JP4674390B2 - Brown rice color sorting method and brown rice color sorting device - Google Patents

Brown rice color sorting method and brown rice color sorting device Download PDF

Info

Publication number
JP4674390B2
JP4674390B2 JP2000179348A JP2000179348A JP4674390B2 JP 4674390 B2 JP4674390 B2 JP 4674390B2 JP 2000179348 A JP2000179348 A JP 2000179348A JP 2000179348 A JP2000179348 A JP 2000179348A JP 4674390 B2 JP4674390 B2 JP 4674390B2
Authority
JP
Japan
Prior art keywords
light
signal
value
green
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000179348A
Other languages
Japanese (ja)
Other versions
JP2001356051A (en
Inventor
覺 佐竹
武 福森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP2000179348A priority Critical patent/JP4674390B2/en
Publication of JP2001356051A publication Critical patent/JP2001356051A/en
Application granted granted Critical
Publication of JP4674390B2 publication Critical patent/JP4674390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sorting Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
粒選別後の玄米を原料として、整玄米と整玄米に近い粒径の青未熟米以外の穀粒を原料玄米から排除する選別装置に係り、赤色波長域の穀粒色彩と緑色波長域の穀粒色彩及び透過光量とを検出して、整玄米と整玄米に近い粒径の青未熟米と、それ以外の穀粒とに判別し、整玄米と整玄米に近い粒径の青未熟米以外を排除(選別)する玄米色彩選別装置に関する。
【0002】
【従来の技術】
穀粒を色彩選別する場合、図9のように受光した光を、好ましくは3波長に分解した色成分によって識別していた。そのため3波長分のセンサが必要であった。通常豆類を選別する場合は上記のように受光した光を色分解し原料豆を良品と不良品に識別している。また精米麦の場合は着色粒を識別するため特定の1波長を利用する。例えば緑色フィルタを備えた受光センサを移動する穀粒の前後に配置して、この受光センサの受光量の多少、つまり明暗で識別することが多い。ところが玄米の識別となると、原料に含まれる穀粒の品位が、整玄米、青未熟米、青死米、被害粒あるいはしらた粒(未熟粒)と多種になるため、特定の1波長では識別できないことがある。この場合、2〜3波長を使用して穀粒の反射光を色に分解して選別することが好ましいが、整玄米と、精米後に青色が消える青未熟米とを良品として、それ以外の品位の穀粒を不良品として選別する玄米用色彩選別機は存在しない。
【0003】
一般的な色彩選別機と異なる粒状物品位判別装置と称される判別装置は、玄米を複数の品位に判別して品位ごとに選別し判別結果を表示するものである。このように玄米を品位ごとに判別し品位ごとに選別する装置は存在するが、この装置は大量の玄米を高速に判別して不要な品位の穀粒を選別する装置ではない。
【0004】
乾燥後の籾粒を公知の籾摺り機で脱ぷして得られる玄米の選別は、網目の大きさによって、つまり玄米の粒径によって選別する公知の粒選別機が利用されるのが一般的である。この粒選別機を利用して得られる良品側の玄米には、粒径が所定粒径以上の整玄米(整粒)と青未熟、青死米、被害粒及び未熟米が含まれている。このようにして選別された玄米の品質検査では、青未熟、青死米、被害粒及び未熟米といった整玄米以外の穀粒の含有率によってその等級が決定される。等級を上げるために粒選別機の網目を大きくすると、整玄米以外の穀粒の混入率は低下し等級は上がるが歩留まりが著しく低下するものとなる。
【0005】
等級の判定において、整玄米に対する青未熟粒の混入が所定の範囲を超えないものであれば、青未熟粒の混入によって等級が下がることはないので、許される混入率以内でできるだけ青未熟粒を残し歩留まりを向上させたい。青未熟粒は精米前の表面の色は青であるが、精米すると青色は取り除かれて白くなり整玄米と変わらぬものとなるからである。したがって、精米しても着色粒となる穀粒、被害粒、青未熟に近い色彩の未熟米等は取り除き、青未熟粒を残す選別を実現したいが、従来の粒選別機では上記のように粒径だけで選別するので実現不可能である。
【0006】
さらに従来の色彩選別機では、穀粒から受光する特定の1波長の光量の多少、つまり穀粒の明暗によって選別するので、青未熟粒、青死米、被害粒及び未熟米を含む玄米の選別は難しく、粒状物品位判別装置のように少なくとも2波長、例えば緑色波長と赤色波長を使用することになる。
【0007】
しかしながら図10で示すように、緑色波長では被害粒と青未熟粒との差が微少であるためしきい値の設定が難しく整玄米を基準にしきい値を設けると青未熟粒と被害粒が共に排除され、赤色波長では整玄米と被害粒との間にしきい値を設けると、青未熟粒が被害粒と青死米と共に排除されてしまう。したがって、緑色波長、赤色波長ともに単独では被害粒(着色粒)や青死米及び未熟米だけを選別することはできない。これに加えて”しらた粒”とよばれる穀粒は透過光によらなければ他の穀粒との判別ができないので、通常はしらた選別の専用処理として別の作業となっていた。
【0008】
粒状物品位判別装置においては、玄米の反射光を受光して得られる赤色波長光量と緑色波長光量のR/G比と、透過反射光量比(R+G)/Tによって複数品位に判別することができるが、反射光量と透過光量とを測定する受光素子が、緑色波長と赤色波長それぞれに必要なことから、多くの素子を必要とし、この装置をそのまま色彩選別装置に適用すると高価な装置となってしまう。
【0009】
籾摺りして得られた玄米を粒選別すると、上記の整玄米を含む穀粒と、通称「屑米」と呼ばれる穀粒に選別されるが、この屑米にも整玄米に近い玄米が含まれており、この屑米からさらに被害粒を選別して整玄米を得たり、菓子原料となる玄米を得ることが行われている。この選別には揺動選別板を備える比重選別機が利用されているが、比重差で選別するため、言うなれば品位に関係なく同じ比重の穀粒が選別されるものとなり、この他に最適な装置が存在しないことから比重選別機を利用することが一般的となっている。しかしながら選別された穀粒に必要な整玄米が多く含まれ不要な被害粒が少ないことで、玄米の等級が向上することは当然のことであり、選別精度の良い選別装置の開発が望まれている。
【0010】
【発明が解決しようとする課題】
以上のことから、玄米を原料として不良品を選別する玄米色彩選別装置の提供を課題とする。特に、粒選別後の良品側玄米から精米後に着色粒となり得る被害粒や、精米に適さない未熟米(しらた粒)を選別し、等級を下げる品位の穀粒をできるだけ少なくして整玄米と青未熟粒の混入率を高めて玄米の品質等級を上げることができる色彩選別装置を提供し、しかも、波長ごとに1つの受光センサーを設けた構成での選別を可能とした玄米色彩選別装置の提供を課題とするものである。
【0011】
また原料となる玄米は、粒選別後の不良品側、つまり通称「屑米」側の玄米であってもよく、屑米を原料として、屑米から整玄米と青未熟粒を取り出すために使用することもできる玄米色彩選別機の提供を課題とする。
【0012】
【課題を解決するための手段】
前記課題を解決するために、蛍光灯やハロゲンランプを照明用光源とし、前記照明用光源により、可視光受光部及び近赤外光受光部に対して、前方及び後方から照射された原料玄米からの、緑色波長域の拡散光を受光する緑色光受光過程と、赤色波長域の拡散光を受光する赤色光受光過程と、緑色波長域と赤色波長域以外の波長域である近赤外波長域の透過光量を受光する透過光受光過程と、緑色信号受光過程で得られる緑色光量値と赤色信号受光過程で得られる赤色光量値とから、赤色光量値/緑色光量値の比を演算する演算過程と、演算過程で演算された光量値の比を青未熟粒区分とそれ以外に区分するための所定値と、前記比とを比較していずれか一方に区分し、いずれか一方の区分において信号を出力する第1比較過程と、緑色信号受光過程で得られる緑色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第2比較過程と、赤色信号受光過程で得られる赤色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第3比較過程と、透過信号受光過程で得られる透過光量値と所定値とを比較して該透過光量値が所定値よりも暗い光量値である場合に、前記原料玄米がしらた粒であるとの信号を出力する第4比較過程と、第1比較過程で得られる青未熟粒区分を示す信号がなく且つ第2比較過程と第3比較過程及び第4比較過程のいずれかの出力信号によって排除信号を出力する排除信号出力過程と、を備える玄米色彩選別方法とした。
【0013】
原料玄米から緑色波長域の拡散光を受光して得た緑色信号と、原料玄米から赤色波長域の拡散光を受光して得た赤色信号とから演算した赤色信号/緑色信号の信号比に対応して、信号比が例えば1.0以下であれば青色が強い穀粒、例えば青未熟粒、青死米と判別し、信号比が1〜1.3であれば整玄米と判別し、信号比が1.3以上であれば赤色が強い穀粒、例えば被害粒と判別することが、従来の粒状物品位判別装置の判別技術として知られている。
【0014】
本願では第1比較過程において、信号比を比較するためのしきい値を、青未熟粒とそれ以外の穀粒とに区分するためのしきい値、例えば信号比1.0をしきい値として設定し、まず信号比によって2区分に判別し、青未熟粒区分とそれ以外の区分のときのいずれか一方において判別信号を出力するものである。
【0015】
同時に第2比較過程において、原料玄米から緑色波長域の拡散光を受光して得た緑色信号を比較するためのしきい値を、緑色信号の単なる明暗を比較するしきい値として設定し、例えば所定の明るさ以下(所定の明るさを超えた暗さ)の緑色信号であったときに信号を出力するようしきい値を設定しておく。ここで信号が出力されると着色粒と判別したものとなる。
【0016】
さらに第2比較過程と同時に第3比較過程において、原料玄米から赤色波長域の拡散光を受光して得た赤色信号を比較するためのしきい値を、赤色信号の単なる明暗を比較するしきい値として設定し、例えば所定の明るさ以下(所定の明るさを超えた暗さ)の赤色信号であったときに信号を出力するようしきい値を設定しておく。ここで信号が出力されると着色粒と判別したものとなる。
【0017】
第4比較過程において、原料玄米から緑色波長域と赤色波長域以外の透過光を受光して得た透過光信号を比較するためのしきい値を、透過信号の単なる明暗を比較するしきい値として設定し、例えば所定の明るさ以下(所定の明るさを超えた暗さ)の透過信号であったときに信号を出力するようしきい値を設定しておく。ここで信号が出力されると、穀粒内部が粉状質で光が透過しにくい、いわゆるしらた粒と判別したものとなる。
【0018】
排除信号出力過程においては、第1比較過程から青未熟粒区分を示す信号がなく、換言すれば青未熟粒区分以外の区分を示す信号があり且つ第2比較過程または第3比較過程のいずれかの信号が出力されていれば排除信号を出力するものである。つまり、第1比較過程において信号比が青未熟粒区分の値であると判断され、青未熟粒区分を示す信号が出力された場合には排除信号を出力しない。
【0019】
第1比較過程において信号比が青未熟粒区分の値ではないと判断され、青未熟粒区分を示す信号が出力されていない場合には、それが整玄米か、これ以外の着色粒かしらた粒であるかを第2比較過程と第3比較過程及び第4比較過程の出力信号によって判別する。つまり、第2比較過程における緑色あるいは第3比較過程における赤色および第4比較過程における透過光量において、例えばしきい値を超えた暗い信号があれば着色粒か、しらた粒の信号として扱う。したがって、青未熟粒区分を示す信号が出力されず且つ第2比較過程と第3比較過程及び第4比較過程のいずれかより信号が出力されている場合には排除信号を出力する。
【0020】
以上の方法により、判別に必要な信号受光過程は緑色信号受光過程と赤色信号受光過程および透過光受光過程とを備えておればよい。より具体的に装置の構成としては、緑色波長域の受光センサと赤色波長域の受光センサ及び緑色波長域と赤色波長域以外の透過光の受光センサとがそれぞれ1つ備えられておればよい。つまり、従来の前後一対に配置された緑色波長域の受光センサによって穀粒の拡散光を受光し、受光した穀粒拡散光の明暗によって白米中の着色粒を選別していた色彩選別装置において、一方の受光センサを赤色波長域の受光センサに置き換えるとともに1つの透過光受光センサを加えて、上述の演算回路と判別回路を追加することで本願の色彩選別装置が実現できる。よって、従来からある白米用色彩選別装置をそのまま利用して改造が可能である。
【0021】
このことにより、色彩選別装置の入れ替えによって廃棄されていた従来の装置を有効に再利用することができる。
【0022】
さらに本発明では、蛍光灯やハロゲンランプを照明用光源とし、前記照明用光源により、可視光受光部及び近赤外光受光部に対して、前方及び後方から照射された原料玄米からの、緑色波長域の拡散光を受光する緑色光受光過程と、赤色波長域の拡散光を受光する赤色光受光過程と、原料玄米から緑色波長域と赤色波長域以外の波長域である近赤外波長域の透過光量を受光する透過光受光過程と、緑色信号受光過程で得られる緑色光量値と赤色信号受光過程で得られる赤色光量値とから、赤色光量値/緑色光量値の比を演算する演算過程と、演算過程で演算された光量値の比を青未熟粒区分とそれ以外に区分するための所定値と、前記比とを比較していずれか一方に区分し、いずれか一方の区分において信号を出力する第1比較過程と、緑色信号受光過程で得られる緑色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第2比較過程と、赤色信号受光過程で得られる赤色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第3比較過程と、透過信号受光過程で得られる透過光量値と所定値とを比較して該透過光量値が所定値よりも暗い光量値である場合に、前記原料玄米がしらた粒であるとの信号を出力する第4比較過程と、第1比較過程で得られる青未熟粒区分を示す信号がなく且つ第2比較過程と第3比較過程のいずれかの出力信号によって判別信号を出力すると共に、該判別信号と第4比較過程のいずれかの出力信号によって排除信号を出力する排除信号出力過程と、を備える玄米色彩選別方法とした。
【0023】
この方法によると、第1比較過程において、信号比を比較するためのしきい値を、青未熟粒とそれ以外の穀粒とに区分するためのしきい値、例えば信号比1.0をしきい値として設定し、まず信号比によって2区分に判別し、青未熟粒区分とそれ以外の区分のときのいずれか一方において判別信号を出力するものである。
【0024】
以下第2比較過程、第3比較過程及び第4比較過程においての作用は前述のとおりであるので、その詳細な説明については省略する。
【0025】
排除信号出力過程においては、第1比較過程から青未熟粒区分を示す信号がなく、換言すれば青未熟粒区分以外の区分を示す信号があり且つ第2比較過程または第3比較過程のいずれかの信号が出力されていれば判別信号を出力すると共に、該判別信号と第4比較過程のいずれかの信号が出力されていれば排除信号を出力するものである。つまり、第1比較過程において信号比が青未熟粒区分であると判断されるた場合であっても、第4比較過程の信号が出力された場合に排除信号を出力する。
【0026】
第1比較過程において信号比が青未熟粒区分の値ではないと判断され、青未熟粒区分を示す信号が出力されていない場合、換言すれば青未熟粒区分以外の区分を示す信号が出力された場合には、それが整玄米か着色粒であるかを第2比較過程と第3比較過程の出力信号によって判別すると共に、ここで着色粒と判別された信号か第4比較過程の出力信号のいずれかが出力されていれば、排除信号を出力する。つまり、第2比較過程における緑色あるいは第3比較過程における赤色において、例えばしきい値を超えた暗い信号があれば着色粒の信号として扱う。加えてこの着色粒信号があるか、第4比較過程における透過光量において、例えばしきい値を超えた暗い信号のいずれかがあれば穀粒の排除信号を出力する。したがって、青未熟粒区分を示す信号が出力されず且つ第2比較過程と第3比較過程のいずれかより信号が出力されている場合には判別信号(着色粒信号)を出力し、さらにこの判別信号と第4比較過程のいずれかより信号が出力されていれば排除信号を出力する。
【0027】
以上の方法により、判別に必要な信号受光過程は緑色信号受光過程と赤色信号受光過程および透過光受光過程とを備えておればよい。より具体的に装置の構成としては、緑色波長域の受光センサと赤色波長域の受光センサ及び、緑色波長域と赤色波長域以外の透過光の受光センサとがそれぞれ1つ備えられておればよい。つまり、従来の前後一対に配置された緑色波長域の受光センサによって穀粒の拡散光を受光し、受光した穀粒拡散光の明暗によって白米中の着色粒を選別していた色彩選別装置において、一方の受光センサを赤色波長域の受光センサに置き換えるとともに1つの透過光受光センサを加えて、上述の演算回路と判別回路を追加することで本願の色彩選別装置が実現できる。よって、従来からある白米用色彩選別装置をそのまま利用して改造が可能である。
【0028】
【発明の実施の形態】
本発明に係る玄米色彩選別装置の概要を図1により説明する。図1は玄米色彩選別装置1の主要部とその内部構造を簡略に示した要部側断面図である。上部に振動フィーダ装置2とタンク部3とからなる玄米供給部4と、振動フィーダ装置2から供給される玄米を所定軌跡に移送する傾斜した板上のシュート5を備え、該シュート5によって玄米を次の光学検出部6に放出供給する。
【0029】
次の光学検出部6はシュート5から放出された玄米の落下軌跡を中心にしてほぼ対称的に、前光学検出部6aと後光学検出部6bとを配置して構成してある。それぞれの光学検出部6a、6bには、玄米の落下軌跡に設定された視点Oを中心にして前後に、例えばSi(シリコン)センサ素子からなる受光センサーを備えた可視光受光部7、近赤外光受光部8がシュート5の幅方向に対応して設けてあり、さらに照明用蛍光灯9、10と照明用光源(例えばハロゲンランプ)11及び受光部7、8に対した背景板12、13とを備えている。可視光受光部7と近赤外光受光部8は、周知の集光レンズを備えた広角度カメラによって構成したものでもよい。
【0030】
玄米落下方向に沿って光学検出部6の下方には選別部(排除手段)15を配し、選別部15は玄米の落下軌跡に対してエアーを噴射するエアーノズル16とエアーノズル16にエアーを供給する電磁弁17とを備え、これらはシュート5の幅方向に複数設けてある。電磁弁17にはエアーコンプレッサー18のエアーが供給されており、電磁弁17は後述する制御装置20から出力される排除信号に応じてエアーノズル16にエアーを放出する駆動回路17となる。
【0031】
受光部7、8は後述する制御装置20を介して駆動回路17に接続してあり、受光部7、8で受光された玄米の信号は制御装置20で処理され、被害粒やしらた粒を検出したとき、制御装置20は該当する駆動回路17に排除信号を出力する。駆動回路17は制御装置20の排除信号を受けて駆動し、駆動回路20に接続されたエアーノズル16にエアーを供給し、被害粒としらた粒はエアーノズル16から噴出するエアーによって玄米の落下軌跡から排除され、不良品排出口25より機外に排出される。また排除されない玄米は当初の米粒落下軌跡に沿って精品排出口26から機外に排出される。
【0032】
ところで受光部7について簡略に示した図2により説明する。受光面に集光レンズ7aと、集光された光を緑色波長域を中心とした光域と赤色波長域を中心とした広域とに分光するダイクロイックミラー7bとを備え、ダイクロイックミラー(あるいはハーフミラー)7bによって分光された光のうち緑色波長域の光を透過するバンドパスフィルター7cとスリット7d及びSiセンサからなる受光センサ7eからなる緑色波長域受光部と、ダイクロイックミラー(あるいはハーフミラー)7bによって分光された光のうち赤色波長域の光を透過するバンドパスフィルター7fとスリット7g及びSiセンサからなる受光センサ7hからなる赤色波長域受光部とを備えるものである。
【0033】
また受光部8について簡略に示した図3により説明する。受光面に集光レンズ8aと、集光された光を近赤外光域を中心とした光を透過するバンドパスフィルター8bとスリット8c及びSiセンサからなる受光センサ8dとを備えている。
【0034】
制御装置20について図4乃至図5により説明する。図4は制御装置20とこれに接続された回路のブロック図であり、受光部7の受光センサ7eによって受光された玄米の緑色光域拡散光の受光信号はアンプ30で増幅され、受光センサ7gによって受光された玄米の赤色光域拡散光の受光信号はアンプ31で増幅され、受光部8の受光センサ8dによって受光された玄米の近赤外広域の透過光の受光信号はアンプ32で増幅されて、それぞれ制御装置20に入力される。制御装置20では受光部7、8の受光信号を演算判別回路21で処理して、演算判別回路21で排除すべき穀粒の信号を検出したとき遅延回路22に排除信号を出力して、遅延回路22を介して駆動回路17に排除信号が出力される。
【0035】
演算判別回路21について図5により説明する。演算判別回路21は、受光部7の受光センサ7eと受光センサ7gの受光信号が入力される演算回路33と、演算回路33の演算値信号が入力される第1比較回路34と、受光センサ7eの受光信号が入力される第2比較回路35と、受光センサ7gの受光信号が入力される第3比較回路36と、受光部8の受光センサ8dの受光信号が入力される第4比較回路37と、第1比較回路34と第2比較回路35と第3比較回路36及び第4比較回路37の信号が入力される判別回路38とを備えている。
【0036】
演算判別回路21の演算回路33には、受光部7の受光センサ7eによる緑色波長域の受光信号(光量)、受光部7の受光センサ7gによる赤色波長域の受光信号(光量)が入力される。つまり、玄米流下軌跡中の同一視点から、流下する玄米の拡散光を受光部7が受光し、受光部のそれぞれに設けられたバンドパスフィルタによって、受光部7の受光センサ7eでは緑色波長域の光を受光して光量値を出力し、受光部7の受光センサ7gでは赤色波長域の光を受光して光量値を出力する。このようにして得られた光量値信号は演算回路33に入力される。入力された信号は演算回路33において、
【数1】
赤色波長域光量/緑色波長域光量=C(演算値)
とした演算が行われる。
【0037】
演算回路33で演算された演算値は第1比較回路34に入力される。第1比較回路では、演算値と基準値回路39に予め設定された所定値とが比較され、演算値が所定値を超える値であれば第1比較回路34から判別回路38に信号が出力される。ここに基準値回路39に予め設定された所定値は、青未熟粒とそれ以外の穀粒とを区分するために設定された値であり、例えば周知の粒状物判別装置における(赤色光量値/緑色光量値)比の値を借りれば、図6のC=1.0を所定値としている。つまり、演算値が1.0を超えた値であれば第1比較回路34から判別回路38に信号が出力される。つまり青未熟粒ではなく青未熟粒以外の穀粒とした信号が出力される。演算値が1.0以下の値であれば、青未熟粒として第1比較回路34から判別回路38に信号は出力されない。第1比較回路34の所定値は適切な区分が行えるように定めるものであり、本例に使用した値に限定されない。
【0038】
受光部7の受光センサ7eで受光した緑色波長域の光量値は、第2比較回路35にも入力される。第2比較回路35では、光量値と基準値回路40に予め設定された所定値とが比較され光量値が所定値を超える値であれば第2比較回路35から判別回路38に信号が出力される。受光センサ7eで受光した光量値が基準値回路40に予め設定された所定値を超える値である場合とは、例えば所定値を明暗の暗い側に設定しておけば、所定値よりもさらに暗い信号(光量値)であった場合に第2比較回路35から判別回路38に信号が出力される。所定値は玄米選別の基準を定めるものであり、適切な選別が行えるよう適宜変更され得るべきものである。
【0039】
受光部7の受光センサ7gで受光した赤色波長域の光量値は、第3比較回路36にも入力される。第3比較回路36では、光量値と基準値回路41に予め設定された所定値とが比較され光量値が所定値を超える値であれば第3比較回路36から判別回路38に信号が出力される。受光センサ7gで受光した光量値が基準値回路41に予め設定された所定値を超える値である場合とは、例えば所定値を明暗の暗い側に設定しておけば、所定値よりもさらに暗い信号(光量値)であった場合に第3比較回路36から判別回路38に信号が出力される。所定値は玄米選別の基準を定めるものであり、適切な選別が行えるよう適宜変更され得るべきものである。
【0040】
受光部8の受光センサ8dで受光した近赤外波長域の光量値は、第4比較回路37に入力される。第4比較回路37では、光量値と基準値回路42に予め設定された所定値とが比較され光量値が所定値を超える値であれば第4比較回路37から判別回路38に信号が出力される。受光センサ8dで受光した光量値が基準値回路42に予め設定された所定値を超える値である場合とは、例えば所定値を明暗の暗い側に設定しておけば、所定値よりもさらに暗い信号(光量値)であった場合に第4比較回路37から判別回路38に信号が出力される。所定値は玄米選別の基準を定めるものであり、適切な選別が行えるよう適宜変更され得るべきものである。受光センサ8dで受光する光量は、受光センサ8dから見て玄米の背景だけに光源11が配置してあるので玄米を透過した光量である。したがって、しらた粒などの透過光量が少ない米粒が通過したときには光量値が減少するので、しらた粒の判別に利用できる。しかも、他の波長域つまり、緑色波長域や赤色波長域と波長域が異なるのでそれらとの干渉は生じない。
【0041】
ここで所定値について説明すると、背景板12、13の明るさを受光したときの信号を基準信号として、背景板よりも明るく見える玄米であれば基準信号(玄米が流れていない時の信号)よりも明るい側に玄米の明るさに応じた波形が出力され、背景板よりも暗く見える玄米であれば基準信号よりも暗い側に玄米の暗さに応じた波形が出力される。基準値回路に設定された所定値とは波形の高さを比較する基準であり、波形の高さが所定値よりも大きいときに比較回路から信号が出力される。
【0042】
判別回路38の一例を、最も簡略に表したロジック回路として図7に示したブロック図で説明する。この例では第1比較回路34の青未熟粒信号の有無と、第2比較回路35、第3比較回路36及び第4比較回路37のいずれかの信号の有無とを、玄米選別の重要な判別基準とした場合について説明する。第2比較回路35と第3比較回路36とはOR回路45に接続してあり、このOR回路45と第4比較回路37とはOR回路46に接続してある。さらにOR回路46と第1比較回路34とはAND回路47に接続してある。この回路によって、第2比較回路35、第3比較回路36及び第4比較回路37のいずれかの出力信号と、第1比較回路34の出力信号とがAND回路47に入力されることによってAND回路47から排除信号が出力される。
【0043】
すなわち、第1比較回路34によって青未熟粒区分以外の穀粒であると判断され且つ第2比較回路35によって緑色波長域受光部の光量が所定値よりも暗い信号であると判断されるか、第3比較回路36によって赤色波長域受光部の光量が所定値よりも暗い信号であると判断されるか、第4比較回路37によって近赤外波長域受光部の光量が所定値よりも暗い信号であると判断された場合に、受光部7、8で光量を得た対象玄米を被害粒、着色粒あるいはしらた粒と判断して排除信号を出力する。
【0044】
第1比較回路34によって青未熟粒区分の穀粒であると判断されると、第2比較回路35によって緑色波長域受光部の光量が所定値よりも暗い信号であると判断されるか、第3比較回路36によって赤色波長域受光部の光量が所定値よりも暗い信号であると判断されるか、第4比較回路37によって近赤外波長域受光部の光量が所定値よりも暗い信号であると判断された場合であっても、AND回路47によって排除信号は出力されない。即ち第1比較回路34によって、演算回路33の演算値が青未熟粒区分の値であるとした場合には排除信号は出力されず、演算回路33の演算値が青未熟粒区分以外の値であるとした場合には第2比較回路35と第3比較回路36及び第4比較回路37の値が採用され、第2比較回路35と第3比較回路36及び第4比較回路37のいずれかから出力があれば、該当の玄米を排除する信号が出力される。
【0045】
判別回路38の第2の例を、最も簡略に表したロジック回路として図8に示したブロック図で説明する。この例では第1比較回路34の青未熟粒信号の有無と、第4比較回路37の玄米の透過光量の大小とを、玄米選別の重要な判別基準とした場合について説明する。基準第2比較回路35と第3比較回路36とはOR回路48に接続してあり、このOR回路48と第1比較回路34とはAND回路49に接続してある。さらにAND回路49と第4比較回路37とはOR回路50に接続してある。この回路によって、第2比較回路35及び第3比較回路36のいずれかの出力信号と、第1比較回路34の出力信号とがAND回路49に入力されることによってAND回路47信号が出力され、AND回路47と第4比較回路37のいずれかの信号がOR回路50に入力されるとOR回路50から排除信号が出力される。
【0046】
すなわち、第1比較回路34によって青未熟粒区分以外の穀粒であると判断され且つ第2比較回路35によって緑色波長域受光部の光量が所定値よりも暗い信号であると判断されるか、第3比較回路36によって赤色波長域受光部の光量が所定値よりも暗い信号であると判断された場合か、第4比較回路37によって近赤外波長域受光部の光量が所定値よりも暗い信号であると判断された場合に、受光部7、8で光量を得た対象玄米を被害粒、着色粒あるいはしらた粒と判断して排除信号を出力する。
【0047】
第1比較回路34によって青未熟粒区分の穀粒であると判断され、第2比較回路35と第3比較回路36の信号の有無に関わらずAND回路49から信号は出力されず、第4比較回路37によって玄米がしらた粒と判断されると青未熟粒区分の有無、つまりAND回路49の信号の有無に関わらずOR回路50から排除信号が出力される。即ち第4比較回路37によってしらた粒である信号が出力された場合には、演算回路33の演算値が青未熟粒区分の値であるか否かに関わらず排除信号が出力される。演算回路33の演算値が青未熟粒区分以外の値であるとした場合には第2比較回路35と第3比較回路36値が採用され、第2比較回路35と第3比較回路36のいずれかから出力があれば、該当の玄米を排除する信号が出力される。
【0048】
以上の実施例において、緑色波長域の受光センサと赤色波長域の受光センサとを、ダイクロイックミラーを含む一体的な受光部とした例を示したが、個別の受光部にしてもよく、さらにこの個別の受光部を穀粒視点Oを中心に対称位置に配置してもよい。
【0049】
緑色波長域、赤色波長域以外の波長を近赤外波長域として説明したが、可視光域における他の波長域の光を利用して、透過光量を受光するようにしてもよい。
【0050】
受光部のセンサをSiセンサとしたが、使用する波長域がカバーできて安価なセンサであれば上記センサに限定されることはない。
【0051】
【発明の効果】
粒選別後の良品側玄米から精米後に着色粒となり得る被害粒またはしらた粒を選別し、等級を下げる品位の穀粒をできるだけ少なくして整玄米と青未熟粒の混入率を高めて玄米の品質等級を上げることができる色彩選別装置を提供し、しかも、緑色光と赤色光及び緑色光、赤色光以外の光それぞれに1つの受光センサーを設けた簡素な構成のままでの選別を可能とした玄米色彩選別装置が提供できた。
【0052】
また原料となる玄米は、粒選別後の不良品側、つまり通称「屑米」側の玄米であってもよく、屑米を原料として、屑米から整玄米と青未熟粒を取り出すために使用することもできる。
【図面の簡単な説明】
【図1】本発明の色彩選別装置の要部側断面図である。
【図2】可視光受光部の内部構造を簡略に示した断面図図である。
【図3】近赤外光受光部の内部構造を簡略に示した断面図である。
【図4】制御部と前後の回路との接続を示すブロック図である。
【図5】演算判別回路を示すブロック図である。
【図6】 R/G分光比と反射透過光比によって区分される穀粒品位を示す図である。
【図7】判別回路の第1の実施例を示すブロック図である。
【図8】判別回路の第2の実施例を示すブロック図である。
【図9】穀粒を3波長に色彩選別する場合の色成分を示した図である。
【図10】玄米品位ごとの波長に対する検出光量を示す図である。
【符号の説明】
1 玄米色彩選別装置
2 振動フィーダ装置
3 タンク部
4 玄米供給部
5 シュート
6 光学検出部
7 可視光受光部
8 近赤外光受光部
9 照明用蛍光灯
10 照明用蛍光灯
11 ハロゲンランプ
12 背景板
13 背景板
15 選別部
16 エアーノズル
17 電磁弁(駆動回路)
18 エアーコンプレッサー
20 制御装置
21 演算判別回路
22 遅延回路
25 不良品排出口
26 精品排出口
30 アンプ
31 アンプ
32 アンプ
33 演算回路
34 第1比較器
35 第2比較器
36 第3比較器
37 第4比較器
38 判別回路
39 基準値回路
40 基準値回路
41 基準値回路
42 基準値回路
45 OR回路
46 OR回路
47 AND回路
48 OR回路
49 AND回路
50 OR回路
[0001]
BACKGROUND OF THE INVENTION
In relation to a sorting device that uses unpolished rice after grain sorting as a raw material, and excludes grains other than unpolished rice with a grain size close to that of unpolished rice from the raw brown rice, grain color in the red wavelength range and grain in the green wavelength range Detecting grain color and transmitted light amount, distinguishing it into unpolished rice with a grain size close to that of brown rice and other grains, and other than unpolished rice with a grain size close to that of brown rice The present invention relates to a brown rice color sorter that eliminates (sorts) the rice.
[0002]
[Prior art]
When the grains are color-selected, the light received as shown in FIG. 9 is identified by color components that are preferably separated into three wavelengths. Therefore, sensors for three wavelengths are necessary. Usually, when selecting beans, the received light is color-separated and the raw beans are identified as good and defective as described above. In the case of polished rice wheat, one specific wavelength is used to identify colored grains. For example, a light receiving sensor provided with a green filter is often arranged before and after the moving grain, and the light receiving amount of the light receiving sensor is often discriminated, that is, bright and dark. However, when it comes to identifying brown rice, the quality of the grains contained in the raw material is various, such as conditioned brown rice, green immature rice, green dead rice, damaged grains, or crushed grains (immature grains). There are things that cannot be done. In this case, it is preferable to separate and sort the reflected light of the grains into colors using 2 to 3 wavelengths, but the quality of the other grains is determined as good quality, such as brown rice and blue immature rice where the blue color disappears after milling There is no color sorter for brown rice that sorts the grains as defective.
[0003]
A discriminating apparatus called a granular article grade discriminating apparatus different from a general color sorter discriminates brown rice into a plurality of grades, sorts them for each grade, and displays the discrimination results. As described above, there is a device that discriminates brown rice by grade and sorts by grade, but this device is not a device that discriminates a large amount of brown rice at high speed and sorts grains of unnecessary grade.
[0004]
In order to sort brown rice obtained by pulverizing dried rice grains with a known hulling machine, it is common to use a known grain sorting machine that sorts according to the size of the mesh, that is, the grain size of the brown rice. . The good quality unpolished rice obtained by using this grain sorter includes conditioned brown rice having a particle size equal to or larger than a predetermined particle size, and green immature, green dead rice, damaged grains and immature rice. In the quality inspection of the brown rice thus selected, the grade is determined by the content of grains other than the conditioned brown rice such as green immature, green dead rice, damaged grains and immature rice. When the mesh of the grain sorter is increased in order to increase the grade, the mixing rate of grains other than brown rice decreases, and the grade increases, but the yield significantly decreases.
[0005]
In the grade judgment, if the mixing of unripe blue grains into the adjusted brown rice does not exceed the prescribed range, the grade will not be lowered by the mixing of unripe blue grains. I want to improve the remaining yield. This is because the surface color of unripe blue rice is blue before milling, but when it is milled, the blue color is removed and becomes white, which is the same as that of brown rice. Therefore, we want to remove the grains that become colored grains even after milling, damaged grains, immature rice with a color close to blue immaturity, etc., and realize sorting that leaves blue immature grains. Since it sorts only by diameter, it is impossible to realize.
[0006]
Furthermore, since the conventional color sorter sorts according to the amount of light of one specific wavelength received from the grain, that is, the light and darkness of the grain, it sorts brown rice including blue immature grains, blue dead rice, damaged grains and immature rice. It is difficult to use at least two wavelengths, for example, a green wavelength and a red wavelength, as in the granular article level discrimination device.
[0007]
However, as shown in FIG. 10, at the green wavelength, the difference between the damaged grain and the blue immature grain is small, so it is difficult to set the threshold value. If a threshold value is set between the conditioned brown rice and the damaged grains at the red wavelength, the blue immature grains are excluded together with the damaged grains and the dead green rice. Accordingly, it is impossible to select only damaged grains (colored grains), dead green rice and immature rice alone for both the green wavelength and the red wavelength. In addition to this, grains called “shirata grains” cannot be distinguished from other grains unless they are transmitted light, so that they are usually a separate operation as a dedicated process for sorting.
[0008]
In the granular article level discriminating apparatus, it is possible to discriminate into a plurality of grades based on the R / G ratio of the red wavelength light quantity and the green wavelength light quantity obtained by receiving the reflected light of the brown rice, and the transmitted / reflected light quantity ratio (R + G) / T. However, since a light receiving element for measuring the amount of reflected light and the amount of transmitted light is required for each of the green wavelength and the red wavelength, a large number of elements are required. End up.
[0009]
When the brown rice obtained by mashing is grain-sorted, it is sorted into the grain containing the above-mentioned grain-milled rice and the grain called “waste-rice”. From this waste rice, damaged grains are further selected to obtain conditioned brown rice, or to obtain brown rice as a confectionery raw material. For this sorting, a specific gravity sorter equipped with a rocking sorter is used. However, since the sorting is based on the difference in specific gravity, grains with the same specific gravity are sorted regardless of the quality. Since there is no such device, it is common to use a specific gravity sorter. However, it is a matter of course that the grade of brown rice is improved because the sorted grains contain a lot of necessary brown rice and there are few unnecessary damaged grains, and the development of a sorting device with good sorting accuracy is desired. Yes.
[0010]
[Problems to be solved by the invention]
From the above, it is an object to provide a brown rice color sorting device that sorts defective products using brown rice as a raw material. In particular, damaged grains that can become colored grains after milling from non-defective brown rice after grain selection, and immature rice that is not suitable for milling (shirata grain) are selected to reduce the grade of grain to lower the grade as much as possible. A color sorting device that can improve the quality grade of brown rice by increasing the mixing ratio of blue immature grains, and that enables sorting with a configuration that has one light sensor for each wavelength. Providing is an issue.
[0011]
The brown rice used as the raw material may be brown rice on the defective product side after grain selection, that is, the so-called “waste rice” side, and is used to take out the conditioned brown rice and green immature grains from the waste rice. The challenge is to provide a brown rice color sorter that can be used.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, fluorescent lamps and halogen lamps are used. The A green light receiving device that receives diffused light in the green wavelength region from raw brown rice irradiated from the front and rear with respect to the visible light receiving unit and the near-infrared light receiving unit. Process, a red light receiving process for receiving diffused light in the red wavelength range, a transmitted light receiving process for receiving transmitted light in the near infrared wavelength range, which is a wavelength range other than the green wavelength range and the red wavelength range, and a green signal The calculation process for calculating the ratio of the red light quantity value / green light quantity value from the green light quantity value obtained in the light receiving process and the red light quantity value obtained in the red signal receiving process, and the ratio of the light quantity value calculated in the computing process to blue In the first comparison process in which the predetermined value for classifying the immature grain and the other classification and the ratio are compared and divided into either one, and a signal is output in either one of the classification, and the green signal receiving process Ratio of the obtained light amount value in the green wavelength range to the specified value When the light intensity value is darker than the predetermined value, the second comparison process for outputting a signal and the light intensity value in the red wavelength region obtained in the red signal light receiving process are compared with the predetermined value to compare the light intensity The third comparison process of outputting a signal when the value is darker than the predetermined value, and the transmitted light amount value obtained in the transmitted signal light receiving process are compared with the predetermined value, and the transmitted light amount value is less than the predetermined value. When the light intensity value is dark , And said raw brown rice is a crushed grain There is no signal indicating the blue immature grain classification obtained in the fourth comparison process for outputting the signal and the first comparison process, and the exclusion signal is output by any one of the output signals of the second comparison process, the third comparison process, and the fourth comparison process. And an exclusion signal output process for outputting a brown rice color.
[0013]
Corresponds to the signal ratio of the red signal / green signal calculated from the green signal obtained by receiving diffused light in the green wavelength range from raw brown rice and the red signal obtained by receiving diffused light in the red wavelength range from raw brown rice If the signal ratio is, for example, 1.0 or less, it is determined that the grain has a strong blue color, for example, blue immature grain, green dead rice, and if the signal ratio is 1-1.3, it is determined as brown rice, It is known as a discriminating technique of a conventional granular article level discriminating apparatus to discriminate a grain having a strong red color, for example, a damaged grain if the ratio is 1.3 or more.
[0014]
In the present application, in the first comparison process, a threshold value for comparing the signal ratio is set to a threshold value for dividing the green immature grain and other grains, for example, a signal ratio of 1.0. First, it is discriminated into two categories based on the signal ratio, and a discrimination signal is output in one of the blue immature grain category and the other categories.
[0015]
At the same time, in the second comparison process, a threshold value for comparing the green signal obtained by receiving the diffused light in the green wavelength region from the raw brown rice is set as a threshold value for comparing the mere brightness of the green signal, for example, A threshold value is set so that a signal is output when a green signal is below a predetermined brightness (darkness exceeding a predetermined brightness). Here, when a signal is output, it is determined as a colored particle.
[0016]
Further, in the third comparison process at the same time as the second comparison process, a threshold for comparing the red signal obtained by receiving the diffused light in the red wavelength region from the raw brown rice is a threshold for comparing the mere brightness of the red signal. As a value, for example, a threshold value is set so that a signal is output when a red signal has a predetermined brightness or less (darkness exceeding a predetermined brightness). Here, when a signal is output, it is determined as a colored particle.
[0017]
In the fourth comparison process, the threshold for comparing the transmitted light signals obtained by receiving the transmitted light from the raw brown rice other than the green wavelength range and the red wavelength range is the threshold value for comparing the mere brightness and darkness of the transmitted signals. For example, a threshold value is set so that a signal is output when the transmitted signal is below a predetermined brightness (darkness exceeding a predetermined brightness). If a signal is output here, it will be discriminate | determined from what is called a crushed grain in which the inside of a grain is a powdery substance and light does not permeate | transmit easily.
[0018]
In the exclusion signal output process, there is no signal indicating the blue immature grain classification from the first comparison process, in other words, there is a signal indicating a classification other than the blue immature grain classification and either the second comparison process or the third comparison process. If this signal is output, an exclusion signal is output. That is, when the signal ratio is determined to be the value of the blue immature grain category in the first comparison process, and the signal indicating the blue immature grain category is output, the exclusion signal is not output.
[0019]
In the first comparison process, when the signal ratio is determined not to be the value of the green immature grain category, and the signal indicating the blue immature grain category is not output, the grain is either conditioned brown rice or other colored grains. Is determined by the output signals of the second comparison process, the third comparison process, and the fourth comparison process. That is, for example, if there is a dark signal that exceeds a threshold in the green color in the second comparison process, the red color in the third comparison process, and the transmitted light amount in the fourth comparison process, the signal is treated as a colored grain signal or a stale grain signal. Therefore, when the signal indicating the blue immature grain classification is not output and the signal is output from any of the second comparison process, the third comparison process, and the fourth comparison process, an exclusion signal is output.
[0020]
According to the above method, the signal light receiving process necessary for the determination may include a green signal receiving process, a red signal receiving process, and a transmitted light receiving process. More specifically, as a configuration of the apparatus, it is only necessary to have one light receiving sensor for the green wavelength region, one for the red wavelength region, and one for the transmitted light other than the green wavelength region and the red wavelength region. That is, in the color sorter that received the diffused light of the grains by the conventional green wavelength range light receiving sensor arranged in a pair of front and rear, and sorted the colored grains in the white rice by the light and darkness of the received grain diffused light, The color selection device of the present application can be realized by replacing one of the light receiving sensors with a light receiving sensor in the red wavelength region, adding one transmitted light receiving sensor, and adding the arithmetic circuit and the discrimination circuit described above. Therefore, the conventional white rice color sorting apparatus can be used as it is for modification.
[0021]
This makes it possible to effectively reuse a conventional device that has been discarded by replacing the color selection device.
[0022]
Furthermore, in the present invention, fluorescent lamps and halogen lamps are used. The A green light receiving device that receives diffused light in the green wavelength region from raw brown rice irradiated from the front and rear with respect to the visible light receiving unit and the near-infrared light receiving unit. Process, a red light receiving process for receiving diffused light in the red wavelength range, and a transmitted light receiving process for receiving transmitted light in the near infrared wavelength range, which is a wavelength range other than the green wavelength range and the red wavelength range, from the raw brown rice The calculation process of calculating the ratio of the red light quantity value / green light quantity value from the green light quantity value obtained in the green signal light receiving process and the red light quantity value obtained in the red signal receiving process, and the light quantity value calculated in the computing process A first comparison process in which the ratio is compared with a predetermined value for dividing the ratio into the blue immature grain classification and the other, and the ratio is classified into either one, and a signal is output in any one of the classification; a green signal The amount of light in the green wavelength range obtained during the light reception process The second comparison process that outputs a signal when the light intensity value is darker than the predetermined value by comparing with a constant value, and the light intensity value in the red wavelength region obtained in the red signal light receiving process is compared with the predetermined value. Then, when the light amount value is darker than the predetermined value, the third comparison process for outputting a signal and the transmitted light amount value obtained in the transmitted signal light receiving process are compared with the predetermined value to obtain the transmitted light amount value. When the light intensity is darker than the specified value , And said raw brown rice is a crushed grain There is no signal indicating the blue immature grain classification obtained in the fourth comparison process and the first comparison process, and the discrimination signal is output according to the output signal of either the second comparison process or the third comparison process. The brown rice color selection method includes the discrimination signal and an exclusion signal output process that outputs an exclusion signal in accordance with any output signal of the fourth comparison process.
[0023]
According to this method, in the first comparison process, the threshold value for comparing the signal ratio is set to a threshold value for distinguishing between the green immature grain and the other grains, for example, a signal ratio of 1.0. It is set as a threshold value, and is first discriminated into two categories according to the signal ratio, and a discrimination signal is output in one of the blue immature grain category and the other categories.
[0024]
Since the operation in the second comparison process, the third comparison process, and the fourth comparison process is as described above, detailed description thereof will be omitted.
[0025]
In the exclusion signal output process, there is no signal indicating the blue immature grain classification from the first comparison process, in other words, there is a signal indicating a classification other than the blue immature grain classification and either the second comparison process or the third comparison process. If the signal is output, a determination signal is output, and if the determination signal and any one of the signals in the fourth comparison process are output, an exclusion signal is output. That is, even if it is determined that the signal ratio is the blue immature grain category in the first comparison process, the exclusion signal is output when the signal of the fourth comparison process is output.
[0026]
In the first comparison process, it is determined that the signal ratio is not the value of the blue immature grain classification, and if the signal indicating the blue immature grain classification is not output, in other words, the signal indicating the classification other than the blue immature grain classification is output. If it is determined whether it is brown rice or colored grains based on the output signals of the second comparison process and the third comparison process, the signal determined to be colored grains or the output signal of the fourth comparison process If any of these is output, an exclusion signal is output. That is, in the green color in the second comparison process or the red color in the third comparison process, for example, if there is a dark signal exceeding the threshold value, it is handled as a colored grain signal. In addition, if there is this colored grain signal, or there is any dark signal exceeding the threshold in the transmitted light quantity in the fourth comparison process, a grain exclusion signal is output. Therefore, when the signal indicating the blue immature grain classification is not output and the signal is output from either the second comparison process or the third comparison process, a discrimination signal (colored grain signal) is output, and this discrimination is further performed. If a signal is output from either the signal or the fourth comparison process, an exclusion signal is output.
[0027]
According to the above method, the signal light receiving process necessary for the determination may include a green signal receiving process, a red signal receiving process, and a transmitted light receiving process. More specifically, as the configuration of the apparatus, it is only necessary to have one light receiving sensor for the green wavelength range, one for the red wavelength range, and one for the transmitted light other than the green wavelength range and the red wavelength range. . That is, in the color sorter that received the diffused light of the grains by the conventional green wavelength range light receiving sensor arranged in a pair of front and rear, and sorted the colored grains in the white rice by the light and darkness of the received grain diffused light, The color selection device of the present application can be realized by replacing one of the light receiving sensors with a light receiving sensor in the red wavelength region, adding one transmitted light receiving sensor, and adding the arithmetic circuit and the discrimination circuit described above. Therefore, the conventional white rice color sorting apparatus can be used as it is for modification.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
An outline of the brown rice color sorting apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional side view of a main part schematically showing the main part and the internal structure of the brown rice color sorting apparatus 1. A brown rice supply unit 4 including a vibration feeder device 2 and a tank unit 3 and a chute 5 on an inclined plate for transferring the brown rice supplied from the vibration feeder device 2 to a predetermined trajectory are provided on the upper part. The light is supplied to the next optical detection unit 6.
[0029]
The next optical detection unit 6 is configured by arranging a front optical detection unit 6a and a rear optical detection unit 6b substantially symmetrically about the falling locus of the brown rice released from the chute 5. Each of the optical detection units 6a and 6b includes a visible light receiving unit 7 provided with a light receiving sensor composed of, for example, a Si (silicon) sensor element, around the viewpoint O set in the locus of brown rice falling, and near red. An external light receiving unit 8 is provided corresponding to the width direction of the chute 5, and the background fluorescent lamps 9 and 10, an illumination light source (for example, a halogen lamp) 11, and a background plate 12 for the light receiving units 7 and 8, 13. The visible light receiving unit 7 and the near-infrared light receiving unit 8 may be configured by a wide-angle camera provided with a known condenser lens.
[0030]
A sorting unit (exclusion means) 15 is arranged below the optical detection unit 6 along the brown rice falling direction, and the sorting unit 15 injects air into the air nozzle 16 and the air nozzle 16 for injecting air to the locus of brown rice falling. The electromagnetic valve 17 to be supplied is provided, and a plurality of these are provided in the width direction of the chute 5. Air from an air compressor 18 is supplied to the electromagnetic valve 17, and the electromagnetic valve 17 serves as a drive circuit 17 that discharges air to the air nozzle 16 in response to a rejection signal output from a control device 20 described later.
[0031]
The light receiving units 7 and 8 are connected to the drive circuit 17 via a control device 20 to be described later, and the signal of the brown rice received by the light receiving units 7 and 8 is processed by the control device 20 so that the damaged or crushed grains are removed. When detected, the control device 20 outputs an exclusion signal to the corresponding drive circuit 17. The drive circuit 17 is driven in response to an exclusion signal from the control device 20, supplies air to the air nozzle 16 connected to the drive circuit 20, and the damaged particles fall from the brown rice by the air ejected from the air nozzle 16. It is removed from the locus and discharged out of the machine through the defective product discharge port 25. Brown rice that is not excluded is discharged out of the machine from the refined product discharge port 26 along the original rice grain drop trajectory.
[0032]
Now, the light receiving unit 7 will be described with reference to FIG. The light receiving surface includes a condenser lens 7a and a dichroic mirror 7b that splits the collected light into a light region centered on a green wavelength region and a wide region centered on a red wavelength region, and a dichroic mirror (or a half mirror). ) A bandpass filter 7c that transmits light in the green wavelength region out of the light separated by 7b, a green wavelength region light receiving section that includes a slit 7d and a light receiving sensor 7e that includes a Si sensor, and a dichroic mirror (or half mirror) 7b. A band-pass filter 7f that transmits light in the red wavelength region out of the dispersed light, a slit 7g, and a red wavelength region light receiving unit that includes a light receiving sensor 7h that includes a Si sensor are provided.
[0033]
The light receiving unit 8 will be described with reference to FIG. The light receiving surface is provided with a condensing lens 8a, a band pass filter 8b that transmits the collected light centering on the near infrared light region, a light receiving sensor 8d that includes a slit 8c and a Si sensor.
[0034]
The control device 20 will be described with reference to FIGS. FIG. 4 is a block diagram of the control device 20 and a circuit connected thereto. The light reception signal of the green rice area diffused light of the brown rice received by the light receiving sensor 7e of the light receiving unit 7 is amplified by the amplifier 30, and the light receiving sensor 7g. The light receiving signal of the diffused red light of the brown rice received by the amplifier is amplified by the amplifier 31, and the light receiving signal of the transmitted light in the near infrared wide area of the brown rice received by the light receiving sensor 8 d of the light receiving unit 8 is amplified by the amplifier 32. Are respectively input to the control device 20. In the control device 20, the light reception signals of the light receiving units 7 and 8 are processed by the operation determination circuit 21, and when the signal of the grain to be excluded is detected by the operation determination circuit 21, an exclusion signal is output to the delay circuit 22 to delay An exclusion signal is output to the drive circuit 17 via the circuit 22.
[0035]
The arithmetic determination circuit 21 will be described with reference to FIG. The calculation determination circuit 21 includes a calculation circuit 33 to which the light reception signals of the light receiving sensor 7e and the light reception sensor 7g of the light receiving unit 7 are input, a first comparison circuit 34 to which the calculation value signal of the calculation circuit 33 is input, and the light reception sensor 7e. The second comparison circuit 35 to which the light reception signal is input, the third comparison circuit 36 to which the light reception signal of the light reception sensor 7g is input, and the fourth comparison circuit 37 to which the light reception signal of the light reception sensor 8d of the light receiving unit 8 is input. And a discrimination circuit 38 to which signals from the first comparison circuit 34, the second comparison circuit 35, the third comparison circuit 36, and the fourth comparison circuit 37 are input.
[0036]
A light reception signal (light quantity) in the green wavelength range by the light receiving sensor 7e of the light receiving unit 7 and a light reception signal (light quantity) in the red wavelength range by the light receiving sensor 7g of the light receiving unit 7 are input to the arithmetic circuit 33 of the calculation determination circuit 21. . That is, from the same viewpoint in the brown rice flow trajectory, the light receiving unit 7 receives the diffused light of the flowing brown rice, and the light receiving sensor 7e of the light receiving unit 7 uses the bandpass filter provided in each of the light receiving units to The light receiving unit 7g of the light receiving unit 7 receives light in the red wavelength region and outputs a light amount value. The light quantity value signal obtained in this way is input to the arithmetic circuit 33. In the arithmetic circuit 33, the input signal is
[Expression 1]
Red wavelength range light quantity / Green wavelength range light quantity = C (calculated value)
The following calculation is performed.
[0037]
The calculated value calculated by the calculation circuit 33 is input to the first comparison circuit 34. In the first comparison circuit, the calculated value is compared with a predetermined value preset in the reference value circuit 39, and if the calculated value exceeds the predetermined value, a signal is output from the first comparison circuit 34 to the determination circuit 38. The Here, the predetermined value set in advance in the reference value circuit 39 is a value set for distinguishing the green immature grain from the other grains. For example, in the known granular material discriminating device, the (red light quantity value / If the value of the green light quantity value) ratio is borrowed, C = 1.0 in FIG. 6 is set as a predetermined value. That is, if the calculated value exceeds 1.0, a signal is output from the first comparison circuit 34 to the determination circuit 38. That is, a signal that is not a blue immature grain but a grain other than a blue immature grain is output. If the calculated value is 1.0 or less, no signal is output from the first comparison circuit 34 to the discrimination circuit 38 as blue immature grains. The predetermined value of the first comparison circuit 34 is determined so that appropriate classification can be performed, and is not limited to the value used in this example.
[0038]
The light quantity value in the green wavelength region received by the light receiving sensor 7e of the light receiving unit 7 is also input to the second comparison circuit 35. In the second comparison circuit 35, the light amount value is compared with a predetermined value preset in the reference value circuit 40, and if the light amount value exceeds the predetermined value, a signal is output from the second comparison circuit 35 to the determination circuit 38. The The case where the light quantity value received by the light receiving sensor 7e exceeds a predetermined value preset in the reference value circuit 40 is, for example, darker than the predetermined value if the predetermined value is set on the dark side of light and dark. In the case of a signal (light quantity value), a signal is output from the second comparison circuit 35 to the determination circuit 38. The predetermined value defines the standard for sorting brown rice, and should be appropriately changed so that appropriate sorting can be performed.
[0039]
The light amount value in the red wavelength region received by the light receiving sensor 7 g of the light receiving unit 7 is also input to the third comparison circuit 36. In the third comparison circuit 36, the light amount value is compared with a predetermined value preset in the reference value circuit 41, and if the light amount value exceeds the predetermined value, a signal is output from the third comparison circuit 36 to the determination circuit 38. The The case where the light quantity value received by the light receiving sensor 7g is a value exceeding a predetermined value preset in the reference value circuit 41 is, for example, darker than the predetermined value if the predetermined value is set on the dark side of light and dark. In the case of a signal (light quantity value), a signal is output from the third comparison circuit 36 to the determination circuit 38. The predetermined value defines the standard for sorting brown rice, and should be appropriately changed so that appropriate sorting can be performed.
[0040]
The light amount value in the near-infrared wavelength region received by the light receiving sensor 8 d of the light receiving unit 8 is input to the fourth comparison circuit 37. In the fourth comparison circuit 37, the light amount value is compared with a predetermined value preset in the reference value circuit 42, and if the light amount value exceeds the predetermined value, a signal is output from the fourth comparison circuit 37 to the determination circuit 38. The The case where the light quantity value received by the light receiving sensor 8d exceeds a predetermined value preset in the reference value circuit 42 is, for example, that the predetermined value is set to the dark side of light and dark, and is darker than the predetermined value. In the case of a signal (light quantity value), a signal is output from the fourth comparison circuit 37 to the determination circuit 38. The predetermined value defines the standard for sorting brown rice, and should be appropriately changed so that appropriate sorting can be performed. The amount of light received by the light receiving sensor 8d is the amount of light transmitted through the brown rice because the light source 11 is disposed only in the background of the brown rice as viewed from the light receiving sensor 8d. Therefore, the amount of light decreases when a rice grain having a small amount of transmitted light, such as shirasu grain, passes, so that it can be used for discrimination of shirai grain. In addition, since the wavelength range is different from other wavelength ranges, that is, the green wavelength range and the red wavelength range, there is no interference with them.
[0041]
Here, the predetermined value will be described. If the brown rice looks brighter than the background plate using the signal when the brightness of the background plates 12 and 13 is received as a reference signal, the reference signal (the signal when the brown rice is not flowing) is used. A waveform corresponding to the brightness of the brown rice is output on the bright side, and a waveform corresponding to the darkness of the brown rice is output on the dark side of the reference signal if the brown rice looks darker than the background plate. The predetermined value set in the reference value circuit is a reference for comparing the heights of the waveforms, and a signal is output from the comparison circuit when the height of the waveform is larger than the predetermined value.
[0042]
An example of the determination circuit 38 will be described with reference to the block diagram shown in FIG. In this example, the presence / absence of a blue immature grain signal from the first comparison circuit 34 and the presence / absence of any signal from the second comparison circuit 35, the third comparison circuit 36, and the fourth comparison circuit 37 are determined as important for brown rice sorting. The case where it is set as a reference will be described. The second comparison circuit 35 and the third comparison circuit 36 are connected to the OR circuit 45, and the OR circuit 45 and the fourth comparison circuit 37 are connected to the OR circuit 46. Further, the OR circuit 46 and the first comparison circuit 34 are connected to an AND circuit 47. By this circuit, the output signal of any one of the second comparison circuit 35, the third comparison circuit 36, and the fourth comparison circuit 37 and the output signal of the first comparison circuit 34 are input to the AND circuit 47, whereby the AND circuit. An exclusion signal is output from 47.
[0043]
That is, whether or not the first comparison circuit 34 is determined to be a grain other than the green immature grain classification and the second comparison circuit 35 determines that the light amount of the green wavelength light receiving unit is a signal darker than a predetermined value, The third comparison circuit 36 determines that the light amount of the red wavelength region light receiving unit is darker than a predetermined value, or the fourth comparison circuit 37 determines that the light amount of the near infrared wavelength region light receiving unit is darker than the predetermined value. If it is determined that the target brown rice obtained by the light receiving units 7 and 8 is a damaged grain, a colored grain, or a crushed grain, an exclusion signal is output.
[0044]
If the first comparison circuit 34 determines that the grain is in the blue immature grain category, the second comparison circuit 35 determines that the light amount of the green wavelength region light receiving unit is a signal darker than a predetermined value, The third comparison circuit 36 determines that the light amount of the red wavelength region light receiving unit is darker than a predetermined value, or the fourth comparison circuit 37 determines that the light amount of the near infrared wavelength region light receiving unit is darker than the predetermined value. Even if it is determined that there is, the AND circuit 47 does not output an exclusion signal. That is, when the first comparison circuit 34 determines that the calculation value of the calculation circuit 33 is a value of the blue immature grain classification, no exclusion signal is output, and the calculation value of the calculation circuit 33 is a value other than the blue immature grain classification. If there is, the values of the second comparison circuit 35, the third comparison circuit 36, and the fourth comparison circuit 37 are adopted, and any of the second comparison circuit 35, the third comparison circuit 36, and the fourth comparison circuit 37 is used. If there is an output, a signal to exclude the corresponding brown rice is output.
[0045]
A second example of the determination circuit 38 will be described with reference to the block diagram shown in FIG. In this example, the case where the presence / absence of the blue immature grain signal of the first comparison circuit 34 and the amount of transmitted light of the brown rice of the fourth comparison circuit 37 are used as important discrimination criteria for brown rice selection will be described. The reference second comparison circuit 35 and the third comparison circuit 36 are connected to an OR circuit 48, and the OR circuit 48 and the first comparison circuit 34 are connected to an AND circuit 49. Further, the AND circuit 49 and the fourth comparison circuit 37 are connected to the OR circuit 50. By this circuit, the output signal of either the second comparison circuit 35 or the third comparison circuit 36 and the output signal of the first comparison circuit 34 are input to the AND circuit 49, whereby an AND circuit 47 signal is output. When one of the signals of the AND circuit 47 and the fourth comparison circuit 37 is input to the OR circuit 50, an exclusion signal is output from the OR circuit 50.
[0046]
That is, whether or not the first comparison circuit 34 is determined to be a grain other than the green immature grain classification and the second comparison circuit 35 determines that the light amount of the green wavelength light receiving unit is a signal darker than a predetermined value, When the third comparison circuit 36 determines that the light amount of the red wavelength region light receiving unit is darker than the predetermined value, or the fourth comparison circuit 37 causes the near infrared wavelength region light receiving unit light amount to be darker than the predetermined value. When it is determined that the signal is a signal, the target brown rice obtained by the light receiving units 7 and 8 is determined to be damaged grain, colored grain, or crushed grain, and an exclusion signal is output.
[0047]
The first comparison circuit 34 determines that the grain is in the green immature grain category, and no signal is output from the AND circuit 49 regardless of the presence or absence of signals from the second comparison circuit 35 and the third comparison circuit 36. When the circuit 37 determines that the brown rice is a grain, the OR circuit 50 outputs an exclusion signal regardless of the presence or absence of the blue immature grain classification, that is, the presence or absence of the signal from the AND circuit 49. That is, when a signal that is a grain produced by the fourth comparison circuit 37 is output, an exclusion signal is output regardless of whether or not the operation value of the operation circuit 33 is the value of the blue immature grain classification. When the calculation value of the calculation circuit 33 is a value other than the blue immature grain classification, the values of the second comparison circuit 35 and the third comparison circuit 36 are adopted, and any of the second comparison circuit 35 and the third comparison circuit 36 is used. If there is an output from, a signal to exclude the corresponding brown rice is output.
[0048]
In the above embodiment, the example in which the light receiving sensor in the green wavelength region and the light receiving sensor in the red wavelength region are integrated into the light receiving unit including the dichroic mirror is shown. You may arrange | position an individual light-receiving part in a symmetrical position centering on the grain viewpoint O. FIG.
[0049]
Although the wavelength other than the green wavelength range and the red wavelength range has been described as the near infrared wavelength range, the transmitted light amount may be received using light in other wavelength ranges in the visible light range.
[0050]
Although the sensor of the light receiving unit is an Si sensor, the sensor is not limited to the above sensor as long as it is an inexpensive sensor that can cover the wavelength range to be used.
[0051]
【The invention's effect】
After the grain selection, select the damaged or crushed grains that can become colored grains after milling, and reduce the grade of lower graded grains as much as possible to increase the mixing ratio of brown rice and green immature grains. Providing a color sorting device that can improve the quality grade, and enables sorting with a simple configuration with one light-receiving sensor for each of green light, red light, green light, and light other than red light. We were able to provide a brown rice color sorter.
[0052]
The brown rice used as the raw material may be brown rice on the defective product side after grain selection, that is, the so-called “waste rice” side, and is used to take out the conditioned brown rice and green immature grains from the waste rice. You can also
[Brief description of the drawings]
FIG. 1 is a side cross-sectional view of a main part of a color selection device of the present invention.
FIG. 2 is a sectional view schematically showing an internal structure of a visible light receiving unit.
FIG. 3 is a sectional view schematically showing an internal structure of a near-infrared light receiving unit.
FIG. 4 is a block diagram showing a connection between a control unit and front and rear circuits.
FIG. 5 is a block diagram illustrating an operation determination circuit.
FIG. 6 is a diagram showing grain quality classified by R / G spectral ratio and reflected / transmitted light ratio.
FIG. 7 is a block diagram illustrating a first embodiment of a determination circuit.
FIG. 8 is a block diagram showing a second embodiment of the discrimination circuit.
FIG. 9 is a diagram showing color components when a grain is color-selected for three wavelengths.
FIG. 10 is a diagram showing a detected light amount with respect to a wavelength for each brown rice grade.
[Explanation of symbols]
1 Brown rice color sorter
2 Vibration feeder device
3 Tank part
4 Brown rice supply department
5 Shoot
6 Optical detector
7 Visible light detector
8 Near infrared light detector
9 Fluorescent lights for lighting
10 Fluorescent lights for lighting
11 Halogen lamp
12 Background board
13 Background board
15 Sorting section
16 Air nozzle
17 Solenoid valve (drive circuit)
18 Air compressor
20 Control device
21 Operation discrimination circuit
22 Delay circuit
25 Defective product outlet
26 Fine product outlet
30 amplifiers
31 amplifiers
32 amplifiers
33 Arithmetic circuit
34 First comparator
35 Second comparator
36 Third comparator
37 Fourth comparator
38 Discrimination circuit
39 Reference value circuit
40 Reference value circuit
41 Reference value circuit
42 Reference value circuit
45 OR circuit
46 OR circuit
47 AND circuit
48 OR circuit
49 AND circuit
50 OR circuit

Claims (5)

蛍光灯やハロゲンランプを照明用光源とし、前記照明用光源により、可視光受光部及び近赤外光受光部に対して、前方及び後方から照射された原料玄米からの、
緑色波長域の拡散光を受光する緑色光受光過程と、
赤色波長域の拡散光を受光する赤色光受光過程と、
緑色波長域と赤色波長域以外の波長域である近赤外波長域の透過光量を受光する透過光受光過程と、
緑色信号受光過程で得られる緑色光量値と赤色信号受光過程で得られる赤色光量値とから、赤色光量値/緑色光量値の比を演算する演算過程と、
演算過程で演算された光量値の比を青未熟粒区分とそれ以外に区分するための所定値と、
前記比とを比較していずれか一方に区分し、いずれか一方の区分において信号を出力する第1比較過程と、
緑色信号受光過程で得られる緑色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第2比較過程と、
赤色信号受光過程で得られる赤色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第3比較過程と、
透過信号受光過程で得られる透過光量値と所定値とを比較して該透過光量値が所定値よりも暗い光量値である場合に、前記原料玄米がしらた粒であるとの信号を出力する第4比較過程と、
第1比較過程で得られる青未熟粒区分を示す信号がなく且つ第2比較過程と第3比較過程及び第4比較過程のいずれかの出力信号によって排除信号を出力する排除信号出力過程と、を備えることを特徴とする玄米色彩選別方法。
The fluorescent lamp or a halogen lamp as a light source for illumination by the illumination light source, the visible light receiving portion and the near-infrared light receiving portion, from the raw material brown rice that has been irradiated from the front and rear,
Green light receiving process for receiving diffused light in the green wavelength range,
A red light receiving process for receiving diffused light in the red wavelength range;
Transmitted light receiving process for receiving transmitted light in the near-infrared wavelength range, which is a wavelength range other than the green wavelength range and the red wavelength range,
A calculation process for calculating a ratio of the red light quantity value / the green light quantity value from the green light quantity value obtained in the green signal light receiving process and the red light quantity value obtained in the red signal receiving process;
A predetermined value for classifying the ratio of the light quantity value calculated in the calculation process into the blue immature grain classification and the other;
A first comparison process of comparing the ratio with one of the sections and outputting a signal in either section;
A second comparison step of comparing the light amount value in the green wavelength region obtained in the green signal light receiving step with a predetermined value and outputting a signal when the light amount value is darker than the predetermined value;
A third comparison step of comparing the light amount value in the red wavelength region obtained in the red signal light receiving step with a predetermined value and outputting a signal when the light amount value is darker than the predetermined value;
The transmitted light amount value obtained in the process of receiving the transmitted signal is compared with a predetermined value, and when the transmitted light amount value is a light amount value darker than the predetermined value , a signal indicating that the raw brown rice is a grain is output. The fourth comparison process;
An exclusion signal output process in which there is no signal indicating the blue immature grain classification obtained in the first comparison process, and an exclusion signal is output by an output signal of any of the second comparison process, the third comparison process, and the fourth comparison process, A brown rice color selection method characterized by comprising:
蛍光灯やハロゲンランプを照明用光源とし、前記照明用光源により、可視光受光部及び近赤外光受光部に対して、前方及び後方から照射された原料玄米からの、
緑色波長域の拡散光を受光する緑色光受光過程と、
赤色波長域の拡散光を受光する赤色光受光過程と、
原料玄米から緑色波長域と赤色波長域以外の波長域である近赤外波長域の透過光量を受光する透過光受光過程と、
緑色信号受光過程で得られる緑色光量値と赤色信号受光過程で得られる赤色光量値とから、赤色光量値/緑色光量値の比を演算する演算過程と、
演算過程で演算された光量値の比を青未熟粒区分とそれ以外に区分するための所定値と、
前記比とを比較していずれか一方に区分し、いずれか一方の区分において信号を出力する第1比較過程と、
緑色信号受光過程で得られる緑色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第2比較過程と、
赤色信号受光過程で得られる赤色波長域の光量値と所定値とを比較して該光量値が所定値よりも暗い光量値である場合に信号を出力する第3比較過程と、
透過信号受光過程で得られる透過光量値と所定値とを比較して該透過光量値が所定値よりも暗い光量値である場合に、前記原料玄米がしらた粒であるとの信号を出力する第4比較過程と、
第1比較過程で得られる青未熟粒区分を示す信号がなく且つ第2比較過程と第3比較過程のいずれかの出力信号によって判別信号を出力すると共に、該判別信号と第4比較過程のいずれかの出力信号によって排除信号を出力する排除信号出力過程と、を備えることを特徴とする玄米色彩選別方法。
The fluorescent lamp or a halogen lamp as a light source for illumination by the illumination light source, the visible light receiving portion and the near-infrared light receiving portion, from the raw material brown rice that has been irradiated from the front and rear,
Green light receiving process for receiving diffused light in the green wavelength range,
A red light receiving process for receiving diffused light in the red wavelength range;
A transmitted light receiving process for receiving the transmitted light amount in the near infrared wavelength range, which is a wavelength range other than the green wavelength range and the red wavelength range, from the raw brown rice,
A calculation process for calculating a ratio of the red light quantity value / the green light quantity value from the green light quantity value obtained in the green signal light receiving process and the red light quantity value obtained in the red signal receiving process;
A predetermined value for classifying the ratio of the light quantity value calculated in the calculation process into the blue immature grain classification and the other;
A first comparison process of comparing the ratio with one of the sections and outputting a signal in either section;
A second comparison step of comparing the light amount value in the green wavelength region obtained in the green signal light receiving step with a predetermined value and outputting a signal when the light amount value is darker than the predetermined value;
A third comparison step of comparing the light amount value in the red wavelength region obtained in the red signal light receiving step with a predetermined value and outputting a signal when the light amount value is darker than the predetermined value;
The transmitted light amount value obtained in the process of receiving the transmitted signal is compared with a predetermined value, and when the transmitted light amount value is a light amount value darker than the predetermined value , a signal indicating that the raw brown rice is a grain is output. The fourth comparison process;
There is no signal indicating the blue immature grain classification obtained in the first comparison process, and the discrimination signal is output by the output signal of either the second comparison process or the third comparison process, and any of the discrimination signal and the fourth comparison process is output. And a rejection signal output process for outputting an exclusion signal according to the output signal.
蛍光灯やハロゲンランプの照明用光源を配設し、該照明用光源により、可視光受光部及び近赤外光受光部に対して、移送されるまたは流下する原料玄米に前方及び後方から光を照射する照射手段と、
前記照射手段によって原料玄米に照射された光の、原料玄米からの緑色波長域の拡散光を受光する緑色受光センサと、
前記照射手段によって原料玄米に照射された光の、原料玄米からの赤色波長域の拡散光を受光する赤色受光センサと、
原料玄米から緑色波長域と赤色波長域以外の波長域である近赤外波長域の透過光を受光する透過光受光センサと、を備える受光手段と、
緑色受光センサが受光した緑色光量値と赤色受光センサが受光した赤色光量値とが入力され、赤色光量値/緑色光量値の比を演算する演算手段と、
演算された前記光量値の比が入力され、青未熟粒区分とそれ以外に区分するための所定値と前記比とを比較していずれか一方に区分し、いずれか一方の区分において信号を出力する第1比較部と、
緑色受光センサが受光した緑色光量値が入力され、該緑色光量値と所定値とを比較し、該緑色光量値が所定値よりも暗い光量値である場合に信号を出力する第2比較部と、
赤色受光センサが受光した赤色光量値が入力され、該赤色光量値と所定値とを比較し、該赤色光量値が所定値よりも暗い光量値である場合に信号を出力する第3比較部と、
透過光受光センサが受光した透過光量値が入力され、該透過光量値と所定値とを比較して該透過光量値が所定値よりも暗い光量値である場合に、前記原料玄米がしらた粒であるとの信号を出力する第4比較部と、
を備える比較手段と、
第1比較部と第2比較部と第3比較部及び第4比較部の出力信号が入力され、第1比較部から青未熟粒区分を示す信号がなく且つ第2比較部と第3比較部及び第4比較部のいずれかの信号の入力によって排除信号を出力する判別手段と、判別部の出力信号が入力され、該入力信号によって穀粒を排除する排除手段と、を備えることを特徴とする玄米色彩選別装置。
Disposed the illumination light source of a fluorescent lamp or a halogen lamp, the light by the illuminating light source, the visible light receiving portion and the near-infrared light receiving section, from the front and rear in the raw brown rice to transported by or flows down Irradiating means for irradiating
A green light receiving sensor for receiving diffused light in a green wavelength region from the raw brown rice of the light irradiated to the raw brown rice by the irradiation means;
A red light receiving sensor for receiving diffused light in the red wavelength region from the raw brown rice, the light irradiated to the raw brown rice by the irradiation means;
A light receiving means comprising a transmitted light receiving sensor that receives transmitted light in a near infrared wavelength range that is a wavelength range other than the green wavelength range and the red wavelength range from the raw brown rice,
A calculation means for inputting a green light quantity value received by the green light receiving sensor and a red light quantity value received by the red light receiving sensor and calculating a ratio of the red light quantity value / the green light quantity value;
The calculated ratio of the light quantity value is input, and the ratio is compared with a predetermined value for classifying the green immature grain category and other categories, and a signal is output in either category. A first comparison unit that
A second comparison unit that receives a green light amount value received by the green light receiving sensor, compares the green light amount value with a predetermined value, and outputs a signal when the green light amount value is darker than the predetermined value; ,
A third comparison unit that receives a red light quantity value received by the red light receiving sensor, compares the red light quantity value with a predetermined value, and outputs a signal when the red light quantity value is darker than the predetermined value; ,
Transmitted light quantity value transmitted light receiving sensor has received is input, when the transparent over-light value by comparing the translucent over-light value and the predetermined value is a dark light quantity value than the predetermined value, the raw brown rice sapwood grains A fourth comparison unit that outputs a signal indicating that
A comparison means comprising:
Output signals of the first comparison unit, the second comparison unit, the third comparison unit, and the fourth comparison unit are input, and there is no signal indicating the blue immature grain classification from the first comparison unit, and the second comparison unit and the third comparison unit And a discriminating means for outputting an exclusion signal upon input of any one of the signals of the fourth comparison section, and an exclusion means for receiving the output signal of the discrimination section and rejecting the grain by the input signal. Brown rice color sorting device.
蛍光灯やハロゲンランプの照明用光源を配設し、該照明用光源により、可視光受光部及び近赤外光受光部に対して、移送されるまたは流下する原料玄米に前方及び後方から光を照射する照射手段と、
前記照射手段によって原料玄米に照射された光の、原料玄米からの緑色波長域の拡散光を受光する緑色受光センサと、
前記照射手段によって原料玄米に照射された光の、原料玄米からの赤色波長域の拡散光を受光する赤色受光センサと、
原料玄米から緑色波長域と赤色波長域以外の波長域である近赤外波長域の透過光を受光する透過光受光センサと、
を備える受光手段と、
緑色受光センサが受光した緑色光量値と赤色受光センサが受光した赤色光量値とが入力され、赤色光量値/緑色光量値の比を演算する演算手段と、
演算された前記光量値の比が入力され、青未熟粒区分とそれ以外に区分するための所定値と前記比とを比較していずれか一方に区分し、いずれか一方の区分において信号を出力する第1比較部と、
緑色受光センサが受光した緑色光量値が入力され、該緑色光量値と所定値とを比較し、該緑色光量値が所定値よりも暗い光量値である場合に信号を出力する第2比較部と、
赤色受光センサが受光した赤色光量値が入力され、該赤色光量値と所定値とを比較し、該赤色光量値が所定値よりも暗い光量値である場合に信号を出力する第3比較部と、
透過光受光センサが受光した透過光量値が入力され、該透過光量値と所定値とを比較して該透過光量値が所定値よりも暗い光量値である場合に、前記原料玄米がしらた粒であるとの信号を出力する第4比較部と、
を備える比較手段と、
第1比較部と第2比較部と第3比較部及び第4比較部の出力信号が入力され、第1比較部から青未熟粒区分を示す信号がなく且つ第2比較部と第3比較部のいずれかの信号の入力によって判別信号を出力すると共に、該判別信号と第4比較部のいずれかの信号の入力により排除信号を出力する判別手段と、判別部の出力信号が入力され、該入力信号によって穀粒を排除する排除手段と、を備えることを特徴とする玄米色彩選別装置。
Disposed the illumination light source of a fluorescent lamp or a halogen lamp, the light by the illuminating light source, the visible light receiving portion and the near-infrared light receiving section, from the front and rear in the raw brown rice to transported by or flows down Irradiating means for irradiating
A green light receiving sensor for receiving diffused light in a green wavelength region from the raw brown rice of the light irradiated to the raw brown rice by the irradiation means;
A red light receiving sensor for receiving diffused light in the red wavelength region from the raw brown rice, the light irradiated to the raw brown rice by the irradiation means;
A transmitted light receiving sensor that receives transmitted light in the near-infrared wavelength region that is a wavelength region other than the green wavelength region and the red wavelength region from the raw brown rice,
A light receiving means comprising:
A calculation means for inputting a green light quantity value received by the green light receiving sensor and a red light quantity value received by the red light receiving sensor and calculating a ratio of the red light quantity value / the green light quantity value;
The calculated ratio of the light quantity value is input, and the ratio is compared with a predetermined value for classifying the green immature grain category and other categories, and a signal is output in either category. A first comparison unit that
A second comparison unit that receives a green light amount value received by the green light receiving sensor, compares the green light amount value with a predetermined value, and outputs a signal when the green light amount value is darker than the predetermined value; ,
A third comparison unit that receives a red light quantity value received by the red light receiving sensor, compares the red light quantity value with a predetermined value, and outputs a signal when the red light quantity value is darker than the predetermined value; ,
Transmitted light quantity value transmitted light receiving sensor has received is input, when the transparent over-light value by comparing the translucent over-light value and the predetermined value is a dark light quantity value than the predetermined value, the raw brown rice sapwood grains A fourth comparison unit that outputs a signal indicating that
A comparison means comprising:
Output signals of the first comparison unit, the second comparison unit, the third comparison unit, and the fourth comparison unit are input, and there is no signal indicating the blue immature grain classification from the first comparison unit, and the second comparison unit and the third comparison unit A discrimination signal is output by inputting any one of the signals, a discrimination means for outputting a discrimination signal by inputting the discrimination signal and any signal of the fourth comparison unit, and an output signal of the discrimination unit is input, A brown rice color sorting device comprising: exclusion means for eliminating grains by an input signal.
1光軸を分光するダイクロイックミラーに対して緑色受光センサと赤色受光センサとを配置し、分光された光のそれぞれを緑色受光センサと赤色受光センサによって受光することを特徴とする請求項3又は4に記載の玄米色彩選別装置。5. A green light receiving sensor and a red light receiving sensor are arranged with respect to a dichroic mirror that splits one optical axis, and each of the separated light is received by the green light receiving sensor and the red light receiving sensor. Brown rice color sorter described in 1.
JP2000179348A 2000-06-15 2000-06-15 Brown rice color sorting method and brown rice color sorting device Expired - Fee Related JP4674390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179348A JP4674390B2 (en) 2000-06-15 2000-06-15 Brown rice color sorting method and brown rice color sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179348A JP4674390B2 (en) 2000-06-15 2000-06-15 Brown rice color sorting method and brown rice color sorting device

Publications (2)

Publication Number Publication Date
JP2001356051A JP2001356051A (en) 2001-12-26
JP4674390B2 true JP4674390B2 (en) 2011-04-20

Family

ID=18680636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179348A Expired - Fee Related JP4674390B2 (en) 2000-06-15 2000-06-15 Brown rice color sorting method and brown rice color sorting device

Country Status (1)

Country Link
JP (1) JP4674390B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156447A (en) 2001-11-19 2003-05-30 Yamamoto Co Ltd Color classifier
CN102393396B (en) * 2011-08-09 2014-04-09 中国农业大学 Method and system for automatically screening cotton seeds
JP7318397B2 (en) * 2019-07-30 2023-08-01 株式会社サタケ Paddy discriminator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157936A (en) * 1998-11-27 2000-06-13 Satake Eng Co Ltd Granular material sorting method and granular material sorting device
JP2001347231A (en) * 2000-06-05 2001-12-18 Satake Corp Method for distinguishing color of unpolished rice and unpolished rice color distinguishing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157936A (en) * 1998-11-27 2000-06-13 Satake Eng Co Ltd Granular material sorting method and granular material sorting device
JP2001347231A (en) * 2000-06-05 2001-12-18 Satake Corp Method for distinguishing color of unpolished rice and unpolished rice color distinguishing apparatus

Also Published As

Publication number Publication date
JP2001356051A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
AU699694B2 (en) Color sorting apparatus for grains
US5538142A (en) Sorting apparatus
US5638961A (en) Cereal grain color sorting apparatus
US4699273A (en) Sorting machine
JP2010042326A (en) Optical cereal grain sorting apparatus
US5487472A (en) Color sorter for sorting out moldy pulse
KR19980081516A (en) Granular Color Sorter
JP2008302314A (en) Optical rice grain sorter
RU2403100C2 (en) Sorter to grade grain to colour
WO2020116096A1 (en) Optical sorter
US5353937A (en) Automatic variable ejector delay time and dwell type mechanism in a sorting apparatus
JP4674390B2 (en) Brown rice color sorting method and brown rice color sorting device
JPH11621A (en) Method for selecting/sorting grain by color and selecting/ sorting device
JP4465816B2 (en) Brown rice color sorting method and brown rice color sorting device
KR101955426B1 (en) Color sorter with grading function
JPH11337495A (en) Grain color sorting method and apparatus
JP2001300434A (en) Apparatus for distinguishing granular material
JPH0114829B2 (en)
JP2005028302A (en) Color sorting machine for wheat
CN114245759B (en) Rice distinguishing machine
JPS60242324A (en) Color sorting device
JPH11237341A (en) Granular article color selection method
JPH0824899B2 (en) Sensitivity adjustment device for grain color sorter
JP3015871U (en) Sorter
JPH10267854A (en) Multilayer reflecting background for optical selector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees