JP4678989B2 - Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus - Google Patents

Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus Download PDF

Info

Publication number
JP4678989B2
JP4678989B2 JP2001169681A JP2001169681A JP4678989B2 JP 4678989 B2 JP4678989 B2 JP 4678989B2 JP 2001169681 A JP2001169681 A JP 2001169681A JP 2001169681 A JP2001169681 A JP 2001169681A JP 4678989 B2 JP4678989 B2 JP 4678989B2
Authority
JP
Japan
Prior art keywords
inspection
circuit board
capacitance
conductor patterns
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169681A
Other languages
Japanese (ja)
Other versions
JP2002365324A (en
Inventor
裕士 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2001169681A priority Critical patent/JP4678989B2/en
Publication of JP2002365324A publication Critical patent/JP2002365324A/en
Application granted granted Critical
Publication of JP4678989B2 publication Critical patent/JP4678989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、検査対象の回路基板から短絡検査の対象となる一対の導体パターンを設定する短絡検査対象設定方法、検査対象の回路基板における導体パターンと基準電極との間の静電容量を測定し、その測定した静電容量に基づいて回路基板の良否を判別する回路基板検査方法および回路基板検査装置に関するものである。
【0002】
【従来の技術】
この種の回路基板検査方法を実施する回路基板検査装置として、図2に示す回路基板検査装置51が従来から知られている。この回路基板検査装置51は、絶縁フィルム2aが貼付された電極2bを有する電極部2、検査用プローブ3,4、移動機構5a,5b、制御部56、RAM7およびROM8を備えて構成されている。一方、検査対象の回路基板Pは、図3に示すように、ガラスエポキシ系基材の表面に複数の導体パターンCP1 ,CP2 ,・・・・,CPn (nは2以上の自然数。以下、特に区別しないときには「導体パターンCP」ともいう)が形成されて構成されている。
【0003】
この回路基板検査装置51では、導体パターンCPの形成面を上向きにして回路基板Pを電極部2における電極2bの上に載置する。次に、制御部56が、移動機構5a,5bを制御して検査用プローブ3,4を回路基板Pの例えば導体パターンCP1 ,CP2 にそれぞれ接触させる。次いで、制御部56が、検査信号としての交流電圧を順次出力することにより、図4に示す導体パターンCP1 と電極2bとの間の対電極間静電容量C11、および導体パターンCP2 と電極2bとの間の対電極間静電容量C12をそれぞれ測定すると共にRAM7に記憶させる。なお、回路基板Pの導体パターンCP1 、隣接する他の導体パターン(例えば導体パターンCP2 とする)、および電極部2の電極2bは、図4に示す等価回路図で表される。同図において、静電容量C1,C2,C3は、それぞれ、導体パターンCP1 および電極2b間の真の静電容量、導体パターンCP2 および電極2b間の真の静電容量、並びに、導体パターンCP1 ,CP2 間の真の静電容量を意味する。したがって、測定した対電極間静電容量C11,C12は、静電容量C3の影響を受けて下記の(1)式および(2)式で表される静電容量で測定される。
C11=C1+(C2・C3/(C2+C3))・・・・(1)式
C12=C2+(C1・C3/(C1+C3))・・・・(2)式
【0004】
次いで、制御部56は、測定した各対電極間静電容量C11,C12と、RAM7から読み出した各検査用基準データとを順次比較することにより、導体パターンCP1 ,CP2 の各々についての断線検査を実行する。この際に、測定した対電極間静電容量C11(またはC12)が検査用基準データの下限値を下回るときには、その導体パターンCP1 (またはCP2 )に断線(図3の符合B参照)が生じていると判別する。
【0005】
この場合、測定した対電極間静電容量C11(またはC12)が検査用基準データの上限値を超えているときには、その導体パターンCP1 (またはCP2 )と他の導体パターンCP2 (またはCP1 )等との間に短絡(図3の符合A参照)が生じている可能性が高い。その一方で、両導体パターンCP1 ,CP2 の各真の静電容量C1,C2が極めて近い値であり、かつその値が大きく、しかも両導体パターンCP1 ,CP2 が相互に近接した状態にあって両導体パターンCP1 ,CP2 同士間の静電容量C3が静電容量C1,C2と比較して十分に大きい場合には、両導体パターンCP1 ,CP2 間に短絡が生じていない状態であっても、静電容量C3の影響によって測定した対電極間静電容量C11,C12が検査用基準データの上限値を超える場合もある。したがって、測定した対電極間静電容量C11(またはC12)と検査用基準データとの比較だけでは、両導体パターンCP1 ,CP2 間の短絡を検出できないことがある。このため、制御部56は、この短絡が生じている可能性が高い導体パターンCP,CPについて、その導体パターンCPを特定するためのパターン番号データを、後述の短絡検査を実施するためにRAM7に記憶させる。また、制御部56は、移動機構5a,5bを制御して検査用プローブ3,4を移動させつつ検査信号を出力することにより、すべての導体パターンCPに対して断線検査を実施する。
【0006】
次いで、制御部56は、RAM7に記憶されているパターン番号データに基づいて特定される導体パターンCPと、その導体パターンCPに隣接する導体パターンCPとに対して、短絡検査を実行する。この場合、制御部56は、隣接する導体パターンCPを特定するに際して、RAM7に予め記憶されている隣接パターンデータ(互いに隣接する導体パターンのパターン番号をまとめたデータ)に基づいて隣接パターンを特定する。また、短絡検査に際しては、制御部56は、移動機構5a,5bを駆動制御して検査用プローブ3,4を隣接する導体パターンCP,CP同士にそれぞれ接触させ、検査信号としての交流電圧を出力させて隣接する導体パターンCP1 ,CP2 間のパターン間静電容量C13(図4参照)を測定する。次いで、制御部56は、測定したパターン間静電容量C13と、RAM7から読み出した検査用基準データとを比較することにより、導体パターンCP1 ,CP2 間の短絡の有無を検査する。この際に、パターン間静電容量C13の測定自体が不能のとき、または、測定方法によっては、測定したパターン間静電容量C13が検査用基準データの下限値を極端に下回るときには、導体パターンCP1 ,CP2 間に短絡が生じていると判別する。一方、両導体パターンCP1 ,CP2 間が短絡していない場合には、パターン間静電容量C13が正常な値となるため、かかる場合には、両導体パターンCP1 ,CP2 間が短絡していないと判別する。なお、パターン間静電容量C13とは、静電容量C1,C2の影響を受けて下記の(3)式で表される静電容量で測定される。
C13=C3+(C1・C2/(C1+C2))・・・・(3)式
【0007】
また、制御部56は、RAM7に記憶させたすべての導体パターンCP,CPの対電極間静電容量同士を比較し、対電極間静電容量同士が極めて近い導体パターンCPの有無を検査する。この結果、対電極間静電容量同士が極めて近い導体パターンCP,CPが存在する際には、制御部56は、これら導体パターンCP,CPに対して、上述した隣接する導体パターンCP,CP同士に対する短絡検査と同様にして短絡検査を実施し、対電極間静電容量同士が極めて近い導体パターンCP,CP間に短絡が生じているか否かを判別する。
【0008】
【発明が解決しようとする課題】
ところが、従来の基板検査装置51には、以下の問題点がある。すなわち、従来の回路基板検査装置51では、短絡検査を行うためには、導体パターンCP,CP同士の隣接関係を予め求めて隣接パターンデータとしてRAM7に記憶させておく必要があり、この作業工程が検査コストの高騰を招く要因となる。また、隣接する導体パターンCP,CP同士および対電極間静電容量が極めて近い導体パターンCP,CP同士に対する短絡検査は行うものの、隣接関係になくて対電極間静電容量が互いに異なる導体パターンCP,CP間にも短絡が生ずる可能性があり、このような導体パターンCP,CP間の短絡を検出することができないという問題点もある。一方、すべての導体パターンCP,CP間の短絡検査を行えば、このような問題を回避することができる。しかし、かかる検査方式を採用した場合には、短絡検査に膨大な検査時間を要するため、検査コストが高騰する。
【0009】
本発明は、かかる問題点に鑑みてなされたものであり、短絡検査対象設定方法、隣接パターンデータを用いることなく導体パターン間の短絡を検出し得る回路基板検査方法および回路基板検査装置を提供することを主目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成すべく請求項1記載の短絡検査対象設定方法は、検査対象の回路基板から短絡検査の対象となる一対の導体パターンを設定する短絡検査対象設定方法であって、良品の前記回路基板における複数の導体パターンと基準電極との間の対電極間静電容量を検査用プローブを用いてそれぞれ測定し、前記測定した対電極間静電容量が大きい前記導体パターンを前記回路基板の種類に応じて予め設定された数だけ抽出し、当該抽出した各導体パターン同士間のパターン間静電容量を前記検査用プローブを用いて測定し、当該測定した導体パターン同士間のパターン間静電容量が当該各導体パターンについての前記各対電極間静電容量よりも大きな導体パターン同士、当該パターン間静電容量に前記回路基板の種類に応じて予め決定されている係数を掛けた値が当該各対電極間静電容量よりも大きな導体パターン同士、または当該パターン間静電容量が当該各対電極間静電容量に前記回路基板の種類に応じて予め決定されている係数を掛けた値よりも大きな導体パターン同士を前記短絡検査の対象となる一対の導体パターンとして設定することを特徴とする。なお、本発明における「パターン間静電容量」には、回路基板における同一導体層上に形成された導体パターン間の静電容量、および互いに異なる導体層上に形成された導体パターン間の静電容量の両者が含まれる。また、本発明における基準電極には、多層回路基板を検査対象とする場合、その一の導体層の全域または広い領域に形成された広い面積を有するグランドパターンや、電源パターンなどが含まれる。
【0011】
また、請求項記載の回路基板検査方法は、検査対象の回路基板における複数の導体パターンと基準電極との間の対電極間静電容量を検査用プローブを用いてそれぞれ測定し、当該測定した対電極間静電容量に基づいて一対の導体パターンについての短絡検査を行う回路基板検査方法であって、検査対象の前記回路基板についての前記短絡検査時に、当該短絡検査に先立って良品の前記回路基板に対して請求項1記載の短絡検査対象設定方法を実施して前記短絡検査の対象として設定された前記一対の導体パターンに対して当該短絡検査を行うことを特徴とする。
【0012】
また、請求項記載の回路基板検査装置は、接触型の検査用プローブと、当該検査用プローブを移動させる移動機構と、前記移動機構を制御して前記検査用プローブを検査対象の回路基板における複数の導体パターンに順次接触させて当該各導体パターンと基準電極との間の対電極間静電容量を測定し、当該測定した対電極間静電容量に基づいて一対の導体パターンについての短絡検査を行う制御部とを備えた回路基板検査装置であって、記憶部を備え、前記制御部は、前記短絡検査に先立ち、良品の前記回路基板における複数の導体パターンと前記基準電極との間の前記対電極間静電容量を前記検査用プローブを用いてそれぞれ測定し、前記測定した対電極間静電容量が大きい前記導体パターンを前記回路基板の種類に応じて予め設定された数だけ抽出し、当該抽出した各導体パターン同士間のパターン間静電容量を前記検査用プローブを用いて測定し、当該測定した導体パターン同士間のパターン間静電容量が当該各導体パターンについての前記各対電極間静電容量よりも大きな導体パターン同士、当該パターン間静電容量に前記回路基板の種類に応じて前記記憶部に予め記憶されている係数を掛けた値が当該各対電極間静電容量よりも大きな導体パターン同士、または当該パターン間静電容量が当該各対電極間静電容量に前記回路基板の種類に応じて前記記憶部に予め記憶されている係数を掛けた値よりも大きな導体パターン同士を前記短絡検査の対象となる一対の導体パターンとして前記記憶部に記憶させことを特徴とする。
【0013】
また、請求項4記載の回路基板検査装置は、請求項3記載の回路基板検査装置において、検査対象の前記回路基板についての前記短絡検査時に、前記記憶部に記憶されている前記一対の導体パターンに対して当該短絡検査を行うことを特徴とする。
【0014】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係る短絡検査対象設定方法、回路基板検査方法および回路基板検査装置の好適な発明の実施の形態について説明する。なお、従来の回路基板検査装置51と同一の構成要素、および検査対象の回路基板Pについては、同一の符号を付して重複した説明を省略する。
【0015】
最初に、回路基板検査装置1の構成について、図2を参照して説明する。
【0016】
同図に示すように、回路基板検査装置1は、電極部2、検査用プローブ3,4、移動機構5a,5b、制御部6、RAM7およびROM8を備えて構成されている。電極部2は、その表面に絶縁フィルム2aが貼付された平板状の電極2bを有し検査対象の回路基板Pを載置可能に構成されている。検査用プローブ3,4は、プローブ固定具3a,4aを介して移動機構5a,5bに取り付けられた状態で電極部2の上方に配設されている。制御部6は、電極部2および検査用プローブ3,4を用いての回路基板Pに対する検査処理や、移動機構5a,5bの駆動制御などを実行する。RAM7は、本発明における記憶部に相当し、良品回路基板から予め吸収した検査用基準データ、導体パターンを特定するパターン番号データ、測定した対電極間静電容量、後述する短絡検査対象の導体パターン(ネット)CP,CPを特定するためのネットデータ、および制御部6の演算結果などを一時的に記憶する。この場合、検査用基準データとして、各導体パターンおよび電極2b間の対電極間静電容量などが記憶される。ROM8は、制御部6の動作プログラムを記憶する。
【0017】
次に、回路基板検査装置1を用いた回路基板Pの検査方法について説明する。なお、回路基板検査装置51と同一の動作については、その旨を記載して重複する説明は省略する。
【0018】
最初に、実際の回路基板検査に先立って、図1に示す短絡検査対象データの作成処理を実行する。この際には、まず、良品の回路基板Pを導体パターンCP1 ,CP2 の形成面を上向きにして電極部2の上に載置する。
【0019】
次に、制御部6が、制御部56と同様にして、移動機構5a,5bを制御して検査用プローブ3,4を回路基板Pの例えば導体パターンCP1 ,CP2 にそれぞれ接触させ、検査信号としての交流電圧を順次出力することにより、導体パターンCP1 と電極部2の電極2bとの間の対電極間静電容量C11、および導体パターンCP2 と電極2bとの間の対電極間静電容量C12をそれぞれ測定する(ステップ100)。また、制御部6は、測定した対電極間静電容量をその導体パターンCPを特定するためのパターン番号データと共にRAM7に記憶させる。次いで、制御部6は、これらの測定処理を回路基板Pにおけるすべての導体パターンに対して順次実行する。これにより、各導体パターンCPの対電極間静電容量の測定、および測定した対電極間静電容量についての記録処理が行われる。
【0020】
次に、制御部6は、RAM7に記憶させた各導体パターンCPの対電極間静電容量を昇順(または降順)で並び替え(ステップ101)、対電極間静電容量の大きい導体パターンCPを所定数抽出する(ステップ102)。この場合、所定数とは、例えば、上位数十程度(または全体の5パーセント程度)が好ましい。なお、この抽出数、または導体パターンCP全体に対する割合は、各回路基板Pの種類に応じて予め設定される。
【0021】
次いで、制御部6は、抽出した導体パターンCP,CP同士間のパターン間静電容量を検査用プローブ3,4を用いて測定する(ステップ103)。具体的には、例えば、抽出した複数の導体パターンCP,CP・・に導体パターンCP1 ,CP2 が含まれている場合には、図3に示すように、制御部6は、移動機構5a,5bを駆動制御して検査用プローブ3,4を導体パターンCP1 ,CP2 にそれぞれ接触させ、検査信号としての交流電圧を出力して導体パターンCP1 ,CP2 間のパターン間静電容量を測定する。
【0022】
続いて、制御部6は、抽出した導体パターンCP,CP同士間のパターン間静電容量と、これらの導体パターンCP,CP各々の対電極間静電容量とを比較し、両対電極間静電容量の両者よりもパターン間静電容量が大きいか否かを判別する(判別処理、ステップ104)。この場合、「両対電極間静電容量の両者よりもパターン間静電容量が大きい」とは、例えば、パターン間静電容量が、両対電極間静電容量のうちの大きい方の対電極間静電容量よりも所定容量だけ大きい場合、または大きい方の対電極間静電容量に対するパターン間静電容量の割合が所定の比率(例えば、110%)以上の場合を意味する。
【0023】
次いで、大きいと判別した導体パターンCP,CP同士のパターン番号を上記したネットデータとしてRAM7に記憶させる(ステップ105)。これにより、同種の回路基板Pに対する回路基板検査の際における短絡検査対象の導体パターンが設定される。この場合、パターン間静電容量に所定の係数(例えば、0.9等の係数)を掛けた値が対電極間静電容量よりも大きいか否かを判別し、大きいと判別した導体パターンCP,CP同士のパターン番号を上記したネットデータとしてRAM7に記憶させてもよい。同様にして、パターン間静電容量が対電極間静電容量に所定の係数(例えば、1.1または0.9等の係数)を掛けた値よりも大きいか否かを判別し、大きいと判別した導体パターンCP,CP同士のパターン番号をネットデータとしてRAM7に記憶させてもよい。なお、所定の係数は、回路基板Pの種類に応じて決定されて、予めRAM7に記憶される。次に、制御部6は、抽出した導体パターンCP,CP・・のすべての対に対して、この判別処理を順次実行する(ステップ103〜105)。
【0024】
この後、同種の回路基板Pについての回路基板検査時には、制御部6は、制御部56と同様にして、各導体パターンCPについての断線検査を順次実行する。具体的には、制御部6は、測定した各対電極間静電容量と、RAM7から読み出した対応する各検査用基準データとを順次比較することによって断線検査を実行する。また、制御部6は、上記した短絡検査対象データの作成処理を行うことなく、RAM7に記憶されているネットデータを読み出して、そのネットデータに基づいて特定される導体パターンCP,CP同士に対して短絡検査を実行する。具体的には、制御部56と同様にして静電容量測定による短絡検査を実行する。この場合、一対の導体パターンCP,CPに接触している検査用プローブ3から検査信号を出力しつつ、検査用プローブ4に出力された検査信号のレベルを検出し、一対の導体パターンCP,CP間の例えば抵抗値を測定することにより、その一対の導体パターンCP,CP間の短絡を検査することもできる。次に、制御部6は、抽出した導体パターンCP,CP・・のすべての対に対して、この短絡検査を順次実行する。これにより、回路基板Pについての良否が最終的に判別されて基板検査検査が完了する。
【0025】
このように、この回路基板検査装置1によれば、導体パターンCPおよび電極2b間の静電容量に基づく断線検査に加えて、隣接パターンデータを使用することなく、短絡の生じている可能性の高い一対の導体パターンCP,CPを自動抽出してこれらの導体パターンCP,CP間の短絡検査を実行することができる。このため、回路基板PのCADデータや、検査時に生成した画像データに基づいて予め隣接パターンを特定し、これらの隣接パターンを一対のパターン番号データとしてRAM7等に予め記憶させる作業工程を省くことができる。また、隣接関係になくて対電極間静電容量が互いに異なる導体パターンCP,CPに対しても、短絡の生じている可能性の高い一対の導体パターンCP,CPを自動抽出することができると共に、これらの導体パターンCP,CP間の短絡検査を実行することができる。したがって、回路基板Pに対する検査の信頼性を十分に高めることができる。
【0026】
なお、本発明は、上記した本発明の実施の形態に示した構成に限定されない。例えば、本発明の実施の形態では、本発明における基準電極として電極部2の電極2bを用いた静電容量測定の例について説明したが、例えば、検査対象の回路基板Pにおいて広い面積を有するグランドパターンや電源パターンなどを基準電極として用いることもできる。
【0027】
【発明の効果】
以上のように、本発明に係る短絡検査対象設定方法、回路基板検査方法および回路基板検査装置によれば、対電極間静電容量が大きい導体パターンを所定数抽出し、抽出した各導体パターン同士間のパターン間静電容量を検査用プローブを用いて測定し、測定した導体パターン同士間のパターン間静電容量が各導体パターンについての各対電極間静電容量よりも大きな導体パターン同士、パターン間静電容量に所定の係数を掛けた値が各対電極間静電容量よりも大きな導体パターン同士、またはパターン間静電容量が各対電極間静電容量に所定の係数を掛けた値よりも大きな導体パターン同士を検査対象導体パターンとして設定し、同種の回路基板についての回路基板検査時に、設定した検査対象導体パターン同士に対して短絡検査を行うことにより、導体パターンおよび電極間の静電容量に基づく断線検査に加えて、隣接パターンデータを使用することなく、短絡の生じている可能性の高い一対の導体パターンを自動抽出してこれらの導体パターン間の短絡検査を実行することができる。このため、予め隣接パターンを特定し、これらの隣接パターンを一対のパターン番号データとして予め記憶させる作業工程を省くことができる。また、隣接関係になく、かつ対電極間静電容量が互いに異なる導体パターンに対しても、短絡の生じている可能性の高い一対の導体パターンを自動抽出することができると共に、これらの導体パターン間の短絡検査を実行することができる。したがって、回路基板に対する検査の信頼性を十分に高めることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る回路基板検査装置1における短絡検査対象データの作成処理を説明するためのフローチャートである。
【図2】 回路基板検査装置1および従来の回路基板検査装置51の構成を示す構成図である。
【図3】 検査対象の一例である回路基板Pの上面図である。
【図4】 電極部2における電極2b、および回路基板Pにおける導体パターンCP1 ,CP2 の等価回路図である。
【符号の説明】
1 回路基板検査装置
2 電極部
2a 絶縁フィルム
2b 電極
3,4 検査用プローブ
3a,4a プローブ固定具
5a,5b 移動機構
6 制御部
7 RAM
C11,C12 対電極間静電容量
C13 パターン間静電容量
CP 導体パターン
P 回路基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a short circuit inspection object setting method for setting a pair of conductor patterns to be subjected to a short circuit inspection from a circuit board to be inspected, and to measure a capacitance between a conductor pattern and a reference electrode in the circuit board to be inspected. The present invention relates to a circuit board inspection method and a circuit board inspection apparatus for determining the quality of a circuit board based on the measured capacitance.
[0002]
[Prior art]
A circuit board inspection apparatus 51 shown in FIG. 2 is conventionally known as a circuit board inspection apparatus for performing this type of circuit board inspection method. The circuit board inspection apparatus 51 includes an electrode unit 2 having an electrode 2b with an insulating film 2a attached thereto, inspection probes 3 and 4, moving mechanisms 5a and 5b, a control unit 56, a RAM 7 and a ROM 8. . On the other hand, the circuit board P to be inspected has a plurality of conductor patterns CP1, CP2,..., CPn (n is a natural number of 2 or more. When not distinguished, it is also referred to as a “conductor pattern CP”).
[0003]
In the circuit board inspection apparatus 51, the circuit board P is placed on the electrode 2b in the electrode portion 2 with the formation surface of the conductor pattern CP facing upward. Next, the control unit 56 controls the moving mechanisms 5a and 5b to bring the inspection probes 3 and 4 into contact with, for example, the conductor patterns CP1 and CP2 of the circuit board P, respectively. Next, the control unit 56 sequentially outputs an alternating voltage as an inspection signal, whereby the counter electrode capacitance C11 between the conductor pattern CP1 and the electrode 2b shown in FIG. 4 and the conductor pattern CP2 and the electrode 2b are shown. The counter electrode capacitance C12 is measured and stored in the RAM 7. The conductor pattern CP1 of the circuit board P, another adjacent conductor pattern (for example, conductor pattern CP2), and the electrode 2b of the electrode portion 2 are represented by an equivalent circuit diagram shown in FIG. In the figure, capacitances C1, C2 and C3 are respectively the true capacitance between the conductor pattern CP1 and the electrode 2b, the true capacitance between the conductor pattern CP2 and the electrode 2b, and the conductor patterns CP1,. It means the true capacitance between CP2. Therefore, the measured capacitances C11 and C12 between the counter electrodes are measured by the capacitance expressed by the following formulas (1) and (2) under the influence of the capacitance C3.
C11 = C1 + (C2 / C3 / (C2 + C3)) (1) Formula C12 = C2 + (C1 / C3 / (C1 + C3)) (2) Formula
Next, the control unit 56 sequentially compares the measured capacitances C11 and C12 between the counter electrodes and the reference data for inspection read out from the RAM 7, thereby performing a disconnection inspection for each of the conductor patterns CP1 and CP2. Execute. At this time, if the measured interelectrode capacitance C11 (or C12) falls below the lower limit value of the reference data for inspection, the conductor pattern CP1 (or CP2) is disconnected (see symbol B in FIG. 3). It is determined that there is.
[0005]
In this case, when the measured counter electrode capacitance C11 (or C12) exceeds the upper limit of the reference data for inspection, the conductor pattern CP1 (or CP2) and other conductor pattern CP2 (or CP1), etc. There is a high possibility that a short circuit occurs (see symbol A in FIG. 3). On the other hand, the true electrostatic capacitances C1 and C2 of the two conductor patterns CP1 and CP2 are extremely close to each other and large, and the two conductor patterns CP1 and CP2 are close to each other. If the capacitance C3 between the conductor patterns CP1 and CP2 is sufficiently larger than the capacitances C1 and C2, even if no short circuit occurs between the conductor patterns CP1 and CP2, The counter electrode capacitances C11 and C12 measured by the influence of the capacitance C3 may exceed the upper limit of the inspection reference data. Therefore, a short circuit between the conductor patterns CP1 and CP2 may not be detected only by comparing the measured counter electrode capacitance C11 (or C12) with the inspection reference data. For this reason, the control unit 56 sends pattern number data for specifying the conductor pattern CP to the RAM 7 in order to carry out a short circuit inspection described later, for the conductor patterns CP and CP that are likely to cause a short circuit. Remember. Further, the control unit 56 controls the moving mechanisms 5a and 5b to output inspection signals while moving the inspection probes 3 and 4, thereby performing a disconnection inspection on all the conductor patterns CP.
[0006]
Next, the control unit 56 performs a short-circuit inspection on the conductor pattern CP specified based on the pattern number data stored in the RAM 7 and the conductor pattern CP adjacent to the conductor pattern CP. In this case, when specifying the adjacent conductor pattern CP, the control unit 56 specifies the adjacent pattern based on the adjacent pattern data (data obtained by collecting the pattern numbers of adjacent conductor patterns) stored in the RAM 7 in advance. . In the short circuit inspection, the control unit 56 controls the movement of the moving mechanisms 5a and 5b to bring the inspection probes 3 and 4 into contact with the adjacent conductor patterns CP and CP, respectively, and outputs an AC voltage as an inspection signal. Then, the inter-pattern capacitance C13 (see FIG. 4) between the adjacent conductor patterns CP1 and CP2 is measured. Next, the control unit 56 compares the measured inter-pattern capacitance C13 with the inspection reference data read from the RAM 7, thereby inspecting the presence or absence of a short circuit between the conductor patterns CP1 and CP2. At this time, when the measurement of the inter-pattern capacitance C13 itself is impossible, or depending on the measurement method, when the measured inter-pattern capacitance C13 is extremely below the lower limit value of the reference data for inspection, the conductor pattern CP1. , CP2 is determined to be short-circuited. On the other hand, if the two conductor patterns CP1 and CP2 are not short-circuited, the inter-pattern capacitance C13 has a normal value. In this case, the two conductor patterns CP1 and CP2 must be short-circuited. Determine. The inter-pattern capacitance C13 is measured by the capacitance represented by the following equation (3) under the influence of the capacitances C1 and C2.
C13 = C3 + (C1 · C2 / (C1 + C2)) (3) Formula
Further, the control unit 56 compares the capacitances between the counter electrodes of all the conductor patterns CP and CP stored in the RAM 7 and inspects whether or not there is a conductor pattern CP in which the capacitances between the counter electrodes are very close to each other. As a result, when there are conductor patterns CP and CP whose counter electrode capacitances are very close to each other, the controller 56 makes the above-described adjacent conductor patterns CP and CP to each other with respect to the conductor patterns CP and CP. A short-circuit inspection is performed in the same manner as the short-circuit inspection for, and it is determined whether or not a short-circuit has occurred between the conductor patterns CP and CP whose counter electrode capacitances are very close to each other.
[0008]
[Problems to be solved by the invention]
However, the conventional board inspection apparatus 51 has the following problems. That is, in the conventional circuit board inspection apparatus 51, in order to perform the short circuit inspection, it is necessary to obtain the adjacent relationship between the conductor patterns CP and CP in advance and store them in the RAM 7 as adjacent pattern data. This is a factor that causes a rise in inspection costs. In addition, although the short-circuit inspection is performed on the adjacent conductor patterns CP and CP and the conductor patterns CP and CP having very close capacitances between the counter electrodes, the conductor patterns CP which are not adjacent but have different capacitances between the counter electrodes. , CP may also cause a short circuit, and there is a problem that such a short circuit between the conductor patterns CP, CP cannot be detected. On the other hand, if a short circuit inspection is performed between all the conductor patterns CP and CP, such a problem can be avoided. However, when such an inspection method is adopted, the inspection cost is increased because a huge inspection time is required for the short circuit inspection.
[0009]
The present invention has been made in view of such problems, and provides a circuit board inspection method and a circuit board inspection apparatus capable of detecting a short circuit between conductor patterns without using a short circuit inspection object setting method, and adjacent pattern data. The main purpose.
[0010]
[Means for Solving the Problems]
The short circuit inspection object setting method according to claim 1 is a short circuit inspection object setting method for setting a pair of conductor patterns to be subjected to a short circuit inspection from a circuit board to be inspected, in order to achieve the above object. The capacitance between the counter electrodes between the plurality of conductor patterns on the substrate and the reference electrode is respectively measured using an inspection probe, and the measured conductor pattern having a large capacitance between the counter electrodes is the kind of the circuit board. A predetermined number is extracted according to the measurement, the inter-pattern capacitance between the extracted conductor patterns is measured using the inspection probe, and the inter-pattern capacitance between the measured conductor patterns is measured. be predetermined but in accordance with the respective counter electrode between large conductor patterns to each other than the electrostatic capacity, the type of the circuit board to the capacitance between the patterns of the respective conductor patterns Large conductor patterns to each other than the value corresponding each pair inter-electrode electrostatic capacitance multiplied by the coefficient are or capacitance between the patterns is predetermined according to the type of the circuit board in the electrostatic capacitance between the respective counter electrode, a large conductor patterns to each other than a value obtained by multiplying the in which coefficient and sets a pair of conductive patterns to be the short test. The “inter-pattern capacitance” in the present invention is the capacitance between conductor patterns formed on the same conductor layer in the circuit board and the capacitance between conductor patterns formed on different conductor layers. Both capacities are included. Further, the reference electrode in the present invention includes a ground pattern having a large area, a power supply pattern, and the like formed in the whole area or a wide area of the one conductor layer when a multilayer circuit board is to be inspected.
[0011]
In the circuit board inspection method according to claim 2 , the inter-electrode capacitance between the plurality of conductor patterns and the reference electrode in the circuit board to be inspected is measured using an inspection probe, and the measurement is performed. A circuit board inspection method for performing a short circuit inspection on a pair of conductor patterns based on a capacitance between counter electrodes, wherein the non-defective circuit prior to the short circuit inspection at the time of the short circuit inspection on the circuit board to be inspected The short circuit inspection target setting method according to claim 1 is performed on the substrate, and the short circuit inspection is performed on the pair of conductor patterns set as the object of the short circuit inspection.
[0012]
According to a third aspect of the present invention, there is provided a circuit board inspection apparatus according to a third aspect of the present invention, comprising: a contact-type inspection probe; a moving mechanism that moves the inspection probe; Measure the inter-electrode capacitance between each of the conductor patterns and the reference electrode by sequentially contacting a plurality of conductor patterns, and short-circuit inspection for the pair of conductor patterns based on the measured inter-electrode capacitance a circuit board inspection apparatus and a control section for, a storage unit, the control unit, prior to the short test, between the plurality of conductor patterns and the reference electrode in the circuit board of good the capacitance between the counter electrode were measured by using the testing probe, is set in advance to the conductor pattern capacitance between the measured counter electrode is large depending on the type of the circuit board Extracting the number, the inter-pattern capacitance between the conductor patterns to each other that the extracted measured using the testing probe, inter-pattern capacitance between conductor patterns to each other that the measurement is of the each conductor pattern A value obtained by multiplying the capacitance between conductor patterns larger than the capacitance between each counter electrode by a coefficient stored in advance in the storage unit according to the type of the circuit board to the capacitance between the patterns. The conductor patterns larger than the capacitance, or the capacitance between the patterns is a value obtained by multiplying the capacitance between the counter electrodes by a coefficient stored in advance in the storage unit according to the type of the circuit board. characterized in that also Ru to store the large conductor patterns to each other in the storage unit as a pair of conductive patterns to be the short test.
[0013]
The circuit board inspection apparatus according to claim 4 is the circuit board inspection apparatus according to claim 3, wherein the pair of conductor patterns stored in the storage unit at the time of the short circuit inspection of the circuit board to be inspected. The short circuit inspection is performed on the above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a short circuit inspection object setting method, a circuit board inspection method, and a circuit board inspection apparatus according to the invention will be described with reference to the accompanying drawings. In addition, about the same component as the conventional circuit board test | inspection apparatus 51, and the circuit board P of test object, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
[0015]
First, the configuration of the circuit board inspection apparatus 1 will be described with reference to FIG.
[0016]
As shown in the figure, the circuit board inspection apparatus 1 includes an electrode unit 2, inspection probes 3 and 4, moving mechanisms 5 a and 5 b, a control unit 6, a RAM 7 and a ROM 8. The electrode portion 2 includes a flat electrode 2b having an insulating film 2a attached to the surface thereof, and is configured to be able to place a circuit board P to be inspected. The inspection probes 3 and 4 are disposed above the electrode unit 2 while being attached to the moving mechanisms 5a and 5b via the probe fixtures 3a and 4a. The control unit 6 performs inspection processing on the circuit board P using the electrode unit 2 and the inspection probes 3 and 4, drive control of the moving mechanisms 5a and 5b, and the like. The RAM 7 corresponds to a storage unit in the present invention, and inspection reference data absorbed in advance from a non-defective circuit board, pattern number data for specifying a conductor pattern, measured capacitance between counter electrodes, and a conductor pattern to be short-circuited to be described later (Net) CP, net data for specifying CP, calculation result of control unit 6 and the like are temporarily stored. In this case, each conductor pattern and the capacitance between the counter electrodes between the electrodes 2b are stored as reference data for inspection. The ROM 8 stores an operation program for the control unit 6.
[0017]
Next, an inspection method for the circuit board P using the circuit board inspection apparatus 1 will be described. In addition, about the operation | movement same as the circuit board test | inspection apparatus 51, that is described and the overlapping description is abbreviate | omitted.
[0018]
First, prior to the actual circuit board inspection, the short circuit inspection object data creation process shown in FIG. 1 is executed. In this case, first, a non-defective circuit board P is placed on the electrode part 2 with the formation surfaces of the conductor patterns CP1 and CP2 facing upward.
[0019]
Next, similarly to the control unit 56, the control unit 6 controls the moving mechanisms 5a and 5b to bring the inspection probes 3 and 4 into contact with, for example, the conductor patterns CP1 and CP2 of the circuit board P as inspection signals. Are sequentially output, whereby the counter electrode capacitance C11 between the conductor pattern CP1 and the electrode 2b of the electrode portion 2 and the counter electrode capacitance C12 between the conductor pattern CP2 and the electrode 2b are output. Are respectively measured (step 100). Moreover, the control part 6 memorize | stores the measured capacitance between counter electrodes in RAM7 with the pattern number data for specifying the conductor pattern CP. Next, the control unit 6 sequentially executes these measurement processes for all the conductor patterns on the circuit board P. Thereby, the measurement of the capacitance between the counter electrodes of each conductor pattern CP and the recording process for the measured capacitance between the counter electrodes are performed.
[0020]
Next, the control unit 6 rearranges the capacitance between the counter electrodes of each conductor pattern CP stored in the RAM 7 in ascending order (or descending order) (step 101), and selects the conductor pattern CP having a large counter electrode capacitance. A predetermined number is extracted (step 102). In this case, the predetermined number is preferably about the top tens (or about 5% of the whole), for example. The number of extractions or the ratio to the entire conductor pattern CP is set in advance according to the type of each circuit board P.
[0021]
Next, the control unit 6 measures the inter-pattern capacitance between the extracted conductor patterns CP and CP using the inspection probes 3 and 4 (step 103). Specifically, for example, when the conductor patterns CP1, CP2 are included in the extracted plurality of conductor patterns CP, CP,..., The control unit 6 moves the moving mechanisms 5a, 5b as shown in FIG. Are controlled by driving the inspection probes 3 and 4 in contact with the conductor patterns CP1 and CP2, respectively, and an AC voltage as an inspection signal is output to measure the inter-pattern capacitance between the conductor patterns CP1 and CP2.
[0022]
Subsequently, the control unit 6 compares the extracted inter-pattern capacitance between the conductor patterns CP and CP with the inter-electrode capacitance of each of the conductor patterns CP and CP. It is determined whether or not the inter-pattern capacitance is larger than both of the capacitances (discrimination process, step 104). In this case, “the capacitance between the patterns is larger than both of the capacitances between the two electrodes” means, for example, that the capacitance between the patterns is the larger of the capacitances between the two electrodes It means a case where the predetermined capacitance is larger than the inter-electrode capacitance, or the ratio of the inter-pattern capacitance to the larger counter-electrode capacitance is a predetermined ratio (for example, 110%) or more.
[0023]
Next, the pattern numbers of the conductor patterns CP and CP determined to be large are stored in the RAM 7 as the above-described net data (step 105). Thereby, the conductor pattern of the short circuit inspection object in the case of the circuit board inspection with respect to the same kind of circuit board P is set. In this case, it is determined whether or not a value obtained by multiplying the inter-pattern capacitance by a predetermined coefficient (for example, a coefficient such as 0.9) is larger than the inter-electrode capacitance, and the conductor pattern CP determined to be large is determined. , CP may be stored in the RAM 7 as the net data described above. Similarly, it is determined whether or not the inter-pattern capacitance is larger than a value obtained by multiplying the counter-electrode capacitance by a predetermined coefficient (for example, a coefficient such as 1.1 or 0.9). The determined conductor patterns CP and the pattern numbers of the CPs may be stored in the RAM 7 as net data. The predetermined coefficient is determined according to the type of the circuit board P and stored in the RAM 7 in advance. Next, the control unit 6 sequentially executes this determination process for all the extracted conductor patterns CP, CP,... (Steps 103 to 105).
[0024]
Thereafter, at the time of the circuit board inspection for the same type of circuit board P, the control unit 6 sequentially performs the disconnection inspection for each conductor pattern CP in the same manner as the control unit 56. Specifically, the control unit 6 performs the disconnection inspection by sequentially comparing the measured capacitances between the counter electrodes and the corresponding reference data for inspection read from the RAM 7. Further, the control unit 6 reads out the net data stored in the RAM 7 without performing the above-described process for creating the short-circuit inspection target data, and for the conductor patterns CP and CP specified based on the net data. Perform a short circuit inspection. Specifically, short-circuit inspection by capacitance measurement is performed in the same manner as the control unit 56. In this case, while outputting the inspection signal from the inspection probe 3 in contact with the pair of conductor patterns CP and CP, the level of the inspection signal output to the inspection probe 4 is detected, and the pair of conductor patterns CP and CP is detected. A short circuit between the pair of conductor patterns CP and CP can be inspected by measuring, for example, a resistance value between them. Next, the control unit 6 sequentially executes this short-circuit inspection for all pairs of the extracted conductor patterns CP, CP. Thereby, the quality of the circuit board P is finally determined, and the board inspection inspection is completed.
[0025]
Thus, according to the circuit board inspection apparatus 1, in addition to the disconnection inspection based on the capacitance between the conductor pattern CP and the electrode 2b, there is a possibility that a short circuit has occurred without using the adjacent pattern data. It is possible to automatically extract a pair of high conductor patterns CP and CP and perform a short circuit inspection between these conductor patterns CP and CP. For this reason, it is possible to omit an operation step of specifying adjacent patterns in advance based on CAD data of the circuit board P or image data generated at the time of inspection, and storing these adjacent patterns in the RAM 7 or the like in advance as a pair of pattern number data. it can. In addition, a pair of conductor patterns CP and CP having a high possibility of short-circuiting can be automatically extracted from conductor patterns CP and CP that are not adjacent but have different capacitances between the counter electrodes. The short circuit inspection between these conductor patterns CP and CP can be executed. Therefore, the reliability of the inspection for the circuit board P can be sufficiently increased.
[0026]
The present invention is not limited to the configuration shown in the above-described embodiment of the present invention. For example, in the embodiment of the present invention, the example of the capacitance measurement using the electrode 2b of the electrode unit 2 as the reference electrode in the present invention has been described, but for example, a ground having a large area in the circuit board P to be inspected. A pattern, a power supply pattern, or the like can also be used as a reference electrode.
[0027]
【The invention's effect】
As described above, according to the short circuit inspection target setting method, the circuit board inspection method, and the circuit board inspection apparatus according to the present invention, a predetermined number of conductor patterns having a large capacitance between the counter electrodes are extracted, and the extracted respective conductor patterns The inter-pattern electrostatic capacitance between the conductor patterns is measured using a probe for inspection, and the inter-pattern electrostatic capacitance between the measured conductor patterns is larger than the counter-electrode electrostatic capacitance for each conductive pattern. The value obtained by multiplying the inter-electrode capacitance by a predetermined coefficient is larger than the capacitance between each counter electrode, or the inter-pattern capacitance is obtained by multiplying the counter-electrode capacitance by a predetermined coefficient. Large conductor patterns are set as inspection target conductor patterns, and short circuit inspection is performed on the set inspection target conductor patterns during circuit board inspection of the same type of circuit board. In addition to disconnection inspection based on the capacitance between the conductor pattern and the electrode, a pair of conductor patterns that are likely to cause a short circuit are automatically extracted without using adjacent pattern data, and these conductor patterns are extracted. A short-circuit inspection can be performed. For this reason, it is possible to omit an operation step of specifying adjacent patterns in advance and storing these adjacent patterns in advance as a pair of pattern number data. In addition, it is possible to automatically extract a pair of conductor patterns that are not adjacent to each other and have a high possibility of occurrence of a short circuit even with respect to conductor patterns having different capacitances between the counter electrodes. A short-circuit inspection can be performed. Therefore, the reliability of the inspection for the circuit board can be sufficiently increased.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a process of creating short circuit inspection object data in a circuit board inspection apparatus 1 according to an embodiment of the present invention.
2 is a configuration diagram showing configurations of a circuit board inspection apparatus 1 and a conventional circuit board inspection apparatus 51. FIG.
FIG. 3 is a top view of a circuit board P which is an example of an inspection target.
4 is an equivalent circuit diagram of an electrode 2b in the electrode section 2 and conductor patterns CP1 and CP2 on the circuit board P. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit board inspection apparatus 2 Electrode part 2a Insulating film 2b Electrode 3, 4 Probe 3a, 4a Probe fixture 5a, 5b Moving mechanism 6 Control part 7 RAM
C11, C12 Counter electrode capacitance C13 Pattern capacitance CP Conductor pattern P Circuit board

Claims (4)

検査対象の回路基板から短絡検査の対象となる一対の導体パターンを設定する短絡検査対象設定方法であって、
良品の前記回路基板における複数の導体パターンと基準電極との間の対電極間静電容量を検査用プローブを用いてそれぞれ測定し、前記測定した対電極間静電容量が大きい前記導体パターンを前記回路基板の種類に応じて予め設定された数だけ抽出し、当該抽出した各導体パターン同士間のパターン間静電容量を前記検査用プローブを用いて測定し、当該測定した導体パターン同士間のパターン間静電容量が当該各導体パターンについての前記各対電極間静電容量よりも大きな導体パターン同士、当該パターン間静電容量に前記回路基板の種類に応じて予め決定されている係数を掛けた値が当該各対電極間静電容量よりも大きな導体パターン同士、または当該パターン間静電容量が当該各対電極間静電容量に前記回路基板の種類に応じて予め決定されている係数を掛けた値よりも大きな導体パターン同士を前記短絡検査の対象となる一対の導体パターンとして設定することを特徴とする短絡検査対象設定方法
A short circuit inspection object setting method for setting a pair of conductor patterns to be subjected to a short circuit inspection from a circuit board to be inspected,
Each measured using a testing probe capacitance between the counter electrode between the plurality of conductor patterns and the reference electrode in the circuit board of good, the said measured the conductor pattern is larger electrostatic capacitance between the counter electrode was A predetermined number is extracted according to the type of the circuit board, the inter-pattern capacitance between the extracted conductor patterns is measured using the inspection probe, and the pattern between the measured conductor patterns is measured. The inter-capacitance is larger than the inter-electrode capacitance for each conductor pattern, and the inter-pattern capacitance is multiplied by a coefficient determined in advance according to the type of the circuit board . value larger conductor patterns to each other than the electrostatic capacitance between the respective counter-electrode or pre capacitance between the patterns in accordance with the type of the circuit board in the electrostatic capacitance between the respective counter electrode, Short inspection target selection method characterized by than the value obtained by multiplying a coefficient that is constant for setting the large conductor patterns to each other as a pair of conductive patterns to be the short test.
検査対象の回路基板における複数の導体パターンと基準電極との間の対電極間静電容量を検査用プローブを用いてそれぞれ測定し、当該測定した対電極間静電容量に基づいて一対の導体パターンについての短絡検査を行う回路基板検査方法であって、The capacitance between the counter electrodes between the plurality of conductor patterns and the reference electrode on the circuit board to be inspected is respectively measured using an inspection probe, and a pair of conductor patterns is based on the measured capacitance between the counter electrodes A circuit board inspection method for performing a short circuit inspection on
検査対象の前記回路基板についての前記短絡検査時に、当該短絡検査に先立って良品の前記回路基板に対して請求項1記載の短絡検査対象設定方法を実施して前記短絡検査の対象として設定された前記一対の導体パターンに対して当該短絡検査を行うことを特徴とする回路基板検査方法。At the time of the short-circuit inspection for the circuit board to be inspected, the short-circuit inspection target setting method according to claim 1 is performed on the non-defective circuit board prior to the short-circuit inspection, and the short-circuit inspection target is set A circuit board inspection method comprising performing the short circuit inspection on the pair of conductor patterns.
接触型の検査用プローブと、当該検査用プローブを移動させる移動機構と、前記移動機構を制御して前記検査用プローブを検査対象の回路基板における複数の導体パターンに順次接触させて当該各導体パターンと基準電極との間の対電極間静電容量を測定し、当該測定した対電極間静電容量に基づいて一対の導体パターンについての短絡検査を行う制御部とを備えた回路基板検査装置であって、
記憶部を備え、
前記制御部は、前記短絡検査に先立ち、良品の前記回路基板における複数の導体パターンと前記基準電極との間の前記対電極間静電容量を前記検査用プローブを用いてそれぞれ測定し、前記測定した対電極間静電容量が大きい前記導体パターンを前記回路基板の種類に応じて予め設定された数だけ抽出し、当該抽出した各導体パターン同士間のパターン間静電容量を前記検査用プローブを用いて測定し、当該測定した導体パターン同士間のパターン間静電容量が当該各導体パターンについての前記各対電極間静電容量よりも大きな導体パターン同士、当該パターン間静電容量に前記回路基板の種類に応じて前記記憶部に予め記憶されている係数を掛けた値が当該各対電極間静電容量よりも大きな導体パターン同士、または当該パターン間静電容量が当該各対電極間静電容量に前記回路基板の種類に応じて前記記憶部に予め記憶されている係数を掛けた値よりも大きな導体パターン同士を前記短絡検査の対象となる一対の導体パターンとして前記記憶部に記憶させことを特徴とする回路基板検査装置。
A contact type inspection probe; a moving mechanism for moving the inspection probe; and controlling the moving mechanism to sequentially contact the inspection probe with a plurality of conductor patterns on a circuit board to be inspected. A circuit board inspection apparatus including a control unit that measures a capacitance between the counter electrode between the reference electrode and a reference electrode, and performs a short-circuit inspection on the pair of conductor patterns based on the measured capacitance between the counter electrodes There,
A storage unit,
Prior to the short-circuit inspection , the control unit measures the counter-electrode capacitance between the plurality of conductor patterns and the reference electrode on the non-defective circuit board using the inspection probe, and measures the measurement. The conductor pattern having a large capacitance between the counter electrodes is extracted in a predetermined number according to the type of the circuit board, and the inter-pattern capacitance between the extracted conductor patterns is extracted from the inspection probe. Using the measurement, the inter-pattern capacitance between the measured conductor patterns is larger than the respective inter-electrode capacitance for each of the conductor patterns, the circuit board to the inter-pattern capacitance electrostatic inter type large conductor patterns between the values obtained by multiplying the coefficient stored in advance is higher than the respective counter-electrode between the electrostatic capacitance in the storage unit in response to the or the pattern, A pair of conductors amount to be the short test a large conductive patterns to each other than a value obtained by multiplying a coefficient stored in advance in the storage unit in accordance with the type of the circuit board in the electrostatic capacitance between the respective counter-electrode circuit board inspection apparatus characterized by Ru is stored in the storage unit as a pattern.
検査対象の前記回路基板についての前記短絡検査時に、前記記憶部に記憶されている前記一対の導体パターンに対して当該短絡検査を行うことを特徴とする請求項3記載の回路基板検査装置。The circuit board inspection apparatus according to claim 3, wherein the short circuit inspection is performed on the pair of conductor patterns stored in the storage unit during the short circuit inspection of the circuit board to be inspected.
JP2001169681A 2001-06-05 2001-06-05 Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus Expired - Fee Related JP4678989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169681A JP4678989B2 (en) 2001-06-05 2001-06-05 Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169681A JP4678989B2 (en) 2001-06-05 2001-06-05 Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus

Publications (2)

Publication Number Publication Date
JP2002365324A JP2002365324A (en) 2002-12-18
JP4678989B2 true JP4678989B2 (en) 2011-04-27

Family

ID=19011726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169681A Expired - Fee Related JP4678989B2 (en) 2001-06-05 2001-06-05 Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus

Country Status (1)

Country Link
JP (1) JP4678989B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060499B2 (en) * 2009-02-10 2012-10-31 マイクロクラフト株式会社 Inspection apparatus and inspection method for printed wiring board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575659A (en) * 1978-12-01 1980-06-07 Nec Corp Insulation inspection method for circuit board and its unit
JPS61234375A (en) * 1985-04-10 1986-10-18 Hitachi Ltd Method and apparatus of inspecting printed circuit board
JPH04503105A (en) * 1988-10-17 1992-06-04 バス、サイエンティフィック、リミテッド Electrical circuit testing
JPH09152457A (en) * 1995-11-30 1997-06-10 Fujitsu Autom Ltd Electric wiring inspection method and apparatus
JPH10123198A (en) * 1996-10-21 1998-05-15 Hioki Ee Corp Inspection apparatus for circuit board
JPH11109302A (en) * 1997-09-30 1999-04-23 Optrex Corp Liquid crystal display element inspecting method
JP2000214206A (en) * 1999-01-21 2000-08-04 Hioki Ee Corp Circuit substrate inspecting method and circuit substrate inspecting apparatus
JP2001235502A (en) * 2000-02-23 2001-08-31 Hioki Ee Corp Circuit board inspection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575659A (en) * 1978-12-01 1980-06-07 Nec Corp Insulation inspection method for circuit board and its unit
JPS61234375A (en) * 1985-04-10 1986-10-18 Hitachi Ltd Method and apparatus of inspecting printed circuit board
JPH04503105A (en) * 1988-10-17 1992-06-04 バス、サイエンティフィック、リミテッド Electrical circuit testing
JPH09152457A (en) * 1995-11-30 1997-06-10 Fujitsu Autom Ltd Electric wiring inspection method and apparatus
JPH10123198A (en) * 1996-10-21 1998-05-15 Hioki Ee Corp Inspection apparatus for circuit board
JPH11109302A (en) * 1997-09-30 1999-04-23 Optrex Corp Liquid crystal display element inspecting method
JP2000214206A (en) * 1999-01-21 2000-08-04 Hioki Ee Corp Circuit substrate inspecting method and circuit substrate inspecting apparatus
JP2001235502A (en) * 2000-02-23 2001-08-31 Hioki Ee Corp Circuit board inspection device

Also Published As

Publication number Publication date
JP2002365324A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JP3558434B2 (en) Electrical wiring inspection method and apparatus
JP5060499B2 (en) Inspection apparatus and inspection method for printed wiring board
JP5391869B2 (en) Board inspection method
JP5290697B2 (en) Reference data creation method and circuit board inspection apparatus
US5903160A (en) Method and apparatus for testing an electrical conductor assembly
JP2008546991A (en) Method for inspecting a large non-component printed circuit board using a finger tester
JP4582869B2 (en) Circuit board inspection equipment
JP4678989B2 (en) Short circuit inspection target setting method, circuit board inspection method, and circuit board inspection apparatus
WO2004057350A1 (en) Circuit pattern inspection instrument and pattern inspecting method
KR20130092462A (en) Built-in substrate inspection method
JP5191805B2 (en) Inspection apparatus and inspection method
JP3784479B2 (en) Circuit board inspection method
JP2000214206A (en) Circuit substrate inspecting method and circuit substrate inspecting apparatus
JP5307085B2 (en) Circuit board inspection equipment
JP4597236B2 (en) Circuit board inspection method and circuit board inspection apparatus
JP4663918B2 (en) Capacitance measurement method, circuit board inspection method, and circuit board inspection apparatus
JP5347737B2 (en) Rotor inspection device
JP4369002B2 (en) Circuit board inspection equipment
JP4987497B2 (en) Circuit board inspection equipment
JPH1026647A (en) Method and device for inspecting substrate
JP2003014808A (en) Creation method for reference data and circuit-board inspection apparatus
JP2014020815A (en) Substrate inspection device and substrate inspection method
JP4231682B2 (en) Bypass capacitor mounting inspection method
JP6943648B2 (en) Board inspection equipment and board inspection method
JPH03154879A (en) Substrate inspecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4678989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees