JP4669432B2 - Heat recovery apparatus and heat recovery method from molten blast furnace slag - Google Patents

Heat recovery apparatus and heat recovery method from molten blast furnace slag Download PDF

Info

Publication number
JP4669432B2
JP4669432B2 JP2006114866A JP2006114866A JP4669432B2 JP 4669432 B2 JP4669432 B2 JP 4669432B2 JP 2006114866 A JP2006114866 A JP 2006114866A JP 2006114866 A JP2006114866 A JP 2006114866A JP 4669432 B2 JP4669432 B2 JP 4669432B2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace slag
heat
rotating cylinder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006114866A
Other languages
Japanese (ja)
Other versions
JP2007284761A (en
Inventor
均 三瓶
一郎 江藤
悦郎 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006114866A priority Critical patent/JP4669432B2/en
Publication of JP2007284761A publication Critical patent/JP2007284761A/en
Application granted granted Critical
Publication of JP4669432B2 publication Critical patent/JP4669432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • C21B2400/056Drums whereby slag is poured on or in between
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、溶融高炉スラグが保有する熱を回収するための溶融スラグの熱回収装置および熱回収方法に関し、更に詳しくは、熱回収過程における高熱スラグ粒子の再融着を防止する装置及び方法に関わる。   The present invention relates to a molten slag heat recovery device and a heat recovery method for recovering heat held by molten blast furnace slag, and more particularly, to an apparatus and method for preventing re-fusion of high heat slag particles in a heat recovery process. Involved.

高炉から出銑される溶銑からスキンマー等により比重分離されて溶融状態にある溶融高炉スラグを、冷却処理して高炉スラグ粒が製造されている。溶融高炉スラグの処理方法として、溶融高炉スラグを大量の水で急冷してスラグ粒を製造する水砕による処理方法と、流下する溶融高炉スラグに機械的な打撃を加えて粒滴化し、冷却してスラグ粒を製造する乾式造粒法による処理方法がある。   Blast furnace slag grains are produced by cooling the molten blast furnace slag which is separated from the hot metal discharged from the blast furnace by a skinmer or the like and is in a molten state. As a treatment method for molten blast furnace slag, a method of granulation that rapidly cools molten blast furnace slag with a large amount of water to produce slag grains, and a mechanical blow is applied to the flowing molten blast furnace slag to form droplets, which are then cooled. There is a processing method using a dry granulation method for producing slag grains.

水砕による処理方法では、溶融高炉スラグの保有する熱が低温の温水として回収され有効に利用することができないのに対して、乾式造粒法による処理方法では、溶融高炉スラグの保有する熱をガスによって熱交換し、高温ガスにより熱回収することができる。   In the treatment method by granulation, the heat held by the molten blast furnace slag is recovered as low-temperature hot water and cannot be used effectively, whereas in the treatment method by the dry granulation method, the heat held by the molten blast furnace slag is reduced. Heat can be exchanged with gas, and heat can be recovered with high-temperature gas.

例えば、特許文献1に開示されている発明は、流下する溶融高炉スラグにジェットエアーを吹き付けて粒滴化する造粒機を備えた造粒槽とスラグ粒冷却槽との間に保熱槽を設け、粒滴化後の半溶融状態の高炉スラグを保熱槽に導き、高炉スラグ粒と熱交換させるとともに、結晶質スラグ粒を製造する方法を提案したものである。しかし、スラグの冷却がガスとの熱交換のみで行われる方式では、冷却速度が不足し粒子同士の再融着が起こり、大径・異形の粒子となりコンクリート細骨材としての利用が不可能となる問題があった。   For example, in the invention disclosed in Patent Document 1, a heat-retaining tank is provided between a granulating tank equipped with a granulator for spraying jet air onto a flowing molten blast furnace slag to form droplets and a slag grain cooling tank. A method for producing a crystalline slag grain is also proposed, in which the blast furnace slag in a semi-molten state after being provided and granulated is introduced into a heat-retaining tank to exchange heat with the blast furnace slag grain. However, in the method where the slag is cooled only by heat exchange with the gas, the cooling rate is insufficient and the particles are re-fused together, resulting in large-diameter and irregular-shaped particles that cannot be used as concrete fine aggregate. There was a problem.

乾式造粒法によるスラグ処理においてスラグ粒が再融着する問題を解決するために、特許文献2では霧状に水を噴霧した回転ドラム中にスラグを飛翔させて冷却を行う方法が提案されている。特許文献3ではこの方法において、排気温度を測定し水噴霧量を制御する方法が提案されている。しかし、排気温度では局所的にスラグ粒子温度が高い個所を検知できず、再融着を完全に防止できないという問題があった。   In order to solve the problem that slag particles are re-fused in the slag treatment by the dry granulation method, Patent Document 2 proposes a method of cooling by spraying slag into a rotating drum sprayed with water in a mist form. Yes. Patent Document 3 proposes a method for controlling the water spray amount by measuring the exhaust gas temperature in this method. However, there is a problem in that the location where the slag particle temperature is locally high cannot be detected at the exhaust temperature, and re-fusion cannot be completely prevented.

特開昭63−21110号公報JP 63-21110 A 特開昭64−52636号公報JP-A-64-52636 特開平1−111754号公報JP-A-1-111754

そこで、本発明は上記問題点を解消し、スラグ粒の再融着を防止しつつ溶融高炉スラグの保有する熱を、高温ガスの顕熱として回収する方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for recovering the heat held by the molten blast furnace slag as sensible heat of a high-temperature gas while preventing re-fusion of slag grains.

上記課題を解決するため、本発明は以下の(1)〜(6)の手段を特徴とする。
(1)外部から冷却される回転筒と、該回転筒入口に設置されて流下する溶融高炉スラグを粒滴化して回転筒内に投入する回転ドラムと、該回転筒内の下部に設置され、回転筒下部に堆積する固化後の高炉スラグの温度を測定する温度センサーと、該回転筒内の上方に設置され、該温度センサーの測定した温度により該回転筒内への水の噴霧量を調節できる水スプレーノズルと、該回転筒出口に設置され、排出される高炉スラグと排ガスを分離する固気分離装置と、分離後の高炉スラグの顕熱を回収する熱交換装置を有することを特徴とする溶融高炉スラグからの熱回収装置。
(2)前記水スプレーノズル及び前記温度センサーが、前記回転筒の長手方向に複数設置され、該各々の温度センサーの検出温度に応じて、該各々の水スプレーノズルの水噴霧量を独立して制御できることを特徴とする(1)記載の溶融高炉スラグからの熱回収装置。
(3)前記熱交換装置は、前段の前記分離後の高炉スラグと導入する空気との間で熱交換する熱交換器と、後段の該熱交換後の空気の顕熱を回収する廃熱ボイラからなることを特徴とする(1)又は(2)の溶融高炉スラグからの熱回収装置。
(4)(1)〜(3)の何れかに記載の熱回収装置を使用した溶融高炉スラグからの熱回収方法であって、溶融高炉スラグを前記回転ドラムに流下させて粒滴化して前記回転筒内に投入し、水スプレーノズルから水を噴霧して粒滴化した高炉スラグを固化し、回転筒内の下部に堆積した固化後の高炉スラグの温度を前記温度センサーで測定して、該温度が所定の温度になるように前記水スプレーノズルの水の噴霧量を調整し、生じる排ガスと固化後の高炉スラグを分離し、分離後の高炉スラグの顕熱を前記熱交換装置により回収することを特徴とする高炉スラグからの熱回収方法。
(5)前記所定の温度が350℃以上950℃以下であることを特徴とする(4)記載の高炉スラグからの熱回収方法。
(6)前記回転筒の長手方向に複数設置される水スプレーノズルの水噴霧量を、該回転筒の入口に近い側から出口に近い側にかけて低減し、且つ前記複数設置された温度センサーの測定値に応じて調整することを特徴とする(4)又は(5)の高炉スラグからの熱回収方法。
In order to solve the above problems, the present invention is characterized by the following means (1) to (6).
(1) A rotating cylinder that is cooled from the outside, a rotating drum that drops the molten blast furnace slag that is installed at the inlet of the rotating cylinder and flows into the rotating cylinder, and is placed in the lower part of the rotating cylinder. A temperature sensor that measures the temperature of the solidified blast furnace slag that accumulates at the bottom of the rotating cylinder, and is installed above the rotating cylinder, and the amount of water sprayed into the rotating cylinder is adjusted by the temperature measured by the temperature sensor A water spray nozzle, a solid-gas separation device that is installed at the outlet of the rotary cylinder and separates exhausted blast furnace slag and exhaust gas, and a heat exchange device that recovers sensible heat of the separated blast furnace slag. Heat recovery device from molten blast furnace slag.
(2) A plurality of the water spray nozzles and the temperature sensors are installed in the longitudinal direction of the rotating cylinder, and the water spray amount of each of the water spray nozzles is independently determined according to the detected temperature of each of the temperature sensors. The heat recovery device from the molten blast furnace slag according to (1), which can be controlled.
(3) The heat exchange device includes a heat exchanger that exchanges heat between the separated blast furnace slag and the introduced air, and a waste heat boiler that collects sensible heat of the air after the heat exchange in the latter stage. The heat recovery apparatus from the molten blast furnace slag according to (1) or (2), characterized by comprising:
(4) A method of recovering heat from the molten blast furnace slag using the heat recovery apparatus according to any one of (1) to (3), wherein the molten blast furnace slag flows down to the rotating drum to form droplets, and The blast furnace slag that was put into the rotating cylinder and sprayed with water from a water spray nozzle to solidify the blast furnace slag, and the temperature of the solidified blast furnace slag deposited on the lower part of the rotating cylinder was measured with the temperature sensor, The amount of water sprayed from the water spray nozzle is adjusted so that the temperature becomes a predetermined temperature, the generated exhaust gas and solidified blast furnace slag are separated, and the sensible heat of the separated blast furnace slag is recovered by the heat exchange device. A method for recovering heat from blast furnace slag.
(5) The method for recovering heat from blast furnace slag according to (4), wherein the predetermined temperature is 350 ° C. or higher and 950 ° C. or lower.
(6) The amount of water spray of a plurality of water spray nozzles installed in the longitudinal direction of the rotating cylinder is reduced from the side close to the inlet of the rotating cylinder to the side close to the outlet, and measurement of the plurality of temperature sensors installed The method for recovering heat from blast furnace slag according to (4) or (5), wherein the heat recovery is performed according to a value.

本発明の溶融高炉スラグからの熱回収装置及び熱回収方法によれば、スラグ粒の再融着を防止しつつ溶融高炉スラグの保有する熱を高温ガスの顕熱として回収することを可能とするものである。   According to the heat recovery apparatus and the heat recovery method from the molten blast furnace slag according to the present invention, it is possible to recover the heat held by the molten blast furnace slag as sensible heat of the high-temperature gas while preventing re-fusion of the slag particles. Is.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る溶融高炉スラグからの熱回収設備の1例を示す。図2は、本発明に係る溶融高炉スラグからの熱回収設備のうち、溶融高炉スラグ鍋1から固気分離装置10までの装置構成の1例を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of heat recovery equipment from molten blast furnace slag according to the present invention. FIG. 2 shows an example of the apparatus configuration from the molten blast furnace slag pan 1 to the solid-gas separator 10 in the heat recovery equipment from the molten blast furnace slag according to the present invention.

水冷等により外面を冷却されながら回転する回転筒2の入口に、溶融高炉スラグ鍋1より流下される溶融高炉スラグを表面に設置した羽根板に当てて飛翔させると共に粒滴化し、粒滴化した高炉スラグを回転筒2内に投入するための回転ドラム5(回転ドラム造粒機とも言う)を単数又は複数設置し(図では2台)、回転筒2の上部には、飛翔して粒滴化した溶融高炉スラグを水噴霧により冷却して固化するための水スプレーノズル7を単数又は複数設置する。水スプレーノズル7は水を噴射する一流体ノズルでも、空気等の気体と水を噴射する二流体ノズルでも良い。   The molten blast furnace slag that flows down from the molten blast furnace slag pan 1 is applied to the blades installed on the surface of the rotary cylinder 2 that rotates while the outer surface is cooled by water cooling or the like, and is made to fly and granulate to form droplets. One or a plurality of rotating drums 5 (also referred to as rotating drum granulators) for introducing blast furnace slag into the rotating cylinder 2 are installed (two in the figure), and fly above the rotating cylinder 2 to form droplets. One or a plurality of water spray nozzles 7 for cooling and solidifying the melted blast furnace slag by water spraying are installed. The water spray nozzle 7 may be a one-fluid nozzle that ejects water or a two-fluid nozzle that ejects a gas such as air and water.

回転筒2の出口には、固化後に回転筒2の下部に落下した粒状の高炉スラグと雰囲気ガス(高炉スラグの顕熱により蒸発した水蒸気、及び侵入空気等)とを分離する固気分離装置10を設置し、その下部には分離された粒状の高炉スラグを受ける高炉スラグ受け11を設置する。   At the outlet of the rotary cylinder 2, a solid-gas separation device 10 that separates granular blast furnace slag that has fallen below the rotary cylinder 2 and atmospheric gas (water vapor evaporated by sensible heat of the blast furnace slag, intrusion air, and the like). And a blast furnace slag receiver 11 for receiving the separated granular blast furnace slag is installed in the lower part thereof.

高炉スラグ受け11とその後方に設置する熱交換装置15とは、断熱材を張り込んだバケットコンベア12で接続し、粒状の高炉スラグを移送する。なおコンベア12はスクリューコンベアやベルトコンベアでも良く、形式は特に限定されるものではない。コンベア12は断熱構造とし、スラグ粒から顕熱が失われることを防止する。   The blast furnace slag receiver 11 and the heat exchange device 15 installed behind the blast furnace slag receiver 11 are connected by a bucket conveyor 12 in which a heat insulating material is stretched to transfer granular blast furnace slag. The conveyor 12 may be a screw conveyor or a belt conveyor, and the form is not particularly limited. The conveyor 12 has a heat insulating structure to prevent sensible heat from being lost from the slag grains.

熱交換装置15は、前段の熱交換器3と後段の廃熱ボイラ4によって構成される。熱交換器3には、コンベア12により移送されてくる粒状の高炉スラグと直接接触して熱交換させる熱交換ガスを送風するためのブロア13が付帯設備として設置される。熱交換器3は流動層、移動層などの固体と気体の接触面積が大きい形式の熱交換器が望ましい。粒状の高炉スラグとの熱交換により高温化した熱交換ガスを蒸気として熱回収する設備が、廃熱ボイラ4である。   The heat exchanging device 15 is constituted by a front-stage heat exchanger 3 and a rear-stage waste heat boiler 4. The heat exchanger 3 is provided with a blower 13 as ancillary equipment for blowing heat exchange gas that directly exchanges heat with the granular blast furnace slag transferred by the conveyor 12. The heat exchanger 3 is preferably a heat exchanger having a large contact area between a solid and a gas, such as a fluidized bed and a moving bed. The waste heat boiler 4 is a facility for recovering heat as heat from a heat exchange gas heated to high temperature by heat exchange with granular blast furnace slag.

さらに、回転筒2の下部に流下し堆積した粒状の高炉スラグ温度を測定するための温度センサー8を単数又は複数配置し(図では3箇所)、回転筒2内の下部に長手方向に渡って堆積して出口に向かって移動している高炉スラグ粒の温度を把握できるよう構成している。温度センサー8は熱電対等、直接物温を測定し信号として取り出せる機器で構成する。温度センサー8は複数設置することが望ましい。   Further, one or a plurality of temperature sensors 8 for measuring the granular blast furnace slag temperature flowing down and accumulated in the lower part of the rotating cylinder 2 (three places in the figure) are arranged in the lower part in the rotating cylinder 2 in the longitudinal direction. The temperature of the blast furnace slag grains that have accumulated and moved toward the outlet can be grasped. The temperature sensor 8 is constituted by a device such as a thermocouple that can directly measure the temperature of the object and take it out as a signal. It is desirable to install a plurality of temperature sensors 8.

溶融高炉スラグは1400℃以上の高温で本発明の装置に導入され、回転ドラム造粒機5の羽根板に衝突して空中に飛翔すると共に表面張力で球形の粒滴となり、飛翔中に雰囲気ガスおよび水スプレーノズル7からの噴霧水によって冷却され固化する。   The molten blast furnace slag is introduced into the apparatus of the present invention at a high temperature of 1400 ° C. or more, and collides with the blades of the rotary drum granulator 5 to fly into the air and become spherical droplets with surface tension. And it is cooled and solidified by the spray water from the water spray nozzle 7.

このとき、噴霧水量が過小であれば固化せず溶融状態のスラグ粒が互いに融着し、コンクリート細骨材としての利用が不可能となる。   At this time, if the amount of sprayed water is too small, the slag grains in a molten state are not solidified and are fused together, and cannot be used as a concrete fine aggregate.

逆に噴霧水量が過大であれば、粒子の顕熱の大部分が水の顕熱及び蒸発潜熱に移動し、高炉スラグの保有する顕熱が大幅に減少して熱回収が困難となる。また、噴霧水量が多すぎる場合は、溶融状態の高炉スラグと多量の水が接触してスラグ粒子が発泡して多孔質となり、高炉スラグは吸水率が高く強度も低くなってしまいコンクリート細骨材として使用できなくなる問題もある。   Conversely, if the amount of sprayed water is excessive, most of the sensible heat of the particles moves to the sensible heat of water and the latent heat of evaporation, and the sensible heat held by the blast furnace slag is greatly reduced, making it difficult to recover heat. Also, if the amount of sprayed water is too large, the molten blast furnace slag and a large amount of water come into contact with each other to foam the slag particles to become porous, and the blast furnace slag has a high water absorption rate and low strength, resulting in a concrete fine aggregate There is also a problem that cannot be used as.

高炉スラグの再融着限界温度は950℃付近であり、回転筒2に落下する粒子の温度が950℃以下となるよう水スプレーノズル7からの噴霧水量を設定することで再融着させずに粒子を回収することができる。回転筒下部のスラグ粒温度は投入スラグ量の変動によって上下するため、確実に再融着を防ぐためには粒子の温度を800℃以下とすることが望ましい。また、350℃を下回る温度まで低下すると回収可能な熱量が少なくなりすぎるため、350℃以上に設定することが好ましい。更に好ましくは、600℃以上である。   The remelting limit temperature of the blast furnace slag is around 950 ° C., and the amount of water sprayed from the water spray nozzle 7 is set so that the temperature of the particles falling on the rotating cylinder 2 is 950 ° C. or less, so that it is not refused. Particles can be recovered. Since the slag particle temperature at the lower part of the rotating cylinder fluctuates due to fluctuations in the input slag amount, it is desirable that the particle temperature be 800 ° C. or lower in order to prevent re-fusion. Moreover, when the temperature falls below 350 ° C., the amount of heat that can be recovered becomes too small, so it is preferable to set it to 350 ° C. or higher. More preferably, it is 600 degreeC or more.

スラグ粒温度計8より発信される温度データが、再融着限界温度以下の所定の設定温度範囲となるように水スプレーノズル7の水量を調節し、制御することで、必要最小限の水量で融着防止効果を発揮させることができる。   By adjusting and controlling the amount of water in the water spray nozzle 7 so that the temperature data transmitted from the slag particle thermometer 8 falls within a predetermined temperature range below the re-fusion limit temperature, the necessary minimum amount of water can be obtained. The effect of preventing fusion can be exhibited.

すなわち、制御対象を回転筒4の下部に堆積する粒状の高炉スラグ温度とし、検出器を温度センサー8とし、制御装置を水スプレーノズル7として、検出値の温度が目標とする所定の温度又は温度範囲となるようにスプレー水量調節器9を作動させて水噴霧量を調整するフィードバック制御を行うものである。   That is, the control object is the granular blast furnace slag temperature accumulated in the lower part of the rotating cylinder 4, the detector is the temperature sensor 8, the control device is the water spray nozzle 7, and the temperature of the detection value is a target predetermined temperature or temperature. The feedback control is performed to adjust the water spray amount by operating the spray water amount adjuster 9 so as to be within the range.

回転ドラム造粒機5に近い粒状の高炉スラグは、飛翔時間が短いため雰囲気ガスによる冷却がなされず、温度が高くなる傾向にある。そこで、回転ドラム造粒機5に近いスプレーノズル7の水量が多くなるよう制御することで、粒子の再融着を防ぐことができる。すなわち、回転筒4の長手方向(粒状の高炉スラグが移動する方向、回転筒4の入口から出口方向)に、水スプレーノズル7を複数設置し、入口に近い側の水噴霧量程多くなるように噴霧量に勾配を付けて制御することが望ましい。更に、スラグ粒温度計8についても回転筒4の長手方向に複数設置してそれぞれの測定温度に応じて水スプレーノズル7の水噴霧量を制御することは、長手方向の温度の偏りによる融着をより確実に防止できることから更に望ましい。   Granular blast furnace slag close to the rotary drum granulator 5 has a short flight time, and thus is not cooled by the atmospheric gas, and tends to have a high temperature. Therefore, by controlling the amount of water in the spray nozzle 7 close to the rotary drum granulator 5 to be increased, re-fusion of particles can be prevented. That is, a plurality of water spray nozzles 7 are installed in the longitudinal direction of the rotating cylinder 4 (the direction in which the granular blast furnace slag moves, the direction from the inlet to the outlet of the rotating cylinder 4) so that the amount of water spray closer to the inlet increases. It is desirable to control the spray amount with a gradient. Further, a plurality of slag particle thermometers 8 are installed in the longitudinal direction of the rotating cylinder 4 and the amount of water sprayed by the water spray nozzle 7 is controlled in accordance with each measured temperature. Is more desirable because it can be surely prevented.

以下、本発明の実施例を説明するが、実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一条件例であり、本発明は、この一条件例に限定されるものではない。   Examples of the present invention will be described below, but the conditions adopted in the examples are one example of conditions for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not something.

本発明で得られた熱回収方法により、スラグ粒子の製造を行った。
図3に、本発明の実施例と、特許文献3記載の従来法でスプレーノズル7の噴霧水量調節を行った比較例の、噴霧水量とスラグ粒子温度を示す。
実施例の設備は回転筒4の長さ5000mm、径2800mm、回転ドラム造粒機5のドラム径680mm、羽根板の高さ150mm、溶融スラグの投入流量30T/Hである。
本発明の実施例では、温度センサー8を回転筒4の長手方向3箇所に設置し、それぞれの位置に対応する回転筒4の上部に水スプレーノズル7を3箇所設置し、噴霧水量をそれぞれ個別に制御した。
従来法の比較例では、水スプレーノズル7を実施例と同様に3箇所設置したが、噴霧水量は排気温度のみで制御し、スプレーノズル7の噴霧水量は全て等量とした。
Slag particles were produced by the heat recovery method obtained in the present invention.
In FIG. 3, the amount of spray water and the slag particle temperature of the Example of this invention and the comparative example which performed spray water amount adjustment of the spray nozzle 7 by the conventional method of patent document 3 are shown.
The equipment of the example has a length of the rotary cylinder 4 of 5000 mm, a diameter of 2800 mm, a drum diameter of the rotary drum granulator 5 of 680 mm, a blade plate height of 150 mm, and a molten slag input flow rate of 30 T / H.
In the embodiment of the present invention, the temperature sensors 8 are installed at three locations in the longitudinal direction of the rotating cylinder 4, and three water spray nozzles 7 are installed at the upper part of the rotating cylinder 4 corresponding to each position, and the amount of spray water is individually set. Controlled.
In the comparative example of the conventional method, three water spray nozzles 7 were installed in the same manner as in the example, but the spray water amount was controlled only by the exhaust temperature, and the spray water amount of the spray nozzle 7 was all equal.

噴霧水量を個別に制御しない従来法では回転ドラム造粒機5に近い位置でスラグ粒の温度が下がらず、950℃を超えて再融着が発生したのに対し、本発明の方法では回転ドラム造粒機5に近いスプレーノズル7の水量が多くなるよう制御することで全ての位置でスラグ粒温度が950℃を下回り、再融着を防止できた。   In the conventional method in which the amount of spray water is not individually controlled, the temperature of the slag particles does not decrease near the rotary drum granulator 5 and re-fusion occurs at a temperature exceeding 950 ° C., whereas in the method of the present invention, the rotary drum By controlling the amount of water in the spray nozzle 7 close to the granulator 5 to be increased, the slag particle temperature was below 950 ° C. at all positions, and re-fusion could be prevented.

図4に、本発明の実施例で製造した高炉スラグ粒子と、従来法の比較例で製造した高炉スラグ粒子との粒度分布を示す。従来法の比較例では熱負荷の高い個所で融着が生じたために粗粒が多いのに対し、本発明の実施例では融着が生じず、粒度分布がより細かい粒子とすることができた。実施例では粒度分布及び強度においても細骨材に適したスラグ粒子を製造することができた。
このように、回転筒2内部の熱負荷の高い個所を集中して冷却することにより、再融着を防ぎつつ熱交換器での回収熱量を最大化することが可能となった。
In FIG. 4, the particle size distribution of the blast furnace slag particle manufactured by the Example of this invention and the blast furnace slag particle manufactured by the comparative example of the conventional method is shown. In the comparative example of the conventional method, fusion occurred at a place with a high heat load, so that there were many coarse particles, whereas in the example of the present invention, fusion did not occur and particles with a finer particle size distribution could be obtained. . In the examples, slag particles suitable for fine aggregates could be produced in terms of particle size distribution and strength.
In this way, by concentrating and cooling the portion with a high heat load inside the rotary cylinder 2, it becomes possible to maximize the amount of heat recovered in the heat exchanger while preventing re-fusion.

本発明の溶融高炉スラグからの熱回収設備を示した概略図である。It is the schematic which showed the heat recovery equipment from the molten blast furnace slag of this invention. 本発明の熱回収設備の内、溶融高炉スラグ鍋1から固気分離装置10の範囲を表した図である。It is the figure showing the range of the solid-gas separation apparatus 10 from the molten blast furnace slag pot 1 among the heat recovery equipment of this invention. 本発明の実施例と、従来法で水スプレーノズルの噴霧水量調整を行った比較例の、噴霧水量とスラグ粒子温度を示した図である。It is the figure which showed the amount of spray water and the slag particle temperature of the comparative example which performed the spray water amount adjustment of the water spray nozzle by the conventional method with the Example of this invention. 本発明の実施例で製造したスラグ粒子と、従来法の比較例で製造したスラグ粒子との粒度分布を示した図である。It is the figure which showed the particle size distribution of the slag particle | grains manufactured in the Example of this invention, and the slag particle | grains manufactured by the comparative example of the conventional method.

符号の説明Explanation of symbols

1 溶融高炉スラグ鍋
2 回転筒
3 熱交換器
4 廃熱ボイラ
5 回転ドラム(回転ドラム造粒機)
6 外冷水ノズル
7 水スプレーノズル
8 温度センサー
9 スプレー水量調節器
10 固気分離装置
11 高炉スラグ受け
12 コンベア
13 ブロア
14 熱回収後の高炉スラグ
15 熱交換装置(熱交換器3及び廃熱ボイラ4)
DESCRIPTION OF SYMBOLS 1 Melting blast furnace slag pot 2 Rotating cylinder 3 Heat exchanger 4 Waste heat boiler 5 Rotating drum (Rotating drum granulator)
6 Outside cold water nozzle 7 Water spray nozzle 8 Temperature sensor 9 Spray water volume controller
10 Solid-gas separator
11 Blast furnace slag receiver
12 conveyor
13 Blower
14 Blast furnace slag after heat recovery
15 Heat exchanger (heat exchanger 3 and waste heat boiler 4)

Claims (6)

外部から冷却される回転筒と、該回転筒入口に設置されて流下する溶融高炉スラグを粒滴化して回転筒内に投入する回転ドラムと、該回転筒内の下部に設置され、回転筒下部に堆積する固化後の高炉スラグの温度を測定する温度センサーと、該回転筒内の上方に設置され、該温度センサーの測定した温度により該回転筒内への水の噴霧量を調整できる水スプレーノズルと、該回転筒出口に設置され、排出される高炉スラグと排ガスを分離する固気分離装置と、分離後の高炉スラグの顕熱を回収する熱交換装置とを有することを特徴とする溶融高炉スラグからの熱回収装置。   A rotating cylinder cooled from the outside, a rotating drum installed at the inlet of the rotating cylinder and flowing down into the molten blast furnace slag and put into the rotating cylinder, and a lower part of the rotating cylinder installed in the lower part of the rotating cylinder A temperature sensor that measures the temperature of the solidified blast furnace slag deposited on the water cylinder, and a water spray that is installed above the rotating cylinder and that can adjust the amount of water sprayed into the rotating cylinder according to the temperature measured by the temperature sensor Melting characterized by having a nozzle, a solid-gas separation device installed at the outlet of the rotating cylinder and separating the discharged blast furnace slag and exhaust gas, and a heat exchange device for recovering sensible heat of the separated blast furnace slag Heat recovery device from blast furnace slag. 前記水スプレーノズル及び前記温度センサーが、前記回転筒の長手方向に複数設置され、該各々の温度センサーの検出温度に応じて、該各々の水スプレーノズルの水噴霧量を独立して制御できることを特徴とする請求項1記載の溶融高炉スラグからの熱回収装置。   A plurality of the water spray nozzles and the temperature sensors are installed in the longitudinal direction of the rotating cylinder, and the water spray amount of each of the water spray nozzles can be independently controlled according to the detected temperature of each of the temperature sensors. The heat recovery apparatus from the molten blast furnace slag according to claim 1, wherein the apparatus is a heat recovery apparatus. 前記熱交換装置は、前記分離後の高炉スラグと導入する空気との間で熱交換する前段の熱交換器と、該熱交換後の空気の顕熱を回収する後段の廃熱ボイラからなることを特徴とする請求項1又は2記載の溶融高炉スラグからの熱回収装置。   The heat exchanging device is composed of a front heat exchanger that exchanges heat between the separated blast furnace slag and the air to be introduced, and a rear waste heat boiler that recovers sensible heat of the air after the heat exchange. The heat recovery apparatus from the molten blast furnace slag according to claim 1 or 2. 請求項1〜3の何れかに記載の熱回収装置を使用した溶融高炉スラグからの熱回収方法であって、溶融高炉スラグを前記回転ドラムに流下させて粒滴化して前記回転筒内に投入し、水スプレーノズルから水を噴霧して粒滴化した高炉スラグを固化し、回転筒内の下部に堆積した固化後の高炉スラグの温度を前記温度センサーで測定して、該温度が所定の温度になるように前記水スプレーノズルの水の噴霧量を調整し、生じる排ガスと固化後の高炉スラグを分離し、分離後の高炉スラグの顕熱を前記熱交換装置により回収することを特徴とする高炉スラグからの熱回収方法。   A method for recovering heat from molten blast furnace slag using the heat recovery apparatus according to any one of claims 1 to 3, wherein the molten blast furnace slag is caused to flow down to the rotating drum to form droplets, and is put into the rotating cylinder. The blast furnace slag formed by spraying water from a water spray nozzle is solidified, and the temperature of the solidified blast furnace slag accumulated in the lower part of the rotating cylinder is measured by the temperature sensor. The amount of water sprayed from the water spray nozzle is adjusted to a temperature, the generated exhaust gas and solidified blast furnace slag are separated, and the sensible heat of the separated blast furnace slag is recovered by the heat exchange device. To recover heat from blast furnace slag. 前記所定の温度が350℃以上950℃以下であることを特徴とする請求項4記載の高炉スラグからの熱回収方法。   The method for recovering heat from blast furnace slag according to claim 4, wherein the predetermined temperature is 350 ° C. or higher and 950 ° C. or lower. 前記回転筒の長手方向に複数設置される水スプレーノズルの水噴霧量を、該回転筒の入口に近い側から出口に近い側にかけて低減し、且つ前記複数設置された温度センサーの測定値に応じて調整することを特徴とする請求項4又は5記載の高炉スラグからの熱回収方法。   The amount of water sprayed by a plurality of water spray nozzles installed in the longitudinal direction of the rotating cylinder is reduced from the side close to the inlet of the rotating cylinder to the side close to the outlet, and according to the measured value of the plurality of temperature sensors installed The method for recovering heat from blast furnace slag according to claim 4 or 5, wherein the heat recovery is performed by adjusting the temperature of the blast furnace slag.
JP2006114866A 2006-04-18 2006-04-18 Heat recovery apparatus and heat recovery method from molten blast furnace slag Active JP4669432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114866A JP4669432B2 (en) 2006-04-18 2006-04-18 Heat recovery apparatus and heat recovery method from molten blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114866A JP4669432B2 (en) 2006-04-18 2006-04-18 Heat recovery apparatus and heat recovery method from molten blast furnace slag

Publications (2)

Publication Number Publication Date
JP2007284761A JP2007284761A (en) 2007-11-01
JP4669432B2 true JP4669432B2 (en) 2011-04-13

Family

ID=38756819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114866A Active JP4669432B2 (en) 2006-04-18 2006-04-18 Heat recovery apparatus and heat recovery method from molten blast furnace slag

Country Status (1)

Country Link
JP (1) JP4669432B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932308B2 (en) * 2006-04-12 2012-05-16 新日本製鐵株式会社 Method and apparatus for processing molten blast furnace slag
KR100903638B1 (en) 2007-10-09 2009-06-18 재단법인 포항산업과학연구원 Apparatus for recycling heat of slag
KR101110260B1 (en) * 2008-12-22 2012-02-15 재단법인 포항산업과학연구원 A Method and Apparatus depriving Heat from High Temperature Slag
WO2010131658A1 (en) 2009-05-12 2010-11-18 国立大学法人新潟大学 Device for recovering heat of molten slag
CN103822490B (en) * 2012-11-16 2015-11-25 河南特耐工程材料股份有限公司 A kind of Dumpage type electric smelting furnace
CN104329947B (en) * 2014-10-15 2016-04-20 浙江德立涂装机械有限公司 A kind of clean stove of heat of double purified process
CN104946826B (en) * 2015-06-05 2017-09-01 中国科学院力学研究所 A kind of metallurgical slag waste heat recovery apparatus and method
CN106766950B (en) * 2016-11-23 2019-03-29 北京天朗致达节能环保股份有限公司 A kind of high temperature pelletizing heat recovering device and recovery method
CN108531670A (en) * 2018-07-04 2018-09-14 上海宝钢节能环保技术有限公司 A kind of drum process slag processing multiple spot spray equipment
CN109811095B (en) * 2019-03-01 2020-04-21 西安交通大学 Heat accumulating type stainless steel slag waste heat recovery device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111754A (en) * 1987-10-23 1989-04-28 Kubota Ltd Production of granulated slag
JPH02102151A (en) * 1988-10-05 1990-04-13 Hamada Juko Kk Apparatus for producing granular slag
JPH02283642A (en) * 1989-04-25 1990-11-21 Hamada Juko Kk Cooling of flying melt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111754A (en) * 1987-10-23 1989-04-28 Kubota Ltd Production of granulated slag
JPH02102151A (en) * 1988-10-05 1990-04-13 Hamada Juko Kk Apparatus for producing granular slag
JPH02283642A (en) * 1989-04-25 1990-11-21 Hamada Juko Kk Cooling of flying melt

Also Published As

Publication number Publication date
JP2007284761A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4669432B2 (en) Heat recovery apparatus and heat recovery method from molten blast furnace slag
JP2009204231A (en) Heat recovering device from fusion blast furnace slag
EP1155727B1 (en) Processing method for high-temperature exhaust gas
CN101871025B (en) Metallurgical molten slag dry-type processing device and processing method thereof
KR101695171B1 (en) Slag granulation system and method of operation
EP2922976B1 (en) Dry slag granulation system and method
JP2009204232A (en) Heat recovering device from fusion blast furnace slag
TWI675108B (en) Method of controlling a supply of coolant gas to a dry slag granulation system and dry slag granulat10n system
MX2011000004A (en) Granulation of molten material.
JP4783325B2 (en) High temperature exhaust gas treatment method
JP3858657B2 (en) Method and apparatus for producing pulverized slag particles and exhaust gas treatment facility
JP4932308B2 (en) Method and apparatus for processing molten blast furnace slag
JP2017081814A (en) Method for producing slag material
JPH11181508A (en) Equipment for recovering heat in molten blast furnace slag
JP3746896B2 (en) Method and apparatus for processing molten blast furnace slag
CA1117297A (en) Method and apparatus for granulating blast furnace slag
CN201825962U (en) Dry-type metallurgical molten slag treating device
JP3982130B2 (en) Equipment for cooling and solidifying molten slag
JP3892681B2 (en) High temperature exhaust gas treatment method
JP7380634B2 (en) Granular pig iron production equipment and method for cooling granular pig iron
US4113239A (en) Apparatus for cooling slag
JPH11236609A (en) Treatment of blast furnace slag and apparatus thereof
KR101298728B1 (en) Sensible heat collecting apparatus of furnace slag
CN115044716A (en) Anti-bonding slag dry-type granulation heat recovery system
JPH02283642A (en) Cooling of flying melt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4669432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350