JP4676632B2 - Method for controlling solubility of water-in-oil emulsion - Google Patents

Method for controlling solubility of water-in-oil emulsion Download PDF

Info

Publication number
JP4676632B2
JP4676632B2 JP2001081795A JP2001081795A JP4676632B2 JP 4676632 B2 JP4676632 B2 JP 4676632B2 JP 2001081795 A JP2001081795 A JP 2001081795A JP 2001081795 A JP2001081795 A JP 2001081795A JP 4676632 B2 JP4676632 B2 JP 4676632B2
Authority
JP
Japan
Prior art keywords
water
hydrogen
oil
group
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001081795A
Other languages
Japanese (ja)
Other versions
JP2002332358A (en
Inventor
由美 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2001081795A priority Critical patent/JP4676632B2/en
Publication of JP2002332358A publication Critical patent/JP2002332358A/en
Application granted granted Critical
Publication of JP4676632B2 publication Critical patent/JP4676632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油中水型エマルジョンの溶解性調節方法に関するものであり、特に少なくとも一種類の炭化水素からなる油状物質を連続相、水溶性高分子水溶液を分散相とする油中水型エマルジョンを水に溶解するに際し、前記油中水型エマルジョンに油溶性乳化剤及び水溶性乳化剤を添加、混合した後、水に溶解することを特徴とする油中水型エマルジョンの溶解性調節方法に関する。
【0002】
【従来の技術】
水溶性高分子の油中水型エマルジョンは、水溶性高分子を高濃度の製品形態に保存可能で、しかも分散液の粘性が非常に低いので高分子凝集剤などの高分子量を要する用途に適した液状製品である。例えば特公昭54−37986号公報には、単量体水溶液30〜70重量%と疎水性有機液体70〜30重量%を界面活性剤をもちいて乳化分散させ油中水型エマルジョンを製造する方法が開示されている。しかし、油中水型であるため、溶解時、水に分散させると水滴のまわりには油が存在しこのままでは溶解は進まない。そのためいわゆる「転相剤」と呼んでいる親水性乳化剤を、エマルジョン中にあるいは溶解水中に添加し溶解を促進させる方法が採用されている(特開昭50−43189号公報)。
【0003】
溶解水の性状にもよるが、この溶解操作は油中水型エマルジョン型凝集剤の性能を決定する一つのポイントにもなっている。即ち前記転相剤の添加量を増加すれば溶解性は向上するが、エマルジョン製品の保存安定性は低下し、また、凝集性能、あるいは環境にも影響する。完全溶解までの時間を設定可能なように、溶解水中に予め一定のHLB値を有する乳化剤を一定量添加しておき、この中に一定量の油中水型エマルジョンを添加し、攪拌下、溶解液とする方法が開示されている(特公平3−75568号公報)。さらにユ−ザ−の使用現場によっては、転相剤を添加した当該油中水型エマルジョンを水に溶解し、水溶液とした後、使用残液に水と転相剤含有油中水型エマルジョンを追加し、水溶液を調製している例もある。こうした場合、すでに粘性があるので転送剤種類の選択あるいはその添加量の決定は非常に難しいものになる。
【0004】
【発明が解決しようとする課題】
本発明の目的は、転相剤として添加するHLBの高い乳化剤の添加やその高添加率に起因する、油中水型エマルジョンの急速な溶解・粘性上昇によって生ずる粗大な未溶解粒子の発生を防止できる、安全で効率的な溶解方法を開発することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため鋭意研究を重ねた結果、以下のような発明に達した。即ち、本発明の請求項1の発明は、少なくとも一種類の炭化水素からなる油状物質を連続相、下記一般式(1)および/または(2)で表わされるカチオン性単量体5〜100モル%、下記一般式(3)で表わされるアニオン性単量体0〜40モル%とアクリルアミドを0〜95モル%からなる水溶性高分子水溶液を分散相とする油中水型高分子エマルジョンを水に溶解するに際し、HLB数(ハイドロホビック・リポフィリック・バランス)が2〜8の非イオン性油溶性乳化剤を添加、混合した後、HLB数が8〜20である非イオン性水溶性乳化剤を添加、混合した後、水に溶解することを特徴とする油中水型エマルジョンの溶解性調節方法である。
【化1】
は水素又はメチル基、R、Rは炭素数1〜3のアルキルまたアルコキシ基あるいはベンジル基、Rは水素、炭素数1〜3のアルキルまたアルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Xは陰イオンをそれぞれ表わす
【化2】
は水素又はメチル基、R、Rは炭素数1〜3のアルキルまたアルコキシ基あるいはベンジル基であり、同種でも異種でも良い、Xは陰イオンをそれぞれ表わす
【化3】
は水素、メチル基またはカルボキシメチル基、Rは水素またはカルボキシル基、AはSO、CSO、CONHC(CHCHSOあるいはCOO、Yは水素または陽イオンを表わす。
【0006】
請求項の発明は、少なくとも一種類の炭化水素からなる油状物質を連続相、下記一般式(3)で表わされるアニオン性単量体2〜60モル%とアクリルアミドを40〜98モル%からなる水溶性高分子水溶液を分散相とする油中水型高分子エマルジョンを水に溶解するに際し、HLB数(ハイドロホビック・リポフィリック・バランス)が2〜8の非イオン性油溶性乳化剤を添加、混合した後、HLB数が8〜20である非イオン性水溶性乳化剤を添加、混合した後、水に溶解することを特徴とする油中水型エマルジョンの溶解性調節方法である。
【化3】
は水素、メチル基またはカルボキシメチル基、Rは水素またはカルボキシル基、AはSO、CSO、CONHC(CHCHSOあるいはCOO、Yは水素または陽イオンを表わす。
【0010】
【発明の実施の形態】
油中水型エマルジョンの合成方法としては、従来と同様である。まず、水溶性ビニル単量体、水、少なくとも一種類の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌下、油中水型エマルジョンを形成させた後、窒素雰囲気中、重合開始剤を添加し重合することにより合成する。水溶性ビニル単量体としては以下のようなものが上げられる。アニオン性の単量体としてアクリル酸、メタアクリル酸、イタコン酸、マレイン酸、フマル酸、ビニルスルフォン酸、ビニルベンゼンスルフォン酸あるいはアクリルアミド2−メチルプロパンスルフォン酸などがあげられる。非イオン性単量体として(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドなどである。
【0011】
また両性の水溶性共重合体を合成するには、前記アニオン性単量体や非イオン性単量体の他、カチオン性単量体を共重合する。例えば三級アミノ基含有単量体の例として、(メタ)アクリル酸ジメチルアミノエチル、ジメチルアミノプロピル(メタ)アクリルアミド、メチルジアリルアミンあるいはエチルジアリルアミンなどである。四級アンモニウム基含有単量体の例としては、前記三級アミノ基含有単量体の(メタ)の塩化メチルや塩化ベンジルによる四級化物である(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物などがあげられる。さらにジメチルジアリルアンモニウム塩化物、メチルベンジルジアリルアンモニウム塩化物などである。
【0012】
これら単量体の共重合モル比としては、カチオン性あるいは両性高分子の場合は、前記一般式(1)及び/又は(2)で表わされるカチオン性単量体5〜100モル%、前記一般式(3)で表わされるアニオン性単量体0〜40モル%とアクリルアミドを0〜95モル%であり、好ましくは、10〜100モル%、アニオン性単量体0〜30モル%とアクリルアミドを0〜90モル%である。また、アニオン性高分子の場合は、前記一般式(3)で表わされるアニオン性単量体2〜50モル%とアクリルアミドを50〜98モル%であり、好ましくはアニオン性単量体5〜50モル%とアクリルアミドを50〜95モル%である。
【0013】
炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油などの鉱油、またはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。
【0014】
の油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB3〜6のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレ−ト、ソルビタンモノステアレ−ト、ソルビタンモノパルミテ−トなどがあげられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10重量%であり、好ましくは1〜5重量%である。
【0015】
アニオン性単量体を中和した後、前記成分を混合し、乳化機などにより油中水型エマルジョンを形成させた後、窒素置換を行い、一定の重合温度に油中水型エマルジョンを設定した後、ラジカル重合開始剤によって重合を開始させる。開始剤としては、アゾ系,過酸化物系、レドックス系いずれでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1’−アゾビス(シクロヘキサンカルボニトリル)、2、2’−アゾビス(2−メチルブチロニトリル)、2、2’−アゾビス(2−メチルプロピオネ−ト)、4、4’−アゾビス(4−メトキシル2、4−ジメチル)バレロニトリルなどがあげられる。
【0016】
水溶性アゾ系開始剤の例としては、2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物、4、4’−アゾビス(4−シアノ吉草酸)などがあげられる。またレドックス系の例としては、ペルオクソ二硫酸アンモニウムあるいはカリウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミンなどとの組み合わせがあげられる。さらに過酸化物の例としては、ペルオクソ二硫酸アンモニウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t-ブチルペルオキシ2−エチルヘキサノエ−トなどをあげることができる。
【0017】
重合温度としては、0〜80℃で可能であるが、好ましくは20〜60℃である。重合濃度は、一般的に10〜60重量%であるが、好ましくは20〜50重量%が重合反応を制御し易く、また製造の効率も良い。
【0018】
本発明の油中水型エマルジョンは、前記単量体類、即ちアニオン性単量体、ノニオン性単量体、三級アミノ基あるいは四級アンモニウム塩基含有単量体の他、架橋性の単量体、例えばメチレンビスアクリルアミドやエチレングルコ−ルジ(メタ)アクリレ−トなどの多官能性単量体、あるいはN、N−ジメチルアクリルアミドのような熱架橋性単量体などを適宜共重合し、共重合体を改質し、いろいろな排水に対応するよう性能の改良を行うことも可能である。
【0019】
以上のように合成した油中水型エマルジョンに転相剤を添加し、水への溶解を促進する。従来、転相剤はHLBが8〜20の水溶性乳化剤を使用している。しかし、転相剤を添加しすぎると、溶解時、急速な粘性増加により未溶解粒子が発生したり、環境への懸念が起きる。また、添加量が少なすぎると溶解性が低下する。そのため本発明では、水溶性乳化剤に加え、油溶性乳化剤を併用する。特に本発明で使用する乳化剤は、非イオン性水溶性乳化剤と非イオン性油溶性乳化剤である。こうして併用することによって時間に比例する形で溶解液の粘性が上昇して行き、未溶解粒子の発生も抑制でき、「追加溶解」による溶解初期から粘性がある場合にも対応ができる。これら非イオン性水溶性乳化剤と非イオン性油溶性乳化剤の添加比率は、水溶性乳化剤と油溶性乳化剤の重量%をそれぞれa、bとすると、a:b=9:1〜5:5であり、好ましくはa:b=8:2〜5:5である。また添加方法は、両乳化剤を混合して添加するか、油溶性乳化剤を添加、混合した後、水溶性乳化剤を添加、混合する方法が考えられるが、好ましくは油溶性乳化剤、水溶性乳化剤の順で添加する。水溶性乳化剤を先に添加すると、油中水型エマルジョンが破壊される場合があり、好ましくない。
【0020】
本発明でいう非イオン性水溶性乳化剤とは、純水に1重量%溶液として溶解した場合、透明な液を生成するものをいい、いっぽう、非イオン性油溶性乳化剤とは、重合時分散媒として使用する、特には精製された軽油に対し、1重量%溶液として溶解した場合、透明な液を生成するものをいう。この性質は必ずしもHLBにはよらず、化学的な構造による影響が大きいので、油溶性乳化剤2〜9、水溶性乳化剤8〜20と一部交叉する範囲が存在する。
【0021】
これら乳化剤の具体的例として、非イオン性水溶性乳化剤は、ポリオキシエチレンノニルフェニルエ−テル、ポリオキシエチレンステアリルエ−テル、ポリオキシエチレンラウリルエ−テル、ポリオキシエチレンセチルエ−テル、ポリオキシエチレントリデシルエ−テル、ポリオキシエチレンオレイルエ−テルなどである。また、非イオン性油溶性乳化剤はソルビタンモノオレ−ト、ソルビタンジオレ−ト、ソルビタンモノステアレ−ト、ソルビタンジステアレ−ト、ソルビタンモノラウレ−ト、ソルビタンジラウレ−ト、ソルビタンモノパルミテ−ト、ソルビタンジパルミテ−トなどである。
【0022】
本発明の油中水型エマルジョンからなる水溶性高分子は、製紙工業におけるパルプスラッジの脱水、その他食品工業、金属、石油精製の各排水処理、また建材関係の砂利洗浄排水の処理などに適用可能である。添加量としては、排水の種類、懸濁物濃度などのよって変化するものであるが、液量に対して0.1〜1000ppm程度である。
【0023】
【実施例】
以下、実施例および比較例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。
【0024】
(合成例1)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン230.0gおよびソルビタンモノオレート17.0gを仕込んだ。別に60%水溶液アクリル酸(AAC)200.0g、50%水溶液アクリルアミド(AAM)360.0gを混合し、水酸化ナトリウムの43%水溶液155.4g(アクリル酸に対し当量)を液温が30℃以上にならないよう冷却しながら加え中和した。単量体しこみ後のアクリルアミドとアクリル酸のモル比は60:40である。その後油相と単量体水溶液を合わせ、ホモジナイザーにて1000rpmで5分間攪拌乳化した。得られたエマルジョンにイソプロピルアルコールの10%水溶液1.0g(対単量体0.033重量%)を加え窒素置換の後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の10%水溶液1.0gを加え(対単量体0.033重量%)、温度33±1°Cに制御しながら重合反応を開始させ、5時後、前記開始剤を1.0g追加し、更に5時間反応を継続し重合を完結させた(試料−1とする)。得られた油中水型エマルジョンの一部を採取し、アセトンにより重合物を析出させ、25℃で減圧乾燥48時間行い乾燥重合物を取り出した。溶解した後、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0025】
(合成例2)
実施例1と同様な操作によって、アクリルアミド/アクリル酸=90/10の共重合物からなる油中水型エマルジョン(試料−2とする)を合成した。結果を表1に示す。
【0026】
(合成例3)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン230.0gおよびソルビタンモノオレート17.5g、80%水溶液アクリロイルオキシエチルトリメチルアンモニウム塩化物320.7g、50%水溶液アクリルアミド188.2g及び脱イオン水196.1gをし込んだ。単量体しこみ後のアクリロイルオキシエチルトリメチルアンモニウム塩化物とアクリルアミドとのモル比は50:50である。その後油相と単量体水溶液を合わせ、ホモジナイザーにて1000rpmで7分間攪拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液1.0g(対単量体0.033重量%)を加え窒素置換の後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の10%水溶液0.6gを加え(対単量体0.02重量%)、温度33±1°Cに制御しながら重合反応を開始させ、5時後、前記開始剤を0.6g追加し、更に5時間反応を継続し重合を完結させた(試料−3とする)。重合後、同様に重量平均分子量を測定した。結果を表1に示す。
【0027】
(合成例4)
実施例1と同様な操作によって、アクリロイルオキシエチルトリメチルアンモニウム塩化物/アクリルアミド=20/80の共重合物からなる油中水型エマルジョン(試料−4とする)を合成した。結果を表1に示す。
【0028】
(合成例5)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン230.0gおよびソルビタンモノオレート25.0gを仕込んだ。別に60%水溶液アクリル酸28.6g、50%水溶液アクリルアミド65.9gを混合し、水酸化ナトリウムの43%水溶液37.0g(アクリル酸に対し当量)を液温が30℃以上にならないよう冷却しながら加え中和した。中和した溶液にアクリロイルオキシエチルトリメチルアンモニウム塩化物の80%水溶液320.5gを加えた。単量体しこみ後のアクリルアミド/アクリル酸/アクリロイルオキシエチルトリメチルアンモニウム塩化物のモル比は35:15:50である。その後油相と単量体水溶液を合わせ、ホモジナイザーにて1000rpmで7分間攪拌乳化した。得られたエマルジョンにイソプロピルアルコールの10%水溶液0.6g(対単量体0.02重量%)を加え窒素置換の後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の10%水溶液1.2gを加え(対単量体0.04重量%)、温度33±1°Cに制御しながら重合反応を開始させ、5時後、前記開始剤を1.0g追加し、更に5時間反応を継続し重合を完結させた(試料−5とする)。結果を表1に示す。
【0029】
(合成例6)
実施例1と同様な操作によって、アクリルアミド/アクリル酸/アクリロイルオキシエチルトリメチルアンモニウム塩化物=40/20/40の共重合物からなる油中水型エマルジョン(試料−6とする)を合成した。結果を表1に示す。
【0030】
【実施例1〜2】
合成例1〜2で合成した油中水型エマルジョンに、表2に記載したような組成の転相剤を、油溶性乳化剤、水溶性乳化剤の順で添加した。その後、スリ−ワンモ−タ−を使用して、10gを採取し純水中で200倍に溶解し、一定時間ごとに粘度を測定し、水への溶解性を試験した。また、溶解液を60メッシュの篩いで濾過し不溶解粒子の重量を測定した。さらに転相剤添加後一ヶ月の油中水型エマルジョン200mlを採取し、直径5cmのサンプルビンに保存し、分離安定性を試験した。結果を表2に示す。
【0031】
【比較例1〜2】
合成例3〜6で合成した油中水型エマルジョンに、水溶性乳化剤のみを添加した場合につき、溶解性及び分離安定性を試験した。結果を表3に示す。
【0032】
【実施例3〜6】
合成例3〜6で合成した油中水型エマルジョンに、表2に記載したような組成の転相剤を、油溶性乳化剤、水溶性乳化剤の順で添加した。その後、スリ−ワンモ−タ−を使用して、10gを採取し純水中で100倍に溶解し、一定時間ごとに粘度を測定し、水への溶解性を試験した。また、溶解液を60メッシュの篩いで濾過し不溶解粒子の重量を測定した。さらに転相剤添加後一ヶ月の油中水型エマルジョン200mlを採取し、直径5cmのサンプルビンに保存し、分離安定性を試験した。結果を表4に示す。
【0033】
【比較例3〜6】
合成例3〜6で合成した油中水型エマルジョンに、水溶性乳化剤のみを添加した場合につき、溶解性及び分離安定性を試験した。結果を表5に示す。
【0034】
【表1】
AAC:アクリル酸、AAM:アクリルアミド、DMQ:アクリロイルオキシエチルトリメチルアンモニウム塩化物、エマルジョン粘度:mPa・s
分子量:単位は万
【0035】
【表2】
(a):ソビタンモノオレ−ト
(a)−1;0.6%、(a)−2;0.6%
(b):ポリオキシエチレンノニルフェニルエ−テル
(ポリオキシエチレン鎖;分子量500)
(b)−1;2.3%、(b)−2;2.3%
不溶解物:いずれの溶液もほぼ0であった。
【0036】
【表3】
(b):ポリオキシエチレンノニルフェニルエ−テル
(ポリオキシエチレン鎖;分子量500)
(b)−3;2.3%、(b)−4;2.3%
分離安定性:*1;上澄み0.5cm、*2;上澄み0.3cm、
溶解時不溶物:膨潤粒子の湿重量(g)
【0037】
【表4】
(a):ソビタンモノオレ−ト
(a)−3;1%、(a)−4;1%、(a)−5;1%、(a)−6;1%
(b):ポリオキシエチレンオレイルエ−テル
(ポリオキシエチレン鎖;分子量600)
(b)−5;3.0%、(b)−6;3.3%、(b)−7;3.8%、
(b)−8;3.8%
不溶解物:いずれの溶液もほぼ0であった。
【0038】
【表5】
(b)−9;3.0%、(b)−10;3.3%、(b)−11;3.8%、
(b)−12;3.8%
溶解時不溶物:膨潤粒子の湿重量(g)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the solubility of a water-in-oil emulsion, and particularly to a water-in-oil emulsion having an oily substance composed of at least one hydrocarbon as a continuous phase and a water-soluble polymer aqueous solution as a dispersed phase. The present invention relates to a method for controlling the solubility of a water-in-oil emulsion, wherein an oil-soluble emulsifier and a water-soluble emulsifier are added to the water-in-oil emulsion and mixed, and then dissolved in water.
[0002]
[Prior art]
Water-in-oil emulsions of water-soluble polymers are suitable for applications that require high molecular weight such as polymer flocculants because the water-soluble polymers can be stored in high-concentration product forms and the viscosity of the dispersion is very low. Liquid product. For example, Japanese Patent Publication No. Sho 54-37986 discloses a method for producing a water-in-oil emulsion by emulsifying and dispersing 30 to 70% by weight of an aqueous monomer solution and 70 to 30% by weight of a hydrophobic organic liquid using a surfactant. It is disclosed. However, since it is a water-in-oil type, if it is dispersed in water at the time of dissolution, oil exists around the water droplets and dissolution does not proceed as it is. Therefore, a method of promoting the dissolution by adding a hydrophilic emulsifier called a so-called “phase inversion agent” into an emulsion or dissolved water is employed (Japanese Patent Laid-Open No. 50-43189).
[0003]
Although depending on the properties of the dissolved water, this dissolving operation is one point that determines the performance of the water-in-oil emulsion type flocculant. That is, if the amount of the phase inversion agent added is increased, the solubility is improved, but the storage stability of the emulsion product is lowered, and the coagulation performance or environment is also affected. In order to set the time until complete dissolution, a certain amount of an emulsifier having a certain HLB value is added in advance to the dissolved water, and a certain amount of water-in-oil emulsion is added thereto, and dissolved under stirring. A method for preparing a liquid is disclosed (Japanese Patent Publication No. 3-75568). Furthermore, depending on the use site of the user, the water-in-oil emulsion to which the phase inversion agent is added is dissolved in water to form an aqueous solution, and then water and the water-in-oil emulsion containing the phase inversion agent are added to the residual liquid. In addition, there is an example of preparing an aqueous solution. In such a case, since it is already viscous, it is very difficult to select the type of transfer agent or to determine the amount added.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to prevent the generation of coarse undissolved particles caused by the rapid dissolution and viscosity increase of water-in-oil emulsions due to the addition of emulsifiers with high HLB added as phase inversion agents and their high addition rate. The aim is to develop a safe and efficient dissolution method.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the following inventions have been achieved. That is, the invention of claim 1 of the present invention is an oily substance composed of at least one kind of hydrocarbon in a continuous phase, 5 to 100 mol of a cationic monomer represented by the following general formula (1) and / or (2). %, A water-in-oil polymer emulsion in which a water-soluble polymer aqueous solution composed of 0 to 40 mol% of an anionic monomer represented by the following general formula (3) and 0 to 95 mol% of acrylamide is dispersed. In addition, a nonionic oil-soluble emulsifier having an HLB number (hydrophobic lipophilic balance) of 2 to 8 is added and mixed, and then a nonionic water-soluble emulsifier having an HLB number of 8 to 20 is added. This is a method for adjusting the solubility of a water-in-oil emulsion, which is dissolved in water after addition and mixing .
[Chemical 1]
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl, alkoxy or benzyl group having 1 to 3 carbon atoms, R 4 is hydrogen, alkyl, alkoxy group or benzyl group having 1 to 3 carbon atoms, But it may be different. X 1 represents an anion, respectively
R 5 represents hydrogen or a methyl group, R 6 and R 7 each represent an alkyl, alkoxy group or benzyl group having 1 to 3 carbon atoms, which may be the same or different, and X 2 represents an anion.
R 8 is hydrogen, methyl group or carboxymethyl group, R 9 is hydrogen or carboxyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, Y is hydrogen or positive Represents an ion.
[0006]
The invention of claim 2 comprises an oily substance comprising at least one hydrocarbon as a continuous phase, 2 to 60 mol% of an anionic monomer represented by the following general formula (3), and 40 to 98 mol% of acrylamide. When dissolving a water-in-oil polymer emulsion having a water-soluble polymer aqueous solution as a dispersed phase in water, a nonionic oil-soluble emulsifier having an HLB number (hydrophobic, lipophilic balance) of 2 to 8 is added. After mixing, a nonionic water-soluble emulsifier having an HLB number of 8 to 20 is added, mixed, and then dissolved in water. This is a method for adjusting the solubility of a water-in-oil emulsion.
[Chemical 3]
R 8 is hydrogen, methyl group or carboxymethyl group, R 9 is hydrogen or carboxyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, Y is hydrogen or positive Represents an ion.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The method for synthesizing the water-in-oil emulsion is the same as the conventional method. First, a water-soluble vinyl monomer, water, an oily substance composed of at least one type of hydrocarbon, an amount effective for forming a water-in-oil emulsion and at least one type of surfactant having HLB, A water-in-oil emulsion is formed under stirring, and then synthesized by adding a polymerization initiator and polymerizing in a nitrogen atmosphere. Examples of water-soluble vinyl monomers include the following. Examples of the anionic monomer include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, vinyl sulfonic acid, vinyl benzene sulfonic acid, and acrylamide 2-methylpropane sulfonic acid. Non-ionic monomers (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinyl pyrrolidone, N-vinyl And formamide and N-vinylacetamide.
[0011]
In order to synthesize an amphoteric water-soluble copolymer, a cationic monomer is copolymerized in addition to the anionic monomer and the nonionic monomer. For example, examples of the tertiary amino group-containing monomer include dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, methyl diallylamine, and ethyl diallylamine. Examples of the quaternary ammonium group-containing monomer include (meth) acryloyloxyethyltrimethylammonium chloride which is a quaternized product of (meth) methyl chloride or benzyl chloride of the tertiary amino group-containing monomer, (Meth) acryloyloxy 2-hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride And (meth) acryloylaminopropyldimethylbenzylammonium chloride. Further examples include dimethyl diallylammonium chloride and methylbenzyl diallylammonium chloride.
[0012]
As for the copolymerization molar ratio of these monomers, in the case of a cationic or amphoteric polymer, 5 to 100 mol% of the cationic monomer represented by the general formula (1) and / or (2), The anionic monomer represented by the formula (3) is 0 to 40 mol% and acrylamide is 0 to 95 mol%, preferably 10 to 100 mol%, anionic monomer 0 to 30 mol% and acrylamide. 0 to 90 mol%. In the case of an anionic polymer, the anionic monomer represented by the general formula (3) is 2 to 50 mol% and acrylamide is 50 to 98 mol%, preferably an anionic monomer 5 to 50. The mol% and acrylamide are 50-95 mol%.
[0013]
Examples of oily substances composed of hydrocarbons include paraffins, mineral oils such as kerosene, light oil, and middle oil, or hydrocarbon synthetic oils having characteristics such as boiling point and viscosity in substantially the same range as these, or mixtures thereof. Can be given.
[0014]
Examples of at least one surfactant having an HLB and an effective amount to form a water-in-oil emulsion are HLB 3-6 nonionic surfactants, specific examples of which are sorbitan monooles -Sorbitan monostearate, sorbitan monopalmitate and the like. The amount of these surfactants to be added is 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total amount of the water-in-oil emulsion.
[0015]
After neutralizing the anionic monomer, the above components were mixed, and after forming a water-in-oil emulsion with an emulsifier, etc., nitrogen substitution was performed, and the water-in-oil emulsion was set to a constant polymerization temperature. Thereafter, polymerization is initiated by a radical polymerization initiator. As the initiator, any azo, peroxide, or redox polymer can be polymerized. Examples of oil-soluble azo initiators are 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2-methylpropionate), 4,4′-azobis (4-methoxyl2,4-dimethyl) valeronitrile and the like.
[0016]
Examples of water-soluble azo initiators include 2,2′-azobis (amidinopropane) dichloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] And dihydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like. Examples of redox systems include a combination of ammonium or potassium peroxodisulfate and sodium sulfite, sodium hydrogen sulfite, trimethylamine, tetramethylethylenediamine, and the like. Examples of peroxides include ammonium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, and t-butylperoxy 2-ethylhexanoate. Can do.
[0017]
The polymerization temperature can be 0 to 80 ° C., but preferably 20 to 60 ° C. The polymerization concentration is generally 10 to 60% by weight, but preferably 20 to 50% by weight easily controls the polymerization reaction, and the production efficiency is good.
[0018]
The water-in-oil emulsion of the present invention comprises the above monomers, that is, anionic monomer, nonionic monomer, tertiary amino group or quaternary ammonium base-containing monomer, as well as a crosslinkable monomer. Copolymer, for example, a polyfunctional monomer such as methylenebisacrylamide and ethylene glycol di (meth) acrylate, or a heat-crosslinkable monomer such as N, N-dimethylacrylamide, and the like. It is also possible to modify the polymer and improve the performance to accommodate various wastewaters.
[0019]
A phase inversion agent is added to the water-in-oil emulsion synthesized as described above to promote dissolution in water. Conventionally, the phase inversion agent uses a water-soluble emulsifier having an HLB of 8-20. However, when a phase inversion agent is added too much, undissolved particles are generated due to a rapid increase in viscosity at the time of dissolution, and environmental concerns arise. Moreover, when there is too little addition amount, solubility will fall. Therefore, in this invention, in addition to a water-soluble emulsifier, an oil-soluble emulsifier is used together. In particular, the emulsifiers used in the present invention are a nonionic water-soluble emulsifier and a nonionic oil-soluble emulsifier. By using in combination, the viscosity of the solution increases in proportion to the time, and the generation of undissolved particles can be suppressed, and it is possible to cope with the case where there is viscosity from the beginning of dissolution by “additional dissolution”. The addition ratio of these nonionic water-soluble emulsifier and nonionic oil-soluble emulsifier is a: b = 9: 1 to 5: 5, where a and b are the weight percentages of the water-soluble emulsifier and the oil-soluble emulsifier, respectively. Preferably, a: b = 8: 2 to 5: 5. The addition method may be a method in which both emulsifiers are mixed or added, and an oil-soluble emulsifier is added and mixed, and then a water-soluble emulsifier is added and mixed, but the order of oil-soluble emulsifier and water-soluble emulsifier is preferred. Add in. If a water-soluble emulsifier is added first, the water-in-oil emulsion may be destroyed, which is not preferable.
[0020]
The nonionic water-soluble emulsifier as used in the present invention refers to one that forms a transparent liquid when dissolved as a 1% by weight solution in pure water. On the other hand, the nonionic oil-soluble emulsifier is a dispersion medium during polymerization. In particular, when it is dissolved in a refined light oil as a 1% by weight solution, it produces a transparent liquid. This property does not necessarily depend on the HLB, and is greatly affected by the chemical structure. Therefore, there is a range that partially intersects with the oil-soluble emulsifiers 2 to 9 and the water-soluble emulsifiers 8 to 20.
[0021]
Specific examples of these emulsifiers include nonionic water-soluble emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene Examples thereof include oxyethylene tridecyl ether and polyoxyethylene oleyl ether. Nonionic oil-soluble emulsifiers are sorbitan monooleate, sorbitan dioleate, sorbitan monostearate, sorbitan distearate, sorbitan monolaurate, sorbitan dilaurate, sorbitan monopalmi Tate, sorbitan dipalmitate, etc.
[0022]
The water-soluble polymer comprising the water-in-oil emulsion of the present invention can be applied to pulp sludge dewatering in the paper industry, other wastewater treatment in the food industry, metal and oil refining, and treatment of gravel washing wastewater related to building materials. It is. The amount added varies depending on the type of waste water, the concentration of the suspension, etc., but is about 0.1 to 1000 ppm with respect to the liquid amount.
[0023]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail with an Example and a comparative example, this invention is not restrict | limited to a following example, unless the summary is exceeded.
[0024]
(Synthesis Example 1)
A reaction vessel equipped with a stirrer and a temperature controller was charged with 230.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 17.0 g of sorbitan monooleate. Separately, 200.0 g of 60% aqueous acrylic acid (AAC) and 360.0 g of 50% aqueous acrylamide (AAM) were mixed, and 155.4 g of 43% aqueous sodium hydroxide solution (equivalent to acrylic acid) had a liquid temperature of 30 ° C. The mixture was neutralized while cooling so as not to become above. The molar ratio of acrylamide to acrylic acid after monomer infiltration is 60:40. Thereafter, the oil phase and the aqueous monomer solution were combined and stirred and emulsified with a homogenizer at 1000 rpm for 5 minutes. To the obtained emulsion, 1.0 g of a 10% aqueous solution of isopropyl alcohol (0.033% by weight based on the monomer) was added, and after nitrogen substitution, 2,2′-azobis [2- (5-methyl-2) was used as an initiator. -Imidazolin-2-yl) propane] 1.0 g of a 10% aqueous solution of dihydrochloride was added (0.033% by weight of monomer), and the polymerization reaction was started while controlling the temperature at 33 ± 1 ° C. After 5 hours, 1.0 g of the initiator was added, and the reaction was further continued for 5 hours to complete the polymerization (referred to as Sample-1). A part of the obtained water-in-oil emulsion was collected, and a polymer was precipitated with acetone, followed by drying under reduced pressure at 25 ° C. for 48 hours to take out the dried polymer. After dissolution, the weight average molecular weight was measured by a molecular weight measuring device (DLS-7000, manufactured by Otsuka Electronics Co., Ltd.) by a static light scattering method. The results are shown in Table 1.
[0025]
(Synthesis Example 2)
In the same manner as in Example 1, a water-in-oil emulsion (referred to as Sample-2) composed of a copolymer of acrylamide / acrylic acid = 90/10 was synthesized. The results are shown in Table 1.
[0026]
(Synthesis Example 3)
In a reaction vessel equipped with a stirrer and a temperature controller, 230.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 17.5 g of sorbitan monooleate, 320.7 g of 80% aqueous acryloyloxyethyltrimethylammonium chloride, 50% aqueous acrylamide 188.2 g and 196.1 g of deionized water were introduced. The molar ratio of acryloyloxyethyltrimethylammonium chloride to acrylamide after monomer incorporation is 50:50. Thereafter, the oil phase and the aqueous monomer solution were combined, and stirred and emulsified with a homogenizer at 1000 rpm for 7 minutes. To the obtained emulsion was added 1.0 g of a 10% aqueous solution of isopropyl alcohol (0.033% by weight to the monomer), and after substitution with nitrogen, 2,2′-azobis [2- (5-methyl-2-methyl ester) was used as an initiator. Imidazolin-2-yl) propane] 0.6 g of a 10% aqueous solution of dihydrochloride (0.02% by weight of monomer) was added to start the polymerization reaction while controlling the temperature at 33 ± 1 ° C. After that, 0.6 g of the initiator was added, and the reaction was further continued for 5 hours to complete the polymerization (referred to as Sample-3). After the polymerization, the weight average molecular weight was measured in the same manner. The results are shown in Table 1.
[0027]
(Synthesis Example 4)
A water-in-oil emulsion (referred to as sample-4) composed of a copolymer of acryloyloxyethyltrimethylammonium chloride / acrylamide = 20/80 was synthesized in the same manner as in Example 1. The results are shown in Table 1.
[0028]
(Synthesis Example 5)
A reaction vessel equipped with a stirrer and a temperature controller was charged with 230.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 25.0 g of sorbitan monooleate. Separately, 28.6 g of 60% aqueous acrylic acid and 65.9 g of 50% aqueous acrylamide were mixed, and 37.0 g of 43% aqueous sodium hydroxide solution (equivalent to acrylic acid) was cooled so that the liquid temperature did not exceed 30 ° C. While neutralizing. To the neutralized solution was added 320.5 g of an 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride. The molar ratio of acrylamide / acrylic acid / acryloyloxyethyltrimethylammonium chloride after monomer incorporation is 35:15:50. Thereafter, the oil phase and the aqueous monomer solution were combined, and stirred and emulsified with a homogenizer at 1000 rpm for 7 minutes. To the obtained emulsion was added 0.6 g of 10% aqueous solution of isopropyl alcohol (0.02% by weight of monomer), and after nitrogen substitution, 2,2′-azobis [2- (5-methyl-2) was used as an initiator. -Imidazolin-2-yl) propane] 1.2 g of a 10% aqueous solution of dihydrochloride was added (0.04% by weight of monomer), and the polymerization reaction was started while controlling the temperature at 33 ± 1 ° C. After 5 hours, 1.0 g of the initiator was added, and the reaction was further continued for 5 hours to complete the polymerization (referred to as Sample-5). The results are shown in Table 1.
[0029]
(Synthesis Example 6)
In the same manner as in Example 1, a water-in-oil emulsion (sample 6) comprising a copolymer of acrylamide / acrylic acid / acryloyloxyethyltrimethylammonium chloride = 40/20/40 was synthesized. The results are shown in Table 1.
[0030]
Examples 1-2
To the water-in-oil emulsion synthesized in Synthesis Examples 1 and 2, a phase inversion agent having a composition as shown in Table 2 was added in the order of an oil-soluble emulsifier and a water-soluble emulsifier. Thereafter, using a three-one motor, 10 g was sampled and dissolved 200 times in pure water, the viscosity was measured at regular intervals, and the solubility in water was tested. The solution was filtered through a 60 mesh screen and the weight of insoluble particles was measured. Further, 200 ml of a water-in-oil emulsion one month after the addition of the phase inversion agent was collected and stored in a sample bottle having a diameter of 5 cm, and the separation stability was tested. The results are shown in Table 2.
[0031]
[Comparative Examples 1-2]
The solubility and separation stability were tested when only the water-soluble emulsifier was added to the water-in-oil emulsion synthesized in Synthesis Examples 3-6. The results are shown in Table 3.
[0032]
Examples 3 to 6
To the water-in-oil emulsion synthesized in Synthesis Examples 3 to 6, a phase inversion agent having a composition as shown in Table 2 was added in the order of an oil-soluble emulsifier and a water-soluble emulsifier. Thereafter, using a three-one motor, 10 g was sampled and dissolved 100 times in pure water, the viscosity was measured at regular intervals, and the solubility in water was tested. The solution was filtered through a 60 mesh screen and the weight of insoluble particles was measured. Further, 200 ml of a water-in-oil emulsion one month after the addition of the phase inversion agent was collected and stored in a sample bottle having a diameter of 5 cm, and the separation stability was tested. The results are shown in Table 4.
[0033]
[Comparative Examples 3-6]
The solubility and separation stability were tested when only the water-soluble emulsifier was added to the water-in-oil emulsion synthesized in Synthesis Examples 3-6. The results are shown in Table 5.
[0034]
[Table 1]
AAC: acrylic acid, AAM: acrylamide, DMQ: acryloyloxyethyltrimethylammonium chloride, emulsion viscosity: mPa · s
Molecular weight: The unit is 10,000
[Table 2]
(A): Sobitan monooleate (a) -1; 0.6%, (a) -2; 0.6%
(B): Polyoxyethylene nonylphenyl ether (polyoxyethylene chain; molecular weight 500)
(B) -1; 2.3%, (b) -2; 2.3%
Insoluble matter: All solutions were almost zero.
[0036]
[Table 3]
(B): Polyoxyethylene nonylphenyl ether (polyoxyethylene chain; molecular weight 500)
(B) -3; 2.3%, (b) -4; 2.3%
Separation stability: * 1; supernatant 0.5 cm, * 2; supernatant 0.3 cm
Insoluble matter during dissolution: wet weight of swollen particles (g)
[0037]
[Table 4]
(A): Sobitan monooleate (a) -3; 1%, (a) -4; 1%, (a) -5; 1%, (a) -6; 1%
(B): Polyoxyethylene oleyl ether (polyoxyethylene chain; molecular weight 600)
(B) -5; 3.0%, (b) -6; 3.3%, (b) -7; 3.8%,
(B) -8; 3.8%
Insoluble matter: All solutions were almost zero.
[0038]
[Table 5]
(B) -9; 3.0%, (b) -10; 3.3%, (b) -11; 3.8%,
(B) -12; 3.8%
Insoluble matter during dissolution: wet weight of swollen particles (g)

Claims (2)

少なくとも一種類の炭化水素からなる油状物質を連続相、下記一般式(1)および/または(2)で表わされるカチオン性単量体5〜100モル%、下記一般式(3)で表わされるアニオン性単量体0〜40モル%とアクリルアミドを0〜95モル%からなる水溶性高分子水溶液を分散相とする油中水型高分子エマルジョンを水に溶解するに際し、HLB数(ハイドロホビック・リポフィリック・バランス)が2〜8の非イオン性油溶性乳化剤を添加、混合した後、HLB数が8〜20である非イオン性水溶性乳化剤を添加、混合した後、水に溶解することを特徴とする油中水型エマルジョンの溶解性調節方法。
は水素又はメチル基、R、Rは炭素数1〜3のアルキルまたアルコキシ基あるいはベンジル基、Rは水素、炭素数1〜3のアルキルまたアルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Xは陰イオンをそれぞれ表わす
は水素又はメチル基、R、Rは炭素数1〜3のアルキルまたアルコキシ基あるいはベンジル基であり、同種でも異種でも良い、Xは陰イオンをそれぞれ表わす
は水素、メチル基またはカルボキシメチル基、Rは水素またはカルボキシル基、AはSO、CSO、CONHC(CHCHSOあるいはCOO、Yは水素または陽イオンを表わす
An oily substance comprising at least one hydrocarbon is a continuous phase, 5 to 100 mol% of a cationic monomer represented by the following general formula (1) and / or (2) , an anion represented by the following general formula (3) In dissolving water-in-oil polymer emulsion in which water-soluble polymer aqueous solution composed of 0 to 40 mol% of ionic monomer and 0 to 95 mol% of acrylamide is dispersed in water, the HLB number (hydrophobic After adding and mixing a nonionic oil-soluble emulsifier having a lipophilic balance of 2 to 8, a nonionic water-soluble emulsifier having an HLB number of 8 to 20 is added and mixed, and then dissolved in water. A method for adjusting the solubility of a water-in-oil emulsion.
R 1 is hydrogen or a methyl group, R 2 and R 3 are alkyl, alkoxy or benzyl group having 1 to 3 carbon atoms, R 4 is hydrogen, alkyl, alkoxy group or benzyl group having 1 to 3 carbon atoms, But it may be different. X 1 represents each anion
R 5 is hydrogen or a methyl group, R 6 and R 7 are alkyl, alkoxy group or benzyl group having 1 to 3 carbon atoms, which may be the same or different, and X 2 represents an anion, respectively.
R 8 is hydrogen, methyl group or carboxymethyl group, R 9 is hydrogen or carboxyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, Y is hydrogen or positive Represents ion
少なくとも一種類の炭化水素からなる油状物質を連続相、下記一般式(3)で表わされるアニオン性単量体2〜60モル%とアクリルアミドを40〜98モル%からなる水溶性高分子水溶液を分散相とする油中水型高分子エマルジョンを水に溶解するに際し、HLB数(ハイドロホビック・リポフィリック・バランス)が2〜8の非イオン性油溶性乳化剤を添加、混合した後、HLB数が8〜20である非イオン性水溶性乳化剤を添加、混合した後、水に溶解することを特徴とする油中水型エマルジョンの溶解性調節方法。
は水素、メチル基またはカルボキシメチル基、Rは水素またはカルボキシル基、AはSO、CSO、CONHC(CHCHSOあるいはCOO、Yは水素または陽イオンを表わす。
An oily substance composed of at least one hydrocarbon is dispersed in a continuous phase, and a water-soluble polymer aqueous solution composed of 2 to 60 mol% of an anionic monomer represented by the following general formula (3) and 40 to 98 mol% of acrylamide is dispersed. In dissolving the water-in-oil polymer emulsion as a phase in water, after adding and mixing a nonionic oil-soluble emulsifier having an HLB number (hydrophobic, lipophilic balance) of 2 to 8, the HLB number A method for adjusting the solubility of a water-in-oil emulsion , wherein a nonionic water-soluble emulsifier of 8 to 20 is added and mixed and then dissolved in water.
R 8 is hydrogen, methyl group or carboxymethyl group, R 9 is hydrogen or carboxyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, Y is hydrogen or positive Represents an ion.
JP2001081795A 2001-03-22 2001-03-22 Method for controlling solubility of water-in-oil emulsion Expired - Fee Related JP4676632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081795A JP4676632B2 (en) 2001-03-22 2001-03-22 Method for controlling solubility of water-in-oil emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081795A JP4676632B2 (en) 2001-03-22 2001-03-22 Method for controlling solubility of water-in-oil emulsion

Publications (2)

Publication Number Publication Date
JP2002332358A JP2002332358A (en) 2002-11-22
JP4676632B2 true JP4676632B2 (en) 2011-04-27

Family

ID=18937830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081795A Expired - Fee Related JP4676632B2 (en) 2001-03-22 2001-03-22 Method for controlling solubility of water-in-oil emulsion

Country Status (1)

Country Link
JP (1) JP4676632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102432750A (en) * 2011-09-08 2012-05-02 华东理工大学 Preparation method of amphoteric comb-shape polyacrylamide by synthesis of quaternary ammonium salt functional monomer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840995B2 (en) * 2007-01-17 2011-12-21 ハイモ株式会社 Dilutions of water-in-oil dispersions, methods for their preparation and methods for their use
KR101466771B1 (en) * 2013-04-23 2014-12-02 충남대학교산학협력단 Method for Fabrication of Janus Emulsion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194891A (en) * 1989-01-24 1990-08-01 Kyoritsu Yuki Co Ltd Treatment of water containing surplus excavation soil
JPH0375568B2 (en) * 1979-10-31 1991-12-02 Nalco Chemical Co
JPH0753827A (en) * 1993-08-10 1995-02-28 Showa Denko Kk W/o-type polymer emulsion and use thereof
JPH09276605A (en) * 1996-04-16 1997-10-28 Kurita Water Ind Ltd Flocculant in water-in-oil type emulsion state
JPH1176705A (en) * 1997-09-05 1999-03-23 Hymo Corp Anionic polymer flocculant
JPH11319412A (en) * 1998-05-21 1999-11-24 Hymo Corp Polymer flocculant
JP2000159969A (en) * 1998-11-25 2000-06-13 Hymo Corp Emulsion and its use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375568B2 (en) * 1979-10-31 1991-12-02 Nalco Chemical Co
JPH02194891A (en) * 1989-01-24 1990-08-01 Kyoritsu Yuki Co Ltd Treatment of water containing surplus excavation soil
JPH0753827A (en) * 1993-08-10 1995-02-28 Showa Denko Kk W/o-type polymer emulsion and use thereof
JPH09276605A (en) * 1996-04-16 1997-10-28 Kurita Water Ind Ltd Flocculant in water-in-oil type emulsion state
JPH1176705A (en) * 1997-09-05 1999-03-23 Hymo Corp Anionic polymer flocculant
JPH11319412A (en) * 1998-05-21 1999-11-24 Hymo Corp Polymer flocculant
JP2000159969A (en) * 1998-11-25 2000-06-13 Hymo Corp Emulsion and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102432750A (en) * 2011-09-08 2012-05-02 华东理工大学 Preparation method of amphoteric comb-shape polyacrylamide by synthesis of quaternary ammonium salt functional monomer
CN102432750B (en) * 2011-09-08 2013-08-07 华东理工大学 Preparation method of amphoteric comb-shape polyacrylamide by synthesis of quaternary ammonium salt functional monomer

Also Published As

Publication number Publication date
JP2002332358A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP4167969B2 (en) Aggregation treatment agent and method of using the same
EP1567570B1 (en) Modified polymeric flocculants with improved performance characteristics
JP3886098B2 (en) Sludge dewatering agent and sludge dewatering method
JP4840995B2 (en) Dilutions of water-in-oil dispersions, methods for their preparation and methods for their use
JP4167974B2 (en) Organic sludge dewatering method
JP4897523B2 (en) Sludge dewatering agent and sludge dewatering method
JP4676632B2 (en) Method for controlling solubility of water-in-oil emulsion
JP2003155689A (en) Method for producing paper
JP4167972B2 (en) Organic sludge dewatering method
JP4167919B2 (en) Sludge dewatering method
JP4753401B2 (en) How to use water-in-oil water-soluble polymer emulsion
JP5187927B2 (en) Water-soluble polymer dispersion and method for producing the same
JP4380048B2 (en) Primary amino group-containing polymer emulsion type flocculant
JP3707669B2 (en) Method for producing water-in-oil polymer emulsion
JP4167973B2 (en) Organic sludge dewatering method
JP2003342305A (en) Process for manufacturing water soluble polymer emulsion
JP5709257B2 (en) Sludge treatment agent and sludge dewatering method
JP5630782B2 (en) Sludge dewatering agent and sludge dewatering method
JP5288576B2 (en) How to prevent activated sludge from flowing out
JP2003155681A (en) Method for treating papermaking white water
JP4367881B2 (en) Sludge dewatering agent and method for dewatering sludge
JP2004202400A (en) Method for preparing diluted liquid
WO2006094556A1 (en) Polyelectrolytes based on diquaternary di-ammonium monomers
CN1709561A (en) Method for preparing water-in-oil type emulsion and its diluent
JP2003245699A (en) Sludge dehydrating agent and sludge dehydration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees