JP4677303B2 - Manufacturing method of glass optical element - Google Patents

Manufacturing method of glass optical element Download PDF

Info

Publication number
JP4677303B2
JP4677303B2 JP2005231211A JP2005231211A JP4677303B2 JP 4677303 B2 JP4677303 B2 JP 4677303B2 JP 2005231211 A JP2005231211 A JP 2005231211A JP 2005231211 A JP2005231211 A JP 2005231211A JP 4677303 B2 JP4677303 B2 JP 4677303B2
Authority
JP
Japan
Prior art keywords
glass
mold
polishing
manufacturing
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005231211A
Other languages
Japanese (ja)
Other versions
JP2007045660A (en
Inventor
浩之 澤田
照夫 山下
茂 林
昌弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005231211A priority Critical patent/JP4677303B2/en
Publication of JP2007045660A publication Critical patent/JP2007045660A/en
Application granted granted Critical
Publication of JP4677303B2 publication Critical patent/JP4677303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Description

本発明は精密モールドプレスに供するガラス素材を製造する方法、及び該ガラス素材を用いて、精密モールドプレスによってガラスレンズを製造する方法、及びそれにより得られるガラス光学素子に関する。特に、小径で重量の小さなレンズを量産するに際し、生産効率と歩留の高い安定した製造方法に関する。 The present invention relates to a method for producing a glass material for use in a precision mold press, a method for producing a glass lens by a precision mold press using the glass material, and a glass optical element obtained thereby. In particular, the present invention relates to a stable manufacturing method with high production efficiency and yield when mass-producing lenses having a small diameter and a small weight.

特開2005−97099号公報(特許文献1)には、予備成形された所定体積の成形素材を加熱軟化した状態でプレス成形し、得られたプレス成形品の外周を除去する芯取り加工を施す方法が記載されている。 In JP-A-2005-97099 (Patent Document 1), a preforming material having a predetermined volume is press-molded in a heat-softened state, and a centering process is performed to remove the outer periphery of the obtained press-molded product. A method is described.

特開平9−165226号公報(特許文献2)には、上型及び下型の円中部外径寸法を成形ガラスレンズの有効径寸法より所定量だけ大きく設定し、上型の成形面側には有効径より外方で、かつ光学機能面と連接するような位置における外縁部にテーパー状に面取仕上げを施して所定寸法の面取部を形成する方法が記載されている。このようにすることで、レンズ素材の体積ばらつきを許容し、レンズ成形後の芯取り作業を不要にするとしている。 In Japanese Patent Laid-Open No. 9-165226 (Patent Document 2), the outer diameter dimensions of the upper and lower molds are set to be larger than the effective diameter dimension of the molded glass lens by a predetermined amount, and on the molding surface side of the upper mold. A method is described in which a chamfered portion having a predetermined dimension is formed by chamfering the outer edge portion at a position outside the effective diameter and connected to the optical functional surface in a tapered shape. By doing in this way, the volume variation of the lens material is allowed, and the centering work after the lens molding is made unnecessary.

特許第2746567号公報(特許文献3)は、溶融ガラスを流出パイプから滴下し、これを凹部を有する成形型で受け、気体により浮上させながら凹部の内面と実質的に非接触の状態で球形状に成形する方法が開示されている。 Japanese Patent No. 2746567 (Patent Document 3) is a method in which molten glass is dropped from an outflow pipe, received by a molding die having a recess, and spherically shaped in a non-contact state with the inner surface of the recess while being floated by gas. Is disclosed.

特開昭61−261225号公報(特許文献4)には、ガラスゴブを研磨してガラス球を形成し、このガラス球を加圧加熱成形することによって所望の光学素子を得る方法が記載されている。
特開2005−97099号公報 特開平9−165226号公報 特許第2746567号公報 特開昭61−261225号公報
Japanese Patent Application Laid-Open No. 61-261225 (Patent Document 4) describes a method of obtaining a desired optical element by polishing a glass gob to form a glass sphere and press-molding the glass sphere under pressure. .
JP 2005-97099 A JP-A-9-165226 Japanese Patent No. 2746567 Japanese Patent Laid-Open No. 61-261225

精密モールドプレスによるガラスレンズは、特許文献1に記載されたように、プレス成形後の成形体に芯取りを行い、又は光軸に垂直な面に含まれる平面部を形成する後加工を行う場合がある。ここで芯取りとは、成形体の外周(多くの場合、成形によって形成された自由表面部)を研磨等によって除去するとともに、外径中心軸と光軸を一致させることをいう。 As described in Patent Document 1, a glass lens by a precision mold press performs centering on a press-molded product or post-processing to form a flat portion included in a plane perpendicular to the optical axis. There is. Here, the centering means that the outer periphery of the molded body (in many cases, the free surface portion formed by molding) is removed by polishing or the like, and the center axis of the outer diameter coincides with the optical axis.

一方、現在、小型撮像機器や光ピックアップ、通信用に用いられる光学レンズは、小型化と光学性能の両立が求められ、要求精度は益々高くなっている。これらの用途に求められるガラスレンズは、小径(例えば、レンズ径1mm〜5mm程度)、薄肉(例えば肉厚最小部分において、0.1〜1mm)などである。こうしたレンズを、精密モールドプレスによって成形する場合、成形後に上記の後加工を行うことは、レンズが小さい為に扱いにくく、芯出し精度が得にくいうえ、芯取り装置に設置するための工数がかり、不都合である。更に、薄肉レンズの場合には、芯取り工程での破損が生じやすい。特に、芯出し精度が不十分である場合、外径中心と光軸の一致性が悪いこととなり、該レンズを搭載した機器の光学性能に影響するため、問題が大きい。このため、芯取り工程を省略し、プレス成形によって、光学機能面を形成するとともに、外径を画定する方法が有利である。例えばこの方法により、外径ばらつきは5μm以内とすることが可能であり、更に光軸と外径中心との一致性も数μm以内とすることができる。 On the other hand, optical lenses used for small imaging devices, optical pickups, and communication are now required to be both compact and optical performance, and the required accuracy is increasing. The glass lens required for these uses has a small diameter (for example, a lens diameter of about 1 mm to 5 mm), a thin wall (for example, 0.1 to 1 mm in a minimum thickness portion), and the like. When molding such a lens with a precision mold press, the post-processing described above is difficult to handle due to the small size of the lens, and it is difficult to obtain centering accuracy. It is inconvenient. Furthermore, in the case of a thin lens, breakage easily occurs in the centering process. In particular, when the centering accuracy is insufficient, the coincidence between the center of the outer diameter and the optical axis is poor, which affects the optical performance of the device on which the lens is mounted, which is a serious problem. For this reason, a method of omitting the centering step, forming the optical functional surface by press molding, and defining the outer diameter is advantageous. For example, by this method, the outer diameter variation can be within 5 μm, and the coincidence between the optical axis and the outer diameter center can be within several μm.

そこで、プレス成形に用いる成形型の形状を工夫することによって、プレス成形によってレンズの光学機能面の形成と外径の画定を同時に行うことが考えられる。しかしながらこの場合、例えば成形素材の重量ばらつきに起因し、プレス成形による成形体が不定形の自由表面を有していたり、個体間での不均一な形状であってはならず、レンズを搭載する機器の用途に応じた所望の形状に均一に製造されなければならない。 Therefore, it is conceivable to devise the shape of the mold used for press molding to simultaneously form the optical functional surface of the lens and define the outer diameter by press molding. However, in this case, for example, due to variations in the weight of the molding material, the compact formed by press molding must not have an irregular free surface or non-uniform shape among individuals, and a lens is mounted. It must be manufactured uniformly in the desired shape according to the application of the device.

特許文献2では、上型の外縁部にテーパー状の面取仕上げを施すことにより、その部分にレンズ素材の体積ばらつきからくる余剰光学素材が流入することによって、体積ばらつきを吸収し、芯取り作業を不要にしている。しかしながら、成形されるレンズの外周が不定形の突起となるため、光学機器への取り付けが行いにくく、また該部分が欠けやすいという問題がある。従って、レンズ体積のなかで、素材の体積ばらつきを吸収させることは好ましくない。 In Patent Document 2, a taper-shaped chamfer finish is applied to the outer edge of the upper mold, and excess optical material resulting from the volume variation of the lens material flows into that portion, so that the volume variation is absorbed and the centering operation is performed. Is unnecessary. However, since the outer periphery of the lens to be molded becomes an irregular projection, there is a problem that it is difficult to attach to an optical device and the portion is easily chipped. Therefore, it is not preferable to absorb the volume variation of the material in the lens volume.

芯取り加工を行わない場合、すなわちプレス成形によってレンズの光学機能面の形成と外径の画定を行うプレス成形の際には、レンズの第一面(上型又は下型の被転写面を有する)、第二面(下型又は上型の被転写面を有する)とともに、外周面にも成形型の各部材が接触するようにプレス成形をすることで、レンズ形状を画定するが、この場合、プレス成形に用いるガラス素材の重量を、得ようとするレンズの重量と正確に一致させることが求められる。ガラス素材の重量が過大であると、所定肉厚に達するまで上下型を接近させたときに、型部材の隙間にガラスが侵入してバリとなり、ガラス素材の重量が不足するとレンズの形状が不定形になる。 When centering is not performed, that is, in the press molding in which the optical functional surface of the lens is formed and the outer diameter is defined by press molding, the first surface of the lens (having the transferred surface of the upper mold or the lower mold) ), And the second surface (having the transfer surface of the lower mold or the upper mold), and press molding so that each member of the mold comes into contact with the outer peripheral surface, thereby defining the lens shape. Therefore, it is required to accurately match the weight of the glass material used for press molding with the weight of the lens to be obtained. If the weight of the glass material is excessive, when the upper and lower molds are brought closer to the predetermined thickness, the glass will enter the gaps between the mold members and become burrs. If the weight of the glass material is insufficient, the shape of the lens will be poor. It becomes a fixed form.

プレス成形に用いるガラス素材は、ブロック状の光学ガラスから所定の大きさに切り出し、研磨によって球形に予備成形したり、又は、溶融ガラスを受け型に滴下、又は流下しつつ適切な手段で分離し、受け型内で固化して予備成形(熱間成形)して作製することができる。但し前者によって小径のガラス球を予備成形するには工数がかかり、研磨によって廃棄されるガラスも相当量になることから、量産には必ずしも有利でない。 The glass material used for press molding is cut out to a predetermined size from the block-shaped optical glass and pre-formed into a spherical shape by polishing, or separated by appropriate means while dropping or flowing down the molten glass into the receiving mold. It can be produced by solidifying in a receiving mold and preforming (hot forming). However, it takes a lot of time to preform a small-diameter glass sphere by the former, and a considerable amount of glass discarded by polishing is not necessarily advantageous for mass production.

特許文献3に記載の方法によれば、予備成形されたガラス素材は、表面にキズや汚れ等の欠陥のない、重量精度の高いガラス素材を得ることができるとされている。しかしながら、溶融ガラスを所定の間隔又は流量で滴下/流下させる際には、溶融ガラスの表面張力の影響を大きく受けるため、ガラス容量が小さく軽量になったときに、特に重量を一定に維持することが困難である。 According to the method described in Patent Document 3, it is said that a preformed glass material can obtain a glass material with high weight accuracy having no defects such as scratches and dirt on the surface. However, when dripping / falling molten glass at a predetermined interval or flow rate, it is greatly affected by the surface tension of the molten glass, so when the glass capacity is small and light, especially keep the weight constant. Is difficult.

特許文献4によると、表面精度の悪いガラスゴブを研磨して、均一な外径をもった球を得ることができるとされている。しかし、溶融ガラスをゴブ状にしたものは、表面状態が悪いのみでなく、急冷の為に大きな歪が残存し、その密度も一定していない。従って、研磨によって均一な外径を得ても、密度の相違から質量は均一にならない。このような球を、精密モールドプレスに用いるため加熱軟化すると、質量変動に起因する体積変動が生じ、成形されるレンズ等の光学素子の形状が不均一となる。 According to Patent Document 4, it is said that a glass gob with poor surface accuracy can be polished to obtain a sphere having a uniform outer diameter. However, the gob-like shape of the molten glass has not only a poor surface state, but also a large strain remains due to rapid cooling, and its density is not constant. Therefore, even if a uniform outer diameter is obtained by polishing, the mass is not uniform due to the difference in density. When such a sphere is heated and softened for use in a precision mold press, volume variation due to mass variation occurs, and the shape of a molded optical element such as a lens becomes non-uniform.

そこで本発明の目的は、形状精度の高い光学素子を製造するために用いられる成形用ガラス素材、及び形状精度の高い光学素子を提供することにある。 Therefore, an object of the present invention is to provide a glass material for molding used for producing an optical element having high shape accuracy, and an optical element having high shape accuracy.

上記目的を達成する手段は、以下の通りである。
[1] 溶融ガラスを流出パイプから順次受け型に滴下又は流下しつつ分離して複数のガラス塊を予備成形し、
前記複数のガラス塊を、(該ガラスの転移点温度−℃)〜(該ガラスの転移点温度−15℃)の温度に加熱し、前記温度から冷却速度0.5〜50℃/hで冷却し、
冷却後の前記複数のガラス塊の表面を研磨加工することによって球形状とし、複数の精密ガラス球を得ること、および、
得られた精密ガラス球を加熱により軟化し、成形型でプレス成形すること、
を含むガラス光学素子の製造方法であって、
前記研磨加工を、回転する2つの研磨盤に前記ガラス塊を挟み、該ガラス塊を転がしながら研磨することにより行い、ここで前記研磨盤上には砥粒を含む研磨加工液が供給されており、
前記ガラス光学素子は、光学機能面を有する第一面及び第二面と、外周面を有し、前記第一面、第二面及び外周面に、成形型部材を転写した被転写面を有する、前記製造方法。
[2] 前記複数の精密ガラス球の重量ばらつきが、所定重量に対して±1.0%以下であることを特徴とする、[1]に記載の製造方法。
[3] 前記複数の精密ガラス球の個々の体積が、0.05〜65mm3であることを特徴とする、[1]又は[2]に記載の製造方法。
[4] 前記予備成形は、滴下又は流下した溶融ガラスを受け型内で気体により浮上させながら予備成形を行うことを特徴とする、[1]〜[3]のいずれかに記載の製造方法。
[5] 前記砥粒の砥粒径は0.01〜100μmの範囲である、[1]〜[4]のいずれかに記載の製造方法。
Means for achieving the object is as follows.
[1] The molten glass is separated from the outflow pipe while dropping or flowing sequentially into the receiving mold to separate a plurality of glass ingots,
The plurality of glass ingots are heated to a temperature of (transition temperature of the glass— 5 ° C.) to (transition temperature of the glass— 15 ° C.), and the cooling rate is 0.5 to 50 ° C./h from the temperature. Cool,
A spherical shape by grinding the surface of said plurality of glass gobs after cooling, Rukoto obtain a plurality of precision glass spheres and,
The obtained precision glass sphere is softened by heating and press-molded with a mold,
A method for producing a glass optical element comprising:
The polishing process is performed by sandwiching the glass lump between two rotating polishing discs and polishing the glass lump while rolling, and a polishing liquid containing abrasive grains is supplied onto the polishing disc. ,
The glass optical element has a first surface and a second surface having optical function surfaces, and an outer peripheral surface, and has a transfer surface to which a mold member is transferred on the first surface, the second surface, and the outer peripheral surface. The manufacturing method.
[2] The manufacturing method according to [1], wherein the plurality of precision glass spheres have a weight variation of ± 1.0% or less with respect to a predetermined weight.
[3] The manufacturing method according to [1] or [2], wherein each of the plurality of precision glass spheres has an individual volume of 0.05 to 65 mm 3 .
[4] The manufacturing method according to any one of [1] to [3], wherein the preforming is performed while the molten glass that has been dropped or flowed down is floated by a gas in a mold.
[5] The method according to any one of [1] to [4], wherein the abrasive grain size of the abrasive grains is in a range of 0.01 to 100 μm.

本発明によると、プレス成形に用いるガラス素材の絶対量を均一に所望の値にすることができるため、プレス成形による光学素子の形状精度が高い。特に、光学撮像機器等に用いる小径レンズにおいては、他部品、他レンズとの当接によって位置決めが行われる際、レンズ外周や、光学機能面周辺の平坦部などに設けられるわずかな面積の位置決め面が不足すること生じ得るが、本発明によればそうした問題が避けられるため有利である。 According to the present invention, since the absolute amount of the glass material used for press molding can be uniformly set to a desired value, the shape accuracy of the optical element by press molding is high. In particular, in a small-diameter lens used for an optical imaging device or the like, when positioning is performed by contact with another component or another lens, a positioning surface with a small area provided on the outer periphery of the lens or on a flat portion around the optical function surface. However, the present invention is advantageous because such a problem can be avoided.

成形用ガラス素材の製造方法
本発明では、溶融ガラスを流出パイプから順次受け型に滴下又は流下しつつ分離して複数のガラス塊を予備成形し、
前記複数のガラス塊を、(該ガラスの転移点温度−50℃)〜(該ガラスの転移点温度+30℃)の温度に加熱し、前記温度から冷却速度0.5〜50℃/hで冷却し、
冷却後の前記複数のガラス塊の表面を機械的に除去することによって球形状とし、複数の精密ガラス球を得ることを特徴とする。
Method for producing glass material for molding In the present invention, molten glass is separated from an outflow pipe while dropping or flowing down sequentially into a receiving mold to separate a plurality of glass lumps,
The plurality of glass ingots are heated to a temperature of (the glass transition point temperature −50 ° C.) to (the glass transition temperature + 30 ° C.) and cooled from the temperature at a cooling rate of 0.5 to 50 ° C./h. And
A plurality of precision glass spheres are obtained by mechanically removing the surfaces of the plurality of glass lumps after cooling to obtain a spherical shape.

本発明においては、まず溶融ガラスを流出パイプから順次受け型に滴下又は流下しつつ分離して複数のガラス塊を予備成形する。溶融ガラスは、ガラス原料を溶融し、清澄、均質化したものを直接用いてもよく、又は、ガラス原料を溶融し、清澄、均質化後、光学恒数を管理したカレットを形成したのち、このカレットを溶融してもよい。 In the present invention, the molten glass is first dropped or dropped from the outflow pipe to the receiving mold in order to separate a plurality of glass lumps. The molten glass may be directly used after melting and clarifying and homogenizing the glass raw material, or after melting and homogenizing the glass raw material to form a cullet with controlled optical constants. The cullet may be melted.

ガラス塊への分離は、例えば、熔融ガラスをガラス滴として受け型上に自然落下させること、または、ガラス流を受け型上に流下してから表面張力によって、または表面張力と重力または受け型の下降によって、若しくは切断手段によって分離することにより行うことができる。 Separation into glass lumps can be achieved, for example, by allowing molten glass to fall spontaneously as glass droplets onto a receiving mold, or by flowing a glass stream onto a receiving mold and then by surface tension, or by surface tension and gravity or receiving mold. This can be done by lowering or by separating by cutting means.

本発明に適用するガラス塊の組成は特に制約されない。ホウケイ酸塩、リン酸塩、フツリン酸塩系の光学ガラスなどに適用できる。 The composition of the glass block applied to the present invention is not particularly limited. It can be applied to borosilicate, phosphate, and fluorophosphate optical glasses.

ガラス塊の予備成形は、受け型上で、受け型から噴出する気体により、分離されたガラス塊を常時又は一時的に浮上させながら行われることが好ましい。ガラス塊の気体による浮上状態は、受け型表面との接触を全く排除するものではなく、噴出する気体により支えられながら受け型表面との瞬間的接触を繰り返す状態を含む。 It is preferable that the preforming of the glass lump is performed on the receiving mold while the separated glass lump is floated constantly or temporarily by the gas ejected from the receiving mold. The floating state of the glass lump by the gas does not exclude contact with the receiving mold surface at all, but includes a state where the instantaneous contact with the receiving mold surface is repeated while being supported by the jetting gas.

ガラス塊をガラス素球に成形するには、例えば、図1又は図2に示すような装置を用いることができる。 In order to form a glass block into a glass ball, for example, an apparatus as shown in FIG. 1 or 2 can be used.

図1の装置では、溶融ガラス2を、白金などの流出パイプ1から自然滴下させ、又は切断刃で切断することによって落下させ、溶融ガラス塊3を受け型4の凹部5で受ける。流出パイプ1は、周囲に設けられたヒータ6によって適切に温度制御することができる。溶融ガラス塊3を受け型4の凹部5で受ける際には、凹部5に設けられた細孔7から気体を吹き出し、溶融ガラス塊3が浮上状態で凹部5との間に気体の層を作る。このようにして、溶融ガラス塊3の表面が軟化点以下の温度に達するまで、溶融ガラス塊3と凹部5とが実質的に非接触状態として保持する。 In the apparatus of FIG. 1, the molten glass 2 is naturally dropped from an outflow pipe 1 such as platinum or dropped by cutting with a cutting blade, and the molten glass lump 3 is received by the concave portion 5 of the mold 4. The temperature of the outflow pipe 1 can be appropriately controlled by a heater 6 provided around the outflow pipe 1. When the molten glass mass 3 is received by the concave portion 5 of the mold 4, gas is blown out from the pores 7 provided in the concave portion 5, and a gas layer is formed between the molten glass mass 3 and the concave portion 5 in a floating state. . Thus, until the surface of the molten glass lump 3 reaches a temperature equal to or lower than the softening point, the molten glass lump 3 and the recess 5 are maintained in a substantially non-contact state.

図2の装置では、流出パイプ11から落下する溶融ガラス2を受け型の受け部によって受け、その後、ガラス塊13は受け型14の凹部15に収容される。この際、凹部15には気体を噴出す細孔17が設けられており、気体Aにより収容されたガラス塊13が浮上し、凹部15内面と実質的に非接触の状態で、ガラス表面が軟化点以下となるまで保持される。 In the apparatus of FIG. 2, the molten glass 2 falling from the outflow pipe 11 is received by the receiving part of the receiving mold, and then the glass block 13 is accommodated in the recess 15 of the receiving mold 14. At this time, the recesses 15 are provided with pores 17 through which gas is ejected, the glass lump 13 accommodated by the gas A floats, and the glass surface is softened in a substantially non-contact state with the inner surface of the recesses 15. It is held until it becomes below the point.

上記いずれの装置の場合も、前記受け型の凹部はテーパ状で、そのテーパ角度は、滴下ガラス塊の量とガラスの粘性により最適な範囲に設定することができる。テーパ角度は、概ね、5〜40°の範囲が適当である。テーパの内面は、ガラス素球の表面を平滑面にするために、鏡面仕上げ加工することが望ましいが、本発明の工程では、ガラスが付着や融着しない表面性状であれば、必ずしも鏡面でなくてもよい。噴出気体の種類は、空気でも良いがガラス塊表面と反応しない気体が好ましく、例えば、窒素やヘリウム、アルゴンなどの不活性ガスおよびそれらの混合ガスなどを用いてもよい。 In any of the above devices, the concave portion of the receiving mold is tapered, and the taper angle can be set in an optimum range depending on the amount of dripped glass lump and the viscosity of the glass. The taper angle is generally in the range of 5 to 40 °. The inner surface of the taper is preferably mirror-finished so that the surface of the glass sphere is smooth, but in the process of the present invention, it is not necessarily a mirror surface as long as the surface properties are such that the glass does not adhere or fuse. May be. The type of jet gas may be air, but is preferably a gas that does not react with the glass lump surface. For example, an inert gas such as nitrogen, helium, or argon, or a mixed gas thereof may be used.

流出パイプのノズル内径は0.2〜10mmであることができ、流出パイプの温度は適切に管理され、流出パイプから体積精度よく、一定の流量でガラスが滴下するよう、粘度の調節を行う。滴下時のガラス粘度は、1〜80dPa・sであることが好ましく、より好ましくは2〜50dPa・sである。成形するガラス塊は、径が1〜10mm程度のものが作製できる。特に、小径(1mm〜5mm)の場合には、ノズル内径を0.2〜3mmとすることが好ましい。このような流出パイプから順次、連続的にガラス滴を滴下又は流下することが好ましく、これを受ける受け型は複数とし、それぞれを順次滴下位置に配置し、ガラスを受けた後に流出パイプ下から退去し、気体によりガラス塊を浮上状態で成形することができる。上記浮上状態とは、受け型表面との接触を全く排除するものではなく、噴出するガスにより支えられながら受け型表面との瞬間的接触を繰り返す状態を含む。このようにして略球形に予備成形された複数のガラス塊は、上記浮上状態のまま、又は軟化点以下の温度で浮上状態を解除して、室温まで冷却される。 The nozzle inner diameter of the outflow pipe can be 0.2 to 10 mm, the temperature of the outflow pipe is appropriately controlled, and the viscosity is adjusted so that the glass drops from the outflow pipe with a volumetric accuracy and at a constant flow rate. It is preferable that the glass viscosity at the time of dripping is 1-80 dPa * s, More preferably, it is 2-50 dPa * s. The glass lump to be molded can be produced with a diameter of about 1 to 10 mm. In particular, in the case of a small diameter (1 mm to 5 mm), the nozzle inner diameter is preferably set to 0.2 to 3 mm. It is preferable to drop or flow glass drops sequentially from such an outflow pipe, and there are a plurality of receiving molds for receiving them, and each is placed at the dropping position in order, and after receiving the glass, it is withdrawn from under the outflow pipe. And a glass lump can be shape | molded in a floating state with gas. The floating state does not exclude contact with the receiving mold surface at all, but includes a state in which instantaneous contact with the receiving mold surface is repeated while being supported by the jetting gas. The plurality of glass blocks preformed in a substantially spherical shape in this way are cooled to room temperature while being in the above floating state or released from the floating state at a temperature equal to or lower than the softening point.

略一定の重量のガラス塊を得るためには、略一定間隔で溶融ガラスを順次複数の受け型上に受けることが有利であり、例えば、1個当たり数秒〜数十秒の間隔とすることが好ましい。すなわち、このような速度で予備成形されたガラス塊が生産される。溶融ガラスの滴下又は流下を開始した時点から冷却が始まるが、冷却速度を厳格に管理する必要はない。好ましくは、溶融状態から室温(例えば20〜25℃程度)までの平均速度で、300〜1500℃/分とすることができる。このように予備成形された略球形状のガラス塊は、重量ばらつきが、0.3〜2%程度の範囲で存在し、また、内部には応力が残存した状態であって、密度は均一ではなく、また密度の個体差も存在する。 In order to obtain a glass lump having a substantially constant weight, it is advantageous to sequentially receive the molten glass on a plurality of receiving molds at a substantially constant interval, for example, an interval of several seconds to several tens of seconds per piece. preferable. That is, a preformed glass lump is produced at such a speed. Although cooling starts from the point of time when dropping or flowing of molten glass is started, it is not necessary to strictly control the cooling rate. Preferably, the average speed from the molten state to room temperature (for example, about 20 to 25 ° C.) can be 300 to 1500 ° C./min. The preformed substantially spherical glass lump has a weight variation in the range of about 0.3 to 2%, and a state in which stress remains inside, and the density is not uniform. There are also individual differences in density.

本発明ではこのように予備成形して得た略球形のガラス塊に対し、熱処理を施す。熱処理は、ガラス内部の応力を緩和することによって密度を実質的に均一化し、個体間の密度も均一化する。このためには、(ガラス転移点温度−50℃)〜(ガラス転移温度+30℃)の温度、より好ましくは(ガラス転移点温度−30℃)〜(ガラス転移点+30℃)の温度に昇温することで、ガラス内の歪を実質的に解消し、密度を均一化することができる。更に(ガラス転移点温度−5℃)〜(ガラス転移点温度−15℃)とすると、処理効率と密度均一化を両立することができる。昇温後一定時間(例えば1〜5時間)保持することが好ましい。次いで、前記温度から、例えば、少なくとも(転移温度−100℃)まで、平均冷却速度0.5〜50℃/hで冷却する。冷却速度は、より好ましくは0.5〜30℃/hである。尚、本熱処理は、予備成形後の複数のガラス塊に対して同時に行うことが量産効率上好ましい。 In the present invention, heat treatment is performed on the substantially spherical glass block obtained by preforming in this way. The heat treatment makes the density substantially uniform by relaxing the stress inside the glass, and also makes the density between individuals uniform. For this purpose, the temperature is raised from (glass transition temperature−50 ° C.) to (glass transition temperature + 30 ° C.), more preferably from (glass transition temperature−30 ° C.) to (glass transition temperature + 30 ° C.). By doing so, the distortion in glass can be substantially eliminated and the density can be made uniform. Further, when (glass transition temperature -5 ° C) to (glass transition temperature -15 ° C), it is possible to achieve both processing efficiency and uniform density. It is preferable to hold for a certain time (for example, 1 to 5 hours) after the temperature rise. Subsequently, it cools with the average cooling rate of 0.5-50 degreeC / h from the said temperature to at least (transition temperature-100 degreeC), for example. The cooling rate is more preferably 0.5 to 30 ° C./h. In addition, it is preferable on mass production efficiency to perform this heat processing simultaneously with respect to the several glass lump after preforming.

尚、上記した密度均一化のための熱処理は、ガラス素材を割れにくくする効果もあり、後述する機械的除去の工程に対しても有利である。単に溶融ガラスを受け型に受けて固化させたガラス塊は密度が不均一なだけでなく、内部に大きな歪(内部応力)を残存させた状態であるため、機械的な衝撃を与えることによって破壊しやすい。特に、予備成形時のガラス塊は、急冷によって表面から固化し、内部が遅れて固化するため、内部が固化する段階では表面形状が画定し、内部の熱収縮ができないため、内部に大きな引張り応力、表面には圧縮応力が残存する。このようなガラス塊の表面を研磨等によって除去すると、ガラス塊は割れ、破壊されやすい。しかしながら、前記熱処理を施したガラス塊は、内部の応力が緩和され、歪が略残存しない状態であるため、研磨等の機械加工に対しても十分な強度があり、割れにくい。 The above-described heat treatment for making the density uniform has the effect of making the glass material difficult to break, and is advantageous for the mechanical removal process described later. The glass lump that is simply received and solidified by the molten glass is not only non-uniform in density, but also has a large strain (internal stress) remaining inside, so it breaks by applying mechanical impact It's easy to do. In particular, the glass lump at the time of preforming solidifies from the surface due to rapid cooling, and the inside solidifies with a delay.Therefore, the surface shape is defined at the stage where the inside solidifies, and internal heat shrinkage is not possible. , Compressive stress remains on the surface. When the surface of such a glass lump is removed by polishing or the like, the glass lump is easily broken and broken. However, since the glass lump subjected to the heat treatment is in a state in which the internal stress is relaxed and the strain does not substantially remain, the glass lump has sufficient strength for mechanical processing such as polishing and is not easily broken.

上記熱処理後の冷却されたガラス塊は、その表面を機械的に除去して球形状とし、この精密ガラス球を得る。機械的除去の方法としては研磨加工が挙げられ、これにより、容易に真球度の高い精密球を複数個同時に得ることができる。ここで精度よく球の径を制御することができるため、精密ガラス球の体積が精度よく均一化できる。そして、ここで用いるガラス塊は既に密度が一定に制御されているから、その重量(質量)も精度よく均一にすることができる。本発明において、精密ガラス球は、密度が均一であって体積(すなわち重量)ばらつきが小さく制御されたものである。ガラス球の密度が均一のもとでは、体積一定であれば重量も一定になるので、本発明の重量一定との記述は、その意味において体積一定と同じ意義になる。 The cooled glass lump after the heat treatment is mechanically removed from its surface to form a spherical shape, and this precision glass sphere is obtained. An example of the mechanical removal method is polishing, whereby a plurality of precision spheres with high sphericity can be easily obtained simultaneously. Here, since the diameter of the sphere can be controlled with high accuracy, the volume of the precision glass sphere can be made uniform with high accuracy. And since the density of the glass lump used here is already controlled to be constant, its weight (mass) can be made uniform with high accuracy. In the present invention, the precision glass sphere is controlled to have a uniform density and a small volume (ie, weight) variation. If the density of the glass spheres is uniform, if the volume is constant, the weight is also constant. Therefore, the description of the constant weight in the present invention has the same meaning as the constant volume.

具体的な研磨方法としては、研磨盤を用いた転動加工を挙げることができる。転動研磨は、回転する2つの研磨盤に球体を挟み、球体を転がしながら研磨する方法である。研磨盤は2つの平面盤で挟む方式(両平面盤方式、図3参照)、もしくは、片側の研磨盤の表面に溝(例えば、図4ではV溝、V溝盤方式)を設けて、溝内側面ともう一方の研磨盤の平面部で挟み、溝内に素球(ここでは、略球形のガラス塊)を通らせる方式(図4参照)を用いることができる。後者の場合、素球は、平面盤と、溝内側面との3点で支持されながら、溝内を転動することで研磨される。そのため、球体は溝の中で自転しながら、その自転軸が変化し、球表面の凸部が主に研磨除去され、さらに、研磨が進むと、一様に研磨されるようになり、徐々に、球体の寸法精度および形状精度が高くなる。尚、研磨盤の表面に設ける溝は、V溝に限らず、溝内の2つの側面で素球を支持できる形状の溝であれば良い。 As a specific polishing method, rolling processing using a polishing disk can be mentioned. Rolling polishing is a method in which a sphere is sandwiched between two rotating polishing disks, and the sphere is polished while rolling. The polishing machine is a method of sandwiching between two flat plates (both flat plate methods, see FIG. 3), or a groove (for example, V-groove, V-grooving method in FIG. 4) is provided on the surface of one of the polishing plates. A system (see FIG. 4) that is sandwiched between the inner surface and the flat portion of the other polishing disk and passes a ball (here, a substantially spherical glass lump) through the groove can be used. In the latter case, the element ball is polished by rolling in the groove while being supported at three points of the plane board and the inner surface of the groove. Therefore, while the sphere rotates in the groove, its rotation axis changes, and the convex part of the sphere surface is mainly removed by polishing. The dimensional accuracy and shape accuracy of the sphere are increased. In addition, the groove | channel provided in the surface of a grinding | polishing board is not restricted to a V-groove, What is necessary is just a groove | channel of the shape which can support an element ball by two side surfaces in a groove | channel.

研磨砥粒は、研磨速度や表面品質を高める上で、酸化アルミニウムや酸化セリウム、酸化ジルコニウムが好ましい。また、砥粒径が、0.01〜100μm程度のものを用いることができる。また、砥粒としては、コロイダルシリカや炭化ケイ素、ダイヤモンドなどを用いることもできる。 The abrasive grains are preferably aluminum oxide, cerium oxide, or zirconium oxide in order to increase the polishing rate or surface quality. Moreover, a thing with an abrasive grain diameter of about 0.01-100 micrometers can be used. As the abrasive grains, colloidal silica, silicon carbide, diamond, or the like can be used.

研磨加工液は、これらの砥粒を水またはアルカリ水溶液と混合し、かつ懸濁し、スラリー状にしたものを用いることができる。加工液は、研磨盤上に、滴下または噴霧により適宜供給することができる。 As the polishing processing liquid, it is possible to use a slurry obtained by mixing and suspending these abrasive grains with water or an alkaline aqueous solution. The processing liquid can be appropriately supplied onto the polishing board by dropping or spraying.

研磨条件は、球体1個あたりの研磨荷重5〜20gf/個の範囲とし、研磨盤の回転数を100〜300rpmの範囲とすることができる。これらの条件は、研磨するガラス素球の数量や寸法、ガラス組成に応じて、適宜調整を行うことができる。 The polishing conditions may be in the range of 5 to 20 gf / load of polishing load per sphere, and the rotational speed of the polishing disk may be in the range of 100 to 300 rpm. These conditions can be appropriately adjusted according to the quantity and size of glass spheres to be polished and the glass composition.

研磨速度は、例えば、1〜200μm/hr程度とすることができる。平面盤方式は、溝付研磨盤方式に比べ、研磨速度は大きいので、粗加工に適する。溝付研磨盤方式では、研磨速度を10μm/hr以内と小さくできるので、研磨時間により研磨量(寸法加工)を精密に制御できるという利点がある。さらに、溝付研磨盤方式は、球の形状精度を高精度に加工できるという利点もある。 The polishing rate can be, for example, about 1 to 200 μm / hr. The flat plate method is suitable for roughing because the polishing rate is higher than that of the grooved polishing plate method. The grooved polishing machine method has an advantage that the polishing rate (dimensional processing) can be precisely controlled by the polishing time because the polishing rate can be reduced to within 10 μm / hr. Furthermore, the grooved polishing machine has an advantage that the shape accuracy of the sphere can be processed with high accuracy.

以上の工程により得られる複数の精密ガラス球の重量ばらつきは、所定重量に対して±1.0%以下であることが好ましい。ここで、「複数」とは、例えば50個以上、好ましくは100個以上である。上記の方法で得られた精密ガラス球は、モールドプレス用のガラス素材として用いることができるが、その場合、複数のガラス素材の個々のガラス重量(質量)が一定であれば、一定の光学素子を成形し得る。従って、精密ガラス球の重量ばらつきが所望値に対して、±1.0%以下であることが好ましい。より好ましくは、±0.5%以下である。特に、精密ガラス球の体積が30mm3以下である場合には、精密ガラス球の重量がより均一であることが求められ、±0.5%以下であることが好ましく、更には、±0.3%以下が好ましい。このようにすることで、プレス成形によって得られる光学素子の、過剰容量によるバリの発生や、容量不足による形状不良が防止できる。 The weight variation of the plurality of precision glass spheres obtained by the above steps is preferably ± 1.0% or less with respect to the predetermined weight. Here, the “plurality” is, for example, 50 or more, preferably 100 or more. The precision glass sphere obtained by the above method can be used as a glass material for a mold press. In that case, if the individual glass weight (mass) of a plurality of glass materials is constant, a constant optical element Can be molded. Therefore, it is preferable that the weight variation of the precision glass sphere is ± 1.0% or less with respect to a desired value. More preferably, it is ± 0.5% or less. In particular, when the volume of the precision glass sphere is 30 mm 3 or less, the weight of the precision glass sphere is required to be more uniform, and is preferably ± 0.5% or less, and more preferably ± 0. 3% or less is preferable. By doing in this way, the generation | occurrence | production of the burr | flash by the excess capacity | capacitance of the optical element obtained by press molding, and the shape defect by a capacity shortage can be prevented.

前記複数の精密ガラス球の個々の体積は、0.05〜65mm3であることが好ましい。
本発明は、溶融ガラスの予備成形(以下、熱間成形という)時に体積制御の困難な場合に、特に効果が顕著である。これは、得ようとする光学素子の体積が小さく、よってそのプレス成形に用いるガラス素子の体積が小さい場合には、熱間成形時の体積均一化が特に困難である上、熱間成形時に生じたわずかな体積ばらつきが光学素子体積に対して無視できない比率となる場合である。従って、精密ガラス球の体積は上記のように0.05〜65mm3である時に本発明の効果が顕著である。尚、撮像機器の光学系を構成するレンズとして所定性能を得やすい形状とするには、特に2〜30mm3とすることが好ましく、この場合、本発明の効果が顕著である。更には、2〜10mm3であるときに効果が高い。
The individual volumes of the plurality of precision glass spheres are preferably 0.05 to 65 mm 3 .
The present invention is particularly effective when volume control is difficult at the time of preforming molten glass (hereinafter referred to as hot forming). This is because, when the volume of the optical element to be obtained is small and therefore the volume of the glass element used for the press molding is small, it is particularly difficult to make the volume uniform during hot forming, and also occurs during hot forming. This is a case where a slight volume variation is a non-negligible ratio to the optical element volume. Therefore, the effect of the present invention is remarkable when the volume of the precision glass sphere is 0.05 to 65 mm 3 as described above. In addition, in order to obtain a shape in which a predetermined performance can be easily obtained as a lens constituting the optical system of the imaging device, it is particularly preferably 2 to 30 mm 3. In this case, the effect of the present invention is remarkable. Further, the effect is high when the thickness is 2 to 10 mm 3 .

本発明では、上記のように調製した精密ガラス球をプレス成形に供する。一定の内体積を有する成形型内に投入するガラス素材の重量(質量)を一定にする(精密に制御する)ことにより、プレス成形により所望のレンズの形状(はみ出し、外周稜部の丸まり、面形状不良の防止、高い肉厚精度)が得られる。 In the present invention, the precision glass sphere prepared as described above is subjected to press molding. By making the weight (mass) of the glass material put into the mold having a constant inner volume constant (control precisely), the desired lens shape (extrusion, rounding of the outer peripheral ridge, surface, etc.) by press molding Prevention of shape defects and high thickness accuracy) can be obtained.

本発明は、更に、
溶融ガラスを分離して複数のガラス塊を予備成形し、
前記複数のガラス塊を加熱した後所定の冷却速度によって冷却する熱処理を施すことによって前記複数のガラス塊の密度のばらつきを緩和し、次いで、前記冷却後の複数のガラス塊の表面を機械的に除去することによって、前記複数のガラス塊の重量のばらつきを緩和することを特徴とする、
成形用ガラス素材の製造方法
に関する。その詳細は、先に説明した通りである。前記方法により重量ばらつきが緩和された成形用ガラス素材を一定の内体積を有する成形型内に投入することにより、プレス成形により所望のレンズの形状(はみ出し、外周稜部の丸まり、面形状不良の防止、高い肉厚精度)を得ることができる。
The present invention further provides:
Separating the molten glass and pre-forming multiple glass lumps,
After the plurality of glass chunks are heated, a variation in density of the plurality of glass chunks is reduced by performing a heat treatment for cooling at a predetermined cooling rate, and then the surfaces of the plurality of glass chunks after cooling are mechanically By removing, to reduce the variation in the weight of the plurality of glass lumps,
The present invention relates to a method for producing a forming glass material. The details are as described above. By introducing the molding glass material whose weight variation is reduced by the above method into a mold having a constant inner volume, the shape of the desired lens (extrusion, rounding of the outer peripheral ridge, poor surface shape, etc.) by press molding. Prevention, high wall thickness accuracy).

ガラス光学素子の製造方法、ガラス光学素子
本発明は、上記本発明の製造方法により製造された成形用ガラス素材を、加熱軟化し、成形型でプレス成形することを含むガラス光学素子の製造方法を包含する。この製造方法においては、前記ガラス光学素子は、光学機能面を有する第一面及び第二面と、外周面を有し、前記第一面、第二面及び外周面に、成形型部材を転写した被転写面を有することを特徴とする。
本発明は、更に、上記本発明のガラス光学素子の製造方法によって得られた、体積ばらつきが±1.0%以内の複数のガラス光学素子に関する。前記体積ばらつきは、好ましくは±0.5%、更に好ましくは±0.3%である。ここで、「複数」とは、例えば50個以上、好ましくは100個以上である。
Method for producing glass optical element, glass optical element The present invention comprises a glass optical element comprising heat-softening a molding glass material produced by the production method of the present invention and press-molding with a molding die. The manufacturing method is included. In this manufacturing method, the glass optical element has a first surface and a second surface having optical functional surfaces, and an outer peripheral surface, and a mold member is transferred to the first surface, the second surface and the outer peripheral surface. It has the surface to be transferred.
The present invention further relates to a plurality of glass optical elements obtained by the glass optical element manufacturing method of the present invention with a volume variation within ± 1.0%. The volume variation is preferably ± 0.5%, more preferably ± 0.3%. Here, the “plurality” is, for example, 50 or more, preferably 100 or more.

本発明では、プレス成形によって得られた光学素子に対し、いわゆる芯取り加工を省略することができる。プレス成形は、図5のような成形型を用い、公知の方法で行うことができるが、このとき、プレス成形によって光学素子の外周部分を含んだ外形を実質的に画定する。 In the present invention, so-called centering can be omitted for the optical element obtained by press molding. The press molding can be performed by a known method using a molding die as shown in FIG. 5. At this time, the outer shape including the outer peripheral portion of the optical element is substantially defined by press molding.

本発明の光学素子の用途には特に限定されない。但し、小径、薄肉の小重量レンズの場合に、本発明の効果が顕著である。例えば、携帯撮像機器などに搭載する小型撮像系用レンズ、通信用レンズ、光ピックアップ用の対物レンズ、コリメータレンズなどである。
尚、本発明の方法により得られるガラス光学素子および本発明のガラス光学素子は、第一面、第二面の光学機能面の周囲に、光軸と垂直な平坦部を有することが好ましい。上記用途のレンズの多くは、光学機能面の周囲に取り付け基準面となる平坦部を備えることが有用であるが、本発明の方法によれば、プレス成形によってレンズの最終形状を画定でき、上記平坦部を精度高く形成できる(不定形の突起の形成や、充填不測によるレンズ外周形状のくずれが防止できる)ため、本発明の効果が顕著である。
The use of the optical element of the present invention is not particularly limited. However, the effect of the present invention is remarkable in the case of a small-diameter, thin-walled small weight lens. For example, a small imaging lens, a communication lens, an optical pickup objective lens, a collimator lens, and the like mounted on a portable imaging device or the like.
The glass optical element obtained by the method of the present invention and the glass optical element of the present invention preferably have a flat portion perpendicular to the optical axis around the first and second optical functional surfaces. Although it is useful to provide a flat portion as an attachment reference surface around the optical functional surface in many of the lenses for the above applications, according to the method of the present invention, the final shape of the lens can be defined by press molding. Since the flat portion can be formed with high accuracy (the formation of irregular projections and the deformation of the outer periphery of the lens due to unexpected filling can be prevented), the effect of the present invention is remarkable.

本発明におけるプレス成形は、公知のプレス成形装置を用い、図5に示すような成形型を適用して行うことができる。上型、下型の素材は、金属のほか、超硬合金、酸化ケイ素、窒化ケイ素などを用いることができるが、超硬合金、酸化ケイ素、窒化ケイ素などは欠けやすい材料であるため、特に有利である。成形面には、ガラスとの融着を防止し、滑り性を向上させるため、公知の離型膜を形成することが好ましい。また、本発明のガラス光学素子の製造方法では、プレス成形に形成された外周の被転写面がそのままレンズ外周となるため、胴型内周面とガラスの間に融着を生じないように、胴型内周面に離型膜を施しておくことが好ましい。 The press molding in the present invention can be performed using a known press molding apparatus and a molding die as shown in FIG. For the upper and lower mold materials, in addition to metals, cemented carbide, silicon oxide, silicon nitride, etc. can be used. However, cemented carbide, silicon oxide, silicon nitride, etc. are particularly advantageous because they are easily chipped. It is. A known release film is preferably formed on the molding surface in order to prevent fusion with glass and improve slipperiness. Further, in the method for producing a glass optical element of the present invention, since the outer peripheral transfer surface formed by press molding becomes the lens outer periphery as it is, so as not to cause fusion between the inner surface of the body mold and the glass, It is preferable to provide a release film on the inner peripheral surface of the body mold.

プレス成形にあたっては、成形型(上型、下型、胴型を含む)とガラス素材をプレスに適した温度域に昇温する。例えば、ガラス素材と成形型が、ガラス素材の粘度が105〜1010dPa・sになる温度域にあるときプレス成形を行うことが好ましい。例えば、ガラス素材を成形型に導入し、ガラス素材と成形型をともに上記温度範囲に昇温してもよく、又はガラス素材と成形型をそれぞれ上記温度範囲に昇温してから、ガラス素材を成形型内に配置してもよい。更に、ガラス素材を105〜109dPa・s粘度相当、成形型をガラス粘度で109〜1012dPa・s相当の温度にそれぞれ昇温し、ガラス素材を成形型に配置して直ちにプレス成形する工程を採用してもよい。この場合、成形型温度を相対的に低くすることができるため、成形装置の昇温/降温サイクルタイムを短縮できるとともに、成形型の熱による劣化を抑制できる効果があり、好ましい。いずれの場合も、プレス成形開始後に冷却を開始し、適切な荷重スケジュールを適用しつつ、成形面とガラス素子の密着を維持しながら、ガラス粘度で1013dPa・s相当に温度まで降温する。この後、離型して成形体を取り出す。離型温度は、1012.5〜1013.5ポアズ相当で行うことが好ましい。 In press molding, the temperature of the molding die (including the upper die, the lower die, and the barrel die) and the glass material is raised to a temperature range suitable for pressing. For example, it is preferable to perform press molding when the glass material and the mold are in a temperature range where the viscosity of the glass material is 10 5 to 10 10 dPa · s. For example, the glass material may be introduced into the mold, and both the glass material and the mold may be heated to the above temperature range, or the glass material and the mold may be heated to the above temperature range, respectively, You may arrange | position in a shaping | molding die. Further, the glass material is heated to a temperature equivalent to 10 5 to 10 9 dPa · s and the mold is heated to a temperature equivalent to 10 9 to 10 12 dPa · s in terms of glass viscosity, and the glass material is placed in the mold and immediately pressed. You may employ | adopt the process to shape | mold. In this case, since the mold temperature can be relatively lowered, the temperature rise / fall cycle time of the molding apparatus can be shortened, and deterioration of the mold due to heat can be suppressed, which is preferable. In either case, cooling is started after the start of press molding, and the glass viscosity is lowered to a temperature equivalent to 10 13 dPa · s while applying an appropriate load schedule and maintaining adhesion between the molding surface and the glass element. Then, it molds and takes out a molded object. The mold release temperature is preferably 10 12.5 to 10 13.5 poise.

本発明のガラス光学素子は、小径、薄肉の小重量レンズ、例えば、携帯撮像機器などに搭載する小型撮像系用レンズ、通信用レンズ、光ピックアップ用の対物レンズ、コリメータレンズ等として好適である。 The glass optical element of the present invention is suitable as a small-diameter and thin-weight lens, for example, a small imaging system lens, a communication lens, an optical pickup objective lens, a collimator lens and the like mounted on a portable imaging device.

ガラス塊の予備成形装置の一例を示す。An example of the glass lump preforming apparatus is shown. ガラス塊の予備成形装置の一例及び成形スキームを示す。An example of a glass lump preforming apparatus and a forming scheme are shown. ガラス塊研磨のための平面盤方式の説明図。Explanatory drawing of the plane board system for glass lump polishing. ガラス塊研磨のためのV溝盤方式の説明図。Explanatory drawing of V groove machine system for glass lump polishing. プレス成形に使用する成形型の一例を示す。An example of the shaping | molding die used for press molding is shown.

Claims (5)

溶融ガラスを流出パイプから順次受け型に滴下又は流下しつつ分離して複数のガラス塊を予備成形し、
前記複数のガラス塊を、(該ガラスの転移点温度−℃)〜(該ガラスの転移点温度−15℃)の温度に加熱し、前記温度から冷却速度0.5〜50℃/hで冷却し、
冷却後の前記複数のガラス塊の表面を研磨加工することによって球形状とし、複数の精密ガラス球を得ること、および、
得られた精密ガラス球を加熱により軟化し、成形型でプレス成形すること、
を含むガラス光学素子の製造方法であって、
前記研磨加工を、回転する2つの研磨盤に前記ガラス塊を挟み、該ガラス塊を転がしながら研磨することにより行い、ここで前記研磨盤上には砥粒を含む研磨加工液が供給されており、
前記ガラス光学素子は、光学機能面を有する第一面及び第二面と、外周面を有し、前記第一面、第二面及び外周面に、成形型部材を転写した被転写面を有する、前記製造方法。
The molten glass is separated from the outflow pipe while dropping or flowing down to the receiving mold in order to separate a plurality of glass lumps,
The plurality of glass ingots are heated to a temperature of (transition temperature of the glass— 5 ° C.) to (transition temperature of the glass— 15 ° C.), and the cooling rate is 0.5 to 50 ° C./h from the temperature. Cool,
A spherical shape by grinding the surface of said plurality of glass gobs after cooling, Rukoto obtain a plurality of precision glass spheres and,
The obtained precision glass sphere is softened by heating and press-molded with a mold,
A method for producing a glass optical element comprising:
The polishing process is performed by sandwiching the glass lump between two rotating polishing discs and polishing the glass lump while rolling, and a polishing liquid containing abrasive grains is supplied onto the polishing disc. ,
The glass optical element has a first surface and a second surface having optical function surfaces, and an outer peripheral surface, and has a transfer surface to which a mold member is transferred on the first surface, the second surface, and the outer peripheral surface. The manufacturing method.
前記複数の精密ガラス球の重量ばらつきが、所定重量に対して±1.0%以下であることを特徴とする、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein a variation in weight of the plurality of precision glass spheres is ± 1.0% or less with respect to a predetermined weight. 前記複数の精密ガラス球の個々の体積が、0.05〜65mm3であることを特徴とする、請求項1又は2に記載の製造方法。 3. The manufacturing method according to claim 1, wherein an individual volume of the plurality of precision glass spheres is 0.05 to 65 mm 3 . 前記予備成形は、滴下又は流下した溶融ガラスを受け型内で気体により浮上させながら予備成形を行うことを特徴とする、請求項1〜3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the preforming is performed while the molten glass dropped or flowed down is floated by a gas in a mold. 前記砥粒の砥粒径は0.01〜100μmの範囲である、請求項1〜4のいずれか1項に記載の製造方法。The manufacturing method according to any one of claims 1 to 4, wherein an abrasive grain size of the abrasive grains is in a range of 0.01 to 100 µm.
JP2005231211A 2005-08-09 2005-08-09 Manufacturing method of glass optical element Active JP4677303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231211A JP4677303B2 (en) 2005-08-09 2005-08-09 Manufacturing method of glass optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231211A JP4677303B2 (en) 2005-08-09 2005-08-09 Manufacturing method of glass optical element

Publications (2)

Publication Number Publication Date
JP2007045660A JP2007045660A (en) 2007-02-22
JP4677303B2 true JP4677303B2 (en) 2011-04-27

Family

ID=37848813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231211A Active JP4677303B2 (en) 2005-08-09 2005-08-09 Manufacturing method of glass optical element

Country Status (1)

Country Link
JP (1) JP4677303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266031A (en) * 2007-04-16 2008-11-06 Ohara Inc Method for producing optical glass
CN113816592B (en) * 2021-09-30 2023-05-12 中国建筑材料科学研究总院有限公司 3D printing method and 3D printing device for chalcogenide glass microspheres

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110437A (en) * 1995-10-11 1997-04-28 Olympus Optical Co Ltd Member for forming optical element
JP2003089528A (en) * 2001-09-11 2003-03-28 Hoya Corp Method for melting glass, equipment for melting the same, and method for manufacturing glass formed article
JP2004155639A (en) * 2001-11-14 2004-06-03 Hoya Corp Optical glass, glass material for press molding, optical element, and methods of manufacturing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110437A (en) * 1995-10-11 1997-04-28 Olympus Optical Co Ltd Member for forming optical element
JP2003089528A (en) * 2001-09-11 2003-03-28 Hoya Corp Method for melting glass, equipment for melting the same, and method for manufacturing glass formed article
JP2004155639A (en) * 2001-11-14 2004-06-03 Hoya Corp Optical glass, glass material for press molding, optical element, and methods of manufacturing them

Also Published As

Publication number Publication date
JP2007045660A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP5635636B2 (en) Precision glass sphere manufacturing method and glass optical element manufacturing method
JP4309859B2 (en) Method for manufacturing press-molding preform and method for manufacturing optical element
KR100446051B1 (en) Method of producing glass products, method of producing press-molded products, and apparatus for producing glass mass products
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JP5248740B2 (en) Precision glass sphere manufacturing method and glass optical element manufacturing method
JP4445419B2 (en) Method for producing glass molded body, method for producing glass material for press molding, and method for producing optical element
CN102791642B (en) Method for producing glass blank, method for producing magnetic recording medium substrate, and method for producing magnetic recording medium
JP4677303B2 (en) Manufacturing method of glass optical element
JP5016826B2 (en) Manufacturing method of glass material for molding, glass material, and manufacturing method of glass optical element
JP3673670B2 (en) Optical element and method for producing molded glass block for its production
JP4951166B2 (en) Lens blank and lens manufacturing method
JPH01133948A (en) Manufacture of optical element
JP3974376B2 (en) Method for producing glass lump, method for producing glass molded product, and method for producing optical element
JP2002128535A (en) Forming method of glass gob for optical element
JP5081717B2 (en) Mold, method for manufacturing precision press-molding preform, method for manufacturing optical element
JP3689586B2 (en) Optical element manufacturing method
JPH11171555A (en) Production of blank for forming optical element
JP3965627B2 (en) Method for producing glass molded body and method for producing optical element
JP2001019448A (en) Production of glass blank for optical element, production of optical element using the same and glass optical element
JP2000302461A (en) Molding for glass element
JP4003881B2 (en) Method for producing glass molded body and method for producing optical element
JP4843063B2 (en) Method for manufacturing press-molding preform and method for manufacturing optical element
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JP2002348133A (en) Manufacturing method for molded article of optical glass and for optical element
JP4458897B2 (en) Molten glass outflow nozzle, glass molded body, press molding preform, and optical element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4677303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250