JP4671480B2 - Optical mounting substrate manufacturing method and optical module manufacturing method - Google Patents

Optical mounting substrate manufacturing method and optical module manufacturing method Download PDF

Info

Publication number
JP4671480B2
JP4671480B2 JP2000266082A JP2000266082A JP4671480B2 JP 4671480 B2 JP4671480 B2 JP 4671480B2 JP 2000266082 A JP2000266082 A JP 2000266082A JP 2000266082 A JP2000266082 A JP 2000266082A JP 4671480 B2 JP4671480 B2 JP 4671480B2
Authority
JP
Japan
Prior art keywords
mounting
optical
semiconductor element
optical semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000266082A
Other languages
Japanese (ja)
Other versions
JP2002076498A (en
Inventor
真人 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000266082A priority Critical patent/JP4671480B2/en
Publication of JP2002076498A publication Critical patent/JP2002076498A/en
Application granted granted Critical
Publication of JP4671480B2 publication Critical patent/JP4671480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,基板上に光ファイバ、光導波路等の光導波体、及び発光素子や受光素子等の光半導体素子を配置して、これら光部品を精度よく光学的に結合させることが可能で通信及び計測等の分野で使用される、光デバイス用の光実装基板及びそれを用いた光モジュールに関する。
【0002】
【従来の技術】
近年、CATVや公衆通信の分野において、光ファイバー通信の実用化がはじまっている。シリコン基板を用いた光実装基板(パッケージ内に載置されるサブマウント、Siプラットフォームともいう)上で、光半導体素子とファイバとを機械的精度のみで高精度に位置決め実装する技術を用いた光モジュールが盛んに開発されている。
【0003】
レーザーダイオードまたはフォトダイオード等の光半導体素子を光ファイバと結合させたとき、光半導体素子と光ファイバの中心(コア)が、水平及び垂直方向に±1.0μmの精度で一直線に整列させなければ、光半導体素子から発生した光を損失なく光ファイバに伝送させることができない。
【0004】
光半導体素子と光ファイバを精密に整列させるために、光ファイバを実装させるためのV溝と、光半導体素子を搭載するためのソルダバンプ(ハンダバンプ)が形成された光実装基板が使用されている。
【0005】
光実装基板を利用して光ファイバと光半導体素子を自己整列させる方法は、精密な寸法制御が可能なV溝をもつシリコン基板に、光ファイバを搭載して、光半導体素子の発光部をソルダバンプを利用して光ファイバの中心と一致するように実装する。この方法は光半導体素子と光ファイバが、垂直及び水平方向に各々±1μm程度の少ない誤差で整列されるので、良好な光結合効率を得ることができる。
【0006】
図7及び図8に示すように、従来の光ファイバ38と光半導体素子37を自己整列させる光実装基板SSは、表面に絶縁膜32を形成したシリコン基板31上の所定部分に、真空蒸着及びフォトエッチング方法により金属パッド33が形成され、異方性エッチング方法により断面V字状のV溝36が形成される。
【0007】
この詳細な製造方法は、図8に示すように、シリコン基板31の表面に第1絶縁膜32を形成し、第1絶縁膜32の上部に所定間隔だけ離して、1対の金属パッド33を形成する工程と、第1の絶縁膜32と1対の金属パッド33の上部に、第2絶縁膜34を形成する工程と、第2絶縁膜34の上に、1対の金属パッド33のそれぞれに対応する1対の第2開口部、及び1対の第2開口部の中間に、両第2開口部を結ぶ方向と直交し、かつ上記シリコン基板31の表面と平行な方向に沿って、一方の端が両第2開口部と重畳されず、他端が上記シリコン基板31の側端面まで延長される、第1開口部を持つ感光膜(不図示)を形成する工程と、感光膜(不図示)をマスクに使って、第1及び第2開口部により露出した第1絶縁膜32及び第2絶縁膜34を除去して、シリコン基板31及び金属パッド33の表面を露出させる工程と、感光膜(不図示)を除去して第1絶縁膜32及び第2絶縁膜34をエッチングマスクに利用してシリコン基板31の露出された部分にV溝36を形成する工程と、金属パッド33の上部にソルダバンプ35を形成する工程とを具備する。
【0008】
このとき、第2開口部は対応する金属パッド33の表面積よりも小さい開口面積を備え、その中心が対応する金属パット33表面上の中心位置と一致する位置に形成されている。
【0009】
【発明が解決しようとする課題】
しかしながら、図7及び図8に示すように、従来の製造方法では上述の通り、基板上の絶縁膜構造は2層構造となり、加えてソルダバンプ35のはみ出しを防止するために、導体である金属パッド33上に第2絶縁膜34を形成する必要があった。
【0010】
そのため、金属パッド33の上部に形成された第2絶縁膜34は、金属パッド33の表面もしくは第1絶縁膜32との密着性に問題があり、膜界面より剥離を生じるという問題があった。絶縁膜の剥離が生じるとソルダバンプ35が金属パッド33よりはみ出してしまい、他の金属部分と接触してショートを生じさせたり、また光半導体素子37の搭載位置がずれる等して、光半導体素子37と光ファイバ38の間の光結合効率が低下するという問題点があった。
【0011】
そこで本発明の目的は、絶縁膜の剥離を発生させることがなく、ソルダバンプのはみ出しの発生を防止して、光半導体素子と光ファイバの光結合効率を向上し得る、自己整列型の光実装基板の製造方法および光モジュールの製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の問題を解決するために本発明の光実装基板の製造方法は、基板上に、光導波体を配設するための搭載用溝と、前記光導波体に光接続させる光半導体素子を配設する、単層から成る絶縁膜の凹部内に導体層及びハンダ層が順次積層されて成る搭載用導体を形成し、前記搭載用溝を形成するマスクと、前記凹部を形成するマスクとを同一として前記凹部を前記搭載溝に対し位置合わせして形成する光実装基板の製造方法であって、前記基板上面に前記絶縁膜を形成し、前記絶縁膜上に第1搭載用溝パターンの開口部および実装用マーカー兼光半導体素子搭載用導体パターンの開口部をもつ感光膜を形成する工程と、該感光膜をマスクとして用いて、前記第1搭載用溝パターンの開口部および前記実装用マーカー兼光半導体素子搭載用導体パターンの開口部により露出した領域の前記絶縁膜を前記基板表面が露出しないように除去する工程と、前工程の前記感光膜を除去した後、前記実装用マーカー兼光半導体素子搭載用導体パターンの加工部に、前記搭載用導体を形成するための開口部をもつ感光膜を形成する工程と、前記実装用マーカー兼光半導体素子搭載用導体パターンの加工部の少なくとも1つの側面を斜面とするためのエッチング工程と、前記実装用マーカー兼光半導体素子搭載用導体パターンの加工部に前記導体層を形成する工程と、前工程の前記感光膜を除去した後、前記第1搭載用溝パターンの加工部に第2搭載用溝パターンの開口部をもつ感光膜を形成する工程と、該感光膜をマスクとして用いて、前記第2搭載用溝パターンの開口部により露出した領域の前記絶縁膜を前記基板表面が露出するように除去する工程と、前工程の前記感光膜を除去した後、前記基板表面が露出した領域に前記搭載用溝を形成する工程と、前記導体層上に前記ハンダ層であるソルダバンプを形成するための開口部をもつ感光膜を形成する工程と、該感光膜をマスクとして用いて、前記導体層上に前記ソルダバンプを形成する工程と、前記基板表面の前記感光膜をすべて除去した後、光導波体ストッパー矩形溝を形成する工程とを有することを特徴とする
【0013】
また、本発明の光モジュールの製造方法は、上記光実装基板の製造方法によって得られた光実装基板の前記搭載用溝に前記光導波体を配設する工程と、前記搭載用導体上に前記光導波体に光接続させる前記光半導体素子を配設する工程とを有することを特徴とする
【0016】
【発明の実施の形態】
以下に、本発明の実施形態について模式的に図示した図面に基づき詳細に説明する。
【0017】
図1及び図2に示すように、本発明による光実装基板Sは、基板1上に、光導波体を配設するための搭載用溝11と、光導波体に光接続させる光半導体素子である半導体レーザー等の発光素子16、及び発光素子16の出射光をモニターするフォトダイオード等の受光素子15を配設するための搭載用導体を形成したものであり、この搭載用導体は、搭載用溝11に対し正確に位置合わせ形成された単層から成る絶縁膜2の凹部2a内に、導体層8及びハンダ層12が順次積層されて成る。
【0018】
ここで、図2に示すように、凹部2aには傾斜面2bが形成されており、導体層8は凹部2aの一方側に形成された傾斜面2bに形成された導体パターン21を介して絶縁膜2の凹部2aの底面より高い表面に形成された配線パターン14aに接続されている。なお、図1に示す配線パターン14bについても同様である。また、導体層8の表面が配線パターンが形成される絶縁膜2の表面より低いので、ハンダを凹部2a内充填する際に、この導体層8上に配設するハンダ層12を凹部2aの外へはみ出させないようにしている。
【0019】
また、本発明の光モジュールは、上記光実装基板Sの搭載用溝に光導波体である例えば光ファイバ18を、搭載用導体上に光ファイバ18に光接続させる発光素子16、及び受光素子17を配設して成る。
【0020】
上記構成についてさらに詳細に説明する。光実装基板Sは、シリコン単結晶等の異方性エッチングが可能な、所定方位を主面とする基板1上に、化学気相蒸着法または熱酸化法にて成膜された酸化膜や窒化膜等から成る単層の絶縁膜2と、光導波体である光ファイバ18を配設させるためにエッチング加工により形成された搭載用溝11と、この搭載用溝11に対し位置決めされた実装用マーカーとを兼ねた光半導体素子16、17を配設させるための下部導体層8、及び配線14a、14b、15a、15bとその下部導体層8上の一部に配設された上部導体であるソルダバンプ(ハンダ層)12とが形成されて搭載用導体を形成している。なお、図中14は光半導体素子の裏面側電極にハンダ層12を介して接続される配線を、15は光半導体素子の表面側電極にボンディングワイヤ等を介して接続される配線をそれぞれ示す。
【0021】
そして、搭載用溝11に対し位置決めされた実装用マーカーとを兼ねた光半導体素子16、17を配設させるための下部導体層8は、基板面より上方に位置しかつ絶縁膜2の一主面より一定深さ深くなるように加工された領域7a、7b上に形成されているとともに、下部導体層8上に光半導体素子16、17を搭載させるためのソルダバンプ12が形成されている。
【0022】
光半導体素子16、17を駆動させる配線14a、14b、15a、15bが形成される単層の絶縁膜の一主面は、光半導体素子16、17を配設するための下部導体層8の形成される領域から少なくとも下部導体層8の厚みよりも高くなっている。
【0023】
図2に示すように、基板面より上方に位置しかつこの光半導体素子16、17を配設するための下部導体層8が形成される領域7a、7bは、基板面より上方に位置し絶縁膜2の一主面から少なくとも下部導体層8の厚みよりも深くなるように加工されている。絶縁膜2の一主面から少なくとも下部導体層8の厚みよりも深くなるように加工された領域7a、7bは、0.8μm以上の深さに形成されている。この領域7a、7bが下部導体層8の厚みよりも深くなるように加工する理由は、加工領域7a、7bの深さが下部導体層8の厚みより浅い(深さが0.8μm以下の場合)と、ソルダバンプ12を形成後、光半導体素子16、17を搭載する際に、ソルダバンプ12が下部導体層8よりはみ出してしまい、ソルダバンプ12が他の配線と接触してしまうためである。一般的に、下部導体層8の厚みは0.3〜0.8μmで、ソルダバンプ12の厚みは0.2〜5.0μmであるため、加工領域7a、7bの深さは、好ましくは0.6〜6.0μmとし、より好ましくは1.0〜3.0μmとする。
【0024】
次に上記光実装基板Sの製造方法について説明する。
【0025】
図3(a)〜(i)に示すように、最初に基板1の上面にプラズマCVD法、スパッタ法等を用いて単層の絶縁膜2を成膜する。次に単層の絶縁膜2上に第1の搭載用溝パターンの開口部4及び光半導体素子搭載用導体パターンの開口部5a、5bを形成するために、感光膜3を塗布しフォトリソ工程によりそれぞれの開口部4、5a、5bを形成する。
【0026】
このとき、第1搭載用溝パターンの開口部4を形成するマスクと、光半導体素子の実装用マーカーを兼ねた、光半導体素子搭載用導体パターンの開口部5a、5bを形成するマスクは、同一のフォトマスクであり、このフォトマスクを用ることで、これらの領域の絶縁膜2を除去し、搭載用溝パターン加工部6と高精度に位置合わせされた実装用マーカー兼光半導体素子搭載用導体パターン加工部7a、7bを形成することができる。
【0027】
次に、単層の絶縁膜2上の実装用マーカー兼光半導体素子搭載用導体パターン加工部7a、7bに、光半導体素子搭載用導体を形成するために感光膜3を塗布し、フォトリソ工程によりそれぞれの開口部9a、9bを形成する。このとき、実装用マーカー兼光半導体素子下部導体層8と接続した配線14a、14bを形成するために、光半導体素子搭載用導体パターン加工部7a、7bの少なくとも1つの側面部が斜面となるようにウエットエッチングを行う。
【0028】
そして、光半導体素子搭載用導体パターン加工部6の単層の絶縁膜2の表面を露出させ、その絶縁膜表面に電子ビーム蒸着法やスパッタ法等を用いて、実装用マーカー兼光半導体素子下部導体層8及び配線14a、14b、15a、15bを成膜する。さらに、搭載用溝パターン加工部6に第2の搭載用溝パターンの開口部10を形成するために感光膜3を塗布し、フォトリソ工程により開口部10を形成する。
【0029】
そして、開口部10を形成し基板表面を露出させて、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ溶液による異方性エッチングを行い、導波体搭載用溝11を精度良く形成する。
【0030】
さらに、光半導体素子搭載用導体パターン加工部6に形成された実装用マーカー兼光半導体素子下部導体層8、及び光導波体搭載用溝11の形成された基板1上に感光膜3を塗布し、その後、フォトリソ工程により実装用マーカー兼光半導体素子下部導体層8上に、ソルダバンプ形成用開口部12a、12bを形成する。そして、電子ビーム蒸着法やスパッタ法等を用いてソルダバンプ12を形成する。最後に、基板表面の感光膜3をすべて除去した後、光導波体ストッパー矩形溝13を形成する。
【0031】
次に、本発明の光モジュールについて説明する。光モジュールは、上記製造方法にて得られた光実装基板Sの搭載用溝11に光導波体である光ファイバ18を、単層の絶縁膜2上に形成された搭載用導体である実装用マーカー兼光半導体素子下部導体層8上のソルダバンプ12を介して、発光素子16、受光素子17をそれぞれ配設し、さらに、これら光半導体素子16、17をボンディングワイヤにより基板表面に形成された絶縁膜2上の配線15a、15bに接続させ、光半導体素子16と光ファイバ18の端部との光結合を可能としている。
【0032】
このようにして、光導波体と光半導体素子を光結合させるための光実装基板にて、単層の絶縁膜を基板表面に形成し、かつ光半導体素子搭載用導体とソルダバンプの形成領域を、基板面より高く、単層の絶縁膜に形成された搭載用導体の表面より低くすることにより、絶縁膜の剥離を生じさせず、かつ単層の絶縁膜で形成された段差により溶融したソルダバンプが他の領域へはみ出すことを防止できる。
【0033】
また、光導波体搭載用の搭載用溝と実装用マーカー兼光半導体素子搭載用導体については、搭載用溝パターンの開口部を形成するマスクと、光半導体素子の実装用マーカーを兼ねた光半導体素子搭載用導体パターンを形成するマスクは同一であり、つまりそれぞれのパターンは同一マスク上にあり、これを用いて形成された光導波体搭載用溝と実装用マーカー兼光半導体素子搭載用導体は相対位置ずれがなく、光半導体素子と光導波体を高精度に実装できる。これにより、光実装基板の搭載用溝に光導波体を、搭載用導体上に光導波体に光接続させる光半導体素子を配設して成る、光結合効率の優れた光モジュール及びそれを構成する光実装基板を提供することができる。
【0034】
【実施例】
以下に、本発明による光実装基板をより具体化した実施例について説明する。
<実施例1>
まず、図3(a)に示すように、シリコン単結晶からなる基板上にスパッタ法で絶縁膜となるシリコン酸化膜2を3.5μmの厚さで成膜し、次に、シリコン酸化膜2上に感光膜3を塗布し、第1搭載用溝パターンと光半導体素子の実装用マーカーを兼ねた光半導体素子搭載用導体パターンとが描画されたマスクを用いてフォトリソグラフィーにて行い、それぞれの開口部4、5a、5bを形成した。
【0035】
そして、図3(b)に示すように、バッファふっ酸を用いたウエットエッチングにより、開口部4、5a、5bにより露出したシリコン酸化膜2を除去し、それぞれ3.0μmの深さを有する第1搭載用溝パターン加工部6と高精度に位置合わせされた実装用マーカー兼光半導体素子搭載用導体パターン加工部7a、7bを形成した。
【0036】
次に、図3(c)に示すように、複数の加工部を有するシリコン酸化膜2上に感光膜3を塗布し、光半導体素子の実装用マーカーを兼ねた光半導体素子搭載用導体パターン、及び駆動用導体パターンが描画されたマスクを用いてフォトリソグラフィーに行い、開口部9a、9bを形成して光半導体素子搭載用導体パターン加工部6の絶縁膜2の表面を露出させ、その絶縁膜表面に電子ビーム蒸着法を用いて、実装用マーカー兼光半導体素子下部導体層8及び配線14a、14b、15a、15bを、下層/上層の順でTi/Pt/Auを0.1μm/0.2μm/0.5μmにて成膜した。
【0037】
さらに、図3(d)、(e)に示すように、複数の加工部と実装用マーカー兼光半導体素子下部導体層8、及び配線14a、14b、15a、15bを有するシリコン酸化膜2上に感光膜3を塗布し、第2の搭載用溝パターンが描画されたマスクを用いてフォトリソグラフィーにて行い、開口部10を形成しシリコン基板表面を露出させて、基板上の感光膜3をすべて除去した後、図3(f)に示すように、シリコン基板上のパターンをKOH(濃度43重量%、温度63.5℃)を用いた異方性エッチングで行い、シリコン基板上に導波体搭載用溝11を形成した。
【0038】
次に、図3(g)に示すように、実装用マーカー兼光半導体素子下部導体層8及び導波体搭載用溝11の形成された基板1上に感光膜3を塗布し、光半導体素子搭載用導体上に形成されるソルダバンプパターンが描画されたマスクを用いてフォトリソグラフィーに行い、開口部12a、12bを形成して光半導体素子搭載用導体の表面を露出させ、その導体表面に電子ビーム蒸着法を用いてソルダバンプ12(重量比Au:Sn=70:30、厚み2μm)を形成する。
【0039】
最後に、図3(h)、(i)に示すように、基板表面の感光膜3をすべて除去した後、光導波体ストッパー矩形溝13をダイシング等により機械加工して形成し、切断を行なった。
【0040】
これにより、光導波体と光半導体素子の実装部において、単層の絶縁膜を基板表面に形成し、かつ光半導体素子搭載用導体とソルダバンプの形成領域を、基板面より高く、単層の絶縁膜に形成された搭載用導体の表面より低くすることにより、絶縁膜の剥離を生じさせず、かつ単層の絶縁膜で形成された段差により溶融したソルダバンプが他の領域へはみ出すことを防止できた。
【0041】
また、光導波体搭載用の搭載用溝と実装用マーカー兼光半導体素子搭載用導体については、それぞれのパターンが同一マスク上にあり、これを用いて形成された光導波体搭載用搭載用溝と実装用マーカー兼光半導体素子搭載用導体は相対位置ずれがなく、光半導体素子と光導波体を高精度に実装でき、これにより、光結合効率の優れた光モジュールを構成するための光実装基板ができた。
<実施例2>
以下に、本発明による光半導体実装用基板の他の実施例について説明する。
【0042】
まず、図6(a)に示すように、シリコン単結晶からなる基板上にプラズマCVD法で絶縁膜となるシリコン窒化膜2を5μmの厚さで成膜した。次に、シリコン窒化膜2上に感光膜3を塗布し、第1搭載用溝パターンと光半導体素子の実装用マーカーを兼ねた光半導体素子搭載用導体パターンとが描画されたマスクを用いてフォトリソグラフィーにて行いそれぞれの開口部4、5a、5bを形成した。
【0043】
そして、図6(b)に示すように、バッファふっ窒を用いたウエットエッチングにより開口部4、5a、5bにより露出したシリコン窒化膜2を除去し、それぞれ3.1μmの深さを有する第1搭載用溝パターン加工部6と高精度に位置合わせされた実装用マーカー兼光半導体素子搭載用導体パターン加工部7a、7bを形成した。
【0044】
次に、図6(c)に示すように、複数の加工部を有するシリコン窒化膜2上に感光膜3を塗布し、光半導体素子の実装用マーカーを兼ねた光半導体素子搭載用導体パターン、及び駆動用導体パターンが描画されたマスクを用いてフォトリソグラフィーに行い、開口部9a、9bを形成して光半導体素子搭載用導体パターン加工部6の絶縁膜2の表面を露出させ、その絶縁膜表面に抵抗加熱蒸着法を用いて、実装用マーカー兼光半導体素子下部導体層8及び配線14a、14b、15a、15bを下層/上層の順でCr/Auを0.1μm/0.5μmにて成膜した。
【0045】
さらに、図6(d)、(e)に示すように、複数の加工部と実装用マーカー兼光半導体素子下部導体層8、及び配線14a、14b、15a、15bを有するシリコン窒化膜2上に感光膜3を塗布し、第2の搭載用溝パターンが描画されたマスクを用いてフォトリソグラフィーにて行い、開口部10を形成しシリコン基板表面を露出させて、基板上の感光膜3をすべて除去した後、図5(f)に示すように、シリコン基板上のパターンを水酸化テトラメチルアンモニウム(TMAH)を用いた異方性エッチングで行い、シリコン基板上に導波体搭載用溝11を形成した。
【0046】
次に、図6(g)に示すように、実装用マーカー兼光半導体素子下部導体層8及び導波体搭載用溝11の形成された基板1上に感光膜3を塗布し、光半導体素子搭載用導体上に形成されるソルダバンプパターンが描画されたマスクを用いてフォトリソグラフィーにて行い、開口部12a、12bを形成して光半導体素子搭載用導体の表面を露出させ、その導体表面に電子ビーム蒸着法を用いてソルダバンプ12(重量比Au:Sn=80:20、厚み2.5μm)を形成した。
【0047】
最後に、図6(h)、(i)に示すように、基板表面の感光膜3をすべて除去した後、光導波体ストッパー矩形溝13をダイシング等により機械加工して形成し、切断を行なった。これにより光結合効率の優れた光モジュールを構成するための光実装基板ができた。
<実施例3>
以下に、本発明による光実装基板を用いた光モジュールMの実施例について説明する。図4及び図5に示すように、光実装基板Sに光ファイバ18を配設させるためにエッチング加工により形成されたV溝11に光ファイバ18を搭載し、絶縁膜上に形成された搭載用導体上に形成されたソルダバンプ12を介して光半導体素子である発光素子16、及びモニター用受光素子17を実装用マーカー兼光半導体搭載用導体(不図示)を用いてアライメントしてそれぞれ配設し、さらに、これらの光半導体素子16、17をボンディングワイヤ(不図示)により駆動用導体15a、15bに接続させ、発光素子16と光ファイバ18との光結合を可能としている。なお、図中20はリードであり、外部電気回路に対し接続できるようにしている。
【0048】
このように、基板1上の実装用マーカー兼光半導体搭載用導体上のソルダバンプ12に、半導体レーザー素子等の光半導体素子16、17を搭載するだけで、精度良く光結合できる、いわゆるパッシブアライメントが実現された光モジュールMが完成される。なお、光モジュールMは蓋体(不図示)を被せて全体を樹脂モールドするか、もしくは蓋体を被せずに全体を樹脂モールドするような構成であっても良い。また、光半導体素子16、17は半導体レーザー素子の代わりに、LED素子やPD素子等の発光素子及び/又は受光素子を設けても良い。
【0049】
【発明の効果】
以上、詳述したように、本発明によれば、光導波体と光半導体素子を実装する光実装基板において、絶縁膜の剥離を生じさせず、かつ単層の絶縁膜で形成された凹部から溶融したハンダが他の領域へはみ出すことを防止できる。これにより、ハンダ層が他の金属部分と接触してショートするという不具合がなくなる。
【0050】
また、光導波体搭載用の搭載用溝と実装用マーカー兼光半導体素子搭載用導体については、搭載用溝パターンの開口部を形成するマスクと、光半導体素子の実装用マーカーを兼ねた光半導体素子搭載用導体パターンを形成するマスクは同一であり、つまりそれぞれのパターンは同一マスク上にあり、これを用いて形成された光導波体搭載用溝と実装用マーカー兼光半導体素子搭載用導体は相対位置ずれがなく、光半導体素子と光導波体を高精度に実装できる。これにより、光結合効率の優れた光モジュール、及びそれを構成するための光実装基板を提供できる。
【図面の簡単な説明】
【図1】本発明における光実装基板の一実施形態を模式的に示す上面図である。
【図2】図1におけるB−B線部分端面図である。
【図3】(a)〜(i)はそれぞれ本発明に係る光実装基板の製造工程の一例を説明する図であり、図1におけるA−A線部分端面図である。
【図4】本発明における光実装基板を用いた光モジュールの一実施形態を模式的に示す上面図である。
【図5】本発明における光実装基板を用いた光モジュールの一実施形態を模式的に示す側面図である。
【図6】(a)〜(i)はそれぞれ本発明に係る光実装基板の製造工程の他の例を説明する図であり、図1におけるA−A線部分端面図である。
【図7】従来の光実装基板の一実施形態を模式的に示す上面図である
【図8】従来の光実装基板の一実施形態を模式的に示す断面図である
【符号の説明】
1、31:基板
2:絶縁膜
3:感光膜
4:第1搭載用溝パターンの開口部
5a、5b:光半導体素子搭載用導体パターンの開口部
6:第1搭載用溝パターン加工部
7a、7b:光半導体素子搭載用導体パターン加工部
8、35:実装用マーカー兼光半導体素子搭載用下部導体層(導体層)
9a、9b:光半導体素子搭載用導体パターンの開口部
10:第2搭載用溝パターンの開口部
11、36:光導波体搭載用溝
12、35:光半導体素子搭載用ソルダバンプ(ハンダ層)
12a、12b:光半導体素子搭載用ソルダバンプパターンの開口部
13:光導波体ストッパー矩形溝
14a、14b、15a、15b:配線
16、17、37:光半導体素子
18、38:光導波体(光ファイバ)
19:光パッケージ
20:リード
32:第1絶縁膜
33:金属パッド
34:第2絶縁膜
S:光実装基板
SS:光実装基板
M:光モジュール
[0001]
BACKGROUND OF THE INVENTION
In the present invention, an optical waveguide such as an optical fiber and an optical waveguide, and an optical semiconductor element such as a light emitting element and a light receiving element can be arranged on a substrate, and these optical components can be optically coupled with high accuracy. The present invention also relates to an optical mounting substrate for optical devices and an optical module using the same, which are used in the field of measurement and the like.
[0002]
[Prior art]
In recent years, optical fiber communication has been put into practical use in the fields of CATV and public communication. Light using technology that positions and mounts optical semiconductor elements and fibers with high accuracy only on an optical mounting substrate using a silicon substrate (also called a submount or Si platform mounted in a package). Modules are actively developed.
[0003]
When an optical semiconductor element such as a laser diode or a photodiode is coupled to an optical fiber, the center (core) of the optical semiconductor element and the optical fiber must be aligned in a straight line with an accuracy of ± 1.0 μm in the horizontal and vertical directions. The light generated from the optical semiconductor element cannot be transmitted to the optical fiber without loss.
[0004]
In order to precisely align the optical semiconductor element and the optical fiber, an optical mounting substrate on which a V-groove for mounting the optical fiber and a solder bump (solder bump) for mounting the optical semiconductor element is used.
[0005]
The method of self-aligning an optical fiber and an optical semiconductor element using an optical mounting substrate is to mount an optical fiber on a silicon substrate having a V-groove capable of precise dimension control, and to solder bump the light emitting portion of the optical semiconductor element. To match the center of the optical fiber. In this method, since the optical semiconductor element and the optical fiber are aligned with a small error of about ± 1 μm in the vertical and horizontal directions, good optical coupling efficiency can be obtained.
[0006]
As shown in FIGS. 7 and 8, the conventional optical mounting substrate SS that self-aligns the optical fiber 38 and the optical semiconductor element 37 is vacuum-deposited and deposited on a predetermined portion on the silicon substrate 31 having an insulating film 32 formed on the surface. A metal pad 33 is formed by a photoetching method, and a V-shaped groove 36 having a V-shaped cross section is formed by an anisotropic etching method.
[0007]
In this detailed manufacturing method, as shown in FIG. 8, a first insulating film 32 is formed on the surface of a silicon substrate 31, and a pair of metal pads 33 are formed on the first insulating film 32 at a predetermined interval. A step of forming, a step of forming a second insulating film 34 on the first insulating film 32 and the pair of metal pads 33, and a pair of metal pads 33 on the second insulating film 34, respectively. Along the direction parallel to the surface of the silicon substrate 31 and perpendicular to the direction connecting the second openings in the middle between the pair of second openings and the pair of second openings, Forming a photosensitive film (not shown) having a first opening in which one end is not overlapped with both second openings and the other end is extended to the side end surface of the silicon substrate 31; (Not shown) as a mask, the first insulating film 32 and the second exposed through the first and second openings. The step of removing the edge film 34 to expose the surfaces of the silicon substrate 31 and the metal pad 33, and the removal of the photosensitive film (not shown) and using the first insulating film 32 and the second insulating film 34 as an etching mask. A step of forming a V-groove 36 in the exposed portion of the silicon substrate 31, and a step of forming a solder bump 35 on the metal pad 33.
[0008]
At this time, the second opening has an opening area smaller than the surface area of the corresponding metal pad 33, and the center thereof is formed at a position coincident with the center position on the surface of the corresponding metal pad 33.
[0009]
[Problems to be solved by the invention]
However, as shown in FIGS. 7 and 8, in the conventional manufacturing method, as described above, the insulating film structure on the substrate has a two-layer structure, and in addition, in order to prevent the solder bump 35 from protruding, a metal pad as a conductor is used. It was necessary to form the second insulating film 34 on 33.
[0010]
Therefore, the second insulating film 34 formed on the upper part of the metal pad 33 has a problem in adhesion to the surface of the metal pad 33 or the first insulating film 32, and has a problem that peeling occurs from the film interface. When the insulating film is peeled off, the solder bump 35 protrudes from the metal pad 33, contacts with other metal parts to cause a short circuit, or the mounting position of the optical semiconductor element 37 is shifted. The optical coupling efficiency between the optical fiber 38 and the optical fiber 38 is reduced.
[0011]
  Accordingly, an object of the present invention is to provide a self-aligned optical mounting substrate that does not cause separation of the insulating film, prevents the occurrence of solder bump protrusion, and improves the optical coupling efficiency between the optical semiconductor element and the optical fiber.PlankProduction methodandOptical moduleManufacturing methodIs to provide.
[0012]
[Means for Solving the Problems]
  To solve the above problem,Optical mounting substrate of the present inventionManufacturing methodHas a mounting groove for disposing an optical waveguide and an optical semiconductor element optically connected to the optical waveguide on the substrate.A conductor layer and a solder layer are sequentially laminated in a recess of a single layer insulating film.Mounting conductorWhenFormingThe mask for forming the mounting groove is the same as the mask for forming the recess, and the recess is aligned with the mounting groove.Optical mounting boardManufacturing methodBecauseForming the insulating film on the upper surface of the substrate, and forming a photosensitive film having an opening of a first mounting groove pattern and an opening of a mounting marker and optical semiconductor element mounting conductor pattern on the insulating film; Using the photosensitive film as a mask, the surface of the substrate is not exposed in the region exposed by the opening of the first mounting groove pattern and the opening of the mounting marker and optical semiconductor element mounting conductor pattern. After removing the photosensitive film in the removing step and the previous process, a photosensitive film having an opening for forming the mounting conductor is formed in a processed portion of the mounting marker and optical semiconductor element mounting conductor pattern. A step, an etching step for making at least one side surface of the processed portion of the conductor pattern for mounting marker and optical semiconductor element mounting into a slope, and the mounting marker function A step of forming the conductor layer in the processed portion of the semiconductor element mounting conductor pattern; and after removing the photosensitive film in the previous step, an opening of the second mounting groove pattern in the processed portion of the first mounting groove pattern And a step of removing the insulating film in the region exposed by the opening of the second mounting groove pattern so that the substrate surface is exposed using the photosensitive film as a mask. And a step of forming the mounting groove in a region where the substrate surface is exposed after removing the photosensitive film in the previous step, and an opening for forming a solder bump as the solder layer on the conductor layer Forming a photosensitive film; using the photosensitive film as a mask; forming the solder bump on the conductor layer; and removing all the photosensitive film on the substrate surface; form Having a comprising the steps of:It is characterized by.
[0013]
  Also, the optical module of the present inventionManufacturing methodOf the above optical mounting boardThe optical mounting substrate obtained by the manufacturing methodIn the mounting grooveSaidOptical waveguideA step of arranging, andOptical connection to the optical waveguide on the mounting conductorSaidArranged optical semiconductor elementAnd a step of performing.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings schematically shown.
[0017]
As shown in FIGS. 1 and 2, an optical mounting substrate S according to the present invention is a mounting groove 11 for disposing an optical waveguide on the substrate 1 and an optical semiconductor element optically connected to the optical waveguide. A mounting conductor for disposing a light emitting element 16 such as a semiconductor laser and a light receiving element 15 such as a photodiode for monitoring the emitted light of the light emitting element 16 is formed. The conductor layer 8 and the solder layer 12 are sequentially laminated in the recess 2a of the insulating film 2 made of a single layer that is precisely aligned with the groove 11.
[0018]
Here, as shown in FIG. 2, an inclined surface 2b is formed in the recess 2a, and the conductor layer 8 is insulated via a conductor pattern 21 formed on the inclined surface 2b formed on one side of the recess 2a. The film 2 is connected to a wiring pattern 14a formed on a surface higher than the bottom surface of the recess 2a. The same applies to the wiring pattern 14b shown in FIG. Further, since the surface of the conductor layer 8 is lower than the surface of the insulating film 2 on which the wiring pattern is formed, when the solder is filled in the recess 2a, the solder layer 12 disposed on the conductor layer 8 is placed outside the recess 2a. I try not to let it stick out.
[0019]
Further, the optical module of the present invention has a light emitting element 16 and a light receiving element 17 for optically connecting, for example, an optical fiber 18 that is an optical waveguide in the mounting groove of the optical mounting substrate S to the optical fiber 18 on the mounting conductor. Is provided.
[0020]
The above configuration will be described in more detail. The optical mounting substrate S is an oxide film or nitridation formed by chemical vapor deposition or thermal oxidation on a substrate 1 having a predetermined orientation as a main surface and capable of anisotropic etching such as silicon single crystal. A single-layer insulating film 2 made of a film or the like, a mounting groove 11 formed by etching to dispose an optical fiber 18 as an optical waveguide, and a mounting groove positioned with respect to the mounting groove 11 A lower conductor layer 8 for disposing the optical semiconductor elements 16 and 17 also serving as markers, and an upper conductor disposed on a part of the wires 14a, 14b, 15a and 15b and the lower conductor layer 8 A solder bump (solder layer) 12 is formed to form a mounting conductor. In the figure, reference numeral 14 denotes a wiring connected to the back-side electrode of the optical semiconductor element via the solder layer 12, and reference numeral 15 denotes a wiring connected to the front-side electrode of the optical semiconductor element via a bonding wire or the like.
[0021]
The lower conductor layer 8 for disposing the optical semiconductor elements 16 and 17 that also serve as mounting markers positioned with respect to the mounting groove 11 is located above the substrate surface and is a main part of the insulating film 2. Solder bumps 12 for mounting the optical semiconductor elements 16 and 17 are formed on the lower conductor layer 8 while being formed on the regions 7a and 7b processed so as to be a certain depth deeper than the surface.
[0022]
One main surface of the single-layer insulating film on which the wirings 14a, 14b, 15a and 15b for driving the optical semiconductor elements 16 and 17 are formed is the formation of the lower conductor layer 8 for disposing the optical semiconductor elements 16 and 17 The thickness of the lower conductor layer 8 is at least higher than the region to be formed.
[0023]
As shown in FIG. 2, regions 7a and 7b located above the substrate surface and where the lower conductor layer 8 for arranging the optical semiconductor elements 16 and 17 is formed are located above the substrate surface and are insulated. The film 2 is processed so as to be deeper than at least the thickness of the lower conductor layer 8 from one main surface of the film 2. The regions 7a and 7b processed so as to be deeper than at least the thickness of the lower conductor layer 8 from one main surface of the insulating film 2 are formed to a depth of 0.8 μm or more. The reason why the regions 7a and 7b are processed to be deeper than the thickness of the lower conductor layer 8 is that the depth of the processed regions 7a and 7b is smaller than the thickness of the lower conductor layer 8 (when the depth is 0.8 μm or less). This is because when the optical semiconductor elements 16 and 17 are mounted after the solder bump 12 is formed, the solder bump 12 protrudes from the lower conductor layer 8 and the solder bump 12 comes into contact with other wiring. In general, since the thickness of the lower conductor layer 8 is 0.3 to 0.8 μm and the thickness of the solder bump 12 is 0.2 to 5.0 μm, the depth of the processed regions 7a and 7b is preferably 0.00. The thickness is 6 to 6.0 μm, and more preferably 1.0 to 3.0 μm.
[0024]
Next, a method for manufacturing the optical mounting substrate S will be described.
[0025]
As shown in FIGS. 3A to 3I, first, a single-layer insulating film 2 is formed on the upper surface of the substrate 1 by using a plasma CVD method, a sputtering method, or the like. Next, in order to form the opening 4 of the first mounting groove pattern and the openings 5a and 5b of the optical semiconductor element mounting conductor pattern on the single-layer insulating film 2, the photosensitive film 3 is applied and subjected to a photolithography process. Each opening 4, 5a, 5b is formed.
[0026]
At this time, the mask for forming the opening 4 of the first mounting groove pattern and the mask for forming the openings 5a and 5b of the optical semiconductor element mounting conductor pattern, which also serve as mounting markers for the optical semiconductor element, are the same. By using this photomask, the insulating film 2 in these regions is removed, and the mounting marker and optical semiconductor element mounting conductor aligned with the mounting groove pattern processing portion 6 with high accuracy Patterned portions 7a and 7b can be formed.
[0027]
Next, the photosensitive film 3 is applied to the conductor pattern processing portions 7a and 7b for mounting marker and optical semiconductor element mounting on the single-layer insulating film 2 in order to form the optical semiconductor element mounting conductor. Openings 9a and 9b are formed. At this time, in order to form the wirings 14a and 14b connected to the mounting marker and optical semiconductor element lower conductor layer 8, at least one side surface part of the optical semiconductor element mounting conductor pattern processing portions 7a and 7b is inclined. Wet etching is performed.
[0028]
Then, the surface of the single-layer insulating film 2 of the conductive pattern processing portion 6 for mounting an optical semiconductor element is exposed, and the insulating film surface is exposed to a mounting marker and optical semiconductor element lower conductor using an electron beam evaporation method, a sputtering method, or the like. Layer 8 and wirings 14a, 14b, 15a and 15b are formed. Further, the photosensitive film 3 is applied to form the opening 10 of the second mounting groove pattern in the mounting groove pattern processing portion 6, and the opening 10 is formed by a photolithography process.
[0029]
Then, an opening 10 is formed to expose the substrate surface, and anisotropic etching is performed with an alkaline solution such as potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), and the like. The wave body mounting groove 11 is formed with high accuracy.
[0030]
Further, the photosensitive film 3 is applied on the substrate 1 on which the mounting marker and optical semiconductor element lower conductor layer 8 formed on the optical semiconductor element mounting conductor pattern processing portion 6 and the optical waveguide mounting groove 11 are formed, Thereafter, solder bump forming openings 12a and 12b are formed on the mounting marker and optical semiconductor element lower conductor layer 8 by a photolithography process. Then, the solder bumps 12 are formed using an electron beam vapor deposition method, a sputtering method, or the like. Finally, after all the photosensitive film 3 on the substrate surface is removed, the optical waveguide stopper rectangular groove 13 is formed.
[0031]
Next, the optical module of the present invention will be described. In the optical module, an optical fiber 18 that is an optical waveguide is mounted in a mounting groove 11 of an optical mounting substrate S obtained by the above-described manufacturing method, and a mounting conductor that is a mounting conductor formed on a single-layer insulating film 2. A light emitting element 16 and a light receiving element 17 are arranged via solder bumps 12 on the marker / optical semiconductor element lower conductor layer 8, and further, these optical semiconductor elements 16 and 17 are formed on the substrate surface by bonding wires. 2 is connected to the wirings 15 a and 15 b on the optical line 2 to enable optical coupling between the optical semiconductor element 16 and the end of the optical fiber 18.
[0032]
Thus, in the optical mounting substrate for optically coupling the optical waveguide and the optical semiconductor element, a single layer insulating film is formed on the substrate surface, and the optical semiconductor element mounting conductor and the formation area of the solder bump are By making the height higher than the substrate surface and lower than the surface of the mounting conductor formed on the single-layer insulating film, the solder bumps melted by the step formed by the single-layer insulating film without causing the insulating film to peel off. Protruding to other areas can be prevented.
[0033]
  Also, mounting grooves for mounting optical waveguides and mounting markers and conductors for mounting optical semiconductor elementsWhenA mask for forming an opening for a mounting groove pattern and a mask for forming a conductor pattern for mounting an optical semiconductor element that also serves as a mounting marker for the optical semiconductor elementWhenAre the same, that is, each pattern is on the same mask, mounted with an optical waveguide formed using thisGrooveAnd mounting marker and conductor for mounting optical semiconductor elementsWhenHas no relative displacement, optical semiconductor element and optical waveguideWhenCan be mounted with high accuracy. As a result, an optical module having an excellent optical coupling efficiency and an optical module comprising the optical waveguide in the mounting groove of the optical mounting substrate and the optical semiconductor element optically connected to the optical waveguide on the mounting conductor, and the configuration thereof An optical mounting substrate can be provided.
[0034]
【Example】
Examples in which the optical mounting substrate according to the present invention is more concretely described below.
<Example 1>
First, as shown in FIG. 3A, a silicon oxide film 2 serving as an insulating film is formed on a substrate made of silicon single crystal by a sputtering method to a thickness of 3.5 μm, and then a silicon oxide film 2 is formed. The photosensitive film 3 is applied thereon, and is performed by photolithography using a mask on which the first mounting groove pattern and the optical semiconductor element mounting conductor pattern that also serves as the mounting marker for the optical semiconductor element are drawn. Openings 4, 5a and 5b were formed.
[0035]
Then, as shown in FIG. 3B, the silicon oxide film 2 exposed through the openings 4, 5a, and 5b is removed by wet etching using buffered hydrofluoric acid, and each of them has a depth of 3.0 μm. 1 Mounting groove pattern processing portion 6 and mounting marker and optical semiconductor element mounting conductor pattern processing portions 7a and 7b aligned with high precision were formed.
[0036]
Next, as shown in FIG. 3 (c), a photosensitive film 3 is applied on the silicon oxide film 2 having a plurality of processed portions, and an optical semiconductor element mounting conductor pattern that also serves as an optical semiconductor element mounting marker, Then, photolithography is performed using a mask on which a driving conductor pattern is drawn, and openings 9a and 9b are formed to expose the surface of the insulating film 2 of the conductor pattern processing portion 6 for mounting an optical semiconductor element. Using the electron beam evaporation method on the surface, the mounting marker and optical semiconductor element lower conductor layer 8 and the wirings 14a, 14b, 15a and 15b are Ti / Pt / Au 0.1 μm / 0.2 μm in the order of lower layer / upper layer. The film was formed at /0.5 μm.
[0037]
Further, as shown in FIGS. 3D and 3E, a photosensitive layer is exposed on the silicon oxide film 2 having a plurality of processed portions, a mounting marker and optical semiconductor element lower conductor layer 8, and wirings 14a, 14b, 15a, and 15b. The film 3 is applied, and photolithography is performed using a mask on which the second mounting groove pattern is drawn, the opening 10 is formed, the silicon substrate surface is exposed, and all the photosensitive film 3 on the substrate is removed. After that, as shown in FIG. 3F, the pattern on the silicon substrate is subjected to anisotropic etching using KOH (concentration: 43 wt%, temperature: 63.5 ° C.), and the waveguide is mounted on the silicon substrate. A groove 11 was formed.
[0038]
Next, as shown in FIG. 3G, the photosensitive film 3 is applied on the substrate 1 on which the mounting marker / optical semiconductor element lower conductor layer 8 and the waveguide mounting groove 11 are formed, and the optical semiconductor element mounting is performed. Photolithography is performed using a mask on which a solder bump pattern formed on the conductor for drawing is formed, openings 12a and 12b are formed to expose the surface of the optical semiconductor element mounting conductor, and an electron beam is formed on the conductor surface. Solder bumps 12 (weight ratio Au: Sn = 70: 30, thickness 2 μm) are formed using a vapor deposition method.
[0039]
Finally, as shown in FIGS. 3H and 3I, after all the photosensitive film 3 on the substrate surface is removed, the optical waveguide stopper rectangular groove 13 is formed by machining by dicing or the like, and then cut. It was.
[0040]
As a result, a single-layer insulating film is formed on the substrate surface in the mounting portion of the optical waveguide and the optical semiconductor element, and the formation region of the optical semiconductor element mounting conductor and the solder bump is higher than the substrate surface and is a single-layer insulating film. By making it lower than the surface of the mounting conductor formed on the film, it is possible to prevent peeling of the insulating film and to prevent the melted solder bumps from protruding into other areas due to the step formed by the single-layer insulating film. It was.
[0041]
In addition, for the mounting groove for mounting the optical waveguide and the mounting marker and optical semiconductor element mounting conductor, the respective patterns are on the same mask, and the mounting groove for mounting the optical waveguide formed using this The mounting marker and optical semiconductor element mounting conductor has no relative displacement, and the optical semiconductor element and the optical waveguide can be mounted with high accuracy, thereby providing an optical mounting substrate for constructing an optical module with excellent optical coupling efficiency. did it.
<Example 2>
Hereinafter, another embodiment of the optical semiconductor mounting substrate according to the present invention will be described.
[0042]
First, as shown in FIG. 6A, a silicon nitride film 2 serving as an insulating film was formed with a thickness of 5 μm on a substrate made of silicon single crystal by plasma CVD. Next, a photosensitive film 3 is applied on the silicon nitride film 2, and a photo using a mask on which a first mounting groove pattern and an optical semiconductor element mounting conductor pattern that also serves as an optical semiconductor element mounting marker are drawn. Respective openings 4, 5a and 5b were formed by lithography.
[0043]
Then, as shown in FIG. 6B, the silicon nitride film 2 exposed through the openings 4, 5a and 5b is removed by wet etching using buffer nitriding, and the first having a depth of 3.1 μm. The mounting marker and optical semiconductor element mounting conductor pattern processing portions 7a and 7b aligned with the mounting groove pattern processing portion 6 with high accuracy were formed.
[0044]
Next, as shown in FIG. 6C, a photosensitive film 3 is applied on the silicon nitride film 2 having a plurality of processed portions, and an optical semiconductor element mounting conductor pattern that also serves as an optical semiconductor element mounting marker; Then, photolithography is performed using a mask on which a driving conductor pattern is drawn, and openings 9a and 9b are formed to expose the surface of the insulating film 2 of the conductor pattern processing portion 6 for mounting an optical semiconductor element. Using resistance heating vapor deposition on the surface, the mounting marker and optical semiconductor element lower conductor layer 8 and the wirings 14a, 14b, 15a and 15b are formed in the order of lower layer / upper layer and Cr / Au is formed at 0.1 μm / 0.5 μm. Filmed.
[0045]
Further, as shown in FIGS. 6D and 6E, a photosensitive layer is exposed on the silicon nitride film 2 having a plurality of processed portions, a mounting marker and optical semiconductor element lower conductor layer 8, and wirings 14a, 14b, 15a, and 15b. The film 3 is applied, and photolithography is performed using a mask on which the second mounting groove pattern is drawn, the opening 10 is formed, the silicon substrate surface is exposed, and all the photosensitive film 3 on the substrate is removed. Then, as shown in FIG. 5 (f), the pattern on the silicon substrate is anisotropically etched using tetramethylammonium hydroxide (TMAH) to form the waveguide mounting groove 11 on the silicon substrate. did.
[0046]
Next, as shown in FIG. 6G, the photosensitive film 3 is applied on the substrate 1 on which the mounting marker and optical semiconductor element lower conductor layer 8 and the waveguide mounting groove 11 are formed, and the optical semiconductor element mounting is performed. Photolithography is performed using a mask on which a solder bump pattern formed on the conductive conductor is drawn, and openings 12a and 12b are formed to expose the surface of the optical semiconductor element mounting conductor. Solder bumps 12 (weight ratio Au: Sn = 80: 20, thickness 2.5 μm) were formed using a beam evaporation method.
[0047]
Finally, as shown in FIGS. 6H and 6I, after all the photosensitive film 3 on the substrate surface is removed, the optical waveguide stopper rectangular groove 13 is formed by machining by dicing or the like, and then cut. It was. As a result, an optical mounting substrate for constructing an optical module having excellent optical coupling efficiency was obtained.
<Example 3>
Examples of the optical module M using the optical mounting substrate according to the present invention will be described below. As shown in FIGS. 4 and 5, the optical fiber 18 is mounted in the V groove 11 formed by etching to dispose the optical fiber 18 on the optical mounting substrate S, and the mounting is formed on the insulating film. A light emitting element 16 that is an optical semiconductor element and a light receiving element 17 for monitoring are aligned using a mounting marker and optical semiconductor mounting conductor (not shown) through solder bumps 12 formed on the conductor, respectively, Further, these optical semiconductor elements 16 and 17 are connected to the driving conductors 15a and 15b by bonding wires (not shown) so that the light coupling element 16 and the optical fiber 18 can be optically coupled. In the figure, reference numeral 20 denotes a lead which can be connected to an external electric circuit.
[0048]
In this way, so-called passive alignment is realized in which optical coupling can be performed with high accuracy simply by mounting the optical semiconductor elements 16 and 17 such as semiconductor laser elements on the solder bumps 12 on the mounting marker and optical semiconductor mounting conductor on the substrate 1. The completed optical module M is completed. The optical module M may be configured such that the whole is resin-molded by covering a lid (not shown), or the whole is resin-molded without covering the lid. Further, the optical semiconductor elements 16 and 17 may be provided with light emitting elements and / or light receiving elements such as LED elements and PD elements instead of the semiconductor laser elements.
[0049]
【The invention's effect】
As described above in detail, according to the present invention, in the optical mounting substrate on which the optical waveguide and the optical semiconductor element are mounted, the insulating film is not peeled off and from the recess formed by the single-layer insulating film. It is possible to prevent the molten solder from protruding to other areas. This eliminates the problem that the solder layer is short-circuited with other metal portions.
[0050]
  Also, mounting grooves for mounting optical waveguides and mounting markers and conductors for mounting optical semiconductor elementsWhenA mask for forming an opening for a mounting groove pattern and a mask for forming a conductor pattern for mounting an optical semiconductor element that also serves as a mounting marker for the optical semiconductor elementWhenAre the sameAndIn other words, each pattern is on the same mask, mounted on the optical waveguide formed using thisGrooveAnd mounting marker and conductor for mounting optical semiconductor elementsWhenHas no relative displacement, optical semiconductor element and optical waveguideWhenCan be mounted with high accuracy. Thereby, it is possible to provide an optical module having excellent optical coupling efficiency and an optical mounting substrate for constituting the optical module.
[Brief description of the drawings]
FIG. 1 shows the present invention.OkeIt is a top view which shows typically one Embodiment of the optical mounting board | substrate which is.
FIG. 2 is a partial end view taken along line BB in FIG.
FIGS. 3A to 3I are views for explaining an example of a manufacturing process of an optical mounting substrate according to the present invention, and are partial end views along line AA in FIG.
FIG. 4 shows the present invention.OkeIt is a top view which shows typically one Embodiment of the optical module using the optical mounting board | substrate.
FIG. 5 shows the present invention.InIt is a side view which shows typically one Embodiment of the optical module using an optical mounting board | substrate.
6A to 6I are diagrams for explaining another example of the manufacturing process of the optical mounting substrate according to the present invention, and are partial end views taken along line AA in FIG.
FIG. 7 is a top view schematically showing one embodiment of a conventional optical mounting substrate..
FIG. 8 is a cross-sectional view schematically showing one embodiment of a conventional optical mounting substrate..
[Explanation of symbols]
1, 31: Substrate
2: Insulating film
3: Photosensitive film
4: Opening portion of first mounting groove pattern
5a, 5b: Openings of conductor pattern for mounting optical semiconductor element
6: First mounting groove pattern processing section
7a, 7b: Conductive pattern processing portion for mounting an optical semiconductor element
8, 35: Lower conductor layer (conductor layer) for mounting marker and optical semiconductor element
9a, 9b: Openings of conductor pattern for mounting optical semiconductor element
10: Opening portion of second mounting groove pattern
11, 36: Optical waveguide mountedGroove
12, 35: Solder bumps (solder layer) for mounting optical semiconductor elements
12a, 12b: Openings of solder bump patterns for mounting optical semiconductor elements
13: Optical waveguide stopper rectangular groove
14a, 14b, 15a, 15b: wiring
16, 17, 37: Optical semiconductor element
18, 38: Optical waveguide (optical fiber)
19: Optical package
20: Lead
32: First insulating film
33: Metal pad
34: Second insulating film
S: Optical mounting board
SS: Optical mounting board
M: Optical module

Claims (2)

基板上に、光導波体を配設するための搭載用溝と、前記光導波体に光接続させる光半導体素子を配設する、単層から成る絶縁膜の凹部内に導体層及びハンダ層が順次積層されて成る搭載用導体を形成し、前記搭載用溝を形成するマスクと、前記凹部を形成するマスクとを同一として前記凹部を前記搭載溝に対し位置合わせして形成する光実装基板の製造方法であって、
前記基板上面に前記絶縁膜を形成し、前記絶縁膜上に第1搭載用溝パターンの開口部および実装用マーカー兼光半導体素子搭載用導体パターンの開口部をもつ感光膜を形成する工程と、
該感光膜をマスクとして用いて、前記第1搭載用溝パターンの開口部および前記実装用マーカー兼光半導体素子搭載用導体パターンの開口部により露出した領域の前記絶縁膜を前記基板表面が露出しないように除去する工程と、
前工程の前記感光膜を除去した後、前記実装用マーカー兼光半導体素子搭載用導体パターンの加工部に、前記搭載用導体を形成するための開口部をもつ感光膜を形成する工程と、前記実装用マーカー兼光半導体素子搭載用導体パターンの加工部の少なくとも1つの側面を斜面とするためのエッチング工程と、
前記実装用マーカー兼光半導体素子搭載用導体パターンの加工部に前記導体層を形成する工程と、
前工程の前記感光膜を除去した後、前記第1搭載用溝パターンの加工部に第2搭載用溝パターンの開口部をもつ感光膜を形成する工程と、
該感光膜をマスクとして用いて、前記第2搭載用溝パターンの開口部により露出した領域の前記絶縁膜を前記基板表面が露出するように除去する工程と、
前工程の前記感光膜を除去した後、前記基板表面が露出した領域に前記搭載用溝を形成する工程と、
前記導体層上に前記ハンダ層であるソルダバンプを形成するための開口部をもつ感光膜を形成する工程と、
該感光膜をマスクとして用いて、前記導体層上に前記ソルダバンプを形成する工程と、
前記基板表面の前記感光膜をすべて除去した後、光導波体ストッパー矩形溝を形成する工程と
を有することを特徴とする光実装基板の製造方法
A conductor layer and a solder layer are disposed in a recess of a single-layer insulating film on which a mounting groove for disposing an optical waveguide and an optical semiconductor element optically connected to the optical waveguide are disposed on a substrate. An optical mounting substrate in which a mounting conductor is formed by being sequentially laminated, and the mask for forming the mounting groove and the mask for forming the recess are the same, and the recess is aligned with the mounting groove. A manufacturing method of
Forming the insulating film on the upper surface of the substrate, and forming a photosensitive film having an opening of a first mounting groove pattern and an opening of a mounting marker and optical semiconductor element mounting conductor pattern on the insulating film;
Using the photosensitive film as a mask, the surface of the substrate is not exposed in the region exposed by the opening of the first mounting groove pattern and the opening of the mounting marker and conductor pattern for mounting an optical semiconductor element. Removing the step,
After removing the photosensitive film in the previous step, forming a photosensitive film having an opening for forming the mounting conductor in the processed portion of the mounting marker and optical semiconductor element mounting conductor pattern; and the mounting An etching step for making at least one side surface of the processed portion of the conductor pattern for mounting the marker and optical semiconductor element for an inclined surface,
Forming the conductor layer in the processed portion of the conductor pattern for mounting marker and optical semiconductor element mounting;
After removing the photosensitive film in the previous step, forming a photosensitive film having an opening of the second mounting groove pattern in the processed portion of the first mounting groove pattern;
Using the photosensitive film as a mask, removing the insulating film in the region exposed by the opening of the second mounting groove pattern so that the substrate surface is exposed;
Forming the mounting groove in a region where the substrate surface is exposed after removing the photosensitive film in the previous step;
Forming a photosensitive film having an opening for forming a solder bump as the solder layer on the conductor layer;
Forming the solder bump on the conductor layer using the photosensitive film as a mask;
A step of forming an optical waveguide stopper rectangular groove after removing all of the photosensitive film on the substrate surface;
The method of manufacturing an optical mount substrate, wherein Rukoto to have a.
請求項1に記載の光実装基板の製造方法によって得られた光実装基板の前記搭載用溝に前記光導波体を配設する工程と、
前記搭載用導体上に前記光導波体に光接続させる前記光半導体素子を配設する工程と
を有することを特徴とする光モジュールの製造方法
A step of disposing the light waveguide to the mounting groove of the optical mount substrate obtained by the manufacturing method of an optical mount substrate according to claim 1,
A step of disposing the optical semiconductor element to be optically connected to the optical waveguide on the mounting conductor
A method for manufacturing an optical module , comprising:
JP2000266082A 2000-09-01 2000-09-01 Optical mounting substrate manufacturing method and optical module manufacturing method Expired - Fee Related JP4671480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266082A JP4671480B2 (en) 2000-09-01 2000-09-01 Optical mounting substrate manufacturing method and optical module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266082A JP4671480B2 (en) 2000-09-01 2000-09-01 Optical mounting substrate manufacturing method and optical module manufacturing method

Publications (2)

Publication Number Publication Date
JP2002076498A JP2002076498A (en) 2002-03-15
JP4671480B2 true JP4671480B2 (en) 2011-04-20

Family

ID=18753236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266082A Expired - Fee Related JP4671480B2 (en) 2000-09-01 2000-09-01 Optical mounting substrate manufacturing method and optical module manufacturing method

Country Status (1)

Country Link
JP (1) JP4671480B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085423B2 (en) * 2002-09-18 2008-05-14 日立化成工業株式会社 Manufacturing method of optical waveguide device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091692A (en) * 1998-09-14 2000-03-31 Nippon Telegr & Teleph Corp <Ntt> Optical element mounting part structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537087A (en) * 1991-07-31 1993-02-12 Toshiba Corp Optical semiconductor device
JPH0537024A (en) * 1991-07-31 1993-02-12 Toshiba Corp Optical semiconductor device
JP3658426B2 (en) * 1995-01-23 2005-06-08 株式会社日立製作所 Optical semiconductor device
JPH095586A (en) * 1995-06-26 1997-01-10 Fujitsu Ltd Optical device
JPH09326535A (en) * 1996-04-05 1997-12-16 Oki Electric Ind Co Ltd Optical semiconductor device and manufacture thereof
JPH10200153A (en) * 1997-01-10 1998-07-31 Furukawa Electric Co Ltd:The Optical receiving/transmitting module
JP2000056189A (en) * 1998-08-13 2000-02-25 Fujitsu Ltd Optical coupling structure for optical module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091692A (en) * 1998-09-14 2000-03-31 Nippon Telegr & Teleph Corp <Ntt> Optical element mounting part structure

Also Published As

Publication number Publication date
JP2002076498A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP2671921B2 (en) Optical coupling assembly
EP0723171A2 (en) Optical module
JP3731542B2 (en) Optical module and optical module mounting method
US5534442A (en) Process of providing uniform photoresist thickness on an opto-electronic device
KR0155508B1 (en) Method for self-aligning between optical fiber and optic device
JP2006292852A (en) Optical-electrical wiring board
KR100456672B1 (en) Optical waveguide platform and manufacturing method thereof
US6227723B1 (en) Substrate for mounting an optical component and optical module provided with the same
US6839497B2 (en) Optical waveguide platform and method of manufacturing the same
JP2011237503A (en) Photoelectric composite substrate and method of manufacturing the same
US10816740B2 (en) Flip chip bonding onto a photonic integrated circuit
EP0517369B1 (en) Process of manufacturing opto-electronic hybrid modules
EP1211532A2 (en) Optical device for mounting optical elements
JP2002169064A (en) Substrate for mounting optical parts, its method of manufacture, and optical module
JP4671480B2 (en) Optical mounting substrate manufacturing method and optical module manufacturing method
JP3709075B2 (en) Optical element mounting method
KR100524672B1 (en) Method of flip chip bonding utilizing slanted groove for optical passive alignment and optical module
JP3838718B2 (en) Optical device mounting substrate manufacturing method and optical module manufacturing method
JP2002107584A (en) Optical part mounting substrate, its manufacturing method and optical module
JP4122649B2 (en) Manufacturing method of Si carrier
JP3692519B2 (en) Optical coupling structure of light receiving element
JP2002062448A (en) Optical sub-module and hybrid optical integrated circuit
JPH08122589A (en) Optical element submount structure
JP2001356228A (en) Optical waveguide device
JP4471508B2 (en) Manufacturing method of optical component mounting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees