外部供給方法も可能である。   Various carbides can be added to the matrix metal from the beginning of the tubular welding wire, and an external supply method in which the matrix and carbide are added separately is also possible.

本発明の高硬度異形炭化物粒子は、耐磨耗材中からの脱離を抑制するために耐磨耗材中へ食い込むように球状本体表面の一部からくびれを持って突出した単一の球状保持部を有することにより、高硬度炭化物粒子がマトリックス金属中に分散した複合耐磨耗材において高硬度炭化物粒子の脱落を抑制し、高硬度炭化物粒子自体も2つの球体の組合せからなるため耐磨耗性に優れ、複合耐磨耗材の耐磨耗性の更なる向上を可能にする。 The high-hardness deformed carbide particles of the present invention have a single spherical holding protruding from a part of the surface of the spherical body so as to bite into the wear-resistant material in order to suppress detachment from the wear-resistant material. Part of the composite wear-resistant material in which high-hardness carbide particles are dispersed in the matrix metal, prevents the high-hardness carbide particles from falling off, and the high-hardness carbide particles themselves consist of a combination of two spheres. Excellent wear resistance of the composite wear-resistant material .

また、本発明の耐磨耗材は、マトリックス金属中に本発明の高硬度異形炭化物粒子を、断面積比で20〜70%となるように分散して混合したことにより、高硬度炭化物粒子の脱落を抑制でき、その耐磨耗性の更なる向上を可能にする。   Further, the wear-resistant material of the present invention is prepared by dispersing the high-hardness irregular shaped carbide particles of the present invention in a matrix metal so as to have a cross-sectional area ratio of 20 to 70%. And can further improve its wear resistance.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す耐磨耗材の断面図、図2は同耐磨耗材に使用されている高硬度異形炭化物粒子の外観図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a wear-resistant material showing an embodiment of the present invention, and FIG. 2 is an external view of high-hardness deformed carbide particles used in the wear-resistant material.

本実施形態の耐磨耗材は、図1(a)に示すように、マンガンを主な合成成分とするマンガンオーステナイト系合金をマトリックス金属10として、その中に多数個の高硬度異形炭化物粒子20を分散して混合したものである。高硬度異形炭化物粒子20はタングステン炭化物であり、形状的には図2に示すように球状の本体21と、これに付随する1個の保持部22とからなる。 As shown in FIG. 1 (a), the wear-resistant material of the present embodiment includes a manganese austenitic alloy containing manganese as a main synthetic component as a matrix metal 10, and a large number of high-hardness deformed carbide particles 20 therein. Dispersed and mixed. The high-hardness irregular-shaped carbide particles 20 are tungsten carbide, and are formed of a spherical main body 21 and a single holding portion 22 associated therewith as shown in FIG.

保持部22は、ここでは本体21より小径の球体であり、本体21とはオーバーラップする形で一体化されている。ここでいうオーバーラップ量Sは、保持部22の本体21への侵入量であり、保持部22の半径をRとして1/2R以上、R未満である。オーバーラップ量Sが1/2R未満であると、連結部の機械的強度が低下し、連結部で破断が生じる危険がある。R以上の場合は連結部にくびれがなくなり、アンカー効果が低下する。本体21の好ましい直径は1〜10mmであり、保持部22の直径は本体21の直径の0.25〜1倍である。高硬度異形炭化物粒子20の混合量は断面面積比で20〜70%である。 Here, the holding portion 22 is a sphere having a smaller diameter than the main body 21 and is integrated with the main body 21 so as to overlap. The overlap amount S here is the amount of penetration of the holding portion 22 into the main body 21 and is not less than 1 / 2R but less than R, where R is the radius of the holding portion 22. If the overlap amount S is less than 1 / 2R, the mechanical strength of the connecting portion is lowered, and there is a risk that the connecting portion may break. In the case of R or more , the connecting portion is not constricted, and the anchor effect is reduced. The preferable diameter of the main body 21 is 1 to 10 mm, and the diameter of the holding portion 22 is 0.25 to 1 times the diameter of the main body 21. The mixing amount of the high-hardness irregular shaped carbide particles 20 is 20 to 70% in terms of the cross-sectional area ratio.

本実施形態の耐磨耗材は、例えば破砕機ロールの表層部に使用される。使用を始めると表面のマトリックス金属10が優先的に磨耗する。そうすると、図1(b)に示すように高硬度異形炭化物粒子20の一部が露出する。高硬度異形炭化物粒子20はマトリックス金属10より耐磨耗性が高く、以後の磨耗を効果的に抑制する。しかも、一部が露出した高硬度異形炭化物粒子20はアンカー効果によりマトリックス金属10に強固に保持されている。このため脱落が効果的に抑制され、本来の磨耗防止効果を発揮する。一方、マトリクス金属10は靱性に優れ、通常の硬化金属で問題となる割れなどを防止できる。これらの相乗により、本実施形態の耐磨耗材は特に高い耐久性を示す。   The wear-resistant material of this embodiment is used for the surface layer part of a crusher roll, for example. When used, the surface matrix metal 10 is preferentially worn. Then, as shown in FIG.1 (b), a part of high hardness unusual shape carbide particle 20 will be exposed. The high-hardness deformed carbide particles 20 have higher wear resistance than the matrix metal 10 and effectively suppress subsequent wear. Moreover, the high-hardness irregular shaped carbide particles 20 that are partially exposed are firmly held on the matrix metal 10 by the anchor effect. For this reason, drop-off is effectively suppressed, and the original wear prevention effect is exhibited. On the other hand, the matrix metal 10 is excellent in toughness, and can prevent cracks and the like that are a problem with ordinary hardened metals. Due to these synergies, the wear-resistant material of this embodiment exhibits particularly high durability.

図3は本発明の他の実施形態を示す耐磨耗材の断面図である。本実施形態では、噛み込み方向に耐磨耗性の高い材料Aと耐磨耗性の低い材料Bが交互に配置されている。耐磨耗性の低い材料Bは、母材40の表面に溶接されたフラットバーであり、噛み込み方向に直角な方向を向けて配置されている。   FIG. 3 is a cross-sectional view of an abrasion resistant material showing another embodiment of the present invention. In this embodiment, the material A with high wear resistance and the material B with low wear resistance are alternately arranged in the biting direction. The material B with low wear resistance is a flat bar welded to the surface of the base material 40, and is disposed in a direction perpendicular to the biting direction.

一方、耐磨耗性の高い材料Aは溶接肉盛材であり、マトリックス金属10中に多数個の高硬度異形炭化物粒子20及び通常形状の高硬度炭化物粒子30を分散して混合した複合材である。2種類の炭化物粒子のうち、高硬度異形炭化物粒子20は耐磨耗性の低い材料Bの近く、或いは耐磨耗性の低い材料Bの近く及び耐磨耗性の高い材料Aの表層部に限定的に配置されている。他の部分には通常形状(保持部がない形状)の高硬度炭化物粒子30が配置されている。高硬度異形炭化物粒子20の形状は、先の実施形態の場合と同様の異径球体を結合した雪だるま状である。   On the other hand, the material A having high wear resistance is a weld overlay, and is a composite material in which a large number of high-hardness irregular shaped carbide particles 20 and normal-shaped high-hardness carbide particles 30 are dispersed and mixed in a matrix metal 10. is there. Of the two types of carbide particles, the high-hardness deformed carbide particles 20 are close to the material B having low wear resistance or near the material B having low wear resistance and to the surface layer portion of the material A having high wear resistance. Limited placement. In other parts, high-hardness carbide particles 30 having a normal shape (a shape without a holding portion) are arranged. The shape of the high-hardness deformed carbide particles 20 is a snowman shape in which different spheres similar to those in the previous embodiment are combined.

耐磨耗性の高い材料Aと耐磨耗性の低い材料Bが交互に配置された耐磨耗材では、使用に伴い耐磨耗性の低い材料Bの表面が磨耗し、凹みができる。これに伴って粉砕性能が上がるが、耐磨耗性の高い材料Aのエッジ部が早期に欠けてなくなるため、高い粉砕性能が維持されない。炭化物粒子が配合されている場合もこれが容易に脱落し、エッジ部の欠損防止に寄与しない。しかるに、本実施形態の場合はここに高硬度異形炭化物粒子20が存在し、その脱落が抑制されるために、エッジ部の欠損が効果的に防止される。その結果、エッジ部の角張った形状が維持され、高い粉砕性能が維持される。   In the wear resistant material in which the material A having high wear resistance and the material B having low wear resistance are alternately arranged, the surface of the material B having low wear resistance is worn with use and a dent is formed. Along with this, although the pulverization performance is improved, the edge portion of the material A having high wear resistance is lost early, so that the high pulverization performance is not maintained. Even when carbide particles are blended, this easily falls off and does not contribute to prevention of edge portion defects. However, in the case of the present embodiment, the high-hardness deformed carbide particles 20 are present here, and the dropout thereof is suppressed, so that the edge portion is effectively prevented from being lost. As a result, the angular shape of the edge portion is maintained, and high crushing performance is maintained.

図4は本発明の更に別の実施形態を示す高硬度異形炭化物粒子の外観図である。本実施形態では、高硬度異形炭化物粒子20は、球状の本体21と、これに付随する保持部22とからなる。保持部22は、ここでは本体21と同じ直径の球体であり、本体21とはオーバーラップする形で一体化されている。本実施形態では、本体21と保持部22の機能的な差はなく、したがって方向性もなく、どちらが外面を向いていても脱落を効果的に防止できる。   FIG. 4 is an external view of high-hardness irregular shaped carbide particles showing still another embodiment of the present invention. In the present embodiment, the high-hardness irregular-shaped carbide particles 20 are composed of a spherical main body 21 and a holding portion 22 associated therewith. Here, the holding portion 22 is a sphere having the same diameter as the main body 21 and is integrated with the main body 21 so as to overlap. In this embodiment, there is no functional difference between the main body 21 and the holding portion 22, and therefore there is no directionality, and falling off can be effectively prevented regardless of which is facing the outer surface.

(削除)(Delete)

(削除)(Delete)

(削除)(Delete)

本発明の高硬度異形炭化物粒子は単独で使用することができる他、通常形状(保持部がない形状)の高硬度炭化物粒子と混ぜて使用することができ、要求される耐磨耗性等に応じて配合率を決定する。本発明の高硬度異形炭化物粒子は焼結法により特別の金型を使用して製造するものであり、高価にならざるを得ないが、通常形状(保持部がない形状)の高硬度炭化物粒子と混ぜて使用することにより粒子コストを低減することができる。また、前述したようにマトリックス金属の一部に部分的、局部的に使用することによっても粒子コストを低減することができる。   The high-hardness irregular-shaped carbide particles of the present invention can be used alone or in combination with high-hardness carbide particles of a normal shape (a shape without a holding part), and the required wear resistance, etc. The mixing ratio is determined accordingly. The high-hardness irregular-shaped carbide particles of the present invention are produced by using a special mold by a sintering method, and must be expensive, but the high-hardness carbide particles having a normal shape (a shape without a holding portion) Particle costs can be reduced by mixing and using. Further, as described above, the particle cost can also be reduced by partially or locally using a part of the matrix metal.

本発明の一実施形態を示す耐磨耗材の断面図で、(a)は使用前、(b)は使用中を示す。It is sectional drawing of the wear-resistant material which shows one Embodiment of this invention, (a) shows before use, (b) shows in use. 同耐磨耗材に使用されている高硬度異形炭化物粒子の外観図である。It is an external view of the high-hardness irregular-shaped carbide particle used for the wear-resistant material. 本発明の他の実施形態を示す耐磨耗材の断面図である。It is sectional drawing of the wear-resistant material which shows other embodiment of this invention. 本発明の更に別の実施形態を示す高硬度異形炭化物粒子の外観図である。It is an external view of the high hardness unusual shape carbide particle which shows another embodiment of this invention.

符号の説明Explanation of symbols

10 マトリックス金属
20 高硬度異形炭化物粒子
21 本体
22 保持部
10 Matrix Metal 20 High-Hardness Atypical Carbide Particles 21 Body 22 Holding Part

Claims (7)

耐磨耗性を向上させるために耐磨耗材中に分散して混合される高硬度炭化物粒子であり、耐磨耗材中からの脱離を抑制するために耐磨耗材中へ食い込むように球状の本体表面の一部から突出した1個の保持部を有しており、当該保持部は前記本体との直径比が0.25〜1倍の球体であって、且つ前記本体との間にくびれが生じるように、当該保持部の半径をRとし、当該保持部の前記球体への侵入量をオーバーラップ量Sとして1/2R以上、R未満のオーバーラップ量Sをもって前記本体と一体化されている高硬度異形炭化物粒子。 High-hardness carbide particles dispersed and mixed in the wear-resistant material to improve wear resistance, and spherical so as to bite into the wear-resistant material in order to suppress detachment from the wear-resistant material and have a one holding portion protruding from a portion of the surface of the body, the holding portion is a diameter ratio of 0.25 to 1 times the spheres and the body, and between the body It is integrated with the main body with an overlap amount S of 1 / 2R or more and less than R, where the radius of the holding portion is R and the penetration amount of the holding portion into the sphere is the overlap amount S so that constriction occurs. and has high hardness irregular-shaped carbide particles. 前記本体の直径が1〜10mmである請求項1に記載の高硬度異形炭化物粒子。 The high-hardness irregularly shaped carbide particles according to claim 1, wherein the main body has a diameter of 1 to 10 mm . 材質がタングステン炭化物である請求項1又は2に記載の高硬度異形炭化物粒子。 The high-hardness irregular-shaped carbide particles according to claim 1 or 2 , wherein the material is tungsten carbide. 耐磨耗摩擦を受ける面部材に使用されて優れた耐摩耗性を示す耐摩耗材であって、マトリックス金属中に請求項1、2又は3に記載の高硬度異形炭化物粒子を、断面積比で20〜70%となるように分散して混合した複合材である耐摩耗材。   A wear-resistant material which is used for a surface member which receives wear-resistant friction and exhibits excellent wear resistance, wherein the high-hardness irregularly shaped carbide particles according to claim 1, 2 or 3 are contained in a matrix metal in a cross-sectional area ratio. A wear-resistant material which is a composite material dispersed and mixed so as to be 20 to 70%. 50kg/cm2 以上の高面圧摩擦を受ける面部材に使用される請求項4に記載の耐摩耗材。 The wear-resistant material according to claim 4, which is used for a surface member that receives high surface pressure friction of 50 kg / cm 2 or more. 前記マトリックス金属はマンガンを主な合金成分とするマンガンオーステナイト系合金である請求項4に記載の耐磨耗材。   The wear-resistant material according to claim 4, wherein the matrix metal is a manganese austenitic alloy containing manganese as a main alloy component. 前記マンガンオーステナイト系合金は重量比でC:0.2〜1.8%、Cr:25%以下、Mn:11〜25%、Ni:10%以下、Si:2.5%を含む請求項6に記載の耐磨耗材。   The manganese austenitic alloy includes C: 0.2 to 1.8%, Cr: 25% or less, Mn: 11 to 25%, Ni: 10% or less, and Si: 2.5% by weight ratio. Wear-resistant materials as described in 1.
JP2005057316A 2005-03-02 2005-03-02 High-hardness irregular shaped carbide particles and wear-resistant material using the same Expired - Fee Related JP4680633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057316A JP4680633B2 (en) 2005-03-02 2005-03-02 High-hardness irregular shaped carbide particles and wear-resistant material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057316A JP4680633B2 (en) 2005-03-02 2005-03-02 High-hardness irregular shaped carbide particles and wear-resistant material using the same

Publications (2)

Publication Number Publication Date
JP2006241505A JP2006241505A (en) 2006-09-14
JP4680633B2 true JP4680633B2 (en) 2011-05-11

Family

ID=37048203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057316A Expired - Fee Related JP4680633B2 (en) 2005-03-02 2005-03-02 High-hardness irregular shaped carbide particles and wear-resistant material using the same

Country Status (1)

Country Link
JP (1) JP4680633B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295554A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Carbon-containing refractory
JPH09108887A (en) * 1995-10-16 1997-04-28 I N Ji Shoji Kk Wear resistant material
JPH09328364A (en) * 1996-06-05 1997-12-22 Kurosaki Refract Co Ltd Material for molten metal use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295554A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Carbon-containing refractory
JPH09108887A (en) * 1995-10-16 1997-04-28 I N Ji Shoji Kk Wear resistant material
JPH09328364A (en) * 1996-06-05 1997-12-22 Kurosaki Refract Co Ltd Material for molten metal use

Also Published As

Publication number Publication date
JP2006241505A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4310368B2 (en) Iron-base corrosion-resistant wear-resistant alloy and overlay welding material for obtaining the alloy
CN101380698B (en) Novel tubular hard surfacing material
JPS6011096B2 (en) Composite made of sintered charcoal alloy and cast iron
WO2008042330B1 (en) Abrasive wear resistant hardfacing materials, drill bits and drilling tools including abrasive wear resistant hardfacing materials, and methods for applying abrasive wear resistant hardfacing materials to drill bits and drilling tools
CN101722378A (en) Self-protected flux-cored wire
EP0548119A1 (en) Austenitic wear resistant steel and method for heat treatment thereof
CN101077554A (en) Half steel roller submerged arc building-up flux-cored wire
CN100548565C (en) A kind of tubular hard surface overlaying material
JP3779529B2 (en) Crushing surface member used in crusher
KR100892320B1 (en) Overlay welding layer and pulverizer
CA2907838C (en) Apparatus for comminuting abrasive materials
JP4680633B2 (en) High-hardness irregular shaped carbide particles and wear-resistant material using the same
JP4148390B2 (en) Abrasion resistant plate
JP4579035B2 (en) Crushing surface member
JP3548414B2 (en) Flux-cored wire for hardfacing welding
US6203588B1 (en) Method of producing a grinding roll
JP3066390B2 (en) Wear resistant material
JP2014024084A (en) Welding material superior in abrasion resistance and construction method thereof
JP3462742B2 (en) Surface hardened member, method for producing the same, and deposited metal
CN201863425U (en) Compound wear-resisting rod piece
JP3217427B2 (en) Lump-resistant mineral wear material
JP3365481B2 (en) Large wear-resistant member made of high Mn cast steel
CN202461818U (en) Tubular composite weld wire with excellent stress abrasive abrasion
CN114589431B (en) Self-protection flux-cored wire for extrusion roller cover layer
JP2006089823A (en) Die made of high-speed tool steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4680633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees