JP4675096B2 - 三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品 - Google Patents

三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品 Download PDF

Info

Publication number
JP4675096B2
JP4675096B2 JP2004353260A JP2004353260A JP4675096B2 JP 4675096 B2 JP4675096 B2 JP 4675096B2 JP 2004353260 A JP2004353260 A JP 2004353260A JP 2004353260 A JP2004353260 A JP 2004353260A JP 4675096 B2 JP4675096 B2 JP 4675096B2
Authority
JP
Japan
Prior art keywords
circuit component
base
mold
molded circuit
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004353260A
Other languages
English (en)
Other versions
JP2006165198A (ja
Inventor
寛史 小林
邦夫 池田
武 佐野
秀章 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004353260A priority Critical patent/JP4675096B2/ja
Publication of JP2006165198A publication Critical patent/JP2006165198A/ja
Application granted granted Critical
Publication of JP4675096B2 publication Critical patent/JP4675096B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、電子部品実装、配線形成等の少なくとも5工程を含む三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品に関するものである。
従来、電子機器の配線基板としてはガラスエポキシ基板等の平面基板が一般的に用いられているが、近年、電子機器の小型化に伴い、ガラスエポキシ基板のような平面基板では対応できないことがあり、成形品の表面に立体的に直接導体配線を形成した立体配線構造体や、さらに電子部品を実装したMID(Molded Interconnect Device、三次元成形回路部品)が使われるようになっていることは知られている(例えば特許文献1ないし6参照)。
このような立体配線構造体の製造法として、主に以下の様な方法がある。第1に、特許文献1に開示される2ショット法、すなわち、易メッキ性樹脂と難メッキ性樹脂の2種類の樹脂を用いて成形した成形体の易メッキ性樹脂露出部に、メッキで導体配線を形成する方法がある。
第2に、フィルム法、すなわち、導体配線を形成したフィルムと成形体を一体化する方法(特許文献2)や、導体配線を形成したフィルムの導体配線のみを成形体に転写する方法(特許文献3)がある。
第3に、レーザ法、すなわち、成形体上に形成した金属層上にレジストを形成し、レジストをレーザで除去し、露出した金属層を溶解除去して、導体配線を形成する方法(特許文献4)や、成形体上に形成した金属層をパターンの輪郭部のみレーザで除去し、電気メッキにより所定の厚さの配線を形成した後、配線部以外の金属層を溶解除去する方法(特許文献5)がある。
特許文献1には、段差部を有する立体電気回路基板の段差部の角隅部の表面に強固な電気回路を簡単に設ける発明が開示されており、易メッキ性プラスチックスまたはその組成物および難メッキ性プラスチックスまたはその組成物の2種のプラスチックスを用い、易メッキ性プラスチックまたはその組成物が電気回路のパターンを形成するように一体的に二色射出成形して段差部を有する電気回路基板を製造する方法において、易メッキ性プラスチックまたはその組成物、難メッキ性プラスチックスまたはその組成物の内少なくとも易メッキ性プラスチックまたはその組成物の段差部表面の角隅部が面取りされるように成形するものである。
特許文献2にはプリント基板が樹脂成形体の内面にぴったりと追従して変形している一体型プリント基板成形体に関する発明が開示されており、所定形状の射出成形用金型の雄型上に、特定の伸び率を有するフィルムからなるプリント回路基板フィルムを、接着層側を外側として設置し、前記雄型側から吸引することにより位置を固定しながら射出成形することにより得られる金属層が立体的な面にぴったりと追従した一体型プリント基板成形体に関するものである。
特許文献3には転写シートと基材用の熱可塑性樹脂とを用いて、高品質の立体成形回路板を効率よく、低コストで成形する発明が開示されており、キャリアフィルム2の一方の面に予め導電回路4を積層させた転写シート1と、基材用の熱可塑性樹脂とを用いて、射出成形金型からなる第1の金型のキャビティ内で、前記熱可塑性樹脂の射出成形と同時に、基材樹脂による成形品に前記転写シート1の導電回路4を平坦面状に転写して一次成形回路板27を得る工程と、前記一次成形回路板27を加熱軟化させ、雄雌型の凹凸部31を有するプレス型からなる第2の金型28を用いて部分的に押圧し、凹凸部35を賦形することにより二次成形回路板34を得る工程とを備えている。
特許文献4には電気・電子機器等の分野で回路部品として使用される、表面に正確な導電回路を有する成形品を効率よく製造する方法に関する発明であって、合成樹脂製成形品の表面に金属被覆加工を施し、さらにその上にエッチングレジストをコーティングし、この表面の回路形成部以外の部分にレーザ光線を照射し、この部分のエッチングレジストを飛散除去して金属膜を露出させ、さらに露出した部分の金属被覆膜を溶解除去した後、回路パターン部に残存するレジスト膜を除去して、金属回路パターンを残存形成することが開示されている。
特許文献5には表面に正確な導電回路を有する成形品を、効率よく製造する方法および部品を提供する発明が開示されており、これは合成樹脂成形品の表面に予め化学メッキ等により金属被覆加工を行って厚さが0.2〜2μmの金属薄膜を形成し、次いで該薄膜表面の絶縁回路となる部分の輪郭線上にレーザ光を照射して金属薄膜を除去し、絶縁回路となる部分を絶縁閉回路で囲んだ後、導電回路となる部分に電気メッキを行い所望の厚さの回路を形成した後、エッチング液によりフラッシュエッチングを行い絶縁回路となる部分に残った金属薄膜を除去し回路形成を行うものである。
特許文献6には実装密度の高い三次元実装部品およびその製造方法並びに光伝達装置に関し、複数の型に複数の電子部品を配置し、型に配線を付着させて設け、成形材料によって、電子部品及び配線を封止し、型によって成形材料の表面形状を立体的に加工し、成形材料を硬化させて、成形材料から型を剥離する工程を含む発明が開示されている。
特開平6−296064号公報 特開平5−190994号公報 特開平5−283849号公報 特開平6−112626号公報 特開平7−66531号公報 特開2001−308119公報
しかしながら、近年、電子機器の小型化に伴い、立体配線構造体や三次元成形回路部品が使用されるようになっているが、さらなる微細配線化が要求されている。しかし、従来の方法、すなわち、2ショット法では、2種類の金型が必要であり、微細な配線形成が難しい。また、フィルム法では、複雑な成形体への一体化が難しく、また、コーナー部等のフィルムの追従性が悪く、多面に跨った配線ではコーナー部での断線が生じ易いという問題がある。
さらに、レーザ法では、立体で複雑な成形体へ配線パターン形成が難しく、また、各成形体全てにパターン形成するため、生産性が悪い。なお、実用上このレーザ法が最も微細な加工が可能とされているが、配線ピッチは約140μmであり、半導体チップの端子ピッチに対応するには不十分である。また、以上の3つの方法では、成形体内に電子部品を封止した信頼性の良い構造とすることは困難である。
そこで、特許文献6では、型を平面に展開した状態で、配線形成や部品実装を行った後、型を折り曲げて立体形状とし、樹脂を注入硬化して、立体成形回路を形成している。しかし、この方法では配線形成はワイヤで行われており、コーナー部のワイヤは型を折り曲げるときに曲がるため、断線が生じ易くまた隣接ワイヤが短絡しやすい。
また、型に直接パッドを形成しているため、パッドと型の密着強度が弱いとワイヤボンディング時にパッドが剥離するし、逆にパッドと型の密着強度が強いと成形体を型から剥離するときにパッドが基板に残り、断線が生じ易い。
そこで、本発明の目的は、上述した実情を考慮して、微細配線を有し、製造時に断線の生じ難い立体配線を形成でき、その立体配線構造体に電子部品を実装し、成形樹脂で封止すれば、実装密度および信頼性の高い三次元成形回路部品を製造でき、また、形状が複雑で配線が微細でも断線が生じにくいので、形状の自由度が高い立体配線構造体が得られ、さらに電子部品を内蔵できるので、実装形態が多様化できる三次元成形回路部品の製造方法およびこの方法により製造される三次元成形回路部品を提供することにある。
上記の課題を解決するために、請求項1に記載の発明は、平板状の型に、メッキ性材料で配線パターンの下地を形成し、前記平板状の型のうち、前記下地以外を難メッキ性材料として非下地として、下地を形成する下地形成工程と、前記下地が形成された型を立体形状に変形する型変形工程と、前記下地が形成された立体形状の型に配線パターンを形成する配線パターン形成工程と、配線パターンを金属ナノ粒子で融着させる金属ナノ粒子融着工程と、前記配線パターンを形成した型に部品を実装する実装工程と、型の内部空間に成形材料を充填し、この成形樹脂材料を硬化させ、型と成形体を剥離する成形工程と、からなることを特徴とする。
また、請求項に記載の発明は、前記下地が親液性であり、前記非下地が疎液性である請求項1記載の三次元成形回路部品の製造方法を特徴とする。
また、請求項に記載の発明は、前記下地形成工程で配線パターンの下地として形成された易メッキ性材料が、金属ナノ粒子を含有している請求項記載の三次元成形回路部品の製造方法を特徴とする。
また、請求項に記載の発明は、前記金属ナノ粒子融着工程後に、前記配線パターンを金属ナノ粒子で融着させた金属ナノ粒子融着配線パターン上に、無電解メッキにより配線を形成する請求項1記載の三次元成形回路部品の製造方法を特徴とする。
また、請求項に記載の発明は、請求項1ないしのいずれか一項記載の製造方法により製造する三次元成形回路部品を特徴とする。
また、請求項に記載の発明は、前記三次元成形回路部品の成形材料が熱硬化性樹脂である請求項記載の三次元成形回路部品を特徴とする。
また、請求項に記載の発明は、前記三次元成形回路部品に実装されている部品の少なくとも1つが高周波回路素子である請求項記載の三次元成形回路部品を特徴とする。
また、請求項に記載の発明は、前記三次元成形回路部品に実装されている部品の少なくとも1つが光素子であり、この光素子の光路部分が空隙または透光性樹脂である請求項記載の三次元成形回路部品を特徴とする。
本発明によれば、平板状の型に、配線パターンの下地を形成する下地形成工程と、型を立体形状に変形する型変形工程と、立体形状の型に、配線パターンを形成する配線パターン形成工程と配線パターンを形成した型に、部品を実装する実装工程と型の内部空間に成形材料を充填し、成形材料を硬化させ、型と成形体を剥離する成形工程とを含むので、実装密度および信頼性の高い三次元成形回路部品を製造でき、しかも製造時に断線が生じない。
また、型上の配線に電子部品を実装しているので、電子部品を成型体上の配線に実装する場合と比べ、バンプ接合時の熱による変形による位置ずれを低減することが可能になり、光伝送部品に好適である。また、鉛フリーはんだ等の高温接合材料も使用できる。
以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明の三次元成形回路部品の製造方法を説明するための図であり、(a)は下地形成工程、(b)は型変形工程、(c)は配線パターン形成工程、(d)は実装工程、(e)は成形工程、(f)は成形後の三次元成形回路部品を示す図である。
まず、図1(a)に示すように平板状の型1に易メッキ性である下地パターン(下地)2を形成する。該下地パターン2は無電解メッキ用処理薬品TMPセンシタイザ(奥野製薬工業製)とTMPアクチベータ(奥野製薬工業製)をインクジェットでパターン状に供給することにより、型1の上にパラジウム触媒を含有する50μm幅の下地パターン2を得た。なお、配線パターンを形成するための下地を下地パターンと称し、それ以外の領域を非下地と称す。
なお、本実施例では簡易のため無電解メッキ用処理薬品をインクジェットで供給しパターン形成しているが、錫やパラジウム等の易メッキ性材料を含有したペースト状樹脂をスクリーン印刷やフォトリソプロセスで供給し下地パターンとして形成してもよい。このように、平板状の型1にパターン形成しているので、立体形状にパターン形成するよりはるかに容易であり、微細パターンも形成しやすい。
次に(b)に示すように型1を立体形状に変形する。ここでは、図のように曲げ加工を行い、型1を立体形状に変形した。曲げ加工は、V型のダイの上に平板の型1を乗せ、型1の上方からパンチで押すことにより平板の型1を任意の角度に変形させ、簡単に型1を立体形状にできる。もちろん、曲げ部を分離し、分離した型同士をヒンジ等で回転できるように連結した型を下地パターン2の形成後に連結部で回転させて、立体形状に変形してもよい。また、平板状の型1を複数用意し、各々に下地パターン形成し、各型のパターンが合うように型同士を連結し、立体形状としてもよい。そして、別の型と組み付けて、内部空間を有する立体形状の型を形成する。
次に(c)に示すように、下地パターン2上に配線パターン3を形成する。配線パターン形成工程では型1を40℃のTSPカッパーN(奥野製薬工業製)に浸漬して、無電解銅メッキを40分間行った(湿式メッキ)。これにより、下地パターン3の上面に銅メッキが成長し、配線パターン3を形成することができる。
その後、(d)に示すように、配線パターン3上に電子部品4を実装する。ここの実施例では半導体ベアチップを実装する例を示している。また、はんだバンプ5付きチップを配線パターン3と位置合せし、フリップチップボンダではんだバンプ5と配線パターンの所望の位置とを接続する。その後、アンダーフィル剤6をバンプ5周辺に浸透させ補強する。
電子部品実装工程の後、(e)に示すように型1の内部空間に成形樹脂材料7を充填し、成形樹脂材料7を硬化させ、その後、型1と成形樹脂材料7を剥離し、(f)に示すような三次元成形回路部品を得る。成形工程は具体的には、型1を成形装置に組み込み、成形温度185℃で熱硬化性の成形樹脂材料MP−7400(日東電工製)を注入後2分間放置してから離型した。
このように電子部品4および配線パターン3は成形材料7に埋め込まれる形で成形体に転写している。なお、ここではトランスファ成形にて成形を実施しているが、それに限定されるものではなく、射出成形などの熱可塑性樹脂にて行われている成形方法でも実施は可能である。
上記のように本発明によれば、立体形状にパターン形成を行うことなく、三次元成形回路部品を得ることができる。なお、型変形工程前に下地パターン2上に配線パターン3を形成し、その後、下地パターン2および配線パターン3を型1と共に変形する(曲げる)ことも考えられるが、この場合、配線パターン3は断線し易くなる。しかし、本発明では易メッキ性材料である下地パターン2を型1上にパターン形成し、配線パターン3を形成する前に型1を変形させているので、仮に型1を変形するときに易メッキ性材料である下地パターン2に微細な断線が生じても、配線パターン3の形成時に易メッキ性材料の断線部までメッキを成長させることにより、微細配線でも断線のない配線パターンが得られるという利点がある。
また、成形材料7として熱硬化性樹脂を用いているので、耐熱性、耐溶剤性、耐湿性の良い三次元成形回路部品を得ることができる。さらに下地パターン2が易メッキ性であり、非下地領域である型1が難メッキ性であるので、下地パターン2上のみにメッキ材料が成長することができ、容易に導体配線パターンを形成できる。
なお、乾式のスパッタや蒸着では立体形状にメッキ層を形成するのは困難であるが、湿式の無電解メッキや電解メッキでは立体形状でもメッキ層すなわち導体層を形成できるので、容易に配線パターンを形成できる。
図2は本発明に係る三次元成形回路部品の製造方法の第2の実施の形態を示す図であり、(a)、(b)は下地形成工程、(c)は型変形工程、(d)は易メッキ材料付着工程、(e)は配線パターン形成工程、(f)は実装工程、(g)は成形材料充填工程、(h)は成形後の三次元成形回路部品を示す図である。
まず、(a)に示すように型1上に親水性の含フッ素アクリレートTG−702(ダイキン工業製)を下地8として塗布し、乾燥させる。その後、配線パターンを形成する下地8の所望の部分(配線パターンとなる部分以外の部位)を半導体レーザL8933(浜松ホトニムス製)にて加熱すると、(b)に示すように加熱部9a(下地パターン相当部)は疎水性(疎液性)を示し、非加熱部9b(非下地パターン相当部)は加熱部に対し親水性(親液性)を示す。これにより、20μm幅の親水性を示す下地を形成することができる。
ここでは、親水性材料として含フッ素アクリレートを用いた方法を示しているがそれに限定されるものではなく、親水性材料と疎水性材料とを積層し、いずれかをエッチングしてパターン形成する手法も本実施の形態と同様に行うことができる。
また疎水性材料としての有機材料としては、フッ素樹脂やシリコン樹脂などが挙げられ、無機材料としては、シリコンやGaAsの半導体および酸化チタンなどが挙げられる。特に酸化チタンの場合、結晶構造がアナターズ型の場合には紫外線を照射することにより、超親水性に変化するため、本実施の形態と同様に用いることができ、かつ耐久性に優れた材料として有望である。
また型1にアルミを用いた場合には、アルミ自身が親水性を示すことから、疎水性材料の膜を下地8として形成し、該下地8をエッチングによりパターニングすることでアルミによる親水性下地および疎水性材料による疎水性下地を容易に形成することができる。
また、エッチングによる作製方法に限定されるものではなく、リフトオフにて親水部にレジストを供給し、型全面に疎水性材料を供給してから、レジストを除去することでも達成することができる。特にフッ素樹脂のようにエッチング耐性に優れた材料の場合有効である。
その後、(c)に示すように型1に曲げ加工を施し、立体形状に変形させ、さらに(d)に示すように型1を無電解メッキ用処理薬品TMPセンシタイザ(奥野製薬工業製)とTMPアクチベータ(奥野製薬工業製)に浸漬して、親水性下地9b上にメッキ触媒を供給し、易メッキ性材料からなる下地パターン2を形成する。なお、ここでは型1を変形させた後に易メッキ性材料からなる下地パターン2を親水性下地9b上に付着させているが、易メッキ性材料からなる下地パターン2を親水性下地9b上に付着させた後、型1を変形させてもよい。
その後、(e)に示すように下地パターン2上に配線パターン3を形成する。この工程では型1を40℃のTSPカッパーN(奥野製薬工業製)に浸漬して、無電解銅メッキを40分間行った。これにより、下地パターン2上に銅メッキが成長し、下地8のうち疎水性を示す部位9aにはメッキが成長せず、20μm幅の配線パターン3が形成できる。
その後、(f)に示すように配線パターン3上に電子部品を実装する。ここでは、第1の実施の形態と同様に、はんだバンプ5を備えた電子部品チップ4を配線3と位置合せし、フリップチップボンダではんだバンプ5と配線3とを接続した。その後、アンダーフィル剤6をバンプ5周辺に浸透させ補強した。
さらに、(g)に示すように型1の内部空間に成形材料7を充填し、成形材料を硬化させ、型と成形材料を剥離することにより(h)に示すような三次元形成回路部品を得ることができる。ここでは、第1の実施の形態と同様に成形材料を型1の内部空間に充填したので、電子部品4および配線パターン3は成形材料7に埋め込まれる形で成形体に転写することができる。
このように本発明に係る三次元成形回路部品の製造方法によれば、立体的なパターン形成を行うことなく、微細配線を有する三次元成形回路部品を得ることができる。また、本実施の形態では、下地8として親水材料を用いているので、インクジェットやスクリーン印刷で版上に直接易メッキ性材料を付着させる場合よりも微細な配線が形成できる。
下地8の非加熱部9bが親水性であり、下地8の加熱部分9aが疎水性であるので、易メッキ性材料を含有する液を非加熱部9b上のみに付着させることができ、易メッキ性材料からなるパターンを容易に形成できる。また、再度、立体形状の型の親水性下地パターン9bに易メッキ性材料を付着し、メッキ、実装、成形を繰り返せば、繰り返し微細配線を有する三次元成形回路部品が得ることができる。
図3は本発明の三次元成形回路部品の製造方法の第3の実施の形態を示す図であり、(a)は易メッキ材料付着工程にて親水性下地パターン形成済み型を示す図、(b)は配線パターン形成工程にてナノ金属粒子を付着した後の状態を示す図、(c)は配線パターン形成工程にてナノ金属粒子を融着した後の状態を示す図、(d)は実装工程にて電子部品を実装した後の状態を示す図、(e)は成形工程を示す図、(f)は成形した後の状態を示す図、(g)は外部配線パターン形成工程にて外部配線パターンを形成した後の状態を示す図である。
まず、図2(a)に示すように下地形成工程にて型1上に親水性の下地8を塗布し、乾燥させる。その後、配線パターンを形成する下地8の所望の部分(配線パターンとなる部分以外の部位)を半導体レーザL8933(浜松ホトニムス製)にて加熱すると、図2(b)に示すように加熱部9aは疎水性を示し、非加熱部9bは加熱部に対し親水性を示す。これにより、20μm幅の親水性を示す下地を形成することができる。
ここでは、親水性材料として含フッ素アクリレートを用いた方法を示しているがそれに限定されるものではなく、親水性材料と疎水性材料とを積層し、いずれかをエッチングしてパターン形成する手法も本実施の形態と同様に行うことができる。
その後、図3(a)に示すように型変形工程にて型1に曲げ加工を施し、立体形状に変形させ、さらに非加熱部である親水性パターン9b上に銀コロイド水溶液ファインスフィアSVW102(日本ペイント製)を供給し、乾燥することで、(b)に示すように配線パターン状に銀ナノ粒子からなる下地2を形成する。すなわち、第2の実施の形態においては易メッキ性材料として無電解メッキ処理薬品を用いたが、本実施例では金属ナノ粒子含有溶液を用いている。なお、水溶液以外の溶液を用いる場合は、その溶液に対応した親疎水性液パターンを形成しておけばよい。
その後、配線パターン形成工程にて型1を200℃で30分加熱し、銀ナノ粒子同士を融着させ、(c)に示すように親水性パターン9b上に銀ナノ粒子が融着した配線パターン3を得た。すなわち、銀ナノ粒子同士を融着させることにより、銀ナノ粒子からなる易メッキ性パターン2を易メッキ性だけでなく導電性もある配線パターン3に変化させることができる。
ここで、金属ナノ粒子は表面活性力が強く無電解メッキ用の触媒と同等の触媒機能を有するため、第1および第2の実施の形態と同様に無電解メッキによる配線の厚膜化すなわち低抵抗化も可能である。また、金属ナノ粒子融着後にパターンを電極とし電解メッキを行えば、無電解メッキより生産性が向上する。
その後、実装工程にて(d)に示すように型1上のチップ実装部にアンダーフィル剤6を塗布し、金バンプ5付きチップ4を配線電極と位置合せし、フリップチップボンダで加圧加熱しアンダーフィル剤6を硬化させて、圧接接合する。
さらに成形工程にて(e)に示すように型1の内部空間に成形材料7を充填し、この成形材料7を硬化させ、型1と成形樹脂材料7を剥離することで(f)に示したような三次元成形回路部品を得ることができる。この成形工程では、第1の実施の形態や第2の実施の形態と同様に行うことにより、電子部品4および配線パターン3は成形材料7に埋め込まれる形で成形体に転写することができ、したがって、立体形状にパターン形成を行うことなく、微細配線を有する三次元成形回路部品を得ることができた。
また、配線パターンの低抵抗化のために、配線パターン3に加え、(g)に示すように外部配線パターン3’を形成しても良い。外部配線パターン3’の形成は、(f)に示した三次元成形回路部品を40℃のTSPカッパーN(奥野製薬工業製)に浸漬して、無電解銅メッキを40分間行い、配線パターン3上に銅メッキを成長させ、20μm幅の低抵抗配線パターンを形成することができる。
また、金属ナノ粒子が融着した後の配線パターン3の隙間の一部に成形樹脂が浸透しあるいはメッキ金属が析出することで、金属ナノ粒子と成形樹脂との密着力、および、金属ナノ粒子とメッキ層との密着力が向上し、如いては成形体と導体配線の密着力を向上できる。よって、本発明により、低抵抗で、かつ、成形樹脂材料との密着強度の高い配線を有する三次元成形回路部品が得ることができる。
さらに下地パターン2または易メッキ性材料2が金属ナノ粒子を含有しているので、表面積を大きくすることができる。したがって、メッキ触媒としての活性を高めることができ、易メッキ性が向上する。また、表面粗さが大きくなるため、樹脂との密着力が高くなり、容易に配線パターン状の易メッキ性材料を成形体に転写できる。
また、金属ナノ粒子を融着させているので、下地パターン2が導体化し、易メッキ性材料としてだけではなく配線として用いることができる。また、メッキ層と一体化することで、導電性の優れた配線を形成できる。
また、金属ナノ粒子を融着させると、その融着した後の隙間の一部に成形樹脂材料が浸透またはメッキ金属が析出し、金属ナノ粒子と成形樹脂材料との密着力、及び、金属ナノ粒子とメッキ層との密着力が向上し、如いては成形体と導体配線の密着力を向上できる。
図4は本発明の三次元成形回路部品の製造方法の第4の実施の形態を示す図であり、(a)は成形工程における三次元成形回路部品の成形前の状態を示す図、(b)は成形工程における三次元成形回路部品の成形後の状態を示す図、(c)は三次元成形回路部品(外部配線形成後)を示す図、(d)は三次元成形回路部品の実装例を示す図である。
まず、図3(a)乃至(d)に示した方法により電子部品10、11を実装した型1a、1bを形成する。ここでは、高周波回路である光伝送モジュール用の発光素子10とそれを制御する発光素子制御IC11を実装した例を示す。発光素子10側のアンダーフィル剤6aは光を透過する樹脂を用いた。
その後、型1aと1bとを合わせ、型の内部空間に成形材料7を充填し、成形樹脂材料7を硬化させ、型1と成形樹脂材料7を剥離することにより(b)に示すような三次元成形回路部品を形成する。なお、この実施例では第1の実施の形態と同様に成形工程を行うことにより、発光素子10、発光素子制御IC11、アンダーフィル剤6a、6b、および配線パターン3は熱硬化性の成形材料7に埋め込まれる形で成形体に転写される。
その後、三次元成形回路部品を40℃のTSPカッパーN(奥野製薬工業製)に浸漬して、無電解銅メッキを40分間行うことにより、銀ナノ粒子からなる配線パターン3上に銅メッキが成長し、発光素子10、発光素子制御IC11側の配線パターン3が銅メッキにより一体化した外部配線パターン3’を得ることができる。また、易メッキ性材料として銀ナノ粒子を配線パターン3として使用しているので、配線部が銅(外部配線パターン3’)と銀(配線パターン3)の多層となり、低抵抗配線パターンを形成することができる。
以上により、立体形状にパターン形成を行うことなく、発光素子を内蔵する三次元光回路部品を得ることができる。もちろん、発光素子のかわりに受光素子を実装しても良いし、あるいは発光素子、受光素子の両方を実装しても良い。
その後、実装工程にて(d)に示すように配線基板12にはんだペースト13を塗布し、三次元成形回路部品を載せ、リフローにより基板電極と三次元光回路部品電極をはんだ接合した。ソルダーレジストは図示していないが、必要に応じて形成している。この実施例では発光素子制御IC11を基板電極近傍に配置しているので、発光素子制御ICで発生する熱が基板に逃げやすく、熱抵抗の低い三次元光回路実装基板をえることができる。
以上のように、本発明によれば、各回路や放熱特性等、電子部品モジュールの必要特性に応じた配線形状や実装形態を有する三次元回路部品を容易に得ることができる。
また三次元成形回路部品に実装されている部品の少なくとも1つが光素子であり、かつ、受発光素子の光路部分を空隙または透光性樹脂としているので、光素子を成型体に内蔵し信頼性の高い構造で、かつ、光損失の少ない光素子内蔵三次元成形回路部品を得ることができる。特に、第4の実施例に示した三次元回路部品を光伝送モジュールに適用すれば、高周波回路に好適なものとすることができ、形状の立体配線構造体が得られ、さらに電子部品を内蔵できる等実装接合形態を高周波に好適な形態にできるため、損失、波形歪、クロストーク、ノイズ等の少ない光伝送対応三次元成形回路部品を得られる。
また成型工程後に、易メッキ性材料からなる配線パターン3上に無電解メッキにより外部配線パターン3’を形成することにより、複数の型に跨る配線の型間部の間隙までメッキを成長させることができ、複数の型に跨る部品面に跨る配線を形成できる。
これにより、立体配線形状や電子部品の実装形態の自由度を大きく上げることができ、マルチチップモジュールや、高周波回路モジュール、光伝送モジュール等に好適な三次元成形回路部品を製造することができる。成形材料として熱硬化性樹脂を使用しているので、従来の熱可塑性樹脂を用いたものよりも耐熱性、耐湿性等信頼性が高い。また、基板に実装するときに鉛フリーはんだ等の高温接合材料も使用できる。
さらに、立体配線形状の自由度が高いため、高周波回路に好適な形状の立体配線構造体が得られ、さらに電子部品を内蔵できる等、実装接合形態を高周波に好適な形態にできるため、損失、波形歪、クロストーク、ノイズ等の少ない高周波対応三次元成形回路部品を得ることができる。
本発明の三次元成形回路部品の製造方法の第1の実施の形態を示す図であり、(a)は下地パターン形成工程、(b)は型変形工程、(c)は配線パターン形成工程、(d)は実装工程、(e)は成形工程、(f)は成形後の三次元成形回路部品を示す図である。 本発明の三次元成形回路部品の製造方法の第2の実施の形態を示す図であり、(a)、(b)は下地形成工程、(c)は型変形工程、(d)は易メッキ材料付着工程、(e)は配線パターン形成工程、(f)は実装工程、(g)は成形材料充填工程、(h)は成形後の三次元成形回路部品を示す図である。 本発明の三次元成形回路部品の製造方法の第3の実施の形態を示す図であり、(a)は易メッキ材料付着工程にて親水性下地パターン形成済み型を示す図、(b)は配線パターン形成工程にてナノ金属粒子を付着した後の状態を示す図、(c)は配線パターン形成工程にてナノ金属粒子を融着した後の状態を示す図、(d)は実装工程にて電子部品を実装した後の状態を示す図、(e)は成形工程を示す図、(f)は成形した後の状態を示す図、(g)は外部配線パターン形成工程にて外部配線パターンを形成した後の状態を示す図である。 本発明の三次元成形回路部品の製造方法の第4の実施の形態を示す図であり、(a)は成形工程における三次元成形回路部品の成形前の状態を示す図、(b)は成形工程における三次元成形回路部品の成形後の状態を示す図、(c)は三次元成形回路部品(外部配線形成後)を示す図、(d)は三次元成形回路部品の実装例を示す図である。
符号の説明
1 型
2 下地パターン
3 配線パターン
3’ 外部配線パターン
4 電子部品
7 成形材料
8 親水性下地
9 疎水性下地
10 電子部品(発光素子)
11 電子部品(発光素子制御IC)
12 配線基板

Claims (8)

  1. 平板状の型に、メッキ性材料で配線パターンの下地を形成し、
    前記平板状の型のうち、前記下地以外を難メッキ性材料として非下地として、
    下地を形成する下地形成工程と、
    前記下地が形成された型を立体形状に変形する型変形工程と、
    前記下地が形成された立体形状の型に配線パターンを形成する配線パターン形成工程と、
    配線パターンを金属ナノ粒子で融着させる金属ナノ粒子融着工程と、
    前記配線パターンを形成した型に部品を実装する実装工程と、
    型の内部空間に成形材料を充填し、
    この成形樹脂材料を硬化させ、
    型と成形体を剥離する成形工程と、
    からなることを特徴とする三次元成形回路部品の製造方法。
  2. 前記下地が親液性であり、前記非下地が疎液性であることを特徴とする請求項1記載の三次元成形回路部品の製造方法。
  3. 前記下地形成工程で配線パターンの下地として形成された易メッキ性材料が、金属ナノ粒子を含有していることを特徴とする請求項記載の三次元成形回路部品の製造方法。
  4. 前記金属ナノ粒子融着工程後に、
    前記配線パターンを金属ナノ粒子で融着させた金属ナノ粒子融着配線パターン上に、
    無電解メッキにより配線を形成する
    ことを特徴とする請求項1記載の三次元成形回路部品の製造方法。
  5. 請求項1ないしのいずれか一項記載の製造方法により製造することを特徴とする三次元成形回路部品。
  6. 前記三次元成形回路部品の成形材料が熱硬化性樹脂であることを特徴とする請求項記載の三次元成形回路部品。
  7. 前記三次元成形回路部品に実装されている部品の少なくとも1つが高周波回路素子であることを特徴とする請求項記載の三次元成形回路部品。
  8. 前記三次元成形回路部品に実装されている部品の少なくとも1つが光素子であり、この光素子の光路部分が空隙または透光性樹脂であることを特徴とする請求項記載の三次元成形回路部品。
JP2004353260A 2004-12-06 2004-12-06 三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品 Expired - Fee Related JP4675096B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353260A JP4675096B2 (ja) 2004-12-06 2004-12-06 三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353260A JP4675096B2 (ja) 2004-12-06 2004-12-06 三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品

Publications (2)

Publication Number Publication Date
JP2006165198A JP2006165198A (ja) 2006-06-22
JP4675096B2 true JP4675096B2 (ja) 2011-04-20

Family

ID=36666874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353260A Expired - Fee Related JP4675096B2 (ja) 2004-12-06 2004-12-06 三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品

Country Status (1)

Country Link
JP (1) JP4675096B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590294B2 (ja) * 2005-04-13 2010-12-01 株式会社リコー 三次元成形回路部品の製造方法
WO2013058708A1 (en) * 2011-10-18 2013-04-25 Fischer Technology Pte. Ltd. A method of moulding
DE102014106585A1 (de) * 2014-05-09 2015-11-12 Leonhard Kurz Stiftung & Co. Kg Mehrschichtkörper und Verfahren zu dessen Herstellung
JP6794091B2 (ja) 2014-12-12 2020-12-02 凸版印刷株式会社 配線印刷物の製造方法
CN109417852A (zh) * 2016-07-15 2019-03-01 富士胶片株式会社 配线基板的制造方法及配线基板
CN109479372A (zh) * 2016-07-15 2019-03-15 富士胶片株式会社 配线基板的制造方法、配线基板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362295A (ja) * 1986-09-03 1988-03-18 株式会社デンソー プリント基板製造方法
JPH02224289A (ja) * 1988-11-24 1990-09-06 Yazaki Corp 立体成形回路の形成方法
JPH0335584A (ja) * 1989-06-30 1991-02-15 Aichi Electric Co Ltd 立体配線回路基板の製造方法
JPH0432290A (ja) * 1990-05-29 1992-02-04 Aichi Electric Co Ltd 立体配線回路基板
JPH07283513A (ja) * 1994-04-12 1995-10-27 Hitachi Cable Ltd 三次元射出成形回路部品の製造方法
JP2001177224A (ja) * 1999-12-17 2001-06-29 Sony Corp 立体回路基板及びその製造方法
JP2001308119A (ja) * 2000-04-21 2001-11-02 Seiko Epson Corp 三次元実装部品及びその製造方法並びに光伝達装置
JP2002033419A (ja) * 2000-07-14 2002-01-31 Sharp Corp 高周波モジュールおよび高周波モジュールの製造方法
JP2002134878A (ja) * 2000-10-25 2002-05-10 Morimura Chemicals Ltd 配線パターンの形成方法、回路基板の製造方法および遮光パターンの形成された透光体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362295A (ja) * 1986-09-03 1988-03-18 株式会社デンソー プリント基板製造方法
JPH02224289A (ja) * 1988-11-24 1990-09-06 Yazaki Corp 立体成形回路の形成方法
JPH0335584A (ja) * 1989-06-30 1991-02-15 Aichi Electric Co Ltd 立体配線回路基板の製造方法
JPH0432290A (ja) * 1990-05-29 1992-02-04 Aichi Electric Co Ltd 立体配線回路基板
JPH07283513A (ja) * 1994-04-12 1995-10-27 Hitachi Cable Ltd 三次元射出成形回路部品の製造方法
JP2001177224A (ja) * 1999-12-17 2001-06-29 Sony Corp 立体回路基板及びその製造方法
JP2001308119A (ja) * 2000-04-21 2001-11-02 Seiko Epson Corp 三次元実装部品及びその製造方法並びに光伝達装置
JP2002033419A (ja) * 2000-07-14 2002-01-31 Sharp Corp 高周波モジュールおよび高周波モジュールの製造方法
JP2002134878A (ja) * 2000-10-25 2002-05-10 Morimura Chemicals Ltd 配線パターンの形成方法、回路基板の製造方法および遮光パターンの形成された透光体の製造方法

Also Published As

Publication number Publication date
JP2006165198A (ja) 2006-06-22

Similar Documents

Publication Publication Date Title
US8035035B2 (en) Multi-layer wiring board and method of manufacturing the same
US6706564B2 (en) Method for fabricating semiconductor package and semiconductor package
US7755183B2 (en) Wiring board, method of manufacturing the same, and semiconductor device
CN106206532B (zh) 封装基板和制造封装基板的方法
US6147311A (en) Multi layer circuit board using anisotropic electroconductive adhesive layer and method for producing same
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
JP4617978B2 (ja) 配線基板の製造方法
US10098243B2 (en) Printed wiring board and semiconductor package
US20090242262A1 (en) Multi-layer wiring board and method of manufacturing the same
KR100403062B1 (ko) 전도성 소자의 형성방법 및 3차원 회로의 형성방법, 칩-스케일 패키지의 형성방법, 웨이퍼 레벨 패키지의 형성방법, ic 칩/리드 프레임 패키지의 형성방법 및 칩-온-플렉스 패키지의 형성방법
TW200924135A (en) Wiring board, semiconductor device having wiring board, and method of manufacturing wiring board
US9935053B2 (en) Electronic component integrated substrate
TWI676409B (zh) 用於製造電子模組的方法及電子模組
US11553599B2 (en) Component carrier comprising pillars on a coreless substrate
JP5272922B2 (ja) 半導体装置及びその製造方法
JP2009302476A (ja) 半導体装置および半導体装置の製造方法
KR20150035251A (ko) 외부접속단자부와 외부접속단자부를 갖는 반도체 패키지 및 그들의 제조방법
US10219369B2 (en) Circuit board
TW201123326A (en) Method of manufacturing substrate for flip chip and substrate for flip chip manufactured using the same
JP4675096B2 (ja) 三次元成形回路部品の製造方法およびこれにより製造された三次元成形回路部品
JP4484578B2 (ja) パターン形状体及びその製造方法
JP4590294B2 (ja) 三次元成形回路部品の製造方法
JP2017152477A (ja) プリント配線板
KR20090063116A (ko) 반도체 장치용 패키지 및 그 제조 방법
JP2010141049A (ja) 配線構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees