JP4674761B2 - Dissolved oxygen fixed type groundwater sampling method and apparatus - Google Patents

Dissolved oxygen fixed type groundwater sampling method and apparatus Download PDF

Info

Publication number
JP4674761B2
JP4674761B2 JP2005343960A JP2005343960A JP4674761B2 JP 4674761 B2 JP4674761 B2 JP 4674761B2 JP 2005343960 A JP2005343960 A JP 2005343960A JP 2005343960 A JP2005343960 A JP 2005343960A JP 4674761 B2 JP4674761 B2 JP 4674761B2
Authority
JP
Japan
Prior art keywords
water
groundwater
dissolved oxygen
sampling
water sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343960A
Other languages
Japanese (ja)
Other versions
JP2007146541A (en
Inventor
真弓 田中
克 戸井田
ブーン ケン リン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005343960A priority Critical patent/JP4674761B2/en
Publication of JP2007146541A publication Critical patent/JP2007146541A/en
Application granted granted Critical
Publication of JP4674761B2 publication Critical patent/JP4674761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は溶存酸素固定式の地下水採水方法及び装置に関し、とくに岩盤中の原位置で溶存酸素を固定したうえで地下水を採水する方法及び装置に関する。   The present invention relates to a method and apparatus for groundwater sampling of a fixed dissolved oxygen type, and more particularly to a method and apparatus for sampling groundwater after fixing dissolved oxygen at an in-situ position in a rock.

例えば岩盤内に高レベル放射性廃棄物の地層処分場等を構築する場合に、岩盤内の地下水の酸化・還元状態が放射性核種の溶解速度に影響することから、地下水の溶存酸素及びその変化の調査が必要となる。また、地下水の酸化・還元状態は地下の微生物の活動にも大きな影響を与えることから、地下構造物の微生物耐性や地下汚染の微生物浄化等を検討する場合にも、地下水の溶存酸素の調査が必要となる。例えば酸化状態では硫黄酸化細菌等の好気性微生物による鉄鋼腐食が問題となり、嫌気状態では硫酸還元菌等の嫌気性微生物による鉄鋼腐食が問題となる。また嫌気状態では油等の汚染物質の嫌気的分解が期待できるのに対し、好気状態ではそのような分解は期待できない。   For example, when constructing a geological disposal site for high-level radioactive waste in the rock mass, the groundwater oxidation / reduction state in the rock mass affects the dissolution rate of the radionuclide. Is required. In addition, since the oxidation / reduction state of groundwater has a great influence on the activity of underground microorganisms, when examining the microbial resistance of underground structures and microbial purification of underground pollution, investigation of dissolved oxygen in groundwater is also necessary. Necessary. For example, in an oxidized state, steel corrosion due to aerobic microorganisms such as sulfur-oxidizing bacteria becomes a problem, and in an anaerobic state, steel corrosion due to anaerobic microorganisms such as sulfate-reducing bacteria becomes a problem. In addition, anaerobic decomposition of oil and other contaminants can be expected in the anaerobic state, whereas such decomposition cannot be expected in the aerobic state.

従来、地下水の酸化・還元状態を調査する場合は、岩盤に掘削したボーリング孔等の採水孔を介して所要深度の地下水を採水して分析する方法が一般的である。ただし、地下水の長期に亘る状態を検討するためには地下水の存在する原位置における自然状態の溶存酸素量を把握する必要があり、ボーリング時の掘削水や他の深度の地下水と混合させず、原位置での圧力を保持したまま大気と接触しない状態(以下、被圧不活性状態ということがある)で地下水を採水することが必要となる。   Conventionally, when investigating the oxidation / reduction state of groundwater, a method of collecting groundwater at a required depth and analyzing it through a sampling hole such as a borehole drilled in a rock is generally used. However, in order to examine the state of groundwater over a long period of time, it is necessary to grasp the amount of dissolved oxygen in the natural state at the location where the groundwater exists, and do not mix it with drilling water during drilling or other depth groundwater, It is necessary to collect groundwater in a state that does not come into contact with the atmosphere while maintaining the pressure at the original position (hereinafter sometimes referred to as a pressure-inactive state).

地下水を被圧不活性状態で採水する装置として、特許文献1及び2は、採水孔内に遮水パッカーで区切った採水区間を形成し、採水区間の地下水を継続的に地上へ採水(サンプリング採水)して分析することにより採水区間が完全にその区間深度の地下水(以下、区間地下水ということがある)に置換されたことを判断し、置換が確認された時点で採水区間の地下水を採水カプセルに閉じ込めて採水する地下水採水装置を開示している。また特許文献3は、図4に示すように、地上へのサンプリング採水に代えて孔内システムにより採水区間の地下水を分析して区間地下水への置換を確認する大深度孔内採水装置を開示している。   As an apparatus for collecting groundwater in a non-pressure-inactive state, Patent Documents 1 and 2 form a water collection section divided by a water-impervious packer in a water collection hole, and continuously groundwater in the water collection section to the ground. When sampling is performed and analyzed, it is determined that the sampling section has been completely replaced with groundwater at the depth of the section (hereinafter referred to as section groundwater), and when the replacement is confirmed A groundwater sampling apparatus that collects groundwater in a sampling section by confining it in a sampling capsule is disclosed. Further, as shown in FIG. 4, Patent Document 3 discloses a deep-hole water sampling apparatus that analyzes groundwater in a water sampling section by a hole system instead of sampling water sampling on the ground and confirms replacement with the section groundwater. Is disclosed.

図4の採水装置は、採水孔内の所定地下水深度に遮水された採水区間を形成するパッカー対5(上部パッカー6及び下部パッカー7からなる)と、パッカー対5に取り付けた採水器(サンプラー)11及び孔内ポンプ等の導水装置40とを有し、採水器11内に水質センサ46や水圧計47等からなる検知システム45と内部パッカー44とを設けている。採水時には、パッカー6、7を取り付けた採水器11及び導水装置40を採水孔内に吊り下げ、パッカー制御装置8によりパッカー5を拡張して採水区間を形成すると共に内部パッカー44を拡張する。全てのパッカー6、7、44が効いていれば採水区間の湧水圧により採水器11内の水圧が上昇するので、水圧計47によりパッカーの効き具合を確認することができる。次いで内部パッカー44を収縮し、導水装置40により採水区間内の溜まり水を採水ロッド9、逆止弁43、パッカー6内の水通路42、採水器11、導水装置40及び導水装置40の排水口41経由で区間外へ排水する。このとき、採水器11内の孔内システム45で水圧、水質(電気伝導度(EC)、水温、pH等)及び水量を計測し、計測値を観測用ケーブル48 経由で地表のデータロガー49及び記録機50へ伝送する。   The water sampling apparatus of FIG. 4 includes a packer pair 5 (consisting of an upper packer 6 and a lower packer 7) that forms a water sampling section that is shielded at a predetermined depth of groundwater in the water sampling hole, and a sampling attached to the packer pair 5. The water sampler (sampler) 11 and a water guide device 40 such as a bore pump are provided. In the water sampler 11, a detection system 45 including a water quality sensor 46 and a water pressure gauge 47 and an internal packer 44 are provided. At the time of water sampling, the water sampler 11 and the water guide device 40 to which the packers 6 and 7 are attached are suspended in the water sampling hole, the packer control device 8 extends the packer 5 to form a water sampling section, and the internal packer 44 is Expand. If all the packers 6, 7, and 44 are effective, the water pressure in the water sampler 11 increases due to the spring water pressure in the water sampling section, so that the effectiveness of the packer can be confirmed by the water pressure gauge 47. Next, the internal packer 44 is contracted, and the water collecting device 40 removes the accumulated water in the water collecting section from the water collecting rod 9, the check valve 43, the water passage 42 in the packer 6, the water sampling device 11, the water guiding device 40, and the water guiding device 40. It drains out of the section through the drain outlet 41 of the. At this time, the water pressure, water quality (electrical conductivity (EC), water temperature, pH, etc.) and water volume are measured by the borehole system 45 in the water sampler 11, and the measured values are transmitted to the surface data logger 49 via the observation cable 48. And to the recorder 50.

採水区間内の水質は、排水当初は不安定であるが、排水量が増えるに応じて安定する傾向を示す。孔内システム45の計測値が一定の値に達したことにより、採水器11内が区間地下水ですっかり置き替わったことを確認する。そののち導水装置40を停止し、内部パッカー44を拡張して採水器11を閉塞することにより採水区間内の地下水を採水器11内に被圧不活性状態で蓄える。地下水を蓄えた採水器11はパッカー6、7を収縮して地上まで引き上げる。特許文献1及び2のように地上へサンプリング採水する方法に比し、図4の方法によればサンプリング採水の揚程を短くすることができ、導水装置40の揚水能力による採水深度の制約がなく1,000m程度の大深度でも効率的な採水が可能である。   The water quality in the sampling section is unstable at the beginning of drainage, but tends to stabilize as the amount of drainage increases. When the measured value of the borehole system 45 reaches a certain value, it is confirmed that the inside of the water sampler 11 has been completely replaced with the section groundwater. After that, the water guide device 40 is stopped, the internal packer 44 is expanded, and the water sampler 11 is closed, so that the groundwater in the water sampling section is stored in the water sampler 11 in a pressure-inactive state. The water sampler 11 storing the groundwater contracts the packers 6 and 7 and pulls them up to the ground. Compared to the method of sampling water sampling on the ground as in Patent Documents 1 and 2, the sampling head can be shortened according to the method of FIG. 4, and the sampling depth is limited by the pumping capacity of the water guide device 40. Efficient water sampling is possible even at a depth of about 1,000m.

特開平6−193101号公報JP-A-6-193101 特開平9−025783号公報Japanese Patent Laid-Open No. 9-025783 特開平6−294270号公報JP-A-6-294270

しかし、特許文献1〜3に示す従来の採水装置は、被圧不活性状態での採水を可能とするものの、被圧不活性状態での水質計測を保証するものではない。例えば特許文献3の装置では、地上に採水した地下水を計測用容器等に移し替えて計測に供しているが、その移し替え時や計測時に採水した地下水が地下と異なる圧力・温度環境に晒され、また地上の空気と接触するおそれがある。すなわち従来の採水装置では、被圧不活性状態で採水した場合であっても、地上に引き上げた後に圧力・温度の変化や空気との接触の影響を受けやすく、地下の被圧不活性状態における溶存酸素量を精確に検出するためには特別な圧力・温度保持装置等が必要となる。   However, although the conventional water sampling apparatus shown to patent documents 1-3 enables water sampling in a pressure inactive state, it does not guarantee water quality measurement in a pressure inactive state. For example, in the apparatus of Patent Document 3, the groundwater sampled on the ground is transferred to a measurement container or the like for measurement, but the groundwater sampled at the time of the transfer or measurement has a pressure / temperature environment different from the underground. There is a risk of exposure and contact with ground air. In other words, even with conventional water sampling devices, even when water is collected in a pressure-inactive state, it is easily affected by changes in pressure and temperature and contact with air after being pulled up to the ground. In order to accurately detect the amount of dissolved oxygen in the state, a special pressure / temperature holding device or the like is required.

被圧不活性状態における溶存酸素量を計測するため、例えば図4の孔内システム45に溶存酸素計又は酸化還元電位計を含め、地下水の溶存酸素を原位置での検層により検出する方法も考えられる。しかし現状の溶存酸素計又は酸化還元電位計は電極を用いて溶存酸素量(mg/リットル単位)又は酸化還元電位(mV単位)として溶存酸素を計測するものであり、電極のメンテナンス(洗浄)が不可欠であって、電極のメンテナンスが不充分であると計測精度が低下してしまう。上述した採水器11内の区間地下水への入れ替わりには数日〜1週間程度を要する場合があり、電極を数日間も地下水中に浸漬し続けると計測精度が低下してしまう。また、何らかの方法で電極がメンテナンスできたとしても、メンテナンス後のキャリブレーション(校正)に手間がかかる問題点もある。すなわち、現状では孔内システムによって地下水の溶存酸素量を精確に検出することは難しく、地下水を地上に採水したうえで圧力・温度の変化や空気との接触の影響を避けながら溶存酸素量の検出精度を高める必要がある。   In order to measure the amount of dissolved oxygen in the inactive state under pressure, for example, a dissolved oxygen meter or a redox potentiometer is included in the borehole system 45 of FIG. 4 to detect dissolved oxygen in groundwater by in-situ logging. Conceivable. However, the current dissolved oxygen meter or oxidation-reduction potentiometer measures dissolved oxygen as an amount of dissolved oxygen (mg / liter unit) or oxidation-reduction potential (mV unit) using an electrode. It is indispensable, and if the electrode is not sufficiently maintained, the measurement accuracy is lowered. It may take several days to one week to switch to the section groundwater in the water sampler 11 described above, and if the electrode is kept immersed in the groundwater for several days, the measurement accuracy is lowered. Moreover, even if the electrode can be maintained by some method, there is a problem that it takes time to perform calibration after the maintenance. In other words, it is difficult to accurately detect the dissolved oxygen content of groundwater with the borehole system at present, and the dissolved oxygen content can be controlled while avoiding the effects of changes in pressure and temperature and contact with air after groundwater is sampled on the ground. It is necessary to increase the detection accuracy.

そこで本発明の目的は、地上へ採水後に圧力・温度の変化や空気との接触の影響を受けにくい地下水の採水方法及び装置を提供することにある。   Accordingly, an object of the present invention is to provide a groundwater sampling method and apparatus which are not easily affected by changes in pressure and temperature and contact with air after sampling on the ground.

本発明者は、水中の溶存酸素を固定する方法に注目した。従来から、例えば硫酸マンガンのアルカリ溶液(水酸化カリウム又は水酸化ナトリウム溶液等)を試料水に加えると水酸化マンガンMn(OH)2の沈殿を生じ((1)式)、試料水中の溶存酸素がMn(OH)2と反応すると別の沈殿MnO(OH)2となって固定されることが知られている((2)式)。例えばウィンクラー法では、この沈殿MnO(OH)2をヨウ素イオンの存在下で酸(塩酸等)を加えて溶解させ、試料水中の溶存酸素量に応じて遊離したヨウ素をチオ硫酸ナトリウムで滴定することにより、試料水中の溶存酸素量を定量している((3)及び(4)式)。 The present inventor has focused on a method for fixing dissolved oxygen in water. Conventionally, for example, when an alkaline solution of manganese sulfate (such as potassium hydroxide or sodium hydroxide solution) is added to sample water, precipitation of manganese hydroxide Mn (OH) 2 occurs (formula (1)), and dissolved oxygen in the sample water It is known that when it reacts with Mn (OH) 2 , it becomes fixed as another precipitate MnO (OH) 2 (formula (2)). For example, in the Winkler method, this precipitated MnO (OH) 2 is dissolved by adding an acid (hydrochloric acid, etc.) in the presence of iodine ions, and the released iodine is titrated with sodium thiosulfate according to the amount of dissolved oxygen in the sample water. Therefore, the amount of dissolved oxygen in the sample water is quantified (Equations (3) and (4)).

Mn2++2OH-→Mn(OH)2(沈殿) ……………………………… (1)
Mn(OH)2+(1/2)O2→MnO(OH)2(沈殿) ……………………… (2)
MnO(OH)2+2I-+4H+→Mn2++I2+3H2O ……………………… (3)
I2+2S2O3 2-→2I-+S4O6 2- …………………………………… (4)
Mn 2+ + 2OH - → Mn ( OH) 2 ( precipitation) .................................... (1)
Mn (OH) 2 + (1/2) O 2 → MnO (OH) 2 (precipitation) ……………………… (2)
MnO (OH) 2 + 2I - + 4H + → Mn 2+ + I 2 + 3H 2 O ........................... (3)
I 2 + 2S 2 O 3 2- → 2I - + S 4 O 6 2- .......................................... (4)

硫酸マンガンのアルカリ溶液のような溶存酸素固定剤を岩盤中の地下水に適用し、岩盤中の原位置において溶存酸素を固定したうえで地下水を地上に採水すれば、地上において圧力・温度の変化や空気との接触が生じたとしても固定した溶存酸素量は変化しないので、原位置における地下水の溶存酸素量を精確に検出することが期待できる。ただし、上述したように被圧不活性状態で採水するためには原位置で地下水を採水器等に密閉する必要があり、地下水の溶存酸素を原位置において固定するためには密閉した地下水中に固定剤を添加する必要がある。本発明は、原位置で密閉した地下水中に溶存酸素固定剤を添加する技術の研究開発の結果、完成に至ったものである。   If a dissolved oxygen fixing agent such as an alkaline solution of manganese sulfate is applied to groundwater in the rock, and the dissolved oxygen is fixed in situ in the rock, and groundwater is sampled on the ground, the pressure and temperature changes on the ground. Even if contact with the air occurs, the fixed dissolved oxygen amount does not change, so it can be expected to accurately detect the dissolved oxygen amount of the groundwater in the original position. However, as described above, it is necessary to seal the groundwater in its original position to a water sampler or the like in order to collect water in a pressure-inactive state, and in order to fix the dissolved oxygen in the groundwater in the original position, the sealed groundwater It is necessary to add a fixative inside. The present invention has been completed as a result of research and development of a technique for adding a dissolved oxygen fixing agent to ground water sealed in situ.

図1の実施例を参照するに、本発明による溶存酸素固定式の地下水採水方法は、導水口12に開閉蓋又は弁14が設けられ且つ内部に溶存酸素固定剤Dの栓16付き封入器15が設けられた採水器11を採水孔3内の地下水深度に吊り下げ、蓋又は弁14を開放して前記深度の地下水Wを採水器11内に充填したのち蓋又は弁14を閉鎖して地下水Wを密閉し、地下水密閉直後に封入器15の栓16を解除して溶存酸素固定剤Dを採水器11内に放出し、固定剤放出後に採水器11を地上に回収してなるものである。   Referring to the embodiment of FIG. 1, the dissolved oxygen fixation type groundwater sampling method according to the present invention is provided with an opening / closing lid or a valve 14 at a water inlet 12 and an enclosure with a stopper 16 of a dissolved oxygen fixing agent D inside. The water sampler 11 provided with 15 is suspended at the depth of ground water in the water sampling hole 3, the lid or valve 14 is opened, and the ground water W at the depth is filled into the water sampler 11, and then the lid or valve 14 is Close and seal the groundwater W. Immediately after sealing the groundwater, release the plug 16 of the enclosure 15 and release the dissolved oxygen fixative D into the water sampler 11. After releasing the fixative, collect the water sampler 11 on the ground. It is made.

好ましくは、図2及び図3の実施例に示すように、封入器15の栓16の解除を採水器11の蓋又は弁14の閉鎖に連動させ、地下水密閉と同時に溶存酸素固定剤Dを採水器11内に放出する。更に好ましくは、採水器11内に撹拌手段17を設け、固定剤放出後に採水器11内の溶存酸素固定剤Dと地下水Wとを撹拌する。   Preferably, as shown in the embodiment of FIGS. 2 and 3, the release of the stopper 16 of the enclosure 15 is interlocked with the closure of the lid or valve 14 of the water sampler 11, and the dissolved oxygen fixing agent D is added simultaneously with the sealing of the ground water. Discharge into the water sampler 11. More preferably, the agitation means 17 is provided in the water sampler 11, and the dissolved oxygen fixing agent D and the groundwater W in the water sampler 11 are agitated after releasing the fixing agent.

また図2及び図3の実施例を参照するに、本発明による溶存酸素固定式の地下水採水装置は、導水口12に開閉蓋又は弁14を設けた採水器11、採水器11内に設けた溶存酸素固定剤Dの栓16付き封入器15、蓋又は弁14を開閉する開閉機構20、及び開閉機構20による蓋又は弁14の閉鎖に連動して封入器15の栓16を解除する封入解除機構30を備えてなるものである。好ましくは、採水器11内に撹拌手段17を設ける。   2 and 3, the dissolved oxygen fixed type groundwater sampling apparatus according to the present invention includes a sampling device 11 having an opening / closing lid or a valve 14 at a water inlet 12, Encloser 15 with stopper 16 of dissolved oxygen fixing agent D provided in the opening / closing mechanism 20 for opening / closing the lid or valve 14 and releasing the stopper 16 of the enclosure 15 in conjunction with closing of the lid or valve 14 by the opening / closing mechanism 20 The enclosure release mechanism 30 is provided. Preferably, stirring means 17 is provided in the water sampler 11.

本発明による溶存酸素固定式の地下水採水方法及び装置は、開閉蓋又は弁14付きの導水口12を有し且つ内部に溶存酸素固定剤Dの栓16付き封入器15が設けられた採水器11を採水孔3内の地下水深度に吊り下げ、蓋又は弁14を開放して採水器11内に地下水Wを充填したのち蓋又は弁14を閉鎖して地下水Wを密閉し、その密閉直後に封入器15の栓16を解除して溶存酸素固定剤Dを採水器11内に放出したのち採水器11を地上に回収するので、次の顕著な効果を奏する。   The dissolved oxygen fixed type groundwater sampling method and apparatus according to the present invention has a water inlet 12 with an open / close lid or a valve 14 and has an enclosure 15 with a stopper 16 of a dissolved oxygen fixing agent D provided therein. The vessel 11 is suspended at the depth of groundwater in the sampling hole 3, the lid or valve 14 is opened and the sampler 11 is filled with the groundwater W, then the lid or valve 14 is closed and the groundwater W is sealed. Immediately after sealing, the stopper 16 of the encapsulator 15 is released and the dissolved oxygen fixing agent D is released into the water collector 11 and then the water collector 11 is recovered on the ground.

(イ)岩盤中の地下水を原位置の圧力を保持したまま密閉すると共に、その密閉した地下水中の溶存酸素を原位置において固定することができる。
(ロ)原位置において溶存酸素が固定された地下水を地上に採水するので、地上の圧力・温度の変化や空気との接触による影響を受けにくい精確な溶存酸素量の検出が可能となる。
(ハ)特別な圧力・温度保持装置等を必要とせず、地下水の原位置における精確な溶存酸素量を比較的簡単に検出することが可能となる。
(B) The groundwater in the bedrock can be sealed while maintaining the original pressure, and the dissolved oxygen in the sealed groundwater can be fixed at the original position.
(B) Since groundwater with dissolved oxygen fixed in situ is collected on the ground, it is possible to accurately detect the amount of dissolved oxygen that is not easily affected by changes in pressure and temperature on the ground or contact with air.
(C) It is possible to detect the accurate dissolved oxygen amount in the groundwater in a relatively simple manner without requiring a special pressure / temperature holding device or the like.

図1は、本発明の採水装置10の実施例を示す。図示例の採水装置10は、同図(B)及び(C)に示すように、開閉蓋又は弁(以下、単に開閉弁ということがある)14a、14bが設けられた導水口12a、12bを有する採水器11と、その採水器11の内部に設けた溶存酸素固定剤Dの栓16付き封入器15と、開閉弁14a、14bを開閉する開閉機構20a、20bと、封入器15の栓16を解除する封入解除機構30とを有する。また図示例の採水装置10は、開閉機構20a、20bを制御する開閉制御装置21と封入解除機構30を制御する解除制御装置31とに接続され、開閉機構20と封入解除機構30とを独立に制御することができる。ただし、後述するように封入解除機構30を開閉機構20と連動させることができ、連動させる場合は解除制御装置31を省略することができる。   FIG. 1 shows an embodiment of a water sampling apparatus 10 of the present invention. As shown in FIGS. 2B and 2C, the water sampling apparatus 10 in the illustrated example has water inlets 12a and 12b provided with open / close lids or valves (hereinafter, simply referred to as open / close valves) 14a and 14b. A water sampler 11 having a stopper, an enclosure 15 with a stopper 16 of a dissolved oxygen fixative D provided inside the water sampler 11, an opening / closing mechanism 20a, 20b for opening / closing the on-off valves 14a, 14b, and an enclosure 15 And an encapsulation release mechanism 30 for releasing the plug 16 of the container. Further, the water sampling apparatus 10 in the illustrated example is connected to an open / close control device 21 that controls the open / close mechanisms 20a and 20b and a release control device 31 that controls the encapsulation release mechanism 30, and the open / close mechanism 20 and the encapsulation release mechanism 30 are independent of each other. Can be controlled. However, as will be described later, the encapsulation release mechanism 30 can be interlocked with the opening / closing mechanism 20, and in the case of interlocking, the release control device 31 can be omitted.

図示例の採水器11は一対の導水口12a、12bを有し、開閉機構20により両導水口12a、12bの開閉弁14a、14bを開放することで採水孔3内の地下水Wを採水器11内に導入し(同図(B)参照)、両開閉弁14a、14bを閉鎖することで導入した地下水Wを密閉することができる(同図(C)参照)。ただし、採水器11の導水口12は少なくとも1つあれば足りる。また、導水口12a、12bは同時に制御することが望ましいが、独立に制御してもよい。図示例の封入器15には採水器11の容量に応じた容量の溶存酸素固定剤Dを装填し、栓16により封入する。解除制御装置31で栓16を外すことにより、封入器15に封入された溶存酸素固定剤Dを採水器11内に放出する。溶存酸素固定剤Dの一例は上述した硫酸マンガンのアルカリ溶液であるが、本発明で用いる溶存酸素固定剤Dの種類に特に制限はない。封入器15内に酸素が封入されないように、窒素ガス等を用いて適当な溶存酸素固定剤Dを封入器15に封入して使用することができる。   The sampler 11 in the illustrated example has a pair of water inlets 12a and 12b, and the open / close valve 14a and 14b of both water inlets 12a and 12b is opened by the opening / closing mechanism 20 to collect the groundwater W in the water sampling hole 3. The groundwater W introduced can be sealed by introducing it into the water tank 11 (see FIG. 1B) and closing both the on-off valves 14a and 14b (see FIG. 1C). However, at least one water inlet 12 of the water sampler 11 is sufficient. The water inlets 12a and 12b are desirably controlled simultaneously, but may be controlled independently. The encapsulator 15 in the illustrated example is loaded with a dissolved oxygen fixing agent D having a capacity corresponding to the capacity of the water sampler 11 and sealed with a stopper 16. By removing the plug 16 by the release control device 31, the dissolved oxygen fixing agent D enclosed in the enclosure 15 is released into the water sampler 11. An example of the dissolved oxygen fixing agent D is the above-described alkaline solution of manganese sulfate, but the type of the dissolved oxygen fixing agent D used in the present invention is not particularly limited. In order to prevent oxygen from being enclosed in the enclosure 15, an appropriate dissolved oxygen fixing agent D can be enclosed in the enclosure 15 using nitrogen gas or the like.

例えば採水装置10にロープ18を接続し、ウィンチ19により岩盤1に設けた採水孔3内の所定深度に採水装置10を吊り下げ、開閉機構20により両開閉弁14a、14bを開放して所定深度の地下水Wを採水器11内に導入する。採水器11内が所定深度の地下水Wに入れ替わるまで開閉弁14a、14bの開放を継続し、入れ替わるに十分な時間が経過したのち、開閉機構20により両開閉弁14a、14bを閉鎖して地下水Wを採水器11内に密閉する。両開閉弁14a、14bが開放されている間は栓16により溶存酸素固定剤Dを封入器15内に封入し、開閉弁14a、14bの閉塞と同時又は閉塞直後に封入解除機構30により封入器15の栓16を外して溶存酸素固定剤Dを採水器11内に放出する。放出された溶存酸素固定剤Dは、地下水W中の溶存酸素と反応して沈殿物を生成することにより溶存酸素を固定する。   For example, a rope 18 is connected to the water sampling device 10, the water sampling device 10 is suspended to a predetermined depth in a water sampling hole 3 provided in the rock mass 1 by a winch 19, and both opening / closing valves 14 a and 14 b are opened by an opening / closing mechanism 20. Then, groundwater W having a predetermined depth is introduced into the water sampler 11. The open / close valves 14a and 14b are kept open until the inside of the water sampler 11 is replaced with the groundwater W at a predetermined depth. After a sufficient time has passed, the open / close mechanism 20 closes both the open / close valves 14a and 14b and the groundwater W is sealed in the water sampler 11. While the on-off valves 14a and 14b are open, the dissolved oxygen fixing agent D is enclosed in the enclosure 15 by the stopper 16, and the enclosure is released by the enclosure release mechanism 30 at the same time or immediately after the on-off valves 14a and 14b are closed. The stopper 16 of 15 is removed and the dissolved oxygen fixing agent D is discharged into the water sampler 11. The released dissolved oxygen fixing agent D fixes dissolved oxygen by reacting with dissolved oxygen in the groundwater W to generate precipitates.

好ましくは、図示例のように採水器11の内部に撹拌手段17を設け、採水器11内に放出された溶存酸素固定剤Dを十分撹拌して溶存酸素固定剤Dと地下水W中の溶存酸素との反応による沈殿物の生成を促進する。撹拌手段17の一例は小型ポンプであり、例えば開閉弁14a、14bを閉塞したのち又は封入器15の栓16を解除したのちポンプを駆動して採水器11内に強制的に地下水Wの流れを形成し、その流れにより採水器11内に放出した溶存酸素固定剤Dを撹拌する。ただし、例えば採水器11の内部に設けた地下水Wの導入用ポンプを撹拌手段17として用いることも可能であり、撹拌手段17の駆動タイミングは開閉弁14a、14bの閉塞後に限定されるものではない。また、撹拌手段17はポンプに限定されず、図示例のように採水装置10を揺動させて採水器11内の地下水Wを撹拌できる場合は、撹拌手段17を省略することも可能である。更に封入器15と撹拌手段17とを一体化し、溶存酸素固定剤Dを放出すると共に撹拌する方法も考えられる。   Preferably, a stirring means 17 is provided inside the water sampler 11 as shown in the figure, and the dissolved oxygen fixative D released into the water sampler 11 is sufficiently stirred to dissolve the dissolved oxygen fixative D and the groundwater W. Promotes the formation of precipitates by reaction with dissolved oxygen. An example of the stirring means 17 is a small pump. For example, after closing the on-off valves 14a and 14b or releasing the plug 16 of the enclosure 15, the pump is driven to forcibly flow the groundwater W into the water sampling apparatus 11. The dissolved oxygen fixing agent D released into the water sampler 11 by the flow is stirred. However, for example, a pump for introducing groundwater W provided inside the water sampler 11 can be used as the stirring means 17, and the drive timing of the stirring means 17 is not limited to after the on-off valves 14a and 14b are closed. Absent. Further, the agitation means 17 is not limited to a pump, and the agitation means 17 can be omitted when the groundwater W in the water sampler 11 can be agitated by swinging the water sampling apparatus 10 as shown in the illustrated example. is there. Further, a method in which the enclosure 15 and the stirring means 17 are integrated to release the dissolved oxygen fixing agent D and stir is also conceivable.

図2は、従来から所定深度の水の採取に用いられるバンドーン採水器を利用した本発明の採水装置10の実施例を示す。図示例のバンドーン採水器は、例えば合成樹脂製(不透明なポリエチレン製又は透明なアクリル樹脂やポリカーボネート製など)の両端開放の円筒状採水器11と、その採水器11の両端開口12a、12bに嵌合可能な一対の合成ゴム製の開閉蓋14a、14bと、採水器11の内部に配置されて両開閉蓋14a、14bを両端開口12a、12bの閉鎖向きに付勢する弾性部材26と、各開閉蓋14a、14bの外側面に一端が取り付けられたワイヤ23a、23bと、そのワイヤ23a、23bの他端を係止する採水器11の外周面上のワイヤ止め金具22a、22bと、その止め金具22a、22bによるワイヤ23a、23bの係止を解除する開閉機構20(この場合は係止解除機構20)とを有する。採水器11の容量は地下水Wの採水容量に応じて適当に選択できるが、例えば1〜20リットル程度とすることができる。図示例の係止解除機構20は、採水器11の吊り下げ用ロープ18上の所定部位に取り付けたメッセンジャー受け25と、そのロープ18上に沿って移動するメッセンジャー24とを有し、メッセンジャー24がロープ18上を移動してメッセンジャー受け25と結合することにより駆動される。   FIG. 2 shows an embodiment of the water sampling apparatus 10 of the present invention using a Bandon water sampling device conventionally used for collecting water at a predetermined depth. The bandoon water sampler in the illustrated example includes, for example, a cylindrical water sampler 11 having both ends open made of synthetic resin (made of opaque polyethylene, transparent acrylic resin, polycarbonate, etc.), and both end openings 12a of the water sampler 11, A pair of synthetic rubber opening / closing lids 14a, 14b that can be fitted to 12b, and an elastic member that is disposed inside the water sampler 11 and biases both the opening / closing lids 14a, 14b in the closing direction of the both end openings 12a, 12b 26, wires 23a, 23b having one ends attached to the outer surfaces of the open / close lids 14a, 14b, and wire clamps 22a on the outer peripheral surface of the water sampler 11 for locking the other ends of the wires 23a, 23b, 22b and an opening / closing mechanism 20 (in this case, an unlocking mechanism 20) for releasing the locking of the wires 23a, 23b by the stoppers 22a, 22b. Although the capacity | capacitance of the water sampling device 11 can be suitably selected according to the water sampling capacity of groundwater W, it can be set as about 1-20 liters, for example. The unlocking mechanism 20 in the illustrated example has a messenger receiver 25 attached to a predetermined portion on the hanging rope 18 of the water sampler 11, and a messenger 24 that moves along the rope 18, and the messenger 24 Is driven by moving on the rope 18 and coupling with the messenger receiver 25.

図2の採水装置10は、バンドーン採水器の円筒状採水器11の内部に、溶存酸素固定剤Dを封入する栓16付き封入器15(この場合は、封入器15の両端の開閉蓋を栓16としたもの)と、封入器15の封入解除機構30と、撹拌用ポンプ17とを係止又は結合することにより構成したものである。封入器15及び撹拌用ポンプ17は、適当な係止又は固定部材を用いて採水器11の内周面に係止又は固定する。図示例の封入解除機構30は、一端が封入器15の栓16に結合されると共に他端が採水器11内の弾性部材26上の所定部位に結合された一対の結合索32を有する。各結合索32の弾性部材26への結合部位を、後述するように弾性部材26が伸張して両端開口12a、12bが開放された状態において栓16にかかる張力が十分小さく、弾性部材26が短縮して両端開口12a、12bが閉鎖された状態において栓16が外れる程度に張力が大きくなるように選択することにより、採水器11の開閉蓋14a、14bの閉鎖に連動させて封入器15の両端の栓16を外すことができる。撹拌用ポンプ17は、信号ケーブル35aを介して撹拌制御装置35により適宜駆動することができる。   The water sampling apparatus 10 in FIG. 2 includes an encapsulator 15 with a stopper 16 that encloses a dissolved oxygen fixing agent D inside a cylindrical water sampler 11 of the Bandung water sampler (in this case, opening and closing of both ends of the encapsulator 15). The lid 16 is a stopper 16), the enclosure release mechanism 30 of the enclosure 15, and the stirring pump 17 are engaged or coupled together. The enclosure 15 and the agitation pump 17 are locked or fixed to the inner peripheral surface of the water sampler 11 using an appropriate locking or fixing member. The encapsulation release mechanism 30 in the illustrated example has a pair of coupling cords 32 having one end coupled to the stopper 16 of the encapsulator 15 and the other end coupled to a predetermined site on the elastic member 26 in the water sampler 11. As will be described later, the connecting portion of each connecting cord 32 to the elastic member 26 is sufficiently small in tension when the elastic member 26 is extended and both end openings 12a and 12b are opened, and the elastic member 26 is shortened. Then, by selecting the tension so that the plug 16 can be removed in the state where the both end openings 12a and 12b are closed, the enclosure 15 is connected to the closure of the open / close lids 14a and 14b of the water sampler 11. The plugs 16 at both ends can be removed. The stirring pump 17 can be appropriately driven by the stirring control device 35 via the signal cable 35a.

図2の採水装置10は、可能であれば両端の開閉蓋14a、14bを採水場所の地下水Wで洗浄したのち、両開閉蓋14a、14bのワイヤ23a、23bを弾性部材26の付勢に抗してワイヤ止め金具22a、22bに係止し、開閉蓋14a、14bを開口12a、12bが開放される位置に保持する。そして開口12a、12bが開放された採水器11をロープ18に吊り下げて採水孔3の所定採水深度まで静かに降ろす。図示例の符号18a、18bは、吊り下げ用ロープ18を取り付けるロープ締結具を示す。吊り下げる際に、ワイヤ23a、23bの係止解除機構20のメッセンジャー24はメッセンジャー受け25から外して地表に残しておく。採水装置10の吊り下げ深度は、例えばロープ18に接続したウィンチ19の巻き出し長さ等から確認することができる。所定採水深度まで降ろした採水装置10を2〜3回程度上下に揺動させて地下水Wを入れ替え、採水器11内に採水深度の地下水Wを充填したのちメッセンジャー24をロープ18に沿って落下させ、ロープ18上に取り付けたメッセンジャー受け25と結合させる。メッセンジャー24がメッセンジャー受け25と結合することによりワイヤ止め金具22a、22bの係止が解除され、伸張していた弾性部材26が短縮して両開閉蓋14a、14bが閉鎖向きに付勢され、両端開口12a、12bを閉鎖して採水器11内に地下水Wを密閉する(同図(B)参照)。開閉蓋14a、14bの閉鎖は、例えばロープ18を介して伝わる反動により検知することができる。   The water sampling apparatus 10 of FIG. 2 urges the elastic member 26 to urge the wires 23a and 23b of both the open / close lids 14a and 14b after washing the open / close lids 14a and 14b at both ends with the ground water W at the sampling site if possible. Against this, the wire stoppers 22a and 22b are locked, and the opening and closing lids 14a and 14b are held at positions where the openings 12a and 12b are opened. Then, the water sampling device 11 with the openings 12a and 12b opened is suspended from the rope 18 and gently lowered to the predetermined sampling depth of the water sampling hole 3. Reference numerals 18a and 18b in the illustrated example indicate rope fasteners to which the hanging rope 18 is attached. When suspending, the messenger 24 of the unlocking mechanism 20 of the wires 23a, 23b is removed from the messenger receiver 25 and left on the ground surface. The hanging depth of the water sampling apparatus 10 can be confirmed from the unwinding length of the winch 19 connected to the rope 18, for example. The groundwater W is changed by swinging the water sampling device 10 lowered to a predetermined water sampling depth up and down about 2 to 3 times, and after filling the water sampling device 11 with the ground water W at the water sampling depth, the messenger 24 is connected to the rope 18. The messenger receiver 25 attached on the rope 18 is combined with the messenger receiver 25. When the messenger 24 is coupled to the messenger receiver 25, the locking of the wire stoppers 22a and 22b is released, the stretched elastic member 26 is shortened, and both the opening and closing lids 14a and 14b are urged in the closing direction. The openings 12a and 12b are closed, and the groundwater W is sealed in the water sampler 11 (see FIG. 5B). The closing of the open / close lids 14a and 14b can be detected by, for example, a reaction transmitted through the rope 18.

また図2(C)に示すように、弾性部材26が短縮して開閉蓋14a、14bが閉鎖されると同時に、弾性部材26に結合された結合索32の張力が大きくなって封入解除機構30が駆動され、封入器15の栓16が外れて内部の溶存酸素固定剤Dが採水器11内に放出される。また開閉蓋14a、14bの閉鎖を検知した後、撹拌制御装置35により撹拌用ポンプ17を駆動し、採水器11内の地下水Wをポンプ17の上部より吸水して下部から排水することにより採水器11内に地下水Wの流れを作り、採水器11内の地下水W中の溶存酸素と固定剤Dとを十分撹拌して混合する。撹拌に十分な時間が経過したのち採水装置10を地上に引き上げ、試料取出口27a又は27b(例えば、取り出し用ピンチコック付きの軟質塩化ビニル管など)を開いて採水器11内の地下水Wと沈殿物とを全て計測用容器等に移して溶存酸素量の計測に供する。例えば溶存酸素固定剤Dとして硫酸マンガンのアルカリ溶液を用いた場合は、上述したウィンクラー法により実験室等において沈殿物量に応じて遊離したヨウ素をチオ硫酸ナトリウムで滴定することにより、地下水W中の溶存酸素量を定量することができる((3)及び(4)式)。   Further, as shown in FIG. 2C, the elastic member 26 is shortened to close the open / close lids 14a and 14b, and at the same time, the tension of the connecting cord 32 coupled to the elastic member 26 is increased, and the encapsulation release mechanism 30 Is driven, the plug 16 of the enclosure 15 is removed, and the dissolved oxygen fixing agent D inside is released into the water sampler 11. After detecting the closure of the open / close lids 14a and 14b, the agitation pump 17 is driven by the agitation control device 35, and the groundwater W in the water sampler 11 is absorbed from the upper part of the pump 17 and drained from the lower part. A flow of ground water W is created in the water vessel 11, and dissolved oxygen and the fixing agent D in the ground water W in the water sampling vessel 11 are sufficiently stirred and mixed. After a sufficient amount of time has passed, the water sampling device 10 is lifted to the ground, the sample outlet 27a or 27b (for example, a soft polyvinyl chloride tube with a pinch cock for extraction) is opened, and the groundwater W in the water sampler 11 is opened. And all the precipitates are transferred to a measuring container or the like for measurement of the dissolved oxygen amount. For example, when an alkaline solution of manganese sulfate is used as the dissolved oxygen fixing agent D, iodine released according to the amount of precipitate in the laboratory or the like is titrated with sodium thiosulfate in the laboratory by the above-described Winkler method. The amount of dissolved oxygen can be quantified (Equations (3) and (4)).

本発明によれば、岩盤中の地下水を原位置で圧力を保持したまま密閉し、密閉した地下水中の溶存酸素を原位置において固定することができる。また、原位置において溶存酸素が固定された地下水を地上に採水するので、地上の圧力・温度の変化や空気との接触による影響を受けにくい精確な溶存酸素量の検出が可能となる。従って、従来のように特別な圧力・温度保持装置等を必要とせずとも、地下の被圧不活性状態における溶存酸素量を精確に検出することができる。   According to the present invention, the groundwater in the rock can be sealed while maintaining the pressure at the original position, and the dissolved oxygen in the sealed groundwater can be fixed at the original position. In addition, since groundwater with dissolved oxygen fixed in situ is collected on the ground, it is possible to accurately detect the amount of dissolved oxygen that is not easily affected by changes in pressure and temperature on the ground or contact with air. Accordingly, it is possible to accurately detect the amount of dissolved oxygen in the underground pressure-inactive state without requiring a special pressure / temperature holding device or the like as in the prior art.

こうして本発明の目的である「地上へ採水後に圧力・温度の変化や空気との接触の影響を受けにくい地下水の採水方法及び装置」の提供が達成できる。   Thus, the provision of “a method and apparatus for sampling groundwater that is hardly affected by changes in pressure and temperature and contact with air after sampling on the ground”, which is an object of the present invention, can be achieved.

図3は、本発明による採水装置10の他の実施例を示す。図2に示すバンドーン採水器を利用した採水装置10は比較的浅い深度の地下水Wを採水する場合に適しているが、大深度の地下水Wの採水に適用することは難しい。図3に示す採水装置10は、例えば図4のように採水孔3内に採水区間を形成するパッカー対5と組み合わせることにより、例えば1,000m程度の大深度の採水にも利用することができる。パッカー対5の一例は水又は空気の注入・回収により拡張・収縮する遮水パッカー又はメカニカルパッカーであるが、採水区間の深度に応じて従来技術に属する適当なパッカーシステムを用いることができる。   FIG. 3 shows another embodiment of the water sampling apparatus 10 according to the present invention. Although the water sampling apparatus 10 using the Bandung water sampler shown in FIG. 2 is suitable for collecting groundwater W having a relatively shallow depth, it is difficult to apply it to sampling groundwater W having a large depth. The water sampling apparatus 10 shown in FIG. 3 is also used for sampling at a depth of, for example, about 1,000 m by combining with a packer pair 5 that forms a water sampling section in the water sampling hole 3 as shown in FIG. be able to. An example of the packer pair 5 is a water-impervious packer or a mechanical packer that expands and contracts by injecting and collecting water or air, but an appropriate packer system belonging to the prior art can be used depending on the depth of the water sampling section.

図3の採水装置10は、両端に開閉弁14a、14b付き導水口12a、12bを設けた採水器11と、パッカー対5の間の地下水Wを採水器11の導水口12aに導入する孔内ポンプ等の導水装置40と、採水器11の内部が所定深度の地下水Wで置換されたことを検知する孔内システム等の検知装置45とを有する。検知装置45には、温度計・電気伝導度計・pH計等の水質センサ46や水圧計47等を含めることができる(図4参照)。例えば図4を参照して上述したように、採水孔3内のパッカー対5で仕切られた採水区間の地下水Wを導水装置40により導水口12aから採水器11内に導入し、導入した地下水Wを導入口12b及び導水装置40の排水口41を介して連続的に排水しつつ、地下水Wの水質、水圧等を採水器11内の検知装置45により連続的に計測し、その計測値を導水装置40の排水量計測値と共に観測ケーブル48経由で地上へ伝送することにより採水器11の内部が採水区間の地下水Wで置換されたことを検知する(図3(A)参照)。   The water sampling apparatus 10 of FIG. 3 introduces the ground water W between the packer pair 5 into the water sampling port 11 provided with the water inlets 12a and 12b with opening / closing valves 14a and 14b at both ends, and into the water inlet 12a of the water sampling device 11 And a detection device 45 such as an in-hole system for detecting that the inside of the water sampling device 11 has been replaced with ground water W having a predetermined depth. The detection device 45 can include a water quality sensor 46 such as a thermometer, an electric conductivity meter, and a pH meter, a water pressure gauge 47, and the like (see FIG. 4). For example, as described above with reference to FIG. 4, the groundwater W in the water sampling section partitioned by the packer pair 5 in the water sampling hole 3 is introduced into the water sampler 11 from the water inlet 12 a by the water guide device 40. The groundwater W is continuously drained through the introduction port 12b and the drainage port 41 of the water guide device 40, and the water quality, water pressure, etc. of the groundwater W are continuously measured by the detection device 45 in the water sampler 11, By transmitting the measured value to the ground via the observation cable 48 together with the measured amount of water discharged from the water guiding device 40, it is detected that the inside of the water sampler 11 has been replaced with the groundwater W in the water sampling section (see FIG. 3A). ).

また図3の採水装置10は、採水器11の両端の開閉弁14a、14bを機械的に開閉する開閉機構20と、採水器11内に設けた溶存酸素固定剤Dの栓16付き封入器15と、開閉機構20による開閉弁14a、14bの閉鎖に連動して封入器15の栓16を解除する封入解除機構30と、撹拌用ポンプ17とを有する。封入器15及び撹拌用ポンプ17は採水器11の内周面に固定されている。また封入解除機構30は、封入器15の栓16と開閉機構20とを相互に結合する結合部材32を有する。   3 includes an opening / closing mechanism 20 that mechanically opens and closes the opening / closing valves 14a and 14b at both ends of the water sampler 11, and a stopper 16 of a dissolved oxygen fixing agent D provided in the water sampler 11. It includes an enclosure 15, an enclosure release mechanism 30 that releases the plug 16 of the enclosure 15 in conjunction with closing of the on-off valves 14 a and 14 b by the opening and closing mechanism 20, and an agitation pump 17. The enclosure 15 and the agitation pump 17 are fixed to the inner peripheral surface of the water sampler 11. The encapsulation release mechanism 30 includes a coupling member 32 that couples the stopper 16 of the encapsulator 15 and the opening / closing mechanism 20 to each other.

図3の採水装置10は、検知装置45により採水器11の内部が採水区間の地下水Wで置換されたことを検知したのち、開閉制御装置21により開閉機構20を移動させて開閉弁14a、14bを閉鎖することにより、地下水Wを被圧不活性状態で採水器11内に密閉する。その開閉弁14a、14bの閉鎖と同時に、開閉機構20の移動に応じて封入解除機構30の結合部材32が移動することにより封入器15の栓16が解除され、封入器15の内部の溶存酸素固定剤Dが採水器11内に放出される(図3(B)参照)。更に撹拌制御装置35により撹拌用ポンプ17を駆動し、図2の場合と同様に採水器11内に地下水Wの流れを形成することにより、採水器11内に密閉した地下水W中の溶存酸素と固定剤Dとを十分撹拌して混合する。そののち、パッカー対5を収縮させて採水装置10を地上に引き上げる。すなわち図示例の採水装置10によっても、岩盤中の原位置において溶存酸素が固定された地下水を地上に採水することができ、地上の圧力・温度の変化や空気との接触による影響を受けにくい精確な溶存酸素量の検出が可能である。   The water sampling apparatus 10 in FIG. 3 detects that the inside of the water sampling apparatus 11 has been replaced with the ground water W in the water sampling section by the detection apparatus 45, and then moves the open / close mechanism 20 by the open / close control apparatus 21 to open the open / close valve. By closing 14a and 14b, the groundwater W is sealed in the water sampler 11 in a pressurized and inactive state. Simultaneously with the closing of the on-off valves 14a and 14b, the coupling member 32 of the enclosing release mechanism 30 moves in accordance with the movement of the on-off mechanism 20, whereby the plug 16 of the enclosure 15 is released, and the dissolved oxygen inside the enclosure 15 is released. The fixing agent D is released into the water sampler 11 (see FIG. 3B). Further, the agitation pump 17 is driven by the agitation control device 35, and the flow of the groundwater W is formed in the water sampler 11 in the same manner as in FIG. 2, so that the dissolved water in the groundwater W sealed in the water sampler 11 is dissolved. Oxygen and fixative D are thoroughly agitated and mixed. After that, the packer pair 5 is contracted to raise the water sampling device 10 to the ground. That is, even with the water sampling apparatus 10 shown in the figure, groundwater in which dissolved oxygen is fixed at the in-situ location in the rock can be sampled on the ground, and is affected by changes in ground pressure and temperature and contact with air. It is possible to detect the amount of dissolved oxygen that is difficult and accurate.

本発明の一実施例の説明図である。It is explanatory drawing of one Example of this invention. 本発明による地下水採水装置の一実施例の説明図である。It is explanatory drawing of one Example of the groundwater sampling apparatus by this invention. 本発明による地下水採水装置の他の実施例の説明図である。It is explanatory drawing of the other Example of the groundwater sampling apparatus by this invention. 従来の地下水採水方法の一例の説明図である。It is explanatory drawing of an example of the conventional groundwater sampling method.

符号の説明Explanation of symbols

1…岩盤 2…地下水
3…採水孔 5…パッカーシステム
6…上部パッカー 7…下部パッカー
8…パッカー制御装置 9…採水ロッド
10…採水装置 11…採水器
12…導水口 14…開閉蓋又は弁
15…封入器 16…栓
17…撹拌手段 18…ロープ
18a、18b…ロープ締結具 19…ウィンチ
20…開閉機構
21…開閉制御装置 21a…信号ケーブル
22…ワイヤ止め金具 23…ワイヤ
24…メッセンジャー 25…メッセンジャー受け
26…弾性部材 27…試料取出口
30…封入解除機構 31…解除制御装置
31a…信号ケーブル
32…栓結合索
35…撹拌制御装置 35a…信号ケーブル
40…導水装置(孔内ポンプ)
41…排水口 42…水通路
43…逆支弁 44…内部パッカー
45…検知装置 46…水質センサ
47…水圧計 48…観測ケーブル
49…データロガー 50…記録機
DESCRIPTION OF SYMBOLS 1 ... Bedrock 2 ... Groundwater 3 ... Sampling hole 5 ... Packer system 6 ... Upper packer 7 ... Lower packer 8 ... Packer control apparatus 9 ... Sampling rod
10 ... Water sampling device 11 ... Water sampler
12 ... Water inlet 14 ... Open / close lid or valve
15 ... enclosure 16 ... stopper
17 ... Agitation means 18 ... Rope
18a, 18b ... Rope fastener 19 ... Winch
20 ... Opening / closing mechanism
21 ... Opening / closing control device 21a ... Signal cable
22 ... Wire clamp 23 ... Wire
24 ... Messenger 25 ... Messenger
26 ... Elastic member 27 ... Sample outlet
30 ... Release mechanism 31 ... Release control device
31a ... Signal cable
32 ... Plug coupling cable
35 ... Agitation control device 35a ... Signal cable
40 ... Water guide device (hole pump)
41 ... Drain outlet 42 ... Water passage
43 ... Reverse valve 44 ... Internal packer
45… Detection device 46… Water quality sensor
47 ... Hydrometer 48 ... Observation cable
49 ... Data logger 50 ... Recorder

Claims (7)

導水口に開閉蓋又は弁が設けられ且つ内部に溶存酸素固定剤の栓付き封入器が設けられた採水器を採水孔内の地下水深度に吊り下げ、前記蓋又は弁を開放して前記深度の地下水を採水器内に充填したのち蓋又は弁を閉鎖して地下水を密閉し、地下水密閉直後に封入器の栓を解除して前記固定剤を採水器内に放出し、固定剤放出後に採水器を地上に回収してなる溶存酸素固定式の地下水採水方法。 A water sampler provided with an open / close lid or valve at the water inlet and an enclosed container with a stopper for dissolved oxygen fixing agent is suspended at the depth of ground water in the water sampling hole, and the lid or valve is opened to After filling the water sampler with a depth of groundwater, close the lid or valve to seal the groundwater, and immediately after sealing the groundwater, release the cap of the enclosure and release the fixative into the water sampler. A groundwater sampling method with fixed dissolved oxygen, which is collected on the ground after discharge. 請求項1の採水方法において、前記封入器の栓の解除を前記採水器の蓋又は弁の閉鎖に連動させ、前記地下水密閉と同時に前記固定剤を採水器内に放出してなる溶存酸素固定式の地下水採水方法。 2. The water sampling method according to claim 1, wherein release of the closure of the enclosure is interlocked with closing of the lid or valve of the water sampling apparatus, and the fixing agent is discharged into the water sampling apparatus simultaneously with the sealing of the ground water. Oxygen-fixed groundwater sampling method. 請求項1又は2の採水方法において、前記採水器内に撹拌手段を設け、前記固定剤放出後に採水器内の固定剤と地下水とを撹拌してなる溶存酸素固定式の地下水採水方法。 3. The water sampling method according to claim 1 or 2, wherein a stirring means is provided in the water sampling device, and the fixed oxygen in the water sampling device is obtained by stirring the fixing agent in the water sampling device and the groundwater after releasing the fixing agent. Method. 請求項1から3の何れかの採水方法において、前記溶存酸素固定剤を硫酸マンガンのアルカリ溶液としてなる溶存酸素固定式の地下水採水方法。 4. The water sampling method according to claim 1, wherein the dissolved oxygen fixing agent is an alkaline solution of manganese sulfate. 導水口に開閉蓋又は弁を設けた採水器、前記採水器内に設けた溶存酸素固定剤の栓付き封入器、前記蓋又は弁を開閉する開閉機構、及び前記開閉機構による蓋又は弁の閉鎖に連動して封入器の栓を解除する封入解除機構を備えてなる溶存酸素固定式の地下水採水装置。 A water sampler provided with an opening / closing lid or valve at the water inlet, an enclosed container with a stopper for dissolved oxygen fixative provided in the water sampling device, an opening / closing mechanism for opening / closing the lid or valve, and a lid or valve by the opening / closing mechanism A groundwater sampling device with fixed dissolved oxygen, which is equipped with an enclosure release mechanism that releases the closure of the enclosure in conjunction with the closure of the enclosure. 請求項5の採水装置において、前記採水器内に撹拌手段を設けてなる溶存酸素固定式の地下水採水装置。 6. The water sampling apparatus according to claim 5, wherein a fixed oxygen groundwater sampling apparatus is provided with stirring means in the water sampling apparatus. 請求項5又は6の採水装置において、採水孔内の地下水深度に遮水された区間を形成するパッカー対、前記パッカー対の間の地下水を前記採水器の導水口に導入する導水装置、及び前記採水器内が前記深度の地下水で置換されたことを検知する検知装置を設けてなる溶存酸素固定式の地下水採水装置。 7. The water sampling apparatus according to claim 5 or 6, wherein a packer pair that forms a section shielded by a groundwater depth in a water sampling hole, and a groundwater between the packer pair is introduced into a water inlet of the water sampling apparatus. And the dissolved oxygen fixed type groundwater sampling apparatus which provides the detection apparatus which detects that the inside of the said water sampling device was substituted by the groundwater of the said depth.
JP2005343960A 2005-11-29 2005-11-29 Dissolved oxygen fixed type groundwater sampling method and apparatus Expired - Fee Related JP4674761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343960A JP4674761B2 (en) 2005-11-29 2005-11-29 Dissolved oxygen fixed type groundwater sampling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343960A JP4674761B2 (en) 2005-11-29 2005-11-29 Dissolved oxygen fixed type groundwater sampling method and apparatus

Publications (2)

Publication Number Publication Date
JP2007146541A JP2007146541A (en) 2007-06-14
JP4674761B2 true JP4674761B2 (en) 2011-04-20

Family

ID=38208262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343960A Expired - Fee Related JP4674761B2 (en) 2005-11-29 2005-11-29 Dissolved oxygen fixed type groundwater sampling method and apparatus

Country Status (1)

Country Link
JP (1) JP4674761B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747739B2 (en) * 2011-08-29 2015-07-15 清水建設株式会社 In-situ test method
CN104964847A (en) * 2015-07-12 2015-10-07 上海博优测试技术有限公司 Dissolved oxygen water sampling device for surface water
JP6388130B2 (en) * 2015-10-22 2018-09-12 豊美 柳生 Transparent water sampler with water depth and temperature display
CN107677308B (en) * 2017-09-12 2024-02-23 北京市勘察设计研究院有限公司 Underground water solid oxidant depth-setting adding monitor
JP7303690B2 (en) * 2019-07-31 2023-07-05 株式会社アサノ大成基礎エンジニアリング Water sampling device and water sampling method
CN112394187B (en) * 2020-12-30 2023-09-22 中科赛悟科技(安徽)有限公司 Water quality sampling detecting system based on unmanned ship
WO2023248313A1 (en) * 2022-06-20 2023-12-28 日本電信電話株式会社 Water sampler, examination device, and examination method
CN115343114B (en) * 2022-08-11 2023-05-12 生态环境部南京环境科学研究所 Integrated device for underground water collection and determination and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201542A (en) * 1993-01-06 1994-07-19 Oyo Corp Cloed water-sampling container and water-sampling device using it
JPH08220084A (en) * 1995-02-15 1996-08-30 Kajima Corp Water sampling equipment
JPH0925783A (en) * 1995-07-10 1997-01-28 Power Reactor & Nuclear Fuel Dev Corp Packer type underground water collecting device and collecting method
JPH11500506A (en) * 1996-09-03 1999-01-12 ポシバ オサケユイチア Sampling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201542A (en) * 1993-01-06 1994-07-19 Oyo Corp Cloed water-sampling container and water-sampling device using it
JPH08220084A (en) * 1995-02-15 1996-08-30 Kajima Corp Water sampling equipment
JPH0925783A (en) * 1995-07-10 1997-01-28 Power Reactor & Nuclear Fuel Dev Corp Packer type underground water collecting device and collecting method
JPH11500506A (en) * 1996-09-03 1999-01-12 ポシバ オサケユイチア Sampling device

Also Published As

Publication number Publication date
JP2007146541A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4674761B2 (en) Dissolved oxygen fixed type groundwater sampling method and apparatus
Sundaram et al. Groundwater sampling and analysis—a field guide
JP5792186B2 (en) Determination of methane content in sediment samples
Ficklin et al. Field methods for sampling and analysis of environmental samples for unstable and selected stable constituents
Davison The polarographic measurement of O2, Fe2+, Mn2+, and S2− in hypolimnetic water
Molinero et al. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks
US20030035691A1 (en) Permeable-reactive barrier monitoring method and system
JP2015017905A (en) Ground water quality measurement method and ground water quality measurement device
Wassenaar et al. Improved piezometer construction and sampling techniques to determine pore water chemistry in aquitards
Wade et al. Tier 1 risk assessment of selected radionuclides in sediments of the Mooi River catchment
JP5691075B2 (en) Water sampler
Fernández et al. On site measurements of the redox and carbonate system parameters in the low-permeability Opalinus Clay formation at the Mont Terri Rock Laboratory
Mochizuki et al. Mudstone redox conditions at the Horonobe Underground Research Laboratory, Hokkaido, Japan: effects of drift excavation
SA519401113B1 (en) Formation Tester Comprising Reactive Filter Material
Walton‐Day et al. Field methods for measurement of ground water redox chemical parameters
Criaud et al. Low enthalpy geothermal fluids from the Paris basin. 2—Oxidation-reduction state and consequences for the prediction of corrosion and sulfide scaling
CN207197577U (en) Underground water solid oxidizer depthkeeping adds monitor
Tullborg et al. SR-Site-Sulphide content in the groundwater at Laxemar
Patterson et al. Long-term evaluation of a composite cover overlaying a sulfidic tailings facility
Morin et al. Field Investigation of a Small-Diameter, Cylindrical, Contaminated Ground-Water Plume Emanating from a Pyritic Uranium-Tailings Impoundment
US11920468B2 (en) Real time downhole water chemistry and uses
Wikberg et al. Deep groundwater chemistry
CN107677308A (en) Underground water solid oxidizer depthkeeping adds monitor
JP5013419B2 (en) Elution element collection device from rock
Erickson et al. Hydrogeochemistry of a large mine pool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees