JP4677856B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP4677856B2
JP4677856B2 JP2005240645A JP2005240645A JP4677856B2 JP 4677856 B2 JP4677856 B2 JP 4677856B2 JP 2005240645 A JP2005240645 A JP 2005240645A JP 2005240645 A JP2005240645 A JP 2005240645A JP 4677856 B2 JP4677856 B2 JP 4677856B2
Authority
JP
Japan
Prior art keywords
current
toroidal coil
phase
winding
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005240645A
Other languages
Japanese (ja)
Other versions
JP2007057282A (en
Inventor
晃 森田
伸夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005240645A priority Critical patent/JP4677856B2/en
Publication of JP2007057282A publication Critical patent/JP2007057282A/en
Application granted granted Critical
Publication of JP4677856B2 publication Critical patent/JP4677856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、工場やオフィス等の発電設備、受電設備において交流電流を測定する電流センサや、三相の商用電源に接続された保護装置と組み合わされ、一定値以上の主回路電流が流れた場合に遮断器を動作させて設備を保護するために使用される電流センサに関するものである。   The present invention is combined with a current sensor that measures AC current in a power generation facility or power receiving facility such as a factory or office, or a protective device connected to a three-phase commercial power source, and a main circuit current of a certain value or more flows. The present invention relates to a current sensor used for operating a circuit breaker to protect equipment.

三相交流電流を測定する方法としては、一般的に、交流電流によって作成される磁界を磁気コアに導き、この磁気コアを通過する磁束の変化に基づいて交流電流を測定する方法が知られている。
また、トロイダル形状のトロイダルコイルを用いる方法として、トロイダルコイルの中心開口部の貫通電流(被測定電流)によって生じる磁界の変化が作る電圧を積分して前記貫通電流を測定する方法も知られている。
As a method for measuring a three-phase alternating current, a method is generally known in which a magnetic field created by an alternating current is guided to a magnetic core and the alternating current is measured based on a change in magnetic flux passing through the magnetic core. Yes.
In addition, as a method using a toroidal coil having a toroidal shape, a method of measuring the through current by integrating a voltage generated by a magnetic field change caused by a through current (current to be measured) in the central opening of the toroidal coil is also known. .

ここで、トロイダルコイルでは高精度な電流測定を可能にするために、巻線のピッチを一定とすること、巻線が囲む面積と帰路線(巻き戻し線)が囲む面積とを等しくすること、非磁性材料等からなる巻芯の断面積を一定にすること等が求められており、例えば後述する特許文献1には、貫通電流の位置関係によって発生する電圧の感度係数を一定にするために、巻線を均一に巻くための工夫が開示されている。   Here, in the toroidal coil, in order to enable highly accurate current measurement, the pitch of the winding should be constant, the area surrounded by the winding and the area surrounded by the return line (rewind line), There is a demand for a constant cross-sectional area of a winding core made of a nonmagnetic material or the like. For example, in Patent Document 1 described later, in order to make the sensitivity coefficient of the voltage generated by the positional relationship of the through current constant, A device for winding the winding uniformly is disclosed.

また、図4は、トロイダルコイルを用いた他の電流センサの概略的な構成図であり、図4(a)は正面図、図4(b)は右側面図である。
この電流センサは、保護リレー装置に内蔵されるタイプのものであり、三相交流電源に接続されたU相電流バー10u、V相電流バー10v、W相電流バー10wのうち、U相電流バー10u及びW相電流バー10wをトロイダルコイル20u’,20w’の中心開口部にそれぞれ貫通させ、これらの電流バー10u,10wを流れるU相電流、W相電流をトロイダルコイル20u’,20w’の出力電圧から測定すると共に、後述する演算によってV相電流を求め、これら各相の電流の大きさが一定値を超えた場合にリレー遮断部30を駆動して設備を保護するように構成されている。
なお、図4において、41,42は、トロイダルコイル20u’,20w’に隣接して流れるV相電流による磁界を遮蔽してクロストークを防止するための磁気遮蔽板である。
4 is a schematic configuration diagram of another current sensor using a toroidal coil. FIG. 4A is a front view and FIG. 4B is a right side view.
This current sensor is of a type built in a protection relay device, and is a U-phase current bar among a U-phase current bar 10u, a V-phase current bar 10v, and a W-phase current bar 10w connected to a three-phase AC power source. 10 u and W phase current bar 10 w are passed through the central openings of toroidal coils 20 u ′ and 20 w ′, respectively, and U phase current and W phase current flowing through these current bars 10 u and 10 w are output from toroidal coils 20 u ′ and 20 w ′. In addition to measuring from the voltage, the V-phase current is obtained by calculation described later, and when the magnitude of the current of each phase exceeds a certain value, the relay cutoff unit 30 is driven to protect the equipment. .
In FIG. 4, reference numerals 41 and 42 denote magnetic shielding plates for shielding a magnetic field caused by a V-phase current flowing adjacent to the toroidal coils 20u ′ and 20w ′ to prevent crosstalk.

ここで、トロイダルコイルを用いた交流電流の測定原理については、例えば後述する非特許文献1に記載されている。以下、測定原理を略述する。
図4に示したような各相電流バー10u,10v,10wに三相交流電流を流した場合、U,V,W相電流のベクトル和は0である。このため、三相交流電流の測定に当たっては、例えばU相電流I及びW相電流Iを測定し、U,V,W相電流のベクトル和が0であることから、
=−(I+I
によって残りのV相電流Iを求めることができる。なお、上記の演算はベクトル演算である。
Here, the measurement principle of the alternating current using the toroidal coil is described in Non-Patent Document 1, which will be described later, for example. The measurement principle is outlined below.
When a three-phase alternating current is passed through each phase current bar 10u, 10v, 10w as shown in FIG. 4, the vector sum of the U, V, W phase currents is zero. Therefore, in measuring the three-phase alternating current, for example, the U-phase current Iu and the W-phase current Iw are measured, and the vector sum of the U, V, and W-phase currents is 0.
I v = − (I u + I w )
It can be determined remaining V phase current I v by. The above calculation is a vector calculation.

図4のトロイダルコイル20u’,20w’を用いてU相電流やW相電流を測定する場合には、図5に示すような測定回路が使用される。
この図5において、20は上記トロイダルコイル20u’,20w’に相当するトロイダルコイル、20aは巻芯、20bは巻線、20cは巻芯20aの分割部、10は被測定電流が流れる電流バー、51は同軸ケーブル、52は抵抗、53はコンデンサ、54はオペアンプである。
When measuring the U-phase current and the W-phase current using the toroidal coils 20u ′ and 20w ′ of FIG. 4, a measurement circuit as shown in FIG. 5 is used.
In FIG. 5, 20 is a toroidal coil corresponding to the toroidal coils 20u ′ and 20w ′, 20a is a winding core, 20b is a winding, 20c is a divided portion of the winding core 20a, 10 is a current bar through which a current to be measured flows, 51 is a coaxial cable, 52 is a resistor, 53 is a capacitor, and 54 is an operational amplifier.

電流バー10を流れる交流電流が作る磁束の変化は巻芯20aの周方向に生じ、この巻芯20aに巻かれた巻線20bに磁束が交差するため、トロイダルコイル20の巻線20bには磁束(電流)の微分値に比例した電圧が生じる。
従って、同軸ケーブル51を介した巻線20bの出力電圧eを抵抗52、オペアンプ54及びコンデンサ53からなるミラー積分器によって積分することにより、電流バー10を流れる交流電流に比例した電圧eを得ることができ、この電圧eに基づいて電流バー10を流れる交流電流を測定することができる。
The change in the magnetic flux generated by the alternating current flowing through the current bar 10 occurs in the circumferential direction of the core 20a, and the magnetic flux intersects the winding 20b wound around the core 20a. A voltage proportional to the differential value of (current) is generated.
Therefore, by integrating the output voltage e 1 of the winding 20 b via the coaxial cable 51 by the Miller integrator comprising the resistor 52, the operational amplifier 54 and the capacitor 53, a voltage e 2 proportional to the alternating current flowing through the current bar 10 is obtained. getting can, it is possible to measure the alternating current flowing through the current bar 10 on the basis of the voltage e 2.

特開2000−228323号公報(段落[0027]〜[0032]、図1,図2等)Japanese Unexamined Patent Publication No. 2000-228323 (paragraphs [0027] to [0032], FIG. 1, FIG. 2, etc.) 川崎昌二、「トロイダルコイルによる交流大電流測定」、[online]、[2005年6月13日検索]、インターネット<URL: http://www.riam.kyushu-u.ac.jp/gikan/houkoku1/rogowsky.pdf>Shoji Kawasaki, “Measurement of AC High Current Using Toroidal Coils”, [online], [Search June 13, 2005], Internet <URL: http://www.riam.kyushu-u.ac.jp/gikan/houkoku1 /rogowsky.pdf>

さて、前述した磁気コアを利用して交流電流を測定する従来技術では、大電流による磁気飽和を防ぐために磁気コアを大きくする必要があり、これが高価格化や大型化、重量の増加を招くという問題がある。
また、トロイダルコイルを利用して交流電流を測定する場合には、基本的には巻芯が非磁性材料(または空芯)であって磁路が存在しないため、例えば図4におけるV相電流バー10vのV相電流の如く隣接して流れる大電流による磁界がトロイダルコイル20u’,20w’の巻線に作用することによってクロストーク(本来の検出電圧に重畳されたノイズ電圧として現れる)を生じる。更に、上記磁界の影響を低減するために磁気遮蔽板41,42を用いると、部品数の増加やコストの上昇を招く等の問題があった。
Now, in the conventional technique for measuring alternating current using the magnetic core described above, it is necessary to enlarge the magnetic core in order to prevent magnetic saturation due to a large current, which leads to an increase in price, size, and weight. There's a problem.
When measuring an alternating current using a toroidal coil, the winding core is basically a non-magnetic material (or an air core) and there is no magnetic path. For example, the V-phase current bar in FIG. Crosstalk (appears as a noise voltage superimposed on the original detection voltage) is generated by a magnetic field caused by a large current flowing adjacently, such as a V phase current of 10v, acting on the windings of the toroidal coils 20u ′ and 20w ′. Further, when the magnetic shielding plates 41 and 42 are used to reduce the influence of the magnetic field, there are problems such as an increase in the number of components and an increase in cost.

そこで本発明の解決課題は、小型軽量化、低コスト化を可能にし、しかも隣接して流れる電流によるクロストークの影響を受けないようにした電流センサを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a current sensor that can be reduced in size, weight, and cost, and is not affected by crosstalk caused by current flowing adjacently.

上記課題を解決するため、請求項1に記載した発明は、三相交流電源に接続された各相導体を流れる電流を検出する電流センサであって、トロイダル形状のトロイダルコイルの中心開口部を貫通するように配置された一つの相の導体を流れる電流を、前記トロイダルコイルの出力電圧を積分して測定する電流センサにおいて、
前記トロイダルコイルの周方向の一部であって前記トロイダルコイルの開口部の中心を基準として45°の範囲に、他の部分よりも巻線の巻数を5%多くして密にした巻線の巻きムラ部分を形成し、前記トロイダルコイルの開口部の中心を基準として、前記開口部の中心と前記巻きムラ部分の中央部とを結ぶ半径から前記トロイダルコイルの外部に隣接して配置された他の相の導体の断面中心部までの角度を、±(30°〜90°)の範囲に設定するものである。
In order to solve the above-mentioned problem, the invention described in claim 1 is a current sensor for detecting a current flowing through each phase conductor connected to a three-phase AC power source, and penetrates the central opening of the toroidal-shaped toroidal coil. In a current sensor for measuring a current flowing through a conductor of one phase arranged so as to integrate an output voltage of the toroidal coil,
In the range of 45 ° relative to the center of the opening of the toroidal coil is a part of the circumferential direction of the toroidal coil, the windings densely 5% multi-comb turns of wire than other portions winding unevenness part is formed, with reference to the center of the opening of the toroidal coil, the other positioned adjacent the radial connecting the central portion of the center and the winding uneven portion of the opening to the outside of the toroidal coil The angle to the center of the cross section of the conductor of this phase is set in a range of ± (30 ° to 90 °).

請求項2に記載した発明は、請求項1に記載した電流センサにおいて、
前記巻きムラ部分を、前記トロイダルコイルの巻線の巻き始め(=巻き終わり)部分に形成したものである。
The invention described in claim 2 is the current sensor according to claim 1,
The winding uneven part is formed at a winding start (= winding end) part of the winding of the toroidal coil.

請求項3に記載した発明は、請求項1または2に記載した電流センサにおいて、前記トロイダルコイルの開口部の中心を基準として、前記開口部の中心と前記巻きムラ部分の中央部とを結ぶ半径から前記トロイダルコイルの外部に隣接して配置された他の相の導体の断面中心部までの角度を、±70°に設定したものである。
According to a third aspect of the present invention, in the current sensor according to the first or second aspect, a radius connecting the center of the opening and the center of the winding uneven portion with reference to the center of the opening of the toroidal coil. To the center of the cross section of the conductor of the other phase disposed adjacent to the outside of the toroidal coil is set to ± 70 °.

本発明によれば、トロイダルコイルの周方向の一部に巻きムラ部分を形成するだけで、磁気コアの大型化や磁気遮蔽板の追加等の手段を講じることなく、隣接する導体を流れる電流によるクロストークの影響を低減させることができ、電流センサの小型軽量化、低コスト化が可能になる。   According to the present invention, only by forming a winding uneven portion in a part of the circumferential direction of the toroidal coil, the current flowing in the adjacent conductor can be obtained without taking measures such as increasing the size of the magnetic core or adding a magnetic shielding plate. The influence of crosstalk can be reduced, and the current sensor can be reduced in size and weight and cost.

以下、図に沿って本発明の実施形態を説明する。まず、図1は本発明の実施形態を示す電流センサの概略的な構成図であり、図4と同様に保護リレー装置と組み合わせて利用される電流センサを示している。
図1(a)において、前記同様に、三相交流電源に接続されたU相電流バー10u、V相電流バー10v、W相電流バー10wが等間隔に並べて配置されており、U相電流バー10u及びW相電流バー10wはトロイダル形状のトロイダルコイル20u,20wの中心開口部をそれぞれ貫通している。また、図1(b)において、30は各相の電流の大きさが一定値を超えた場合に駆動されるリレー遮断部である。
なお、上記の構成において、U相電流バー10u及びW相電流バー10wは請求項1における第1の導体に相当し、V相電流バー10vは第2の導体に相当する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 is a schematic configuration diagram of a current sensor showing an embodiment of the present invention, and shows a current sensor used in combination with a protection relay device as in FIG.
In FIG. 1A, similarly to the above, the U-phase current bar 10u, the V-phase current bar 10v, and the W-phase current bar 10w connected to the three-phase AC power source are arranged at equal intervals. 10u and the W-phase current bar 10w penetrate through the central openings of the toroidal-shaped toroidal coils 20u and 20w, respectively. In FIG. 1B, reference numeral 30 denotes a relay cut-off unit that is driven when the magnitude of the current of each phase exceeds a certain value.
In the above configuration, the U-phase current bar 10u and the W-phase current bar 10w correspond to the first conductor in claim 1, and the V-phase current bar 10v corresponds to the second conductor.

さて、この実施形態では、トロイダルコイル20u,20wの周方向の一部に、巻きムラ部分(例えば他の部分よりも巻線の巻数を多くして密にした部分)21u,21wを意図的に形成することにより、隣接するV相電流バー10vの電流(以下、隣接電流という)によるクロストークがトロイダルコイル20u,20wに与える影響を低減させるようにした。   By the way, in this embodiment, winding uneven portions (for example, a portion where the number of windings is increased to be denser than other portions) 21u and 21w are intentionally provided in a part of the toroidal coils 20u and 20w in the circumferential direction. By forming the crosstalk, the influence of the crosstalk caused by the current of the adjacent V-phase current bar 10v (hereinafter referred to as the adjacent current) on the toroidal coils 20u and 20w is reduced.

このように巻きムラ部分21u,21wを設けると、トロイダルコイル20u,20wの中心開口部を貫通するU相電流バー10u,W相電流バー10wとトロイダルコイル20u,20wとの間に相対的な位置依存性が生じ、各電流バー10u,10wを流れる電流(以下、貫通電流という)による各トロイダルコイル20u,20wからの検出電圧、ひいては被測定電流の検出感度に位置依存性が生じることとなる。
しかし、トロイダルコイル20u,20w及び電流バー10u,10wを保護リレー装置のような固定された設置環境で使用する場合には、各構成部材相互の位置関係を一旦固定してしまえば、各トロイダルコイル20u,20wによる電流検出感度は一定になり、被測定電流である貫通電流と測定電圧(前述したミラー積分器の出力)との関係はリニアリティを保つことができる。
When the winding uneven portions 21u and 21w are thus provided, the relative positions between the U-phase current bar 10u and the W-phase current bar 10w that penetrate the central opening of the toroidal coils 20u and 20w and the toroidal coils 20u and 20w. Dependence occurs, and position dependency occurs in detection voltages from the toroidal coils 20u and 20w due to currents flowing through the current bars 10u and 10w (hereinafter referred to as through currents), and thus in detection sensitivity of the current to be measured.
However, when the toroidal coils 20u and 20w and the current bars 10u and 10w are used in a fixed installation environment such as a protective relay device, once the positional relationship between the components is fixed, each toroidal coil The current detection sensitivity due to 20u and 20w becomes constant, and the relationship between the through current that is the current to be measured and the measurement voltage (the output of the Miller integrator described above) can maintain linearity.

更に、発明者は、上記巻きムラ部分21u,21wを所定位置(角度)で配置すれば隣接電流によるクロストークの影響を低減できることを、図2に示すモデルを用いたシミュレーションによって確認した。
なお、図2はU相のトロイダルコイル20uとV相電流バー10vによる隣接電流との関係を示しており、巻きムラ部分21uはトロイダルコイル20uの開口部の中心から45°の範囲に設け、巻線の巻数を他の部分よりも5%程度、多目にして構成してある。この巻きムラ部分21uの中央部からV相電流バー10vの断面中心部までの角度(空間角度)をαとした。
また、隣接電流の方向は、図示例では紙面の表から裏へ向かう方向としてあるが、逆方向でも良い。
Furthermore, the inventor confirmed by simulation using the model shown in FIG. 2 that the influence of crosstalk due to the adjacent current can be reduced if the winding uneven portions 21u and 21w are arranged at predetermined positions (angles).
FIG. 2 shows the relationship between the U-phase toroidal coil 20u and the adjacent current due to the V-phase current bar 10v. The winding uneven portion 21u is provided in a range of 45 ° from the center of the opening of the toroidal coil 20u. The number of turns of the wire is set to about 5% more than other portions. An angle (space angle) from the center of the winding uneven portion 21u to the center of the cross section of the V-phase current bar 10v was defined as α.
Further, in the illustrated example, the direction of the adjacent current is a direction from the front side to the back side of the drawing, but it may be reversed.

図3は図2のモデルを用いたシミュレーション結果であり、上記角度αとクロストーク量の相対値(V相電流バー10vを含む交流電流経路とトロイダルコイル20uの巻線との相互インダクタンスの相対値)との関係を示している。
図3から明らかなように、角度αが0°に近付くほど(V相電流バー10vと巻きムラ部分21uとが近付くほど)クロストークが大きくなりピーク値を示すが、反対に離れるとピーク値とは逆極性のクロストークが発生する。そして、その間の角度である角度αが±70°近傍ではクロストークが0となっており、この角度が保たれるようにV相電流バー10v及びトロイダルコイル20uを相対的に配置することにより、隣接相の電流つまりV相電流によるU相のトロイダルコイル20uへのクロストークノイズを低減させることができる。
上記の作用は、V相電流バー10vとW相のトロイダルコイル20wとの相対的な位置関係についても同様である。
FIG. 3 is a simulation result using the model of FIG. 2, and the relative value of the angle α and the crosstalk amount (the relative value of the mutual inductance between the AC current path including the V-phase current bar 10v and the winding of the toroidal coil 20u). ).
As is clear from FIG. 3, as the angle α approaches 0 ° (as the V-phase current bar 10v and the winding uneven portion 21u approach each other), the crosstalk increases and shows a peak value. Causes crosstalk with reverse polarity . And when the angle α, which is the angle between them, is around ± 70 °, the crosstalk is 0, and by arranging the V-phase current bar 10v and the toroidal coil 20u relatively so that this angle is maintained, Crosstalk noise to the U-phase toroidal coil 20u due to adjacent phase current, that is, V-phase current can be reduced.
The above operation is the same for the relative positional relationship between the V-phase current bar 10v and the W-phase toroidal coil 20w.

なお、通常、トロイダルコイルの巻線はその巻き始め(=巻き終わり)付近に引き出し線が接続されるので、この接続部分を補強したいという要請がある。従って、この接続部分(巻き始めまたは巻き終わり部分)付近の巻線の巻数を多くして巻きムラ部分を形成し、これによって接続部分を補強すると共に、接続部分の中心と隣接相の電流バーとの角度を例えば±70°近傍に設定することにより、接続部分の補強及びクロストークノイズの除去を同時に行うことができる。   Normally, since the lead wire is connected near the winding start (= winding end) of the winding of the toroidal coil, there is a demand to reinforce this connection portion. Accordingly, the number of windings in the vicinity of the connection portion (winding start or winding end portion) is increased to form a winding uneven portion, thereby reinforcing the connection portion, and connecting the center of the connection portion and the current bar of the adjacent phase. For example, by setting the angle in the vicinity of ± 70 °, the connection portion can be reinforced and the crosstalk noise can be removed simultaneously.

また、実際の製造工程では、トロイダルコイルの中心から45°の範囲で1%程度の巻きムラが生じること等を考慮した場合、前記角度αをほぼ+30°〜+90°、または、ほぼ−30°〜−90°の範囲に設定すればクロストークの影響は実用上ほとんどないものである。   Further, in the actual manufacturing process, considering that winding unevenness of about 1% occurs in the range of 45 ° from the center of the toroidal coil, the angle α is approximately + 30 ° to + 90 °, or approximately −30 °. If it is set in the range of ˜−90 °, there is practically no influence of crosstalk.

なお、本発明は保護リレー装置だけでなく、トロイダルコイルを利用して交流電流を測定する種々の電流センサに適用することができる。   The present invention can be applied not only to a protective relay device but also to various current sensors that measure an alternating current using a toroidal coil.

本発明の実施形態を示す電流センサの概略的な構成図であり、図1(a)は正面図、図1(b)は右側面図である。It is a schematic block diagram of the current sensor which shows embodiment of this invention, Fig.1 (a) is a front view, FIG.1 (b) is a right view. 本発明の作用を検証するためのシミュレーションモデルである。It is a simulation model for verifying the operation of the present invention. 図2のモデルを用いたシミュレーション結果を示す図である。It is a figure which shows the simulation result using the model of FIG. 従来技術を示す電流センサの概略的な構成図であり、図4(a)は正面図、図4(b)は右側面図である。It is a schematic block diagram of the current sensor which shows a prior art, Fig.4 (a) is a front view, FIG.4 (b) is a right view. トロイダルコイルを用いた交流電流測定回路の説明図である。It is explanatory drawing of the alternating current measurement circuit using a toroidal coil.

符号の説明Explanation of symbols

10u:U相電流バー
10v:V相電流バー
10w:W相電流バー
20u,20w:トロイダルコイル
21u,21w:巻きムラ部分
30:リレー遮断部
10u: U-phase current bar 10v: V-phase current bar 10w: W-phase current bar 20u, 20w: Toroidal coil 21u, 21w: Uneven winding part 30: Relay cutoff part

Claims (3)

三相交流電源に接続された各相導体を流れる電流を検出する電流センサであって、トロイダル形状のトロイダルコイルの中心開口部を貫通するように配置された一つの相の導体を流れる電流を、前記トロイダルコイルの出力電圧を積分して測定する電流センサにおいて、
前記トロイダルコイルの周方向の一部であって前記トロイダルコイルの開口部の中心を基準として45°の範囲に、他の部分よりも巻線の巻数を5%多くして密にした巻線の巻きムラ部分を形成し、前記トロイダルコイルの開口部の中心を基準として、前記開口部の中心と前記巻きムラ部分の中央部とを結ぶ半径から前記トロイダルコイルの外部に隣接して配置された他の相の導体の断面中心部までの角度を、±(30°〜90°)の範囲に設定することを特徴とする電流センサ。
A current sensor for detecting a current flowing through each phase conductor connected to a three-phase AC power source, and a current flowing through a single phase conductor arranged to penetrate the central opening of the toroidal toroidal coil, In a current sensor that integrates and measures the output voltage of the toroidal coil,
In the range of 45 ° relative to the center of the opening of the toroidal coil is a part of the circumferential direction of the toroidal coil, the windings densely 5% multi-comb turns of wire than other portions winding unevenness part is formed, with reference to the center of the opening of the toroidal coil, the other positioned adjacent the radial connecting the central portion of the center and the winding uneven portion of the opening to the outside of the toroidal coil A current sensor characterized in that an angle to the center of the cross section of the conductor of the phase is set in a range of ± (30 ° to 90 °).
請求項1に記載した電流センサにおいて、
前記巻きムラ部分を、前記トロイダルコイルの巻線の巻き始め部分に形成したことを特徴とする電流センサ。
The current sensor according to claim 1,
The current sensor, wherein the winding uneven portion is formed at a winding start portion of the winding of the toroidal coil.
請求項1または2に記載した電流センサにおいて、
前記トロイダルコイルの開口部の中心を基準として、前記開口部の中心と前記巻きムラ部分の中央部とを結ぶ半径から前記トロイダルコイルの外部に隣接して配置された他の相の導体の断面中心部までの角度を、±70°に設定したことを特徴とする電流センサ。
The current sensor according to claim 1 or 2,
The center of the cross section of the conductor of the other phase arranged adjacent to the outside of the toroidal coil from the radius connecting the center of the opening and the central portion of the winding uneven portion with respect to the center of the opening of the toroidal coil A current sensor characterized in that the angle to the portion is set to ± 70 °.
JP2005240645A 2005-08-23 2005-08-23 Current sensor Expired - Fee Related JP4677856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240645A JP4677856B2 (en) 2005-08-23 2005-08-23 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240645A JP4677856B2 (en) 2005-08-23 2005-08-23 Current sensor

Publications (2)

Publication Number Publication Date
JP2007057282A JP2007057282A (en) 2007-03-08
JP4677856B2 true JP4677856B2 (en) 2011-04-27

Family

ID=37920915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240645A Expired - Fee Related JP4677856B2 (en) 2005-08-23 2005-08-23 Current sensor

Country Status (1)

Country Link
JP (1) JP4677856B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950368A (en) * 1982-09-16 1984-03-23 Mitsubishi Electric Corp Electric current measuring device
JPH02184765A (en) * 1989-01-10 1990-07-19 Mitsubishi Electric Corp Detector for 3-phase ac current
JP2003139802A (en) * 2001-11-07 2003-05-14 Hioki Ee Corp Current sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950368A (en) * 1982-09-16 1984-03-23 Mitsubishi Electric Corp Electric current measuring device
JPH02184765A (en) * 1989-01-10 1990-07-19 Mitsubishi Electric Corp Detector for 3-phase ac current
JP2003139802A (en) * 2001-11-07 2003-05-14 Hioki Ee Corp Current sensor

Also Published As

Publication number Publication date
JP2007057282A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US7626376B2 (en) Electric current detector having magnetic detector
US6417661B1 (en) Self powered current sensor
KR0135219B1 (en) Direct current sensor
US20100148907A1 (en) Current transformer and electrical monitoring system
US9063178B2 (en) System for measuring current and method of making same
JPWO2016080470A1 (en) Magnetic sensor, method of manufacturing the same, and current detector using the same
JP5067574B2 (en) Current sensor
JP2004501341A (en) Current transformer for compensating current sensor
JPH07146315A (en) Ac current sensor
JP2010529425A (en) Device for measuring the current through a conductor
JP2010038750A (en) Magnetic balance type current sensor
WO2013005352A1 (en) Current detector and electricity meter
US7911198B2 (en) Arrangement and method for measuring a current flowing in an electrical conductor
JP6566188B2 (en) Current sensor
JP4677856B2 (en) Current sensor
JPWO2020035693A5 (en)
JP2609383B2 (en) Current detector
JP5257811B2 (en) Fast response and low current consumption non-contact DC current sensor
JP2016200549A (en) Current-voltage sensor
JP2021150610A (en) Current transformer and iron core for current transformer
JP5889114B2 (en) Current detector and current detection method
JP2006189319A (en) Electric current measurement method
JPH0261710B2 (en)
JP2020012671A (en) Current sensor
JP2007292548A (en) High current detecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees