JP4664199B2 - Capacity measuring device and capacity measuring method - Google Patents

Capacity measuring device and capacity measuring method Download PDF

Info

Publication number
JP4664199B2
JP4664199B2 JP2005361135A JP2005361135A JP4664199B2 JP 4664199 B2 JP4664199 B2 JP 4664199B2 JP 2005361135 A JP2005361135 A JP 2005361135A JP 2005361135 A JP2005361135 A JP 2005361135A JP 4664199 B2 JP4664199 B2 JP 4664199B2
Authority
JP
Japan
Prior art keywords
voltage
current
capacitor
terminals
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005361135A
Other languages
Japanese (ja)
Other versions
JP2007163328A (en
Inventor
和浩 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2005361135A priority Critical patent/JP4664199B2/en
Publication of JP2007163328A publication Critical patent/JP2007163328A/en
Application granted granted Critical
Publication of JP4664199B2 publication Critical patent/JP4664199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、電流が供給されている状態におけるコンデンサの端子間電圧と電流の電流値とに基づいてコンデンサの容量を測定する容量測定装置および容量測定方法に関するものである。   The present invention relates to a capacitance measuring device and a capacitance measuring method for measuring a capacitance of a capacitor based on a voltage between terminals of the capacitor and a current value of the current when a current is supplied.

コンデンサに直流の定電流を供給させてコンデンサの両端子間の電圧を測定し、その電圧の変化率やその電圧が所定の値となるまでに要する時間等に基づいてコンデンサの容量等を測定する装置が従来から知られている。この種の装置として、特開平7−27801号公報には、コンデンサ容量診断装置が開示されている。このコンデンサ容量診断装置では、バッテリからの電力(電流)の供給によってコンデンサの両端子間に生じる電圧をA/D変換器がデジタル値(コンデンサ電圧)に変換し、計算手段がそのコンデンサ電圧を第1の閾値および第2の閾値と比較することによってコンデンサの容量が適正であるか否(コンデンサの良否)を診断している。
特開平7−27801号公報(第3頁、第1−2図)
Measure the voltage between both terminals of the capacitor by supplying a constant DC current to the capacitor, and measure the capacitance of the capacitor based on the rate of change of the voltage and the time required for the voltage to reach a predetermined value. Devices are conventionally known. As this type of device, Japanese Patent Application Laid-Open No. 7-27801 discloses a capacitor capacity diagnostic device. In this capacitor capacity diagnostic device, the voltage generated between the two terminals of the capacitor by supplying power (current) from the battery is converted into a digital value (capacitor voltage) by the A / D converter, and the calculation means converts the capacitor voltage to the first value. By comparing with the threshold value of 1 and the second threshold value, it is diagnosed whether or not the capacitance of the capacitor is appropriate (capacity of the capacitor).
Japanese Patent Application Laid-Open No. 7-27801 (page 3, FIG. 1-2)

ところが、上記のコンデンサ容量診断装置を含む従来の装置には、以下の問題点がある。すなわち、この種の装置では、コンデンサの両端子間の電圧等に基づき、コンデンサの容量の測定やコンデンサの良否の診断を行っている。この場合、この種の装置において電圧の検出に用いられている例えばA/D変換回路等の電圧検出器は、その特性上、一般的に、検出対象の電圧が所定の範囲内にあるときには電圧を正確に検出できるものの、電圧がその所定の範囲から外れているときには、検出結果(検出値)がやや不正確となったり測定自体が困難となることがある。このため、コンデンサの容量を確実かつ正確に測定するためには、電圧をその所定の範囲内で測定するのが好ましい。   However, the conventional apparatus including the capacitor capacity diagnosis apparatus has the following problems. That is, in this type of device, the capacitance of the capacitor is measured and the quality of the capacitor is diagnosed based on the voltage between both terminals of the capacitor. In this case, a voltage detector such as an A / D conversion circuit used for voltage detection in this type of device generally has a voltage when the voltage to be detected is within a predetermined range because of its characteristics. However, if the voltage is out of the predetermined range, the detection result (detection value) may be slightly inaccurate or the measurement itself may be difficult. For this reason, in order to reliably and accurately measure the capacitance of the capacitor, it is preferable to measure the voltage within the predetermined range.

一方、コンデンサは、検査の開始前、つまりコンデンサに対する電流供給開始前において必ずしも完全に放電されているとは限らず、この時点で既にある程度充電されていることがある。この場合、従来の装置を用いて、例えば、コンデンサに直流定電流を供給させて所定時間が経過した時点における電圧の増加量(または低下量)に基づいてコンデンサの容量を測定する際に、電流供給開始前に既にある程度充電されているコンデンサに対して電流供給を開始したときには、その所定時間が経過する以前にコンデンサの両端子間の電圧が上記の所定の範囲から外れて測定結果が不正確となるおそれがある。このため、従来の装置を用いてコンデンサの容量を測定する際には、電流供給開始前に測定対象のコンデンサを十分に放電させる必要がある。したがって、従来の装置には、コンデンサを放電させる工程が必要な分、測定効率が低いという問題点が存在する。   On the other hand, the capacitor is not necessarily completely discharged before the start of inspection, that is, before the supply of current to the capacitor is started, and at this point, the capacitor may be already charged to some extent. In this case, when measuring the capacitance of the capacitor based on the amount of increase (or decrease) in voltage at the time when a predetermined time has elapsed after supplying a constant DC current to the capacitor, for example, current is used. When current supply is started to a capacitor that has already been charged to some extent before the supply starts, the voltage between both terminals of the capacitor falls outside the specified range before the specified time elapses, and the measurement result is inaccurate. There is a risk of becoming. For this reason, when measuring the capacity of a capacitor using a conventional apparatus, it is necessary to sufficiently discharge the capacitor to be measured before starting the current supply. Therefore, the conventional apparatus has a problem that the measurement efficiency is low because the process of discharging the capacitor is necessary.

本発明は、かかる問題点に鑑みてなされたものであり、測定効率を向上し得る容量測定装置および容量測定方法を提供することを主目的とする。   The present invention has been made in view of such problems, and a main object of the present invention is to provide a capacity measuring device and a capacity measuring method capable of improving measurement efficiency.

上記目的を達成すべく請求項1記載の容量測定装置は、電流が供給されている状態におけるコンデンサの端子間電圧を検出する電圧検出部と、前記端子間電圧および前記電流の電流値に基づいて前記コンデンサの容量を測定する測定部とを備えた容量測定装置であって、前記コンデンサに対する前記電流の供給を制御する制御部を備え、前記制御部は、前記電圧検出部によって検出された電流供給開始前の前記端子間電圧が所定電圧以下のときには当該端子間電圧が増加する向きに前記電流を供給させると共に、前記電流供給開始前の前記端子間電圧が前記所定電圧を超えているときには当該端子間電圧が低下する向きに前記電流を供給させる。   In order to achieve the above object, the capacitance measuring apparatus according to claim 1 is based on a voltage detection unit that detects a voltage between terminals of a capacitor in a state where a current is supplied, and a voltage between the terminal and the current value of the current. A capacitance measuring device including a measuring unit that measures the capacitance of the capacitor, the controller including a control unit that controls supply of the current to the capacitor, wherein the control unit supplies the current detected by the voltage detection unit. When the inter-terminal voltage before the start is less than or equal to a predetermined voltage, the current is supplied in the direction in which the inter-terminal voltage increases, and when the inter-terminal voltage before the current supply exceeds the predetermined voltage, the terminal The current is supplied in the direction in which the inter-voltage decreases.

また、請求項2記載の容量測定方法は、コンデンサに電流を供給させて当該コンデンサの端子間電圧を検出し、前記端子間電圧および前記電流の電流値に基づいて前記コンデンサの容量を測定する容量測定方法であって、電流供給開始前の前記端子間電圧を検出し、前記電流供給開始前の端子間電圧が所定電圧以下のときには当該端子間電圧が増加する向きに前記電流を供給させると共に、前記電流供給開始前の端子間電圧が前記所定電圧を超えているときには当該端子間電圧が低下する向きに前記電流を供給させる。   The capacity measuring method according to claim 2 is a capacity for detecting a voltage between terminals of the capacitor by supplying a current to the capacitor and measuring the capacity of the capacitor based on the voltage between the terminals and the current value of the current. In the measurement method, the voltage between the terminals before the start of current supply is detected, and when the voltage between the terminals before the start of current supply is equal to or lower than a predetermined voltage, the current is supplied in the direction in which the voltage between the terminals increases. When the inter-terminal voltage before starting the current supply exceeds the predetermined voltage, the current is supplied in such a direction that the inter-terminal voltage decreases.

請求項1記載の容量測定装置および請求項2記載の容量測定方法によれば、電流供給開始前におけるコンデンサの端子間電圧が所定電圧以下のときには端子間電圧が増加する向きに電流を供給させると共に、電流供給開始前における端子間電圧が所定電圧を超えているときには端子間電圧が低下する向きに電流を供給させることにより、例えば、電流供給開始時点から第1の時間および第2の時間が経過した時点における各端子間電圧、並びに電流値に基づいてコンデンサの容量を測定する際に、電流供給開始前における端子間電圧の大きさに拘わらず、つまり電流供給開始前においてコンデンサが放電されているかまたは充電されているか否かに拘わらず、第1の時間および第2の時間が経過した時点における各端子間電圧を電圧検出部による正確なサンプリングが可能な範囲に維持することができる。したがって、測定前に測定対象のコンデンサを放電させる工程が必要な従来の装置と比較して、放電させる工程を不要にできる分だけ容量の測定効率を十分に向上することができる。   According to the capacitance measuring device according to claim 1 and the capacitance measuring method according to claim 2, when the voltage between the terminals of the capacitor before starting the current supply is equal to or lower than a predetermined voltage, the current is supplied in the direction in which the voltage between the terminals increases. When the inter-terminal voltage before the start of current supply exceeds a predetermined voltage, for example, the first time and the second time have elapsed from the start of current supply by supplying the current in such a direction that the inter-terminal voltage decreases. When measuring the capacitance of the capacitor based on the voltage between each terminal and the current value at the time when the capacitor is connected, is the capacitor discharged before the current supply starts regardless of the magnitude of the voltage between the terminals before the current supply starts? Alternatively, regardless of whether or not the battery is charged, the voltage between the terminals at the time when the first time and the second time have elapsed is supplied to the voltage detection unit. The exact sampling can be maintained in a range possible that. Therefore, compared with a conventional apparatus that requires a step of discharging the capacitor to be measured before measurement, the capacity measurement efficiency can be sufficiently improved to the extent that the step of discharging is unnecessary.

以下、本発明に係る容量測定装置および容量測定方法の最良の形態について、添付図面を参照して説明する。   The best mode of a capacity measuring apparatus and a capacity measuring method according to the present invention will be described below with reference to the accompanying drawings.

最初に、容量測定装置1の構成について、図面を参照して説明する。   First, the configuration of the capacity measuring device 1 will be described with reference to the drawings.

図1に示す容量測定装置(以下、単に「測定装置」ともいう)1は、本発明に係る容量測定装置の一例であって、電源部2、電圧検出部3、操作部4、表示部5、制御部6、RAM7およびROM8を備えて、測定対象のコンデンサ100の容量Cを測定可能に構成されている。   A capacity measuring device (hereinafter also simply referred to as “measuring device”) 1 shown in FIG. 1 is an example of a capacity measuring device according to the present invention, and includes a power supply unit 2, a voltage detection unit 3, an operation unit 4, and a display unit 5. The control unit 6, the RAM 7, and the ROM 8 are provided so that the capacitance C of the capacitor 100 to be measured can be measured.

電源部2は、制御部6の制御に従って例えば直流定電流(以下、単に「電流」ともいう)を出力して測定対象のコンデンサ100に供給する。この場合、電源部2は、制御部6の制御に従って電流の供給される向き(電流の流れる向き)を切り替え可能に構成されている。電圧検出部3は、例えば、電圧をサンプリング(アナログ−デジタル変換)可能なA/D変換回路31を備えて構成され、制御部6の制御に従い、コンデンサ100における両端子間の端子間電圧Vaについての電圧データDvを制御部6に出力する。この場合、A/D変換回路31は、サンプリング対象の端子間電圧Vaが図3に示す下限値Vr1から上限値Vr2までの範囲R内のときには端子間電圧Vaを正確にサンプリングし、サンプリング対象の端子間電圧Vaがこの範囲Rから外れているときには端子間電圧Vaの正確なサンプリングがやや困難となるという特性を有している。   The power supply unit 2 outputs, for example, a DC constant current (hereinafter also simply referred to as “current”) according to the control of the control unit 6 and supplies it to the capacitor 100 to be measured. In this case, the power supply unit 2 is configured to be able to switch the direction in which the current is supplied (the direction in which the current flows) according to the control of the control unit 6. The voltage detection unit 3 includes, for example, an A / D conversion circuit 31 that can sample a voltage (analog-digital conversion), and the inter-terminal voltage Va between both terminals of the capacitor 100 according to the control of the control unit 6. Is output to the control unit 6. In this case, the A / D conversion circuit 31 accurately samples the inter-terminal voltage Va when the inter-terminal voltage Va to be sampled is within the range R from the lower limit value Vr1 to the upper limit value Vr2 shown in FIG. When the inter-terminal voltage Va is out of this range R, there is a characteristic that accurate sampling of the inter-terminal voltage Va is somewhat difficult.

操作部4は、電源スイッチや測定開始スイッチ等の各種のスイッチを備えて構成され、各スイッチが操作されたときに、そのスイッチに対応する操作信号Soを制御部6に出力する。表示部5は、制御部6の制御に従い、コンデンサ100の容量Cについての測定結果を表示する。制御部6は、本発明における測定部および制御部に相当し、操作部4から出力される操作信号Soに従い、電源部2、電圧検出部3、表示部5およびRAM7を制御する。また、制御部6は、後述する容量測定処理50を実行することにより、電圧検出部3から出力される電圧データDv、および電源部2から供給される(コンデンサ100に供給される)電流の電流値Iに基づいてコンデンサ100の容量Cを測定する。また、制御部6は、容量測定処理50を実行する際に、図1に示す矢印Aおよび矢印Bのいずれかの向きで電流が供給されるように電源部2を制御する。   The operation unit 4 includes various switches such as a power switch and a measurement start switch, and outputs an operation signal So corresponding to the switch to the control unit 6 when each switch is operated. The display unit 5 displays the measurement result for the capacitance C of the capacitor 100 under the control of the control unit 6. The control unit 6 corresponds to the measurement unit and the control unit in the present invention, and controls the power supply unit 2, the voltage detection unit 3, the display unit 5, and the RAM 7 in accordance with the operation signal So output from the operation unit 4. In addition, the control unit 6 executes a capacity measurement process 50 described later, and thereby the voltage data Dv output from the voltage detection unit 3 and the current supplied from the power supply unit 2 (supplied to the capacitor 100). Based on the value I, the capacitance C of the capacitor 100 is measured. In addition, when the capacity measurement process 50 is executed, the control unit 6 controls the power supply unit 2 so that a current is supplied in one of the directions indicated by arrows A and B shown in FIG.

RAM7は、制御部6の制御に従い、制御部6から出力される各種の測定値やデータを一時的に記憶する。ROM8は、制御部6によって行われる容量Cの算出に必要な計算式を記憶する。また、ROM8は、閾値Veを記憶する。この場合、閾値Veは、本発明における所定電圧に相当し、制御部6によって実行される容量測定処理50において電流の供給される向きを決定する際に用いられる値であって、上記したA/D変換回路31の特性に応じて予め規定されている。具体的には、閾値Veは、例えば、次に示す計算式で算出される値、つまり、A/D変換回路31における下限値Vr1と上限値Vr2との中心値に規定されている。
Ve=(Vr1+Vr2)/2
The RAM 7 temporarily stores various measurement values and data output from the control unit 6 under the control of the control unit 6. The ROM 8 stores a calculation formula necessary for calculating the capacity C performed by the control unit 6. The ROM 8 stores a threshold value Ve. In this case, the threshold value Ve corresponds to the predetermined voltage in the present invention, and is a value used when determining the direction in which the current is supplied in the capacity measurement process 50 executed by the control unit 6. It is defined in advance according to the characteristics of the D conversion circuit 31. Specifically, the threshold value Ve is defined, for example, as a value calculated by the following calculation formula, that is, a center value between the lower limit value Vr1 and the upper limit value Vr2 in the A / D conversion circuit 31.
Ve = (Vr1 + Vr2) / 2

次に、測定装置1を用いて本発明に係る容量測定方法に従ってコンデンサ100の容量を測定する方法について、図面を参照して説明する。   Next, a method for measuring the capacitance of the capacitor 100 using the measuring apparatus 1 according to the capacitance measuring method according to the present invention will be described with reference to the drawings.

まず、図1に示すように、検査対象のコンデンサ100の両端子に電源部2の一対の出力端子に接続されている電源ケーブル2a,2aを接続すると共に、コンデンサ100の両端子に電圧検出部3の一対の入力端子に接続されている接続ケーブル3a,3aを接続する。この場合、初期状態では、制御部6が電源部2を制御することによって電源部2からの電流供給が停止されているものとする。次いで、操作部4の測定開始スイッチを操作する。この際に、操作部4が測定開始スイッチに対応する操作信号Soを制御部6に出力し、制御部6が操作信号Soに従って図2に示す容量測定処理50を実行する。   First, as shown in FIG. 1, power supply cables 2 a and 2 a connected to a pair of output terminals of the power supply unit 2 are connected to both terminals of the capacitor 100 to be inspected, and a voltage detection unit is connected to both terminals of the capacitor 100. The connection cables 3a and 3a connected to the pair of input terminals 3 are connected. In this case, in the initial state, it is assumed that the current supply from the power supply unit 2 is stopped by the control unit 6 controlling the power supply unit 2. Next, the measurement start switch of the operation unit 4 is operated. At this time, the operation unit 4 outputs an operation signal So corresponding to the measurement start switch to the control unit 6, and the control unit 6 executes the capacity measurement process 50 shown in FIG. 2 according to the operation signal So.

この容量測定処理50では、制御部6は、電源部2からの電流供給を停止させている状態において、コンデンサ100における両端子間の端子間電圧Vaの測定を指示する制御信号Scを電圧検出部3に出力する。これに応じて、電圧検出部3のA/D変換回路31が端子間電圧Vaをサンプリング(アナログ−デジタル変換)することによって、コンデンサ100における両端子間の端子間電圧Vaについての電圧データDvを制御部6に出力する。次いで、制御部6は、電圧検出部3から出力された電圧データDvに基づき、電流供給を停止させている状態、つまり電流供給開始前におけるコンデンサ100における両端子間の端子間電圧Va(以下、この端子間電圧Vaを「初期電圧V0」ともいう)を特定する(ステップ51)。   In the capacitance measurement process 50, the control unit 6 outputs a control signal Sc instructing measurement of the voltage Va between the terminals of the capacitor 100 in a state where the current supply from the power supply unit 2 is stopped. 3 is output. In response to this, the A / D conversion circuit 31 of the voltage detector 3 samples the voltage Va between the terminals (analog-digital conversion), so that the voltage data Dv about the voltage Va between the terminals of the capacitor 100 is obtained. Output to the control unit 6. Next, based on the voltage data Dv output from the voltage detection unit 3, the control unit 6 stops the current supply, that is, the voltage Va between the terminals of the capacitor 100 before starting the current supply (hereinafter, referred to as the voltage supply Dv). This inter-terminal voltage Va is also referred to as “initial voltage V0” (step 51).

続いて、制御部6は、ROM8から閾値Veを読み出すと共に、初期電圧V0が閾値Ve以下であるか否かを判別する(ステップ52)。この場合、制御部6は、図3に示すように、初期電圧V0が閾値Ve以下のときには、制御信号Scを出力することにより、電流供給によってコンデンサ100の両端子間に生じる端子間電圧Vaが増加する向き(例えば図1に示す矢印Aの向き)に電流が流れるように電流供給を電源部2に開始させる(ステップ53)。この際に、電流が矢印Aの向きに供給されることにより、図3に示すように、コンデンサ100の端子間電圧Vaが徐々に増加する。次いで、制御部6は、図外のタイマによるタイムカウントを参照することにより、電流供給開始時点から所定の時間t1が経過したか否かを判別する(ステップ54)。   Subsequently, the control unit 6 reads the threshold value Ve from the ROM 8 and determines whether or not the initial voltage V0 is equal to or lower than the threshold value Ve (step 52). In this case, as shown in FIG. 3, when the initial voltage V0 is equal to or lower than the threshold value Ve, the control unit 6 outputs the control signal Sc so that the terminal voltage Va generated between the two terminals of the capacitor 100 due to current supply is Current supply is started by the power supply unit 2 so that current flows in an increasing direction (for example, the direction of arrow A shown in FIG. 1) (step 53). At this time, the current is supplied in the direction of the arrow A, whereby the voltage Va between the terminals of the capacitor 100 gradually increases as shown in FIG. Next, the control unit 6 determines whether or not a predetermined time t1 has elapsed from the current supply start time by referring to a time count by a timer (not shown) (step 54).

続いて、制御部6は、時間t1が経過した時点で制御信号Scを電圧検出部3に出力することにより、その時点におけるコンデンサ100の端子間電圧Vaについての電圧データDvを出力させると共に、電圧データDvに基づいてコンデンサ100の端子間電圧Va(以下、その時点における端子間電圧Vaを「端子間電圧Va1」ともいう)を特定して(ステップ55)、端子間電圧Va1をRAM7に記憶させる。次いで、制御部6は、電流供給開始時点から所定の時間t2が経過したか否かを判別する(ステップ56)。続いて、制御部6は、時間t2が経過した時点で制御信号Scを電圧検出部3に出力することにより、その時点におけるコンデンサ100における両端子間の端子間電圧Vaについての電圧データDvを出力させると共に、電圧データDvに基づいてコンデンサ100の端子間電圧Va(以下、その時点における端子間電圧Vaを「端子間電圧Va2」ともいう)を特定して(ステップ57)、端子間電圧Va2をRAM7に記憶させる。次いで、制御部6は、電源部2から供給されている電流の電流値I、およびRAM7に記憶されている端子間電圧Va1,Va2に基づいて容量Cを算出する(ステップ58)。具体的には、制御部22は、例えば次に示す計算式にこれらの各パラメータを代入して容量Cを算出する。
C=I×(t2−t1)/(Va2−Va1)
Subsequently, the control unit 6 outputs the control signal Sc to the voltage detection unit 3 when the time t1 has elapsed, thereby causing the voltage data Dv for the voltage Va between the terminals of the capacitor 100 at that time to be output, and the voltage Based on the data Dv, the inter-terminal voltage Va of the capacitor 100 (hereinafter, the inter-terminal voltage Va is also referred to as “inter-terminal voltage Va1”) is specified (step 55), and the inter-terminal voltage Va1 is stored in the RAM 7. . Next, the controller 6 determines whether or not a predetermined time t2 has elapsed from the current supply start time (step 56). Subsequently, the control unit 6 outputs the control signal Sc to the voltage detection unit 3 at the time when the time t2 has elapsed, thereby outputting the voltage data Dv regarding the voltage Va between the terminals of the capacitor 100 at that time. In addition, the inter-terminal voltage Va of the capacitor 100 (hereinafter, the inter-terminal voltage Va is also referred to as “inter-terminal voltage Va2”) is specified based on the voltage data Dv (step 57), and the inter-terminal voltage Va2 is determined. It is stored in the RAM 7. Next, the control unit 6 calculates the capacitance C based on the current value I of the current supplied from the power supply unit 2 and the terminal voltages Va1 and Va2 stored in the RAM 7 (step 58). Specifically, the control unit 22 calculates the capacity C by substituting these parameters into, for example, the following calculation formula.
C = I * (t2-t1) / (Va2-Va1)

次いで、制御部6は、算出した容量CをRAM7に記憶させる。この場合、初期電圧V0が閾値Ve以下であったため、電流供給開始時点から時間t1が経過した時点、および時間t2が経過した時点のいずれの時点においても、端子間電圧Vaが範囲R内に収まる結果、この両時点t1,t2においてA/D変換回路31が端子間電圧Vaを正確にサンプリングする。したがって、容量Cが正確に測定(算出)される。続いて、制御部6は、表示部5を制御することにより、RAM7に記憶させた容量C(測定結果)を表示させて容量測定処理50を終了する。   Next, the control unit 6 stores the calculated capacity C in the RAM 7. In this case, since the initial voltage V0 is equal to or less than the threshold value Ve, the inter-terminal voltage Va falls within the range R at any time point when the time t1 has elapsed from the current supply start point and when the time t2 has elapsed. As a result, at both times t1 and t2, the A / D conversion circuit 31 accurately samples the inter-terminal voltage Va. Therefore, the capacity C is accurately measured (calculated). Subsequently, the control unit 6 controls the display unit 5 to display the capacity C (measurement result) stored in the RAM 7 and ends the capacity measurement process 50.

次に、他のコンデンサ100の容量Cを測定する際には、上記した手順と同様にして、コンデンサ100の両端子に電源ケーブル2aおよび接続ケーブル3aを接続した後に、操作部4の測定開始スイッチを操作する。この際に、制御部6は、操作部4からの操作信号Soに従って容量測定処理50を実行する。この場合、制御部6は、上記と同様にして、電流供給を停止させている状態における初期電圧V0を特定し(ステップ51)、次いで、初期電圧V0が閾値Ve以下であるか否かを判別する(ステップ52)。この場合、制御部6は、図4に示すように、初期電圧V0が閾値Veを超えているときには、制御信号Scを出力することにより、電流供給によってコンデンサ100の端子間電圧Vaが低下する向き(例えば図1に示す矢印Bの向き)に電流が供給されるように電流供給を電源部2に開始させる(ステップ59)。この際に、電流が矢印Bの向きに供給されることにより、図4に示すように、コンデンサ100の端子間電圧Vaが徐々に低下する。次いで、制御部6は、タイマによるタイムカウントを参照することにより、電流供給開始時点から所定の時間t1が経過したか否かを判別する(ステップ54)。   Next, when measuring the capacitance C of another capacitor 100, the measurement start switch of the operation unit 4 is connected after the power cable 2 a and the connection cable 3 a are connected to both terminals of the capacitor 100 in the same manner as described above. To operate. At this time, the control unit 6 executes the capacity measurement process 50 according to the operation signal So from the operation unit 4. In this case, similarly to the above, the control unit 6 specifies the initial voltage V0 in the state where the current supply is stopped (step 51), and then determines whether or not the initial voltage V0 is equal to or less than the threshold value Ve. (Step 52). In this case, as shown in FIG. 4, when the initial voltage V0 exceeds the threshold value Ve, the control unit 6 outputs the control signal Sc, whereby the voltage Va between the terminals of the capacitor 100 decreases due to current supply. Current supply is started by the power supply unit 2 so that the current is supplied (for example, in the direction of arrow B shown in FIG. 1) (step 59). At this time, the current is supplied in the direction of the arrow B, so that the voltage Va between the terminals of the capacitor 100 gradually decreases as shown in FIG. Next, the control unit 6 determines whether or not a predetermined time t1 has elapsed from the current supply start time by referring to the time count by the timer (step 54).

続いて、制御部6は、時間t1が経過した時点で電圧検出部3から出力された電圧データDvに基づき、コンデンサ100における両端子間の端子間電圧Va(以下、その時点における端子間電圧Vaを「端子間電圧Va3」ともいう)を特定して(ステップ55)、端子間電圧Va3をRAM7に記憶させる。次いで、制御部6は、電流供給開始時点から所定の時間t2が経過したか否かを判別する(ステップ56)。続いて、制御部6は、時間t2が経過した時点で電圧検出部3から出力された電圧データDvに基づき、コンデンサ100の端子間電圧Va(以下、その時点における端子間電圧Vaを「端子間電圧Va4」ともいう)を特定して(ステップ57)、端子間電圧Va4をRAM7に記憶させる。次いで、制御部6は、電源部2から供給されている電流の電流値I、およびRAM7に記憶されている端子間電圧Va3,Va4に基づいて(各パラメータを上記の計算式に代入して)容量Cを算出して(ステップ58)RAM7に記憶させる。ここで、仮に、端子間電圧Vaが増加する向き(上記した矢印Aの向き)に電流を供給したときには、図4に破線で示すように、電流供給開始時点から時間t2が経過する以前に端子間電圧Vaが範囲Rを外れるため、A/D変換回路31による端子間電圧Vaの正確なサンプリングが困難となる。これに対して、電流が矢印Bの向きに供給されることで、コンデンサ100の端子間電圧Vaが徐々に低下するため、初期電圧V0が閾値Veよりも大きいときであっても、電流供給開始時点から時間t1が経過した時点、および時間t2が経過した時点のいずれの時点においても、端子間電圧Vaが範囲R内に収まる結果、この両時点t1,t2においてA/D変換回路31が端子間電圧Vaを正確にサンプリングする。したがって、容量Cが正確に測定される。続いて、制御部6は、表示部5を制御することにより、RAM7に記憶させた容量Cを表示させて容量測定処理50を終了する。   Subsequently, based on the voltage data Dv output from the voltage detection unit 3 when the time t1 has elapsed, the control unit 6 determines the voltage Va between the terminals of the capacitor 100 (hereinafter, the terminal voltage Va at that time). Is also referred to as “inter-terminal voltage Va3”) (step 55), and the inter-terminal voltage Va3 is stored in the RAM 7. Next, the controller 6 determines whether or not a predetermined time t2 has elapsed from the current supply start time (step 56). Subsequently, based on the voltage data Dv output from the voltage detection unit 3 when the time t2 has elapsed, the control unit 6 determines the inter-terminal voltage Va of the capacitor 100 (hereinafter referred to as “inter-terminal voltage Va”). (Also referred to as “voltage Va4”) (step 57), and the inter-terminal voltage Va4 is stored in the RAM 7. Next, the control unit 6 is based on the current value I of the current supplied from the power supply unit 2 and the inter-terminal voltages Va3 and Va4 stored in the RAM 7 (substituting each parameter into the above formula). The capacity C is calculated (step 58) and stored in the RAM 7. Here, if the current is supplied in the direction in which the voltage Va between the terminals increases (the direction of the arrow A described above), as shown by the broken line in FIG. 4, the terminal before the time t <b> 2 elapses from the current supply start time. Since the inter-voltage Va is out of the range R, it is difficult to accurately sample the inter-terminal voltage Va by the A / D conversion circuit 31. On the other hand, since the current Va is supplied in the direction of the arrow B, the voltage Va between the terminals of the capacitor 100 gradually decreases. Therefore, even when the initial voltage V0 is larger than the threshold value Ve, the current supply starts. As a result of the inter-terminal voltage Va being within the range R at the time point when the time t1 has elapsed from the time point and the time point when the time t2 has elapsed, the A / D conversion circuit 31 is connected to the terminal at both time points t1 and t2. The voltage Va is accurately sampled. Therefore, the capacity C is accurately measured. Subsequently, the control unit 6 controls the display unit 5 to display the capacity C stored in the RAM 7 and ends the capacity measurement process 50.

このように、この容量測定装置1および容量測定方法によれば、電流供給開始前におけるコンデンサ100の初期電圧V0が閾値Ve以下のときには端子間電圧Vaが増加する向きに電流を供給させると共に、初期電圧V0が閾値Veを超えているときには端子間電圧Vaが低下する向きに電流を供給させることにより、例えば、電流供給開始時点から時間t1,t2経過後の端子間電圧Va、および電流に基づいて容量Cを測定する際に、初期電圧V0の大きさに拘わらず、つまり電流供給開始前においてコンデンサ100が放電されているかまたは充電されているか否かに拘わらず、時間t1,t2経過後の端子間電圧VaをA/D変換回路31による正確なサンプリングが可能な範囲Rに維持することができる。したがって、測定前に測定対象のコンデンサ100を放電させる工程が必要な従来の装置と比較して、放電させる工程を不要にできる分だけ容量Cの測定効率を十分に向上することができる。   As described above, according to the capacitance measuring device 1 and the capacitance measuring method, when the initial voltage V0 of the capacitor 100 before the start of current supply is equal to or lower than the threshold Ve, the current is supplied in the direction in which the terminal voltage Va increases, When the voltage V0 exceeds the threshold value Ve, the current is supplied in such a direction that the inter-terminal voltage Va decreases, for example, based on the inter-terminal voltage Va after the elapse of time t1 and t2 from the current supply start time and the current. When measuring the capacitance C, the terminal after the elapse of time t1, t2 regardless of the magnitude of the initial voltage V0, that is, whether the capacitor 100 is discharged or charged before the current supply is started. The inter-voltage Va can be maintained in a range R in which accurate sampling by the A / D conversion circuit 31 is possible. Therefore, the measurement efficiency of the capacitance C can be sufficiently improved as much as the step of discharging can be made unnecessary as compared with the conventional apparatus that requires the step of discharging the capacitor 100 to be measured before the measurement.

なお、本発明は、上記の構成に限定されない。例えば、電源部2を制御することによってコンデンサ100に供給する電流の向きを切り替える例について上記したが、制御部6の制御に従って電流の供給する向きを切り替える切替器を備えた構成を採用することもできる。この構成によれば、電源部2に代えて外部電源を用いることができる。また、ROM8に予め記憶されている閾値Veに基づいて電流の供給する向きを決定する例について上記したが、例えば、操作部4を操作することによって閾値Veを任意に指定する構成を採用することもできる。   In addition, this invention is not limited to said structure. For example, the example in which the direction of the current supplied to the capacitor 100 is switched by controlling the power supply unit 2 has been described above. However, a configuration including a switch that switches the direction in which the current is supplied in accordance with the control of the control unit 6 may be adopted. it can. According to this configuration, an external power supply can be used in place of the power supply unit 2. Further, the example in which the current supply direction is determined based on the threshold value Ve stored in advance in the ROM 8 has been described above. For example, a configuration in which the threshold value Ve is arbitrarily designated by operating the operation unit 4 is adopted. You can also.

容量測定装置1の構成を示すブロック図である。1 is a block diagram showing a configuration of a capacity measuring device 1. FIG. 容量測定処理50のフローチャートである。5 is a flowchart of a capacity measurement process 50. 初期電圧V0が閾値Ve以下の電流供給コンデンサ100の両端子間における端子間電圧Vaの変化を示す特性図である。FIG. 6 is a characteristic diagram showing a change in inter-terminal voltage Va between both terminals of a current supply capacitor 100 whose initial voltage V0 is equal to or less than a threshold Ve. 初期電圧V0が閾値Veを超えている電流供給コンデンサ100の両端子間における端子間電圧Vaの変化を示す特性図である。FIG. 6 is a characteristic diagram showing a change in inter-terminal voltage Va between both terminals of a current supply capacitor 100 in which an initial voltage V0 exceeds a threshold Ve.

符号の説明Explanation of symbols

1 容量測定装置
3 電圧検出部
6 制御部
100 コンデンサ
A 矢印
B 矢印
C 容量
I 電流
V0 初期電圧
Va 端子間電圧
Ve 閾値
DESCRIPTION OF SYMBOLS 1 Capacitance measuring device 3 Voltage detection part 6 Control part 100 Capacitor A arrow B arrow C Capacity I Current V0 Initial voltage Va Terminal voltage Ve Threshold

Claims (2)

電流が供給されている状態におけるコンデンサの端子間電圧を検出する電圧検出部と、前記端子間電圧および前記電流の電流値に基づいて前記コンデンサの容量を測定する測定部とを備えた容量測定装置であって、
前記コンデンサに対する前記電流の供給を制御する制御部を備え、
前記制御部は、前記電圧検出部によって検出された電流供給開始前の前記端子間電圧が所定電圧以下のときには当該端子間電圧が増加する向きに前記電流を供給させると共に、前記電流供給開始前の前記端子間電圧が前記所定電圧を超えているときには当該端子間電圧が低下する向きに前記電流を供給させる容量測定装置。
A capacitance measuring device comprising: a voltage detecting unit that detects a voltage between terminals of a capacitor in a state in which a current is supplied; and a measuring unit that measures the capacitance of the capacitor based on the voltage between the terminals and the current value of the current. Because
A control unit for controlling the supply of the current to the capacitor;
The control unit supplies the current in a direction in which the voltage between the terminals increases when the voltage between the terminals detected by the voltage detection unit before the current supply starts is equal to or lower than a predetermined voltage, and before the current supply starts. A capacitance measuring device that supplies the current in a direction in which the inter-terminal voltage decreases when the inter-terminal voltage exceeds the predetermined voltage.
コンデンサに電流を供給させて当該コンデンサの端子間電圧を検出し、前記端子間電圧および前記電流の電流値に基づいて前記コンデンサの容量を測定する容量測定方法であって、
電流供給開始前の前記端子間電圧を検出し、前記電流供給開始前の端子間電圧が所定電圧以下のときには当該端子間電圧が増加する向きに前記電流を供給させると共に、前記電流供給開始前の端子間電圧が前記所定電圧を超えているときには当該端子間電圧が低下する向きに前記電流を供給させる容量測定方法。
A capacitance measurement method for detecting a voltage between terminals of the capacitor by supplying a current to the capacitor, and measuring a capacitance of the capacitor based on the voltage between the terminals and the current value of the current,
The inter-terminal voltage before the start of current supply is detected, and when the inter-terminal voltage before the start of current supply is equal to or lower than a predetermined voltage, the current is supplied in the direction in which the inter-terminal voltage increases, and before the start of current supply A capacitance measuring method for supplying the current in a direction in which the voltage between the terminals decreases when the voltage between the terminals exceeds the predetermined voltage.
JP2005361135A 2005-12-15 2005-12-15 Capacity measuring device and capacity measuring method Expired - Fee Related JP4664199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361135A JP4664199B2 (en) 2005-12-15 2005-12-15 Capacity measuring device and capacity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361135A JP4664199B2 (en) 2005-12-15 2005-12-15 Capacity measuring device and capacity measuring method

Publications (2)

Publication Number Publication Date
JP2007163328A JP2007163328A (en) 2007-06-28
JP4664199B2 true JP4664199B2 (en) 2011-04-06

Family

ID=38246385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361135A Expired - Fee Related JP4664199B2 (en) 2005-12-15 2005-12-15 Capacity measuring device and capacity measuring method

Country Status (1)

Country Link
JP (1) JP4664199B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013539A (en) * 1996-06-21 1998-01-16 Nec Corp Subscriber line impedance measurement system
JP2001255345A (en) * 2000-03-08 2001-09-21 Nissin Electric Co Ltd Method and device for measuring capacitance of capacitor and equivalent series resistance
JP2005300203A (en) * 2004-04-07 2005-10-27 Alps Electric Co Ltd Charge detection circuit and fingerprint sensor using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013539A (en) * 1996-06-21 1998-01-16 Nec Corp Subscriber line impedance measurement system
JP2001255345A (en) * 2000-03-08 2001-09-21 Nissin Electric Co Ltd Method and device for measuring capacitance of capacitor and equivalent series resistance
JP2005300203A (en) * 2004-04-07 2005-10-27 Alps Electric Co Ltd Charge detection circuit and fingerprint sensor using it

Also Published As

Publication number Publication date
JP2007163328A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5110154B2 (en) Voltage detection device and voltage detection system
JP4997994B2 (en) Battery remaining capacity prediction device
JP5051661B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
CN108303589B (en) Measuring circuit and method for internal resistance of battery
JP5390951B2 (en) Voltage measurement device for multiple assembled batteries
JP2006294339A (en) Battery module
JP2012154839A (en) Life prediction evaluation device and life prediction evaluation method
TW201606328A (en) Battery remaining power predicting device and battery pack
JP3987178B2 (en) Battery pack deterioration determination method and battery pack deterioration determination device
JP2007205891A (en) Measuring apparatus
JP4865516B2 (en) measuring device
JP2006343165A (en) Apparatus for measuring resistance of battery
JP4664199B2 (en) Capacity measuring device and capacity measuring method
JP2009103706A (en) Testing method, testing circuit and battery module of cell voltage sensing line
JP4685500B2 (en) Insulation resistance tester
JP5561049B2 (en) Battery voltage measuring device
EP3728951B1 (en) Flame sense circuit with variable bias
JP4777828B2 (en) Measuring device and inspection device
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
US7471090B2 (en) Method for determining capacity of lead-acid batteries of various specific gravities
JP4980006B2 (en) measuring device
KR20200127638A (en) Apparatus and method for diagnosing battery cell
KR100587526B1 (en) Cell voltage monitoring apparatus and method of a rechargeable battery
JP2020060562A (en) Sensor and method for checking sensor
JP5316343B2 (en) Battery monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4664199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees