JP4664455B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4664455B2
JP4664455B2 JP12992099A JP12992099A JP4664455B2 JP 4664455 B2 JP4664455 B2 JP 4664455B2 JP 12992099 A JP12992099 A JP 12992099A JP 12992099 A JP12992099 A JP 12992099A JP 4664455 B2 JP4664455 B2 JP 4664455B2
Authority
JP
Japan
Prior art keywords
material layer
active material
electrode active
negative electrode
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12992099A
Other languages
Japanese (ja)
Other versions
JP2000323173A (en
Inventor
亨 矢嶋
孝之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12992099A priority Critical patent/JP4664455B2/en
Publication of JP2000323173A publication Critical patent/JP2000323173A/en
Application granted granted Critical
Publication of JP4664455B2 publication Critical patent/JP4664455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池に関する。
【0002】
【従来の技術】
近年、移動通信機、ノートブック型パソコン、パームトップ型パソコン、一体型ビデオカメラ、ポータブルCD(MD)プレーヤー、コードレス携帯電話等の電子機器の小型化、軽量化を図る上でこれら電子機器の電源として小形で大容量の電池が求められている。
【0003】
前記電子機器の電源として普及している電池としては、アルカリマンガン電池のような一次電池や、ニッケルカドミウム電池、鉛畜電池のような二次電池が知られている。その中で、正極活物質にリチウム複合酸化物、負極にリチウムを吸蔵・放出する炭素質材料を用いた非水電解液二次電池は、小型、軽量で単電池電圧が高く、かつ高エネルギー密度を有することから、注目されている。
【0004】
前述した非水電解液二次電池は、非水電解液のイオン伝導性が低いために、大電流を取り出すには水系二次電池に比べて正極活物質および負極活物質の面積を大きくする必要がある。このため、薄いシート状の正極および負極をセパレータを挟んで積層し、これを円筒形または長楕円型の渦巻き状に捲回して発電要素を構成することが行われている。前記薄いシート状の正極および負極は、一般的に集電体である金属箔に正極活物質および負極活物質を含む混合物の層をそれぞれ担持する方法により作製される。
【0005】
非水電解液二次電池は、前記発電要素を電解液の保持、電気絶縁、形状保持等の目的で容器内に収納し、この発電要素を収納した容器内に非水電解液を注入し、前記発電要素を構成する正極、負極およびセパレータに非水電解液を含浸させた構造を有する。
【0006】
【発明が解決しようとする課題】
前述した非水電解液二次電池は、一般に、充放電を多数繰り返すと、放電できる容量が徐々に減少し、それに伴なって電池が装填された電子機器の作動時間が短くなる。この放電容量の減少の原因は、種々考えられている。一つの原因としては、負極活物質に用いる炭素質材料が充電時に膨張し、放電時に収縮するため、その体積変化の繰り返しによって負極活物質層の構造が崩壊し、炭素質材料が集電体から脱落したり、炭素質材料同士の間の電気的な接続が低下するという現象が考えられる。また、正極活物質に用いられるリチウム複合酸化物も、同様に充電時に膨張し、放電時に収縮するため、正極活物質層の構造が崩壊し、活物質そのもの、または導電性を高めるために添加されたカーボン粒子が脱落して容量が低下することが考えられる。
【0007】
このような活物質層の崩壊を防止するために、例えば活物質層に添加されるカーボン粒子や結着剤として添加される樹脂の種類、量を種々変更したり、活物質層を形成する際の条件を変更する等の検討がなされている。しかしながら、このような手段を講じても活物質層の崩壊を効果的に防止することが困難であった。
【0008】
一方、活物質層の構造が崩壊するのは、充電により活物質が膨張した時に生じる圧力が、逃げることなく発電要素の内部に蓄積されることが原因であると考えられている。これを回避するために発電要素の内部に空間を設けたり、セパレータに気孔率の大きな多孔性材料を用いること等の方法により圧力を逃がすことが考えられている。しかしながら、これらの方法では二次電池の体積が大きくなるため、単位体積当たりの充放電容量が低下する。特に、後者の方法(セパレータの気孔率を大きくする)では活物質層表面の凹凸等がセパレータを貫通して内部短絡を起こす恐れがある。内部短絡を回避するためにセパレータの厚さを厚くすると、同様に単位体積当たりの充放電容量が低下する。
【0009】
本発明は、単位体積当たりの容量低下および内部短絡の発生を招くことなく、充放電の繰り返しによる放電容量の減少を防止することが可能な非水電解液二次電池を提供しようとするものである。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明に係わる非水電解液二次電池は、集電体の少なくとも片面に正極活物質層を形成した正極と集電体の少なくとも片面に負極活物質層を形成した負極とをセパレータを介して積層した発電要素、および非水電解液を備えた非水電解液二次電池であって、
前記セパレータは、互いに硬度の異なる2つ以上の材料層を積層した構造を有し、かつ前記正極活物質層に接する前記材料層が該正極活物質層の硬度より低い硬度を有し、前記負極活物質層と接する前記材料層が該負極活物質層の硬度より低い硬度を有することを特徴とするものである。
【0013】
このような構成の非水電解液二次電池においては、セパレータは互いに硬度の異なる2つ以上の材料層を積層した構造を有し、正極活物質層に接する前記材料層(第1材料層)が該正極活物質層の硬度より低い硬度を有するため、充電時の正極活物質の膨張によって生じる圧力を前記第1材料層により吸収することができる。一方、負極活物質層と接する前記セパレータの材料層(第2材料層)は該負極活物質層の硬度より低い硬度を有するため、充電時の負極活物質の膨張によって生じる圧力を前記第2材料により吸収することができる。その結果、正極活物質層および負極活物質層の構造崩壊を防止することができる。
【0014】
また、前記第1、第2の材料層の間に70%以下の気孔率を有する第3材料層を配置してセパレータを構成することによって、正負極間の内部短絡を防止することができる。
【0015】
したがって、単位体積当たりの容量低下および内部短絡の発生を招くことなく、充放電の繰り返しによる放電容量の減少を防止した長寿命の非水電解液二次電池を得ることができる。
【0016】
【発明の実施の形態】
以下、本発明に係わる非水電解液二次電池(例えば円筒形非水電解液二次電池)を図1を参照して詳細に説明する。
【0017】
例えばステンレスからなる有底円筒状の容器1は、底部に絶縁体2が配置されている。発電要素3は、前記容器1内に収納されている。前記発電要素3は、正極4、セパレ―タ5及び負極6をこの順序で積層した積層体を例えば前記負極6が外側に位置するように渦巻き状に巻回した構造になっている。
【0018】
前記容器1内には、電解液が収容されている。中央部が開口された絶縁紙7は、前記容器1内の前記電極群3の上方に載置されている。絶縁封口板8は、前記容器1の上部開口部に配置され、かつ前記上部開口部付近を内側にかしめ加工することにより前記封口板8は前記容器1に液密に固定されている。正極端子9は、前記絶縁封口板8の中央には嵌合されている。正極リ―ド10の一端は、前記正極4に、他端は前記正極端子9にそれぞれ接続されている。前記負極6は、図示しない負極リ―ドを介して負極端子である前記容器1に接続されている。
【0019】
前記正極は、集電体の少なくとも片面に活物質を含む正極活物質層を形成した構造を有する。
【0020】
前記集電体としては、例えばアルミニウム、ニッケルまたはステンレスの板、アルミニウム、ニッケルまたはステンレスのメッシュ等を挙げることができる。
【0021】
前記正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト化合物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。中でも、リチウムコバルト酸化物(LiCoO2 )、リチウムニッケル酸化物(LiNiO2 )、リチウムマンガン酸化物(LiMn2 4 またはLiMnO2 )を用いると、高電圧が得られるために好ましい。
【0022】
前記正極活物質層は、結着剤および導電剤を含有することが好ましい。
【0023】
前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0024】
前記導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。
【0025】
前記負極は、集電体の少なくとも片面に活物質を含む負極活物質層を形成した構造を有する。
【0026】
前記負極活物質は、特に限定されないが、金属リチウム、リチウム合金、または充放電時にリチウムイオンを可逆的に吸蔵・放出、もしくはインターカレート・ディスインターカレートするコークス、炭素繊維、黒鉛、メソフェーズピッチ系炭素、熱分解気相炭素質物、樹脂焼成体等の炭素質材料等を挙げることができる。
【0027】
前記正極活物質層は、例えば結着剤を含有することが好ましい。
【0028】
前記結着剤としては、例えばポリテトラフルオロエチレン、ポリビニリデンフルオロライド、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエンゴム、カルボキシメチルセルロース等の結着剤を含有することが好ましい。
【0029】
前記非水電解液は、電解質を非水溶媒で溶解した組成を有する。
【0030】
電解質としては、例えば過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、六フッ化燐酸リチウム(LiPF6)、六フッ化砒素酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、LiN(CF3SO22等を用いることができる。
【0031】
非水溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;γ−ブチロラクトン等の環状エステル;テトラメチルスルホラン、ジメチルスルホキシド、N−メチルピロリドン、ジメチルフォルムアミドまたはこれらの誘導体などの他の非水溶媒;等を用いることができる。これらの非水溶媒は、1種または2種以上の混合物の形態で用いることができる。さらに、これらの非水溶媒にジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのような鎖状カーボネートやアセトニトリル、酢酸エチル、酢酸メチル、トルエン、キシレン等の溶媒を混合することにより非水電解液の粘度を下げることが可能になる。
【0032】
前記非水溶媒中の前記電解質の濃度は、0.5モル/L以上にすることが好ましい。
【0033】
前記セパレータは、次のような(1),(2)に説明する構造を有する。
【0034】
(1)セパレータ
このセパレータは、前記正極活物質層および前記負極活物質層の硬度のいずれよりも低い硬度を有し、かつ70%以下の気孔率を有する。
【0035】
前記セパレータは、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体からなる微多孔性膜またはこれら材料の繊維を有する織布、不織布により作られる。特に、微多孔性膜が好ましい。
【0036】
電池組立前の前記セパレータの硬度は、例えば硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いた時の前記正極活物質層および前記負極活物質層の硬度に対する差が0.2〜40であることが好ましい。
【0037】
電池に組み込んで使用した後の前記セパレータの硬度は、例えば硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いた時の前記正極活物質層および前記負極活物質層の硬度に対する差が0.1〜30であることが好ましい。
【0038】
前記セパレータの気孔率が70%を超えると、正負極活物質層の表面の凹凸に起因して内部短絡を生じる恐れがある。より好ましいセパレータの気孔率は30〜60%である。
【0039】
(2)セパレータ
このセパレータは、互いに硬度の異なる2つ以上の材料層を積層した構造を有し、かつ前記正極活物質層に接する前記材料層(第1材料層)が該正極活物質層の硬度より低い硬度を有し、前記負極活物質層と接する前記材料層(第2材料層)が該負極活物質層の硬度より低い硬度を有する。このようなセパレータは、正負極活物質層の硬度に則した硬度を持つ材料層を選択できるため、正負極活物質の膨張により生じた圧力を効果的に吸収してそれら正負極活物質層の構造崩壊を防止することが可能になる。
【0040】
前記セパレータの各材料層は、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体からなる微多孔性膜またはこれら材料の繊維を有する織布、不織布により作られる。特に、微多孔性膜が好ましい。
【0041】
電池組立前の前記第1材料層の硬度は、例えば硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いた時の前記正極活物質層の硬度に対する差が0.2〜40であることが好ましい。
【0042】
電池組立前の前記第2材料層の硬度は、例えば硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いた時の前記負極活物質層の硬度に対する差が0.2〜40であることが好ましい。
【0043】
電池に組み込んで使用した後の前記第1材料層の硬度は、例えば硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いた時の前記正極活物質層の硬度に対する差が0.1〜30であることが好ましい。
【0044】
電池に組み込んで使用した後の前記第2材料層の硬度は、例えば硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いた時の前記負極活物質層の硬度に対する差が0.1〜30であることが好ましい。
【0045】
前記セパレータの各材料層のうち、少なく一方の材料層の気孔率は、70%以下であることが好ましい。
【0046】
前記セパレータにおいて、前記第1、第2の材料層の間に70%以下の気孔率を有する第3材料層を介在させることが好ましい。特に、前記第1、第2の材料層の硬度を下げる、つまり柔軟性を高めるために、それらを70%を超える気孔率にした場合、それら材料層の間に70%以下の気孔率を有する第3材料層を介在させることは正負極の内部短絡を防止する上で好適である。より好ましい前記第3材料層の気孔率は30〜60%である。
【0047】
前記セパレータは、前記各材料層を圧着一体化したり、接着剤を用いた接合したり、または単に重ねた状態で使用することができる。
【0048】
【実施例】
以下、本発明の実施例を前述した図1に示す非水電解液二次電池を参照して詳細に説明する。
【0049】
(実施例1)
<正極の作製>
まず、活物質としてのLiCoO2粉末にアセチレンブラック5重量%添加し、この混合物にポリフッ化ビニリデン樹脂の5%ジメチルホルムアミド溶液を添加してペーストを調製した。このペーストを幅55mm、厚さ20μmのアルミニウム箔の片面に塗布し、乾燥して厚さ90μmの活物質層を形成することにより正極を作製した。
【0050】
得られた正極の活物質層の硬度を硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定したところ、10.0であった。また、前記正極活物質層の気孔率および平均気孔径を水銀圧入法により測定したところ、気孔率が43%、平均気孔径が0.5μmであった。
【0051】
<負極の作製>
まず、メソフェーズピッチ系炭素繊維にポリフッ化ビニリデン樹脂の5%ジメチルホルムアミド溶液を添加して同炭素繊維を60重量%含むペーストを調製した。このペーストを幅57mm、厚さ12μmの銅箔の片面に塗布し、乾燥して厚さ90μmの活物質層を形成することにより負極を作製した。
【0052】
得られた負極の活物質層の硬度を硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定したところ、2.7であった。また、前記負極活物質層の気孔率および平均気孔径を水銀圧入法により測定したところ、気孔率が39%、平均気孔径が3μmであった。
【0053】
<非水電解液>
エチレンカーボネートとメチルエチルカーボネートを1:2の体積比で混合した混合溶媒に六フッ化燐酸リチウム(LiPF6)を1モル/L溶解して非水電解液を調製した。
【0054】
次いで、前記正負極の間に気孔率45%、平均気孔径0.3μm、硬度2.4[硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定]、厚さ25μmのポリエチレン製微多孔膜を挟んだ後、捲回機により渦巻き状に捲回して直径17mmの発電要素を作製した。ひきつづき、この発電要素を表面をニッケルメッキした鉄製の有底円筒状容器(直径18mm、長さ65mm)内に挿入し、前記非水電解液を注入した後、前記容器の開口部に正極端子を有する絶縁封口板を配置し、前記容器の上部開口部付近を内側にかしめ加工して液密に固定することにより前述した図1に示す構造の非水電解液二次電池を組立てた。
【0055】
(実施例2)
気孔率75%、平均気孔径0.4μm、硬度1.3[硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定]、厚さ7.5μmの第1、第2のポリエチレン製微多孔膜の中間に気孔率45%、平均気孔径0.2μm、硬度11.3[硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定]、厚さ10μmの第3ポリエチレン製微多孔膜を介在して一体化することにより厚さ25μmセパレータを作製した。このセパレータを用いた以外、実施例1と同様で、前述した図1に示す構造の非水電解液二次電池を組立てた。
【0056】
(比較例1)
セパレータとして気孔率40%、平均気孔径0.09μm、硬度7.6[硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定]、厚さ25μmのポリエチレン製微多孔膜からなるものを用いた以外、実施例1と同様で、前述した図1に示す構造の非水電解液二次電池を組立てた。
【0057】
(比較例2)
セパレータとして気孔率62%、平均気孔径0.07μm、硬度15.3[硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定]、厚さ25μmのポリエチレン製微多孔膜からなるものを用いた以外、実施例1と同様で、前述した図1に示す構造の非水電解液二次電池を組立てた。
【0058】
(比較例3)
セパレータとして気孔率75%、平均気孔径0.4μm、硬度1.3[硬度試験機(株式会社エリオニクス製商品名;ENT−1100)を用いて測定]、厚さ25μmのポリエチレン製微多孔膜からなるものを用いた以外、実施例1と同様で、前述した図1に示す構造の非水電解液二次電池を組立てた。
【0059】
得られた実施例1,2および比較例1〜3の非水電解液二次電池について、電流値1400mAhの定電流充電を行い、電圧が4.2Vに達した後に4.2Vの電圧を維持するように電流値を制御して合計3時間充電を行ない、その後電流値1400mAhの定電流放電を行なって電圧が3.0Vに達した時点で放電を終了する充放電を繰り返し、充放電の繰り返し回数と放電容量維持率(1回目の放電容量を100%とする)との関係を調べた。その結果を図2に示す。
【0060】
また、実施例1,2および比較例1〜3の非水電解液二次電池について前述したのと同様な充放電を行なった時の単位体積当たりの放電容量および内部短絡の発生個数(100個中)を調べた。これらの結果を下記表1に示す。
【0061】
【表1】

Figure 0004664455
【0062】
図2から明らかなように正極活物質層および負極活物質層の硬度より小さい硬度を有するポリエチレン製微多孔膜からなるセパレータを用いた実施例1および比較例3の二次電池、気孔率の低い第3ポリエチレン製微多孔膜の両面に正極活物質層および負極活物質層の硬度より小さい硬度を有する第1、第2のポリエチレン製微多孔膜を配置した実施例2の二次電池は、負極活物質層の硬度より大きな硬度を有するポリエチレン製微多孔膜からなるセパレータを用いた比較例1の二次電池、および正極活物質層および負極活物質層の硬度よりいずも大きな硬度を有するポリエチレン製微多孔膜からなるセパレータを用いた比較例2の二次電池に比べて充放電の繰り返しに伴う放電容量の低下が少ないことがわかる。
【0063】
一方、前記表1から明らかなように実施例1,2および比較例1,2の二次電池は、比較例3に比べて単位体積当たりの放電容量が高いことがわかる。
【0064】
また、実施例1,2および比較例1の二次電池は、いずれも内部短絡の発生がなく高い信頼性を有する。これに対し、前述した図2において充放電の繰り返しに伴う放電容量の低下が少ない比較例3の二次電池は、内部短絡の発生が個数が高く、信頼性の低いものであることがわかる。
【0065】
なお、前記実施例では円筒形の非水電解液二次電池を例にして説明したが、角形、平板形の非水電解液二次電池にも同様に適用することができる。
【0066】
【発明の効果】
以上詳述したように、本発明によれば単位体積当たりの容量低下および内部短絡の発生を招くことなく、充放電の繰り返しによる放電容量の減少を防止した高性能、高信頼性の非水電解液二次電池を提供できる。
【図面の簡単な説明】
【図1】本発明に係わる非水電解液二次電池を示す半載図。
【図2】本発明の実施例1,2および比較例1〜3の二次電池における充放電の繰り返し回数と放電容量維持率との関係を示す線図。
【符号の説明】
1…容器、
3…発電要素、
4…正極、
5…セパレータ、
6…負極
8…絶縁封口板。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, power supplies for electronic devices such as mobile communication devices, notebook computers, palmtop computers, integrated video cameras, portable CD (MD) players, cordless mobile phones, etc. have been reduced in size and weight. Therefore, there is a demand for a small and large capacity battery.
[0003]
As a battery that is widely used as a power source for the electronic device, a primary battery such as an alkaline manganese battery, a secondary battery such as a nickel cadmium battery, and a lead live battery are known. Among them, non-aqueous electrolyte secondary batteries using a lithium composite oxide as the positive electrode active material and a carbonaceous material that absorbs and releases lithium into the negative electrode are small, lightweight, have a high unit cell voltage, and have a high energy density. Has attracted attention.
[0004]
Since the non-aqueous electrolyte secondary battery described above has low ionic conductivity of the non-aqueous electrolyte, it is necessary to increase the area of the positive electrode active material and the negative electrode active material in order to extract a large current compared to the aqueous secondary battery. There is. For this reason, a thin sheet-like positive electrode and negative electrode are stacked with a separator interposed therebetween, and this is wound into a cylindrical or oblong spiral to form a power generation element. The thin sheet-like positive electrode and negative electrode are produced by a method in which a layer of a mixture containing a positive electrode active material and a negative electrode active material is supported on a metal foil that is generally a current collector.
[0005]
The non-aqueous electrolyte secondary battery stores the power generation element in a container for the purpose of holding the electrolytic solution, electrical insulation, shape retention, etc., and injecting the non-aqueous electrolyte into the container storing the power generation element, A positive electrode, a negative electrode, and a separator constituting the power generation element are impregnated with a nonaqueous electrolyte.
[0006]
[Problems to be solved by the invention]
In general, when the above-described non-aqueous electrolyte secondary battery is repeatedly charged and discharged, the capacity that can be discharged gradually decreases, and the operation time of the electronic device loaded with the battery is shortened accordingly. Various causes of the decrease in the discharge capacity are considered. One reason is that the carbonaceous material used for the negative electrode active material expands during charging and contracts during discharge, so that the structure of the negative electrode active material layer collapses due to repeated volume changes, and the carbonaceous material is removed from the current collector. Phenomenon of dropping off or electrical connection between carbonaceous materials may be considered. Similarly, the lithium composite oxide used for the positive electrode active material expands during charging and contracts during discharge, so that the structure of the positive electrode active material layer collapses and is added to increase the active material itself or conductivity. It is conceivable that the carbon particles fall off and the capacity decreases.
[0007]
In order to prevent such collapse of the active material layer, for example, when changing the type and amount of carbon particles added to the active material layer or the resin added as the binder, or when forming the active material layer Consideration has been made such as changing the conditions. However, even if such measures are taken, it has been difficult to effectively prevent the collapse of the active material layer.
[0008]
On the other hand, the collapse of the structure of the active material layer is thought to be caused by the fact that the pressure generated when the active material expands due to charging accumulates inside the power generation element without escaping. In order to avoid this, it is considered that the pressure is released by a method such as providing a space inside the power generation element or using a porous material having a large porosity for the separator. However, in these methods, since the volume of the secondary battery increases, the charge / discharge capacity per unit volume decreases. In particular, in the latter method (increasing the porosity of the separator), irregularities on the surface of the active material layer may penetrate the separator and cause an internal short circuit. When the thickness of the separator is increased in order to avoid an internal short circuit, the charge / discharge capacity per unit volume similarly decreases.
[0009]
The present invention is intended to provide a non-aqueous electrolyte secondary battery capable of preventing a decrease in discharge capacity due to repeated charge and discharge without causing a decrease in capacity per unit volume and occurrence of an internal short circuit. is there.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a non-aqueous electrolyte secondary battery according to the present invention has a positive electrode in which a positive electrode active material layer is formed on at least one side of a current collector and a negative electrode active material layer on at least one side of the current collector. A power generation element in which a negative electrode is laminated via a separator, and a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte,
The separator has a structure in which two or more material layers having different hardnesses are laminated, and the material layer in contact with the positive electrode active material layer has a hardness lower than the hardness of the positive electrode active material layer, and the negative electrode The material layer in contact with the active material layer has a hardness lower than the hardness of the negative electrode active material layer .
[0013]
In the non-aqueous electrolyte secondary battery having such a configuration, the separator has a structure in which two or more material layers having different hardnesses are laminated, and the material layer (first material layer) in contact with the positive electrode active material layer. Has a hardness lower than that of the positive electrode active material layer, the pressure generated by expansion of the positive electrode active material during charging can be absorbed by the first material layer. On the other hand, since the material layer (second material layer) of the separator that is in contact with the negative electrode active material layer has a hardness lower than the hardness of the negative electrode active material layer, the pressure generated by the expansion of the negative electrode active material during charging is applied to the second material. Can be absorbed. As a result, structural collapse of the positive electrode active material layer and the negative electrode active material layer can be prevented.
[0014]
Further, by arranging a third material layer having a porosity of 70% or less between the first and second material layers to constitute a separator, an internal short circuit between the positive and negative electrodes can be prevented.
[0015]
Therefore, it is possible to obtain a long-life non-aqueous electrolyte secondary battery that prevents a decrease in discharge capacity due to repeated charge and discharge without causing a decrease in capacity per unit volume and occurrence of an internal short circuit.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a non-aqueous electrolyte secondary battery (for example, a cylindrical non-aqueous electrolyte secondary battery) according to the present invention will be described in detail with reference to FIG.
[0017]
For example, a bottomed cylindrical container 1 made of stainless steel has an insulator 2 disposed at the bottom. The power generation element 3 is accommodated in the container 1. The power generation element 3 has a structure in which a laminated body in which a positive electrode 4, a separator 5, and a negative electrode 6 are stacked in this order is wound in a spiral shape so that the negative electrode 6 is positioned outside, for example.
[0018]
An electrolytic solution is accommodated in the container 1. The insulating paper 7 having a central opening is placed above the electrode group 3 in the container 1. The insulating sealing plate 8 is disposed in the upper opening of the container 1, and the sealing plate 8 is liquid-tightly fixed to the container 1 by caulking the vicinity of the upper opening inward. The positive terminal 9 is fitted in the center of the insulating sealing plate 8. One end of the positive electrode lead 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9. The negative electrode 6 is connected to the container 1 serving as a negative electrode terminal through a negative electrode lead (not shown).
[0019]
The positive electrode has a structure in which a positive electrode active material layer containing an active material is formed on at least one surface of a current collector.
[0020]
Examples of the current collector include aluminum, nickel or stainless steel plates, aluminum, nickel or stainless steel meshes, and the like.
[0021]
Examples of the positive electrode active material include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and vanadium containing lithium. Examples thereof include oxides and chalcogen compounds such as titanium disulfide and molybdenum disulfide. Among them, it is preferable to use lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or lithium manganese oxide (LiMn 2 O 4 or LiMnO 2 ) because a high voltage can be obtained.
[0022]
The positive electrode active material layer preferably contains a binder and a conductive agent.
[0023]
As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
[0024]
Examples of the conductive agent include acetylene black, carbon black, and graphite.
[0025]
The negative electrode has a structure in which a negative electrode active material layer containing an active material is formed on at least one surface of a current collector.
[0026]
The negative electrode active material is not particularly limited, but is lithium metal, lithium alloy, or coke, carbon fiber, graphite, mesophase pitch that reversibly absorbs / releases lithium ions during charge / discharge, or intercalates / disintercalates. Examples thereof include carbonaceous materials such as carbon, pyrolytic vapor phase carbonaceous material, and resin fired body.
[0027]
The positive electrode active material layer preferably contains, for example, a binder.
[0028]
The binder preferably contains, for example, a binder such as polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene copolymer, styrene-butadiene rubber, or carboxymethylcellulose.
[0029]
The non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent.
[0030]
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium trifluoromethanesulfonate (LiCF). 3 SO 3), can be used LiN (CF 3 SO 2) 2 and the like.
[0031]
Examples of the nonaqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; cyclic esters such as γ-butyrolactone; tetramethylsulfolane, dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide, and derivatives thereof. Non-aqueous solvents, etc. can be used. These non-aqueous solvents can be used in the form of one kind or a mixture of two or more kinds. Furthermore, the viscosity of the non-aqueous electrolyte can be increased by mixing these non-aqueous solvents with linear carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, and solvents such as acetonitrile, ethyl acetate, methyl acetate, toluene, and xylene. Can be lowered.
[0032]
The concentration of the electrolyte in the non-aqueous solvent is preferably 0.5 mol / L or more.
[0033]
The separator has a structure described in (1) and (2) below.
[0034]
(1) Separator This separator has a lower hardness than both the positive electrode active material layer and the negative electrode active material layer, and has a porosity of 70% or less.
[0035]
The separator is made of a microporous membrane made of polyethylene, polypropylene, an ethylene-propylene copolymer, an ethylene-butene copolymer, or a woven or non-woven fabric having fibers of these materials. In particular, a microporous membrane is preferable.
[0036]
The hardness of the separator before battery assembly is 0.2, for example, when the hardness of the positive electrode active material layer and the negative electrode active material layer when using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100) is 0.2. It is preferably ~ 40.
[0037]
The hardness of the separator after being incorporated in a battery is, for example, the difference with respect to the hardness of the positive electrode active material layer and the negative electrode active material layer when a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100) is used. Is preferably 0.1-30.
[0038]
When the porosity of the separator exceeds 70%, an internal short circuit may occur due to irregularities on the surface of the positive and negative electrode active material layers. A more preferable separator has a porosity of 30 to 60%.
[0039]
(2) Separator This separator has a structure in which two or more material layers having different hardnesses are laminated, and the material layer (first material layer) in contact with the positive electrode active material layer is the positive electrode active material layer. The material layer (second material layer) in contact with the negative electrode active material layer has a hardness lower than the hardness of the negative electrode active material layer. Since such a separator can select a material layer having a hardness in accordance with the hardness of the positive and negative electrode active material layers, it effectively absorbs the pressure generated by the expansion of the positive and negative electrode active materials, It becomes possible to prevent structural collapse.
[0040]
Each material layer of the separator is made of a microporous membrane made of polyethylene, polypropylene, an ethylene-propylene copolymer, an ethylene-butene copolymer, or a woven fabric or a nonwoven fabric having fibers of these materials. In particular, a microporous membrane is preferable.
[0041]
The hardness of the first material layer before battery assembly is 0.2 to 40, for example, when the hardness tester (trade name manufactured by Elionix Co., Ltd .; ENT-1100) is used. Preferably there is.
[0042]
The hardness of the second material layer before battery assembly is 0.2 to 40, for example, when the hardness tester (trade name manufactured by Elionix Co., Ltd .; ENT-1100) is used. Preferably there is.
[0043]
The hardness of the first material layer after being incorporated in a battery is, for example, a difference with respect to the hardness of the positive electrode active material layer when a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100) is 0. It is preferable that it is 1-30.
[0044]
The hardness of the second material layer after being used in a battery is such that, for example, the hardness difference of the negative electrode active material layer when using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100) is 0. It is preferable that it is 1-30.
[0045]
Of the material layers of the separator, the porosity of at least one of the material layers is preferably 70% or less.
[0046]
In the separator, it is preferable that a third material layer having a porosity of 70% or less be interposed between the first and second material layers. In particular, in order to reduce the hardness of the first and second material layers, that is, to increase flexibility, when the porosity is more than 70%, the material layers have a porosity of 70% or less. The interposition of the third material layer is suitable for preventing an internal short circuit between the positive and negative electrodes. More preferably, the porosity of the third material layer is 30 to 60%.
[0047]
The separator can be used in a state where the respective material layers are integrated by pressure bonding, bonded using an adhesive, or simply overlapped.
[0048]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the non-aqueous electrolyte secondary battery shown in FIG.
[0049]
Example 1
<Preparation of positive electrode>
First, 5% by weight of acetylene black was added to LiCoO 2 powder as an active material, and a 5% dimethylformamide solution of polyvinylidene fluoride resin was added to this mixture to prepare a paste. This paste was applied to one side of an aluminum foil having a width of 55 mm and a thickness of 20 μm, and dried to form an active material layer having a thickness of 90 μm, thereby producing a positive electrode.
[0050]
The hardness of the positive electrode active material layer obtained was 10.0 when measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100). Further, when the porosity and average pore diameter of the positive electrode active material layer were measured by mercury porosimetry, the porosity was 43% and the average pore diameter was 0.5 μm.
[0051]
<Production of negative electrode>
First, a 5% dimethylformamide solution of polyvinylidene fluoride resin was added to mesophase pitch-based carbon fiber to prepare a paste containing 60% by weight of the carbon fiber. This paste was applied to one side of a copper foil having a width of 57 mm and a thickness of 12 μm, and dried to form an active material layer having a thickness of 90 μm, thereby producing a negative electrode.
[0052]
It was 2.7 when the hardness of the obtained active material layer of the negative electrode was measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100). Further, when the porosity and average pore diameter of the negative electrode active material layer were measured by a mercury intrusion method, the porosity was 39% and the average pore diameter was 3 μm.
[0053]
<Non-aqueous electrolyte>
A non-aqueous electrolyte was prepared by dissolving 1 mol / L of lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2.
[0054]
Next, between the positive and negative electrodes, a porosity of 45%, an average pore diameter of 0.3 μm, a hardness of 2.4 [measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100)], a thickness of 25 μm After sandwiching the polyethylene microporous membrane, the power generation element having a diameter of 17 mm was produced by winding it in a spiral shape with a winding machine. Subsequently, the power generation element was inserted into a steel bottomed cylindrical container (diameter 18 mm, length 65 mm) whose surface was nickel-plated, and after pouring the non-aqueous electrolyte, a positive electrode terminal was inserted into the opening of the container. The non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 was assembled by disposing an insulating sealing plate having the above-described structure and caulking the vicinity of the upper opening of the container inward to fix it in a liquid-tight manner.
[0055]
(Example 2)
Porosity 75%, average pore diameter 0.4 μm, hardness 1.3 [measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100)], thickness 7.5 μm, first and second In the middle of the polyethylene microporous membrane, the porosity is 45%, the average pore diameter is 0.2 μm, the hardness is 11.3 [measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100)], and the thickness is 10 μm. A separator having a thickness of 25 μm was produced by integrating with a third polyethylene microporous membrane. A nonaqueous electrolyte secondary battery having the structure shown in FIG. 1 was assembled in the same manner as in Example 1 except that this separator was used.
[0056]
(Comparative Example 1)
As a separator, a porosity of 40%, an average pore diameter of 0.09 μm, a hardness of 7.6 [measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100)], from a polyethylene microporous film having a thickness of 25 μm A non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 was assembled in the same manner as in Example 1 except that this was used.
[0057]
(Comparative Example 2)
As a separator, a porosity of 62%, an average pore diameter of 0.07 μm, a hardness of 15.3 [measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100)], from a polyethylene microporous film having a thickness of 25 μm A non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 was assembled in the same manner as in Example 1 except that this was used.
[0058]
(Comparative Example 3)
From a polyethylene microporous film having a porosity of 75%, an average pore diameter of 0.4 μm, a hardness of 1.3 [measured using a hardness tester (trade name, manufactured by Elionix Co., Ltd .; ENT-1100)], and having a thickness of 25 μm A non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 was assembled in the same manner as in Example 1 except that this was used.
[0059]
The obtained non-aqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were charged at a constant current of 1400 mAh and maintained a voltage of 4.2 V after the voltage reached 4.2 V. The current value is controlled so that charging is performed for a total of 3 hours, and then a constant current discharge with a current value of 1400 mAh is performed. When the voltage reaches 3.0 V, charging and discharging are repeated, and charging and discharging are repeated. The relationship between the number of times and the discharge capacity retention rate (the first discharge capacity is 100%) was examined. The result is shown in FIG.
[0060]
Further, the discharge capacity per unit volume and the number of internal short-circuits (100 cells) when charging / discharging similar to that described above for the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were performed. Middle). These results are shown in Table 1 below.
[0061]
[Table 1]
Figure 0004664455
[0062]
As is clear from FIG. 2, the secondary batteries of Example 1 and Comparative Example 3 using a separator made of a polyethylene microporous film having a hardness smaller than the hardness of the positive electrode active material layer and the negative electrode active material layer, low porosity The secondary battery of Example 2 in which the first and second polyethylene microporous membranes having hardnesses smaller than the hardness of the positive electrode active material layer and the negative electrode active material layer are arranged on both surfaces of the third polyethylene microporous membrane is the negative electrode. The secondary battery of Comparative Example 1 using a separator made of a polyethylene microporous film having a hardness greater than the hardness of the active material layer, and polyethylene having a hardness greater than the hardness of the positive electrode active material layer and the negative electrode active material layer It can be seen that the decrease in discharge capacity due to repeated charge and discharge is less than in the secondary battery of Comparative Example 2 using a separator made of a microporous membrane.
[0063]
On the other hand, as can be seen from Table 1, the secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2 have a higher discharge capacity per unit volume than Comparative Example 3.
[0064]
In addition, the secondary batteries of Examples 1 and 2 and Comparative Example 1 have high reliability without any internal short circuit. On the other hand, it can be seen that the secondary battery of Comparative Example 3 in which the decrease in the discharge capacity due to repeated charge and discharge in FIG. 2 described above is small has a high number of internal short circuits and has low reliability.
[0065]
In the above-described embodiment, the cylindrical non-aqueous electrolyte secondary battery has been described as an example. However, the present invention can be similarly applied to a square or flat non-aqueous electrolyte secondary battery.
[0066]
【The invention's effect】
As described above in detail, according to the present invention, a high-performance, high-reliability non-aqueous electrolysis that prevents a decrease in discharge capacity due to repeated charge and discharge without causing a decrease in capacity per unit volume and occurrence of an internal short circuit. A liquid secondary battery can be provided.
[Brief description of the drawings]
FIG. 1 is a half-mounted view showing a non-aqueous electrolyte secondary battery according to the present invention.
FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity retention rate in the secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3 of the present invention.
[Explanation of symbols]
1 ... container,
3. Power generation element
4 ... positive electrode,
5 ... Separator,
6 ... Negative electrode 8 ... Insulating sealing plate.

Claims (2)

集電体の少なくとも片面に正極活物質層を形成した正極と集電体の少なくとも片面に負極活物質層を形成した負極とをセパレータを介して積層した発電要素、および非水電解液を備えた非水電解液二次電池であって、A power generation element in which a positive electrode having a positive electrode active material layer formed on at least one side of a current collector and a negative electrode having a negative electrode active material layer formed on at least one side of the current collector are stacked via a separator, and a non-aqueous electrolyte A non-aqueous electrolyte secondary battery,
前記セパレータは、互いに硬度の異なる2つ以上の材料層を積層した構造を有し、かつ前記正極活物質層に接する前記材料層が該正極活物質層の硬度より低い硬度を有し、前記負極活物質層と接する前記材料層が該負極活物質層の硬度より低い硬度を有することを特徴とする非水電解液二次電池。The separator has a structure in which two or more material layers having different hardnesses are laminated, and the material layer in contact with the positive electrode active material layer has a hardness lower than the hardness of the positive electrode active material layer, and the negative electrode The non-aqueous electrolyte secondary battery, wherein the material layer in contact with the active material layer has a hardness lower than that of the negative electrode active material layer.
前記セパレータは、前記正極活物質層に接する材料層と前記負極活物質層に接する材料層との間に70%以下の気孔率を有する材料層が配置されることを特徴とする請求項1記載の非水電解液二次電池。2. The separator according to claim 1, wherein a material layer having a porosity of 70% or less is disposed between a material layer in contact with the positive electrode active material layer and a material layer in contact with the negative electrode active material layer. Non-aqueous electrolyte secondary battery.
JP12992099A 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery Expired - Lifetime JP4664455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12992099A JP4664455B2 (en) 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12992099A JP4664455B2 (en) 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000323173A JP2000323173A (en) 2000-11-24
JP4664455B2 true JP4664455B2 (en) 2011-04-06

Family

ID=15021679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12992099A Expired - Lifetime JP4664455B2 (en) 1999-05-11 1999-05-11 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4664455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495864B2 (en) 2019-04-25 2022-11-08 Sk Innovation Co., Ltd. Separator for secondary battery and electrochemical device using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548860B (en) 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
US7211828B2 (en) 2001-06-20 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
JP4244120B2 (en) * 2001-06-20 2009-03-25 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
JP5066849B2 (en) * 2006-07-03 2012-11-07 ソニー株式会社 Secondary battery and manufacturing method thereof
JP5621867B2 (en) * 2012-03-27 2014-11-12 Tdk株式会社 Lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126019A (en) * 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325865A (en) * 1989-06-21 1991-02-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
CN1134078C (en) * 1995-08-28 2004-01-07 旭化成株式会社 Cell and production method thereof
JPH0992257A (en) * 1995-09-27 1997-04-04 Sony Corp Nonaqueous electrolyte secondary battery
JP3584583B2 (en) * 1995-12-12 2004-11-04 ソニー株式会社 Stacked non-aqueous electrolyte secondary battery
JPH10284045A (en) * 1997-03-31 1998-10-23 Japan Storage Battery Co Ltd Manufacture of porous polymer electrolyte and nonaqueous electrolyte battery
JPH10302842A (en) * 1997-04-30 1998-11-13 Shin Kobe Electric Mach Co Ltd Winding type secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126019A (en) * 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495864B2 (en) 2019-04-25 2022-11-08 Sk Innovation Co., Ltd. Separator for secondary battery and electrochemical device using the same

Also Published As

Publication number Publication date
JP2000323173A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP6332483B2 (en) Separator and battery
US6423447B1 (en) Non-aqueous electrolyte secondary battery and method of production of the same
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
JP3980505B2 (en) Thin lithium ion secondary battery
KR100367751B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
US20050058896A1 (en) Non-aqueous electrolyte secondary battery
JPH09259929A (en) Lithium secondary cell
JP2009070609A (en) Separator and battery using the same
JP4900994B2 (en) Nonaqueous electrolyte secondary battery
JP2002042775A (en) Nonaqueous electrolyte secondary battery
JP2002334690A (en) Solid electrolyte battery and its manufacturing method
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH1167273A (en) Lithium secondary battery
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2004095538A (en) Nonaqueous electrolyte secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2004193139A (en) Non-aqueous electrolyte secondary battery
JP2004063145A (en) Secondary battery using non-aqueous electrolyte
JP4737949B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

EXPY Cancellation because of completion of term