JP4663978B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4663978B2
JP4663978B2 JP2003413632A JP2003413632A JP4663978B2 JP 4663978 B2 JP4663978 B2 JP 4663978B2 JP 2003413632 A JP2003413632 A JP 2003413632A JP 2003413632 A JP2003413632 A JP 2003413632A JP 4663978 B2 JP4663978 B2 JP 4663978B2
Authority
JP
Japan
Prior art keywords
valve
pressure
valve body
cylinder chamber
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413632A
Other languages
Japanese (ja)
Other versions
JP2005171897A (en
Inventor
浩二 平野
克浩 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2003413632A priority Critical patent/JP4663978B2/en
Publication of JP2005171897A publication Critical patent/JP2005171897A/en
Application granted granted Critical
Publication of JP4663978B2 publication Critical patent/JP4663978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、2シリンダ形ロータリ式圧縮機を用いて冷凍サイクルを構成する冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus that constitutes a refrigeration cycle using a two-cylinder rotary compressor.

近年、圧縮機構部を構成するシリンダを上下に2セット備えた、2シリンダタイプのロータリ式圧縮機が標準化されつつある。このような2シリンダ形ロータリ式圧縮機において、常時圧縮作用をなすシリンダ室と、負荷の大小に応じて圧縮運転と運転停止である非圧縮運転の切換えを可能とするシリンダ室を備えることができれば、仕様が拡大されて有利となる。
たとえば、[特許文献1]には、シリンダ室を2室備え、必要に応じていずれか一方のシリンダ室のベーン(ブレード)をローラから強制的に離間保持するとともに、そのシリンダ室を高圧化して圧縮作用を中断させる高圧導入手段を備えたことを特徴とする2シリンダ型ロータリ式圧縮機が開示されている。
特開平1−247786号公報
In recent years, a two-cylinder type rotary compressor provided with two sets of upper and lower cylinders constituting a compression mechanism is being standardized. In such a two cylinder type rotary compressor, a cylinder chamber forming the constant compression action, if it is possible to comprise a cylinder chamber to allow switching of non-compression operation in the compression operation and shutdown in accordance with the magnitude of the load The specifications are expanded and advantageous.
For example, Patent Literature 1, a cylinder chamber 2 Shitsusonae, with forcibly space holding one of the cylinder chambers of the vanes (blades) from the roller as required, by high pressure the cylinder chamber A two-cylinder rotary compressor characterized in that it is provided with high-pressure introduction means for interrupting the compression action is disclosed.
JP-A-1-247786

上記圧縮機は、能力半減運転をなすにあたって高圧導入手段を作動する。すなわち、電磁開閉弁を開放し、バイパス管を介してベーン室に冷媒を導入する。ここに導入される冷媒は2段型絞り機構の第1の絞り機構を導通した冷媒の一部であって、完全に減圧していない中間圧である。
一方のシリンダ室では圧縮作用が継続していて高圧となっている。これらの圧力差によってベーンは強制的にベーン室に押し込まれ、主軸受に設けられる高圧導入孔が開口する。この高圧導入孔を介して一方のシリンダ室と密閉容器内とが連通し、そのシリンダ室が高圧化して密閉容器内と圧力差がなくなる。ベーンはローラから離間したままとなり、カラ運転がなされて圧縮仕事が半減する。
The compressor operates the high-pressure introduction means when performing a half-capacity operation. That is, the electromagnetic on-off valve is opened and the refrigerant is introduced into the vane chamber through the bypass pipe. The refrigerant introduced here is a part of the refrigerant that has been conducted through the first throttling mechanism of the two-stage throttling mechanism, and is an intermediate pressure that is not completely decompressed.
In one cylinder chamber, the compression action continues and the pressure is high. Due to these pressure differences, the vane is forced into the vane chamber, and a high-pressure introduction hole provided in the main bearing is opened. One cylinder chamber and the inside of the sealed container communicate with each other through the high-pressure introduction hole, and the pressure in the cylinder chamber is increased to eliminate the pressure difference from the inside of the sealed container. The vane remains separated from the roller, and the compression operation is reduced to halve the compression work.

このようにして、通常運転から能力半減運転に切換えるのに、中間圧の冷媒をベーン室に導き充満させる作用と、主軸受に設けられる高圧導入孔を介して容器内の高圧をシリンダ室に導入し充満させる作用との、二段構えの作用となる。しかも、ベーンは薄板状をなし、この板厚の範囲内の大きさで高圧導入孔を設けなければならない。
そのため、高圧導入孔は直径の極く小さい小孔になってしまい、ここを通過する冷媒ガスの量が抑制され一方のシリンダ室に充満するのに時間がかかる。結果として、通常運転から能力半減運転に切換える、いわゆる動作特性が劣っているという不具合がある。
In this way, when switching from normal operation to half-capacity operation, the medium pressure refrigerant is introduced into the vane chamber and filled, and the high pressure in the container is introduced into the cylinder chamber via the high pressure introduction hole provided in the main bearing. It will be a two-stage action, with a filling action. In addition, the vane has a thin plate shape, and a high-pressure introduction hole having a size within the range of the plate thickness must be provided.
Therefore, the high-pressure introduction hole becomes a small hole having a very small diameter, and the amount of refrigerant gas passing through the high-pressure introduction hole is suppressed, and it takes time to fill one cylinder chamber. As a result, there is a problem that the so-called operation characteristics are switched from normal operation to half-capacity operation.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、負荷の大小に応じて冷凍サイクルの低圧側と高圧側に接続を切換え、圧縮運転もしくは非圧縮運転をなす2シリンダ形ロータリ式圧縮機を備え、動作切換えにあたって動作特性の向上を図り、信頼性の向上を得る冷凍サイクル装置を提供しようとするものである。   The present invention has been made on the basis of the above circumstances, and its object is to switch the connection between the low pressure side and the high pressure side of the refrigeration cycle according to the magnitude of the load, and perform a compression operation or a non-compression operation. An object of the present invention is to provide a refrigeration cycle apparatus that includes a rotary compressor, improves operational characteristics when switching operations, and obtains improved reliability.

上記目的を満足するため本発明の冷凍サイクル装置は、2シリンダ形ロータリ式圧縮機として密閉ケース内に電動機部と第1の圧縮機構部およびベーンを収容するベーン室が密閉ケース内に露出されケース内圧力をもってベーンに背圧を与える構成の第2の圧縮機構部を収容して、密閉ケース内を第1の圧縮機構部および第2の圧縮機構部による吐出圧で高圧雰囲気下とし、吸込み通路は第2の圧縮機構部のシリンダ室に連通し、切換え手段は吸込み通路に設けられシリンダ室に低圧冷媒を導入して通常の圧縮運転を行わせもしくはシリンダ室に高圧冷媒を導入して圧縮停止である非圧縮運転をなすように切換え、切換え手段として、冷凍サイクルの高圧側と吸込み通路とを連通し中途部に第1の開閉弁を有する分岐管と、吸込み通路における分岐管の接続部よりも上流側に設けられた逆止弁を備え、冷凍サイクルの高圧側に接続される吐出管の内径をDdとし、分岐管Pの内径Dbpおよび第1の開閉弁における弁座口径部の直径D2Wのうちのいずれか小さい方の径をdとしたとき、(1)式である d/Dd≧0.2 を満足するように設定する。 In order to satisfy the above object, the refrigeration cycle apparatus of the present invention is a two-cylinder rotary compressor in which a motor part, a first compression mechanism part, and a vane chamber that houses a vane are exposed in a sealed case. A second compression mechanism portion configured to apply a back pressure to the vane with an internal pressure is accommodated, and the inside of the sealed case is brought into a high-pressure atmosphere with a discharge pressure by the first compression mechanism portion and the second compression mechanism portion. Communicates with the cylinder chamber of the second compression mechanism, and the switching means is provided in the suction passage and introduces a low-pressure refrigerant into the cylinder chamber to perform normal compression operation, or introduces a high-pressure refrigerant into the cylinder chamber and stops the compression. switching so as to form a non-compression operation is, as switching means, put a branch pipe having a first on-off valve in the middle portion communicating with the high pressure side and the suction passage of the refrigeration cycle, the suction passage Comprising a check valve provided on the upstream side of the connecting portion of the branch pipe, the inner diameter of the discharge pipe connected to the high pressure side of the refrigeration cycle and Dd, valves in internal diameter Dbp and the first on-off valve of the branch pipe P When the smaller diameter of the diameter D2W of the seat opening diameter portion is defined as d, d / Dd ≧ 0.2 which is the expression (1) is set.

本発明によれば、負荷の大小に応じて一方のシリンダ室で圧縮運転もしくは非圧縮運転をなす2シリンダ形ロータリ式圧縮機を備え、圧縮運転から非圧縮運転への切換え、もしくはその逆の切換えにあたって動作特性の向上を図り、信頼性の向上を得るという効果を奏する。   According to the present invention, a two-cylinder rotary compressor that performs a compression operation or a non-compression operation in one cylinder chamber according to the magnitude of the load is provided, and switching from the compression operation to the non-compression operation or vice versa. In this case, the operation characteristics are improved and the reliability is improved.

以下、本発明における実施の形態を図面にもとづいて説明する。
図1は2シリンダ形ロータリ式圧縮機Rの断面構造およびロータリ式圧縮機Rを備えた冷凍サイクルの構成図、図2は圧縮機構体2の一部を分解した斜視図である。
はじめに、図1から2シリンダ形ロータリ式圧縮機Rについて説明すると、1は密閉ケースであって、この密閉ケース1内の下部には後述する圧縮機構体2が設けられ、上部には電動機部3が設けられる。これら電動機部3と圧縮機構体2とは回転軸4を介して連結される。上記電動機部3は、運転周波数を可変するインバータ30に接続されるとともに、インバータ30を介して、このインバータ30を制御する制御部(制御手段)40に電気的に接続される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a two-cylinder rotary compressor R and a configuration diagram of a refrigeration cycle provided with the rotary compressor R. FIG. 2 is an exploded perspective view of a part of the compression mechanism 2.
First, a two-cylinder rotary compressor R will be described with reference to FIG. Is provided. The electric motor unit 3 and the compression mechanism 2 are connected via a rotating shaft 4. The electric motor unit 3 is connected to an inverter 30 that varies the operating frequency, and is electrically connected to a control unit (control means) 40 that controls the inverter 30 via the inverter 30.

上記圧縮機構体2は、回転軸4の下部に中間仕切り板7を介して上下に配設される第1の圧縮機構部5と、第2の圧縮機構部6とから構成される。各圧縮機構部5,6は、第1のシリンダ8Aと、第2のシリンダ8Bを備えている。
第1のシリンダ8Aの上面部には主軸受け9が重ね合わされ、バルブカバーaとともに取付けボルトを介してシリンダ8Aに取付け固定される。第2のシリンダ8Bの下面部には副軸受け11が重ね合わされ、バルブカバーbとともに取付けボルトを介して第2のシリンダ8Bに取付け固定される。
The compression mechanism body 2 includes a first compression mechanism portion 5 and a second compression mechanism portion 6 that are disposed below the rotary shaft 4 with an intermediate partition plate 7 interposed therebetween. Each compression mechanism part 5 and 6 is provided with the 1st cylinder 8A and the 2nd cylinder 8B.
A main bearing 9 is superposed on the upper surface portion of the first cylinder 8A, and is fixed to the cylinder 8A via a mounting bolt together with the valve cover a. A secondary bearing 11 is superimposed on the lower surface portion of the second cylinder 8B, and is fixed to the second cylinder 8B together with the valve cover b via a mounting bolt.

上記回転軸4は、各シリンダ8A,8B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4a,4bを一体に備えている。各偏心部4a,4bは互いに同一直径をなし、各シリンダ8A,8B内径部に位置するように組立てられる。各偏心部4a,4bの周面には、互いに同一直径をなす偏心ローラ13a,13bが嵌合される。
上記第1のシリンダ8Aと第2のシリンダ8Bは、上記中間仕切り板7と主軸受け9および副軸受け11で上下面が区画され、それぞれの内部にシリンダ室14a,14bが形成される。各シリンダ室14a,14bは互いに同一直径および高さ寸法に形成され、各シリンダ室14a,14bに上記偏心ローラ13a,13bがそれぞれ偏心回転自在に収容される。
The rotary shaft 4 integrally includes two eccentric portions 4a and 4b that penetrate through the cylinders 8A and 8B and have a phase difference of about 180 °. Each eccentric part 4a, 4b has the same diameter as each other, and is assembled so as to be located in each cylinder 8A, 8B inner diameter part. Eccentric rollers 13a and 13b having the same diameter are fitted to the peripheral surfaces of the eccentric parts 4a and 4b.
The first cylinder 8A and the second cylinder 8B have upper and lower surfaces defined by the intermediate partition plate 7, the main bearing 9 and the sub-bearing 11, and cylinder chambers 14a and 14b are formed in the respective interiors. The cylinder chambers 14a and 14b are formed to have the same diameter and height, and the eccentric rollers 13a and 13b are accommodated in the cylinder chambers 14a and 14b so as to be eccentrically rotatable.

図2に示すように、各シリンダ8A,8Bには、シリンダ室14a,14bと連通するベーン室22a,22bが設けられている。各ベーン室22a,22bには、ベーン15a,15bがシリンダ室14a,14bに対して突没自在に収容される。
上記ベーン室22a,22bは、ベーン15a,15bの両側面が摺動自在に移動できるベーン収納溝23a,23bと、各ベーン収納溝23a,23b端部に一体に連設されベーン15a,15bの後端部が収容される縦孔部24a,24bとからなる。上記第1のシリンダ8Aには、外周面とベーン室22aとを連通する横孔25が設けられ、ばね部材26が収容される。このばね部材26は、ベーン15aの背面側端面と密閉ケース1内周面との間に介在され、ベーン15aに弾性力(背圧)を付与して先端縁を偏心ローラ13aに接触させる圧縮ばねである。
As shown in FIG. 2, each cylinder 8A, 8B is provided with vane chambers 22a, 22b communicating with the cylinder chambers 14a, 14b. In each of the vane chambers 22a and 22b, the vanes 15a and 15b are accommodated so as to protrude and retract with respect to the cylinder chambers 14a and 14b.
The vane chambers 22a and 22b are integrally connected to vane storage grooves 23a and 23b in which both side surfaces of the vanes 15a and 15b are slidably movable and end portions of the vane storage grooves 23a and 23b. It consists of vertical hole parts 24a and 24b in which the rear end part is accommodated. The first cylinder 8A is provided with a lateral hole 25 that communicates the outer peripheral surface with the vane chamber 22a, and the spring member 26 is accommodated therein. This spring member 26 is interposed between the back side end surface of the vane 15a and the inner peripheral surface of the sealing case 1, and applies a resilient force (back pressure) to the vane 15a to bring the tip edge into contact with the eccentric roller 13a. It is.

上記第2のシリンダ8B側のベーン室22bにはベーン15b以外に何らの部材も収容されていないが、後述するようにベーン室22bの設定環境および圧力切換え機構(切換え手段)Kの作用に応じて、ベーン15bの先端縁を偏心ローラ13bに接触させるようになっている。各ベーン15a,15bの先端縁は平面視で半円状に形成されており、平面視で円形状の偏心ローラ13a,13b周壁に偏心ローラ13aの回転角度にかかわらず線接触できる。
上記偏心ローラ13a,13bがシリンダ室14a,14bの内周壁に沿って偏心回転したとき、ベーン15a,15bはベーン収納溝23a,23bに沿って往復運動し、かつベーン後端部が縦孔部24a,24bから進退自在となる作用ができる。上述したように、第2のシリンダ8Bの外形寸法形状と、中間仕切板7および副軸受け11の外径寸法との関係から、第2のシリンダ8Bの外形一部は密閉ケース1内に露出する。
No member other than the vane 15b is accommodated in the vane chamber 22b on the second cylinder 8B side, but depending on the setting environment of the vane chamber 22b and the action of the pressure switching mechanism (switching means) K as will be described later. The tip edge of the vane 15b is brought into contact with the eccentric roller 13b. The tip edges of the vanes 15a and 15b are formed in a semicircular shape in plan view, and can make line contact with the circumferential walls of the circular eccentric rollers 13a and 13b in plan view regardless of the rotation angle of the eccentric roller 13a.
When the eccentric rollers 13a and 13b rotate eccentrically along the inner peripheral walls of the cylinder chambers 14a and 14b, the vanes 15a and 15b reciprocate along the vane housing grooves 23a and 23b, and the rear end of the vane is a vertical hole. The action | operation which can freely advance / retreat from 24a, 24b can be performed. As described above, a part of the outer shape of the second cylinder 8B is exposed in the sealed case 1 due to the relationship between the outer dimension of the second cylinder 8B and the outer diameter of the intermediate partition plate 7 and the auxiliary bearing 11. .

第2のシリンダ8Bにおける密閉ケース1への露出部分がベーン室22bに相当するように設計され、ベーン室22bおよびベーン15b後端部はケース内圧力を直接的に受ける。第2のシリンダ8Bおよびベーン室22bは構造物であるからケース内圧力を受けても何らの影響もないが、ベーン15bはベーン室22bに摺動自在に収容され後端部がベーン室22bの縦孔部24bに位置するので、ケース内圧力を直接的に受ける。
上記ベーン15bの先端部は第2のシリンダ室14bに対向しており、ベーン先端部はシリンダ室14b内の圧力を受ける。結局、ベーン15bは先端部と後端部が受ける互いの圧力の大小に応じて、圧力の大きい方から圧力の小さい方向へ移動するように構成されている。
The exposed portion of the second cylinder 8B to the sealed case 1 is designed to correspond to the vane chamber 22b, and the vane chamber 22b and the rear end portion of the vane 15b directly receive the internal pressure of the case. Since the second cylinder 8B and the vane chamber 22b are structures, there is no influence even if the pressure in the case is applied, but the vane 15b is slidably accommodated in the vane chamber 22b and the rear end thereof is the vane chamber 22b. Since it is located in the vertical hole 24b, it receives the pressure in the case directly.
The tip of the vane 15b faces the second cylinder chamber 14b, and the vane tip receives the pressure in the cylinder chamber 14b. Eventually, the vane 15b is configured to move in the direction from the higher pressure to the lower pressure according to the magnitude of the pressure received by the front end and the rear end.

再び図1に示すように、密閉ケース1の上端部には吐出管18が接続される。この吐出管18は、凝縮器19と、膨張機構である電子膨張弁20および蒸発器21を介してアキュームレータ17に接続される。上記アキュームレータ17底部には、圧縮機Rに対する吸込み通路を構成する吸込み管16a,16bが接続される。
一方の吸込み管16aは密閉ケース1と第1のシリンダ8A側部を貫通し、第1のシリンダ室14a内に直接連通する。他方の吸込み管16bは密閉ケース1を介して第2のシリンダ8B側部を貫通し、第2のシリンダ室14b内に直接連通する。
As shown in FIG. 1 again, a discharge pipe 18 is connected to the upper end of the sealed case 1. The discharge pipe 18 is connected to the accumulator 17 via a condenser 19, an electronic expansion valve 20 that is an expansion mechanism, and an evaporator 21. Suction pipes 16 a and 16 b constituting a suction passage for the compressor R are connected to the bottom of the accumulator 17.
One suction pipe 16a penetrates the sealed case 1 and the side of the first cylinder 8A, and communicates directly with the first cylinder chamber 14a. The other suction pipe 16b passes through the side of the second cylinder 8B through the sealed case 1 and communicates directly with the second cylinder chamber 14b.

また、圧縮機Rと凝縮器19とを連通する上記吐出管18の中途部から分岐して、上記第2のシリンダ室14bに接続される吸込み管16bの中途部に合流する分岐管Pが設けられる。分岐管Pの中途部には電磁弁からなる第1の開閉弁28が設けられ、上記制御部40からの電気信号に応じて開閉制御される。上記第2のシリンダ室14bに接続される吸込み管16bにおいて、上記分岐管Pとの接続部cよりも上流側には逆止弁29が設けられる。なお、上記第1の開閉弁28と逆止弁29については後述する。
このようにして、第2のシリンダ室14bに接続される吸込み管16b、分岐管P、第1の開閉弁28および逆止弁29とで圧力切換え機構Kが構成される。そして、圧力切換え機構Kを構成する第1の開閉弁28に対する切換え制御に応じて、第2のシリンダ8Bのシリンダ室14bに吸込み圧(低圧)もしくは吐出圧(高圧)が導かれるようになっている。
Further, a branch pipe P is provided which branches from a middle portion of the discharge pipe 18 communicating with the compressor R and the condenser 19 and joins a middle portion of the suction pipe 16b connected to the second cylinder chamber 14b. It is done. A first opening / closing valve 28 composed of an electromagnetic valve is provided in the middle of the branch pipe P, and the opening / closing is controlled according to an electrical signal from the control unit 40. In the suction pipe 16b connected to the second cylinder chamber 14b, a check valve 29 is provided on the upstream side of the connection portion c with the branch pipe P. The first on-off valve 28 and the check valve 29 will be described later.
In this way, the pressure switching mechanism K is constituted by the suction pipe 16b, the branch pipe P, the first on-off valve 28 and the check valve 29 connected to the second cylinder chamber 14b. Then, according to the switching control for the first on-off valve 28 constituting the pressure switching mechanism K, the suction pressure (low pressure) or the discharge pressure (high pressure) is led to the cylinder chamber 14b of the second cylinder 8B. Yes.

つぎに、上述の2シリンダ形ロータリ式圧縮機Rを備えた冷凍サイクル装置の作用について説明する。
(1) 通常運転(全能力運転)を選択した場合:
上記制御部40は、圧力切換え機構Kの第1の開閉弁28を閉成するよう制御する。そして、制御部40はインバータ30を介して電動機部3に運転信号を送る。回転軸4が回転駆動され、偏心ローラ13a,13bは各シリンダ室14a,14b内で偏心回転を行う。
Next, the operation of the refrigeration cycle apparatus provided with the above-described two-cylinder rotary compressor R will be described.
(1) When normal operation (full capacity operation) is selected:
The control unit 40 controls so as to close the first on-off valve 28 of the pressure switching mechanism K. Then, the control unit 40 sends an operation signal to the electric motor unit 3 via the inverter 30. The rotating shaft 4 is driven to rotate, and the eccentric rollers 13a and 13b rotate eccentrically in the cylinder chambers 14a and 14b.

第1のシリンダ8Aにおいてベーン15aがばね部材26によって常に弾性的に押圧付勢され、ベーン15aの先端縁が偏心ローラ13a周壁に摺接して第1のシリンダ室14a内を吸込み室と圧縮室に二分する。冷媒ガスはアキュームレータ17から吸込管16aを介して第1のシリンダ室14aに吸込まれて充満する。
上記偏心ローラ13aの偏心回転にともなってシリンダ室14aの区画された容積が減少し、吸込まれたガスが徐々に圧縮される。回転軸4が継続して回転駆動され、ガスが圧縮されて所定圧まで上昇すると、図示しない吐出弁が開放する。高圧ガスはバルブカバーaを介して密閉ケース1内に吐出され、ついには密閉ケース上部の吐出管18から吐出される。
In the first cylinder 8A, the vane 15a is always elastically pressed and urged by the spring member 26, and the tip edge of the vane 15a is in sliding contact with the peripheral wall of the eccentric roller 13a so that the inside of the first cylinder chamber 14a becomes a suction chamber and a compression chamber. Divide into two. The refrigerant gas is sucked from the accumulator 17 through the suction pipe 16a into the first cylinder chamber 14a to be filled.
Along with the eccentric rotation of the eccentric roller 13a, the partitioned volume of the cylinder chamber 14a decreases, and the sucked gas is gradually compressed. When the rotary shaft 4 is continuously driven to rotate and the gas is compressed and rises to a predetermined pressure, a discharge valve (not shown) is opened. The high-pressure gas is discharged into the sealed case 1 through the valve cover a, and finally discharged from the discharge pipe 18 above the sealed case.

一方、圧力切換え機構Kを構成する第1の開閉弁28が閉成されているので、第2のシリンダ室14bに吐出圧(高圧)が導かれることはない。アキュームレータ17から低圧の蒸発冷媒が逆止弁29を介して第2のシリンダ室14bに導かれる。第2のシリンダ室14bは吸込み圧(低圧)雰囲気となる一方で、ベーン室22bが密閉ケース1内に露出して吐出圧(高圧)雰囲気下にある。ベーン15b先端部が低圧条件となり、後端部が高圧条件となって、前後端部で差圧が存在する。
この差圧の影響で、ベーン15bの先端部が偏心ローラ13bに摺接するように押圧付勢され、第1のシリンダ室14aと全く同様の圧縮作用が第2のシリンダ室14bでも行われる。結局、第1のシリンダ室14aおよび第2のシリンダ室14bとの両方で圧縮作用がなされる、全能力運転が行われる。
密閉ケース1から吐出管18を介して吐出される高圧ガスは、凝縮器19に導かれて凝縮液化し、電子膨張弁20で断熱膨張し、蒸発器21で熱交換空気から蒸発潜熱を奪って冷房作用をなす。蒸発したあとの冷媒はアキュームレータ17で気液分離され、再び各吸込み管16a,16bから圧縮機Rの第1,第2のシリンダ室14a,14bに吸込まれて上述の経路を循環する。
On the other hand, since the first on-off valve 28 constituting the pressure switching mechanism K is closed, the discharge pressure (high pressure) is not guided to the second cylinder chamber 14b. Low-pressure evaporative refrigerant is led from the accumulator 17 to the second cylinder chamber 14 b via the check valve 29. The second cylinder chamber 14b is in a suction pressure (low pressure) atmosphere, while the vane chamber 22b is exposed in the sealed case 1 and is in a discharge pressure (high pressure) atmosphere. The tip of the vane 15b has a low pressure condition, the rear end has a high pressure condition, and a differential pressure exists at the front and rear ends.
Under the influence of this differential pressure, the tip of the vane 15b is pressed and urged so as to be in sliding contact with the eccentric roller 13b, and the same compression action as that of the first cylinder chamber 14a is also performed in the second cylinder chamber 14b. Eventually, a full capacity operation is performed in which the compression action is performed in both the first cylinder chamber 14a and the second cylinder chamber 14b.
The high-pressure gas discharged from the sealed case 1 through the discharge pipe 18 is led to the condenser 19 to be condensed and liquefied, adiabatically expanded by the electronic expansion valve 20, and the evaporator 21 takes away the latent heat of evaporation from the heat exchange air. Makes a cooling effect. The evaporated refrigerant is separated into gas and liquid by the accumulator 17, and is again sucked into the first and second cylinder chambers 14a and 14b of the compressor R from the suction pipes 16a and 16b and circulates in the above-described path.

(2) 特別運転(能力半減運転)を選択した場合:
特別運転(圧縮能力を半減する運転)を選択すると、制御部40は第1の開閉弁28を開放する切換え制御をなす。第1のシリンダ室14aでは上述した通常の圧縮作用がなされ、密閉ケース1内に吐出した高圧ガスが充満する。吐出管18から吐出される高圧ガスの一部が分岐管Pに分流し、第1の開閉弁28と吸込み管16bを介して第2のシリンダ室14b内に導入され、シリンダ室14b内が高圧となる。
(2) When special operation (half-capacity operation) is selected:
When the special operation (operation that halves the compression capacity) is selected, the control unit 40 performs switching control for opening the first on-off valve 28. In the first cylinder chamber 14a, the normal compression action described above is performed, and the high-pressure gas discharged into the sealed case 1 is filled. Part of the high-pressure gas discharged from the discharge pipe 18 is diverted to the branch pipe P and introduced into the second cylinder chamber 14b via the first on-off valve 28 and the suction pipe 16b, and the inside of the cylinder chamber 14b is high-pressure. It becomes.

第2のシリンダ室14bが吐出圧(高圧)雰囲気にある一方で、ベーン室22bはケース内高圧と同一の状況にあることには変りがない。そのため、ベーン15bは前後端部とも高圧の影響を受け、前後端部において差圧が存在しない。ベーン15bはローラ13bの外周面から離間した位置で停止状態を保持し、第2のシリンダ室14bでの圧縮作用は行われない。
結局、第1のシリンダ室14aでの圧縮作用のみが有効であり、能力を半減した運転がなされる。第2のシリンダ室14bの内部は高圧となっているので、密閉ケース1内から第2のシリンダ室14b内への圧縮ガスの漏れは発生せず、それによる損失も発生しない。したがって、効率低下せずに能力を半分にした運転が可能となる。
While the second cylinder chamber 14b is in the discharge pressure (high pressure) atmosphere, the vane chamber 22b remains in the same situation as the high pressure in the case. Therefore, the vane 15b is affected by the high pressure at both the front and rear ends, and there is no differential pressure at the front and rear ends. The vane 15b maintains a stopped state at a position separated from the outer peripheral surface of the roller 13b, and no compression action is performed in the second cylinder chamber 14b.
Eventually, only the compression action in the first cylinder chamber 14a is effective, and the operation is performed with half the capacity. Since the inside of the second cylinder chamber 14b is at a high pressure, there is no leakage of compressed gas from the sealed case 1 into the second cylinder chamber 14b, and no loss is caused thereby. Therefore, it is possible to operate with half the capacity without lowering the efficiency.

ここで重要なのは、通常運転(全能力運転)から特別運転(能力半減運転)への切換え特性であり、あるいは逆に、特別運転から通常運転への切換えをなす切換え特性も含まれる。
たとえば、通常運転から特別運転への切換え指令信号を受けた制御部40は、第1の開閉弁28を閉成から開放に切換える。第1の開閉弁28は電磁弁であるから、本来、切換え指令信号を受ければ瞬時に電磁コイルの極性が変って弁体を進退駆動し、弁体は弁座の口径部を開放もしくは閉成して切換えが円滑になされるはずである。
What is important is the switching characteristic of the normal operation (full capacity operation) to a special operation (ability half operation), or, conversely, also includes switching characteristics forming the switching to normal operation from the special operating.
For example, the control unit 40 that has received a switching command signal from normal operation to special operation switches the first on-off valve 28 from closed to open. Since the first on-off valve 28 is an electromagnetic valve, when the switching command signal is received, the polarity of the electromagnetic coil changes instantaneously to drive the valve body forward and backward, and the valve body opens or closes the aperture of the valve seat. Switching should be smooth.

しかしながら実際には、圧力切換え機構Kには第1の開閉弁28とともに逆止弁29が用いられているので、通常運転(全能力運転)から特別運転(能力半減運転)へ第1の開閉弁28への切換えにともなう逆止弁29の、いわゆる逆止弁機能の良否が切換え動作性に多大に影響する。
ここでは、図3に示す逆止弁29を備え、この逆止弁29に対応する構成の第1の開閉弁28を図4に示すようにして、これら逆止弁29と第1の開閉弁28を備えて異なる条件での実験結果から、図5に示すような逆止弁29の切換え動作性能が得られることが判明した。
However, actually, since the pressure switching mechanism K uses the check valve 29 together with the first on-off valve 28, the first on-off valve from the normal operation (full capacity operation) to the special operation (capability half operation). The quality of the so-called check valve function of the check valve 29 accompanying switching to 28 greatly affects the switching operability.
Here, the check valve 29 shown in FIG. 3 is provided, and the first on-off valve 28 having a configuration corresponding to the check valve 29 is shown in FIG. From the experimental results under different conditions with 28, it was found that the switching operation performance of the check valve 29 as shown in FIG.

はじめに、上記逆止弁29構造から説明する。図3(A)(B)は逆止弁29の断面図であり、互いに異なる状態を示している。
上記逆止弁29は、吸込み管16bに嵌め込まれ所定口径の導通路60aを備えた弁本体60に、略逆ハット状に形成される弁ガイド61が取付けられる。この弁ガイド61の底面は開口部62を備えた弁座63となっている。また、弁ガイド61の周面にも開口部64が設けられている。
First, the check valve 29 structure will be described. 3A and 3B are cross-sectional views of the check valve 29 and show different states.
In the check valve 29, a valve guide 61 formed in a substantially reverse hat shape is attached to a valve body 60 that is fitted in the suction pipe 16b and includes a conduction path 60a having a predetermined diameter. The bottom surface of the valve guide 61 is a valve seat 63 having an opening 62. An opening 64 is also provided on the peripheral surface of the valve guide 61.

上記弁ガイド61内には略板状の弁体65が収容され、その位置に応じて弁座63に設けられる開口部62と、弁本体60の導通路60aを開閉自在としている。上記弁体65として、たとえば軽量で可動性の高いフリー弁を用いるとよい。そして、弁体65の形態は略板状に限定されるものではなく、外周面が弁ガイド61内周面に摺接するカップ状であってもよく、あるいはボール状や、その他種々の形態が考えられる。
つぎに、上記第1の開閉弁28について説明する。図4は、第1の開閉弁28の断面図である。
第1の開閉弁28を構成する弁本体50は、側面部と下面部とに接続ポート51,52を備えていて、それぞれの接続ポート51,52に上記分岐管Pが接続される。特に、下面部の接続ポート52は弁本体50内に突出する弁座53となっていて、この弁座53に弁体54が対向し、弁体54は弁座53に設けられる口径部53aを開閉自在となす。なお、弁座53の口径部53a直径をφD2wとする。
The above valve guide 61 is accommodated substantially plate-shaped valve body 65, an opening 62 provided in the valve seat 63 in accordance with the position, and opened and closed conduction path 60a of the valve body 60. As the valve body 65, for example, a lightweight and highly movable free valve may be used. The shape of the valve body 65 is not limited to a substantially plate shape, and may be a cup shape whose outer peripheral surface is in sliding contact with the inner peripheral surface of the valve guide 61, or may be a ball shape or other various forms. It is done.
Next, the first on-off valve 28 will be described. FIG. 4 is a cross-sectional view of the first on-off valve 28.
The valve body 50 constituting the first on-off valve 28 includes connection ports 51 and 52 on the side surface portion and the bottom surface portion, and the branch pipe P is connected to the connection ports 51 and 52. In particular, the connection port 52 on the lower surface portion is a valve seat 53 that protrudes into the valve body 50, the valve body 54 faces the valve seat 53, and the valve body 54 has a caliber 53 a provided in the valve seat 53. Open and close freely. The diameter 53a of the valve seat 53 is φD2w.

弁本体50内には、圧縮ばね55を支持する固定の支持座56が設けられていて、この支持座56に設けられる孔部および圧縮ばね55内径に上記弁体54が挿通される。弁体54の上端部には補助部57が一体に連結され、圧縮ばね55によって弁体54および補助部57が弾性的に支持されている。この補助部57内には電磁石58が嵌め込まれ、さらに電磁石58の上端部には図示しない電磁コイル部が設けられてなる。   A fixed support seat 56 that supports the compression spring 55 is provided in the valve main body 50, and the valve body 54 is inserted into a hole provided in the support seat 56 and the inner diameter of the compression spring 55. An auxiliary portion 57 is integrally connected to the upper end portion of the valve body 54, and the valve body 54 and the auxiliary portion 57 are elastically supported by the compression spring 55. An electromagnet 58 is fitted in the auxiliary portion 57, and an electromagnetic coil portion (not shown) is provided at the upper end portion of the electromagnet 58.

このようにして構成される逆止弁29と第1の開閉弁28であって、通常運転(全能力運転)時は以下に述べるように作用する。
すなわち、上記逆止弁29においては図3(A)に示すように、図の上部側であるアキュームレータ17から低圧の冷媒が弁本体60の導通路60aを介して弁ガイド61内に導入され、それによって弁体65が弁座63に押付けられる。弁体65は弁座63の開口部62を閉成するが、弁ガイド61周面に設けられる開口部64は何らの遮蔽物もなく開放状態にある。
導通路60aから弁ガイド61に導かれる低圧冷媒は、弁ガイド61周面の開口部64を介して弁本体60下部に接続される吸込み管16bに導かれる。ここでは図示していないが、下部側の吸込み管16bは2シリンダ形ロータリ式圧縮機Rの第2のシリンダ室14bに接続されているので、低圧冷媒は第2のシリンダ室14bに導かれ圧縮される。
The check valve 29 and the first on-off valve 28 configured as described above operate as described below during normal operation (full capacity operation).
That is, in the check valve 29, as shown in FIG. 3A, low-pressure refrigerant is introduced into the valve guide 61 from the accumulator 17 on the upper side of the figure through the conduction path 60a of the valve body 60, As a result, the valve body 65 is pressed against the valve seat 63. The valve body 65 closes the opening 62 of the valve seat 63, but the opening 64 provided on the peripheral surface of the valve guide 61 is open without any shielding.
The low-pressure refrigerant guided to the valve guide 61 from the conduction path 60a is guided to the suction pipe 16b connected to the lower portion of the valve body 60 through the opening 64 on the peripheral surface of the valve guide 61. Although not shown here, the lower suction pipe 16b is connected to the second cylinder chamber 14b of the two-cylinder rotary compressor R, so that the low-pressure refrigerant is guided to the second cylinder chamber 14b and compressed. Is done.

一方、上記第1の開閉弁28においては、運転開始指示を受けた制御部40から電磁コイル部に通電される。電磁石58の磁極が変って補助部57および弁体54を磁気的に反発させ、図の状態から圧縮ばね55の弾性力に抗して補助部57と弁体54を強制的に下降移動させる。弁体54の先端部は弁座53の口径部53aを閉塞し、その状態が保持される。
側面部ポート51に接続される分岐管Pは、圧縮機Rの密閉ケース1に接続される吐出管18に連通しているところから高圧ガスが導かれる。下面部ポート52に接続される分岐管Pは吸込み管16bに連通しているので、低圧ガスが導かれる。側面部ポート51が高圧で、下面部ポート52は低圧であるから、弁座53の口径部53aを閉塞する弁体54を境にして圧力差が存在する。
On the other hand, in the first on-off valve 28, the electromagnetic coil unit is energized from the control unit 40 that has received the operation start instruction. The magnetic pole of the electromagnet 58 changes to magnetically repel the auxiliary portion 57 and the valve body 54, and the auxiliary portion 57 and the valve body 54 are forcibly moved downward against the elastic force of the compression spring 55 from the state shown in the figure. The distal end portion of the valve body 54 closes the caliber portion 53a of the valve seat 53, and the state is maintained.
The high-pressure gas is guided from the branch pipe P connected to the side port 51 to the discharge pipe 18 connected to the sealed case 1 of the compressor R. Since the branch pipe P connected to the lower surface portion port 52 communicates with the suction pipe 16b, the low-pressure gas is guided. Since the side surface port 51 is high pressure and the lower surface port 52 is low pressure, there is a pressure difference with the valve body 54 closing the caliber portion 53a of the valve seat 53 as a boundary.

弁体54はこのような圧力差によって弁座53の口径部53aを閉塞する状態を保持する。すなわち、制御部40から切換え信号を受けたあとの僅かな時間だけ第1の開閉弁28に対する通電をなせば閉成状態が保持され、そのあと通電を停止しても第1の開閉弁28の閉成状態に変化がない。第1の開閉弁28に対する実質的な通電時間はごく僅かですむ通常運転(全能力運転)が可能である。
以上の通常運転(全能力運転)から特別運転(能力半減運転)に切換えるには、制御部40は第1の開閉弁28を開放する切換えをなす。すなわち、制御部40は圧縮機Rの運転を一旦停止して、第1の開閉弁28の側面部ポート51と下面部ポート52との圧力差を解消させる。すると、弁体54を弁座53に押付けている力が除去され、今度は圧縮ばね55の弾性力が作用して補助部57とともに弁体54を押上げ、弁座53の口径部53aが開放される。
The valve body 54 maintains a state in which the diameter portion 53a of the valve seat 53 is closed by such a pressure difference. That is, if the first on-off valve 28 is not energized for a short time after receiving the switching signal from the control unit 40, the closed state is maintained. There is no change in the closed state. A normal operation (full-capacity operation) is possible in which the substantial energization time for the first on-off valve 28 is very short.
In order to switch from the above normal operation (full capacity operation) to special operation (capability half operation), the control unit 40 switches to open the first on-off valve 28. That is, the control unit 40 temporarily stops the operation of the compressor R and eliminates the pressure difference between the side surface port 51 and the lower surface port 52 of the first on-off valve 28. Then, the force pressing the valve body 54 against the valve seat 53 is removed, and the elastic force of the compression spring 55 acts this time to push up the valve body 54 together with the auxiliary portion 57, and the aperture 53a of the valve seat 53 is opened. Is done.

タイミングをとって圧縮機Rの運転を再開する。圧縮された高圧ガスの一部が吐出管18から分岐管Pに導かれ、さらに第1の開閉弁28の側面部ポート51から開放された口径部53aを介して下面部ポート52に接続される分岐管Pに導かれる。
図3(B)は、このときの逆止弁29内の状態を示している。同図では、逆止弁29の下方部位に上記分岐管Pとの接続部cがあるところから、分岐管Pから接続部cを介して吸込み管16bに導かれる高圧ガスが逆止弁29の下部側から上方へ導かれる。
The operation of the compressor R is restarted at the timing. A part of the compressed high-pressure gas is led from the discharge pipe 18 to the branch pipe P, and is further connected to the lower surface port 52 through the port portion 53a opened from the side surface port 51 of the first on-off valve 28. It is guided to the branch pipe P.
FIG. 3B shows the state in the check valve 29 at this time. In the drawing, from where there is a connecting portion c of the branch pipe P in the lower portion of the check valve 29, high pressure gas introduced to the suction pipe 16b via the connection portions c of the branch pipe P is of the check valve 29 Guided upward from the lower side.

逆止弁29において、高圧ガスは弁座63の開口部62を通過してフェザー弁である弁体65を押上げる。弁ガイド61周面の開口部64にも高圧ガスが流通し、押上げられた弁体65に対してさらに押上げ力を付与する。弁体65は完全に弁本体60の導通路60aを閉塞して、その状態を保持する。弁体65によって高圧ガスの流通が阻止される、いわゆる逆止弁機能を得る。
このようにして、通常運転から特別運転に切換える際に圧縮機Rの運転を停止し、第1の開閉弁28における圧力差を無くすことで開放でき、高圧ガスを逆止弁29に導く。逆止弁29では、高圧を受けた弁体65が反応よく動作する。
In the check valve 29, the high-pressure gas passes through the opening 62 of the valve seat 63 and pushes up the valve body 65 that is a feather valve. High-pressure gas also flows through the opening 64 on the peripheral surface of the valve guide 61, and further applies a pushing force to the pushed-up valve body 65. The valve body 65 completely closes the conduction path 60a of the valve body 60 and maintains the state. A so-called check valve function is obtained in which the high-pressure gas is prevented from flowing by the valve body 65.
In this way, when the operation is switched from the normal operation to the special operation, the operation of the compressor R is stopped, and can be opened by eliminating the pressure difference in the first on-off valve 28, and the high-pressure gas is guided to the check valve 29. In the check valve 29, the valve body 65 that has received a high pressure operates with good response.

そして、第2のシリンダ室14bに高圧ガスが早急に導かれて高圧化するので、ベーン15bは速やかに後退保持して偏心ローラ13bから離間する。ベーン15bが偏心ローラ13bに接触を繰り返す、いわゆるジャンピングの発生がない。
図5は、上述した構成の上記逆止弁29および第1の開閉弁28を備えた圧力切換え機構Kによる切換え動作特性の結果を示している。図4で示したように、圧縮機Rに接続される吐出管18の内径をφDdとし、分岐管Pの内径をφDbpとし、第1の開閉弁28の口径部53a直径をφD2wとする。
Then, since the high pressure gas is quickly introduced into the second cylinder chamber 14b and the pressure is increased, the vane 15b is quickly retracted and separated from the eccentric roller 13b. There is no so-called jumping in which the vane 15b repeats contact with the eccentric roller 13b.
FIG. 5 shows a result of switching operation characteristics by the pressure switching mechanism K including the check valve 29 and the first on-off valve 28 having the above-described configuration. As shown in FIG. 4, the inner diameter of the discharge pipe 18 connected to the compressor R is φDd, the inner diameter of the branch pipe P is φDbp, and the diameter 53a of the first on-off valve 28 is φD2w.

そして、図5の横軸に口径部直径φD2wに対する吐出管内径φDdの割合(φD2w/φDd)をとり、縦軸に分岐管内径φDbpに対する吐出管内径φDdの割合(φDbp/φDd)をとって、特に吐出管18の内径を基準として種々の条件に対応する実験を行った。
横軸を基準として、横軸が0.2以下のときは、縦軸のすべての部位(数値)においてプロット表記が×印であるNGとなっている。横軸が0.2以上のときは、縦軸が0.2以下であれば×印であるNGであるが、縦軸が0.2以上の全ての部位(数値)においてプロット表記が○印であるOKをなしている。
The horizontal axis of FIG. 5 is the ratio (φD2w / φDd) of the discharge pipe inner diameter φDd to the bore diameter φD2w, and the vertical axis is the ratio of the discharge pipe inner diameter φDd to the branch pipe inner diameter φDbp (φDbp / φDd). In particular, experiments corresponding to various conditions were performed with the inner diameter of the discharge pipe 18 as a reference.
When the horizontal axis is 0.2 or less with respect to the horizontal axis, the plot notation is NG with x marks in all the parts (numerical values) on the vertical axis. When the horizontal axis is 0.2 or more, the vertical axis is 0.2 or less, and it is NG that is x. Is OK.

今度は、縦軸を基準として、縦軸が0.2以下のときは、横軸のすべての部位(数値)においてプロット表記が×印であるNGとなっている。縦軸が0.2以上のときは、横軸が0.2以下であれば×印であるNGであるが、横軸が0.2以上の全ての部位(数値)においてプロット表記が○印であるOKをなしている。
なお、NGとは、高圧ガスの流量が少ないため、高圧ガスが弁体65の周囲を通って導通路60aに流れ込み、弁体65が導通路60aを閉塞できない、または閉塞するまでに時間がかかる現象である。OKとは、弁体65が導通路60aを完全に閉塞する状態を言う。
以上の実験結果から、上記逆止弁29を備えた圧力切換え機構Kにおいて、第1の開閉弁28の口径部53a直径φD2wと、分岐管内径φDbpおよび吐出管内径φDdの最適値を実験的に求め、ほぼ能力ランク毎に決定される吐出管18の内径を基準として範囲選定したことで、圧力切換え機構Kとして充分に円滑な切換え動作特性を保持できる。
This time, with the vertical axis as a reference, when the vertical axis is 0.2 or less, the plot notation is NG in all parts (numerical values) on the horizontal axis. When the vertical axis is 0.2 or more, the horizontal axis is 0.2 or less, but it is NG that is x. However, the plot notation is marked with ○ in all parts (numerical values) where the horizontal axis is 0.2 or more Is OK.
In addition, since the flow rate of the high-pressure gas is small, NG flows into the conduction path 60a through the periphery of the valve body 65, and it takes time until the valve body 65 cannot block the conduction path 60a. It is a phenomenon. OK means a state in which the valve body 65 completely closes the conduction path 60a.
From the above experimental results, in the pressure switching mechanism K provided with the check valve 29, the optimum values of the diameter portion 53a diameter φD2w of the first on-off valve 28, the branch pipe inner diameter φDbp, and the discharge pipe inner diameter φDd are experimentally determined. Thus, by selecting the range based on the inner diameter of the discharge pipe 18 determined for each capacity rank, the pressure switching mechanism K can maintain sufficiently smooth switching operation characteristics.

なお、第1の開閉弁28における弁座53の口径部53a直径をφD2wとしたが、これに限定されるものではなく、分岐管Pの内径が口径部53aよりも小さい断面積をなす場合には、その径をもってφD2wとする。
以上の条件から、上記吐出管18の内径をDdとし、上記分岐管Pの内径Dbpおよび上記第1の開閉弁28における弁座口径部53aの直径D2Wのうちで小さい方の径をdとしたとき、以下の(1)式を満足するように設定する。
d / Dd ≧ 0.2 ……(1)
このことにより、圧力切換え機構Kにおける逆止弁29の切換え動作特性が向上して、切換え動作性能の向上化を得る。同時に、特別運転に切換えた際には上記(1)式を満足するように設定することにより、第2のシリンダ室14bが極めて早急に高圧化してベーン15bの先端が偏心ローラ13bに接触を繰り返す、いわゆるジャンピングの発生防止を図れて信頼性の向上を得られる。
上記第1の開閉弁28においては、通常運転信号が入ったときに一時的に通電されるだけで、他の状況では通電は不要である。換言すれば、差圧を利用した自己保持形の開閉弁を差圧方式による自己保持構造としたので、常時の通電が不要となって省電力化を図ることができる。また、マグネット方式を採用しても自己保持形の開閉弁を提供することができる。当然、自己保持構造のものに限定されるものではなく、通常の、上記通電構造の開閉弁を用いても支障はない。
The diameter 53a of the valve seat 53 in the first on-off valve 28 is φD2w. However, the diameter is not limited to this, and the inner diameter of the branch pipe P is smaller than the diameter 53a. Is φD2w with the diameter.
From the above conditions, the inner diameter of the discharge pipe 18 is Dd, and the smaller diameter of the inner diameter Dbp of the branch pipe P and the diameter D2W of the valve seat port diameter portion 53a of the first on-off valve 28 is d. Is set so as to satisfy the following expression (1).
d / Dd ≧ 0.2 (1)
As a result, the switching operation characteristics of the check valve 29 in the pressure switching mechanism K are improved, and the switching operation performance is improved. At the same time, by setting so as to satisfy the above formula (1) when switching to the special operation, the pressure in the second cylinder chamber 14b is very quickly increased, and the tip of the vane 15b repeatedly contacts the eccentric roller 13b. Thus, the occurrence of so-called jumping can be prevented and the reliability can be improved.
The first on-off valve 28 is only energized temporarily when a normal operation signal is received, and it is not necessary to energize in other situations. In other words, since the self-holding on-off valve using the differential pressure has a self-holding structure based on the differential pressure method, it is not necessary to energize constantly and power saving can be achieved. Moreover, a self-holding on-off valve can be provided even if a magnet system is employed. Of course, it is not limited to the self-holding structure, and there is no problem even if a normal on-off valve having the current-carrying structure is used.

なお、上記逆止弁29では後述するような振動抑制手段を備えて、特に逆止弁29内を低圧冷媒が流通する際のバタツキの抑制化を図る。図6(A)(B)(C)は互いに異なる構成の振動抑制手段70A,70B,70Cを備えた逆止弁29の断面図である。
図6(A)から説明すると、弁体65の上に振動抑制手段を構成するばね部材70Aが載置され、弁本体60との間に介設される。上記ばね部材70Aは圧縮ばねであって、固定の弁本体60に対して変位自在な弁体65を弁座63に弾性的に押付けている。ばね部材70Aの弾性力は特別運転時に弁体65にかかる高圧よりも小さい圧力となるように設定されている。
The check valve 29 is provided with vibration suppressing means as will be described later, and in particular suppresses flutter when low-pressure refrigerant flows through the check valve 29. 6A, 6B, and 6C are cross-sectional views of the check valve 29 including vibration suppressing means 70A, 70B, and 70C having different configurations.
6A, a spring member 70A that constitutes vibration suppression means is placed on the valve body 65, and is interposed between the valve body 60 and the spring body 70A. The spring member 70 </ b> A is a compression spring, and elastically presses a valve body 65 that is displaceable with respect to a fixed valve body 60 against the valve seat 63. The elastic force of the spring member 70A is set to be smaller than the high pressure applied to the valve body 65 during the special operation.

したがって、図のように弁本体60の導通路60aに低圧冷媒が導かれている状態で、ばね部材70Aが弁体65を弾性的に押圧して、弁体65の姿勢と位置を保持する。弁座63の開口部62は完全閉成され、冷媒ガスの流通が完全に遮断される。弁ガイド61の開口部64のみに冷媒ガスが導通し、第2のシリンダ室14bには常に一定の量の冷媒ガスが導かれて圧縮性能に変動をきたすことがない。
先に図3(B)で説明したように、図の下部側から高圧ガスが導かれると、ばね部材70Aの弾性力に抗して弁体65を押上げ、弁座63の開口部62を開放させる。高圧ガスは弁体65をさらに押上げ、弁体65で弁本体60の導通路60aを閉成させる。このとき、弁体65と弁本体60下端部との間にばね部材70Aが介在するが、それでも弁体65が導通路60aを完全閉成するように設計的に解決するには何らの支障もない。
Therefore, the spring member 70A elastically presses the valve body 65 and holds the posture and position of the valve body 65 in a state where the low-pressure refrigerant is guided to the conduction path 60a of the valve body 60 as illustrated. The opening 62 of the valve seat 63 is completely closed, and the refrigerant gas flow is completely blocked. The refrigerant gas is conducted only to the opening 64 of the valve guide 61, and a constant amount of the refrigerant gas is always guided to the second cylinder chamber 14b, so that the compression performance does not change.
As described in the previous in FIG. 3 (B), the high-pressure gas is introduced from the lower side of the figure, the valve body 65 against the elastic force of the spring member 70A pushes up the opening 62 of the valve seat 63 Open. The high pressure gas further pushes up the valve body 65, and the valve body 65 closes the conduction path 60 a of the valve body 60. At this time, the spring member 70A is interposed between the valve body 65 and the lower end portion of the valve body 60. However, there is no problem in solving the design so that the valve body 65 completely closes the conduction path 60a. Absent.

図6(B)に示す振動抑制手段は環状のマグネット70Bであり、弁座63の下面に貼着などの手段で取付け固定される。環状マグネット70Bの内径は弁座63に設けられる開口部62と略同一とし、この開口部62を流通する冷媒ガスの流通量を保持する。弁体65のみ磁性体からなり、逆止弁29を構成する他の構成部材は非磁性材料からなる。環状マグネット70Bの磁性力は弁体65を磁気的に吸引するのに充分であるとともに、特別運転時に弁体65にかかる高圧よりも小さい圧力となるように設定されている。
逆止弁29の弁本体60側から低圧がかかっている状態で、環状マグネット70Bは磁性体からなる弁体65を磁気的に吸引して弁座63に密着させ、開口部62を閉成させる。環状マグネット70Bにより弁体65は姿勢と位置が保持される。上記開口部62は完全閉成され、流通する冷媒ガスはない。弁ガイド61の開口部64のみに冷媒ガスが導通され、第2のシリンダ室14bには常に一定の量の冷媒ガスが導かれて、圧縮性能に変動をきたすことがない。
The vibration suppressing means shown in FIG. 6 (B) is an annular magnet 70B, and is attached and fixed to the lower surface of the valve seat 63 by means such as sticking. The inner diameter of the annular magnet 70 </ b> B is substantially the same as the opening 62 provided in the valve seat 63, and the circulation amount of the refrigerant gas flowing through the opening 62 is maintained. Only the valve body 65 is made of a magnetic material, and the other constituent members constituting the check valve 29 are made of a nonmagnetic material. The magnetic force of the annular magnet 70B is set to be sufficient to magnetically attract the valve body 65 and to a pressure smaller than the high pressure applied to the valve body 65 during special operation.
In a state where a low pressure is applied from the valve body 60 side of the check valve 29, the annular magnet 70 </ b> B magnetically attracts the valve body 65 made of a magnetic material to closely contact the valve seat 63 and closes the opening 62. . The posture and position of the valve body 65 are held by the annular magnet 70B. The opening 62 is completely closed, and there is no circulating refrigerant gas. Refrigerant gas is conducted only to the opening 64 of the valve guide 61, and a constant amount of refrigerant gas is always guided to the second cylinder chamber 14b, so that the compression performance does not vary.

下部側から高圧がかかれば、環状マグネット70Bの磁性力に抗して弁体65を押上げ、ついには図3(B)で示したように弁体65で弁本体60の導通路60aを閉成させる。上述したばね部材70Aと相違して、弁体65と弁本体60との間には何らの介在物もないから設計的には容易である。
図6(C)に示す振動抑制手段は吸込み管16bの外周面に嵌着される筒状もしくは所定曲面に曲成された電磁石部材70Cである。先のものと同様に、弁体65のみ磁性体からなり、逆止弁29Aを構成する他の構成部材は非磁性材料からなる。上記電磁石部材70Cは制御部40により上記第1の開閉弁28と同期して通電制御されるようになっている。吸込み管16bの外周面に取付けられているが、弁体65を下方に磁気的に吸引するのに必要な磁気力を備えている。ただし、特別運転時に弁体65にかかる高圧よりも小さい圧力であることは言うまでもない。
If high pressure is applied from the lower side, the valve body 65 is pushed up against the magnetic force of the annular magnet 70B, and finally the conduction path 60a of the valve body 60 is closed by the valve body 65 as shown in FIG. Make it happen. Unlike the above-described spring member 70 </ b> A, there is no inclusion between the valve body 65 and the valve main body 60, which is easy in design.
The vibration suppressing means shown in FIG. 6C is an electromagnet member 70 </ b> C bent into a cylindrical shape or a predetermined curved surface that is fitted to the outer peripheral surface of the suction pipe 16 b. Similar to the above, only the valve body 65 is made of a magnetic material, and the other constituent members constituting the check valve 29A are made of a nonmagnetic material. The electromagnet member 70 </ b> C is energized and controlled by the control unit 40 in synchronization with the first on-off valve 28. Although attached to the outer peripheral surface of the suction pipe 16b, it has a magnetic force necessary for magnetically attracting the valve body 65 downward. However, it goes without saying that the pressure is lower than the high pressure applied to the valve body 65 during the special operation.

図のように逆止弁29の弁本体60側から低圧がかかっている状態で、電磁石部材70Cは磁性体からなる弁体65を磁気的に吸引して弁座63に密着させ、開口部62を閉成させる。開口部62は完全閉成され、ここを流通する冷媒ガスはない。弁ガイド61の開口部64のみに冷媒ガスが導通し、第2のシリンダ室14bには常に一定の量の冷媒ガスが導かれて圧縮性能に変動をきたすことがない。
制御部40が第1の開閉弁28を開放制御すると、分岐管Pを介して高圧ガスが吸込み管16bに導かれ、逆止弁29には下部側から高圧がかかる。制御部40は同期して電磁石部材70Cに通電し、弁体65に対して反発する方向に磁極を切換える。弁体65に高圧がかかっているので、電磁石部材70Cを断電しても図3(B)で示したように弁体65は高圧により押上げられて弁本体60の導通路60aを閉成する。上述したばね部材70Aと相違して、弁体65と弁本体60との間には何らの介在物もないから設計的には容易である。
なお、本発明におけるロータリ式密閉形圧縮機Rと、この圧縮機を備えた冷凍サイクル装置は以上説明した構成に限定されるものではなく、本発明の趣旨を越えない範囲内で種々変形実施可能であることは勿論である。
As shown in the drawing, in a state where a low pressure is applied from the valve body 60 side of the check valve 29, the electromagnet member 70 </ b> C magnetically attracts the valve body 65 made of a magnetic material to closely contact the valve seat 63, thereby opening the opening 62. Is closed. The opening 62 is completely closed, and there is no refrigerant gas flowing therethrough. The refrigerant gas is conducted only to the opening 64 of the valve guide 61, and a constant amount of the refrigerant gas is always guided to the second cylinder chamber 14b, so that the compression performance does not change.
When the control unit 40 controls to open the first on-off valve 28, high-pressure gas is guided to the suction pipe 16b via the branch pipe P, and high pressure is applied to the check valve 29 from the lower side. The control unit 40 energizes the electromagnet member 70 </ b> C in synchronization and switches the magnetic poles in a direction to repel the valve body 65. Since high pressure is applied to the valve body 65, even if the electromagnet member 70 </ b> C is disconnected, the valve body 65 is pushed up by the high pressure as shown in FIG. 3B to close the conduction path 60 a of the valve body 60. To do. Unlike the above-described spring member 70 </ b> A, there is no inclusion between the valve body 65 and the valve main body 60, which is easy in design.
The rotary hermetic compressor R in the present invention and the refrigeration cycle apparatus equipped with the compressor are not limited to the above-described configuration, and various modifications can be made without departing from the scope of the present invention. Of course.

本発明における第1の実施の形態に係る、2シリンダ形ロータリ式圧縮機の縦断面図と、冷凍サイクル構成図。The longitudinal cross-sectional view and refrigeration cycle block diagram of the 2 cylinder type rotary compressor which concern on 1st Embodiment in this invention. 同実施の形態に係る、圧縮機構一部の分解した斜視図。The disassembled perspective view of a part of compression mechanism based on the embodiment. 同実施の形態に係る、逆止弁の互いに異なる状態の断面図。Sectional drawing of the state from which a check valve differs from each other based on the embodiment. 同実施の形態に係る、第1の開閉弁の断面図。Sectional drawing of the 1st on-off valve based on the embodiment. 同実施の形態に係る、切換え動作の特性図。The characteristic view of switching operation based on the embodiment. 同実施の形態に係る、逆止弁に互いに異なる構成の振動抑制手段を備えた図。The figure provided with the vibration suppression means of a mutually different structure in the non-return valve based on the embodiment.

符号の説明Explanation of symbols

1…密閉ケース、3…電動機部、5…第1の圧縮機構部、15b…ベーン、22b…ベーン室、6…第2の圧縮機構部、R…2シリンダ形ロータリ式圧縮機、14b…第2のシリンダ室、16b…吸込み管(吸込み通路)、K…圧力切換え機構(切換え手段)、18…吐出管、28…第1の開閉弁、P…分岐管、62…開口部、61…弁ガイド、65…弁体、29…逆止弁、70A…ばね部材(振動抑制手段)、70B…環状マグネット(振動抑制手段)、70C…電磁石部材(振動抑制手段)。   DESCRIPTION OF SYMBOLS 1 ... Sealing case, 3 ... Electric motor part, 5 ... 1st compression mechanism part, 15b ... Vane, 22b ... Vane chamber, 6 ... 2nd compression mechanism part, R ... 2 cylinder type rotary compressor, 14b ... 1st 2 cylinder chamber, 16b ... suction pipe (suction passage), K ... pressure switching mechanism (switching means), 18 ... discharge pipe, 28 ... first on-off valve, P ... branch pipe, 62 ... opening, 61 ... valve Guide, 65 ... valve body, 29 ... check valve, 70A ... spring member (vibration suppression means), 70B ... annular magnet (vibration suppression means), 70C ... electromagnet member (vibration suppression means).

Claims (4)

密閉ケース内に、電動機部と、この電動機部と連結される第1の圧縮機構部および、ベーンを収容するベーン室が密閉ケース内に露出されケース内圧力をもってベーンに背圧を与える構成の第2の圧縮機構部を収容してなり、上記密閉ケース内を第1の圧縮機構部および第2の圧縮機構部による吐出圧で高圧雰囲気下とした2シリンダ形ロータリ式圧縮機と、
この2シリンダ形ロータリ式圧縮機における第2の圧縮機構部のシリンダ室に連通する吸込み通路と、
この吸込み通路に設けられ、上記シリンダ室に対する接続を冷凍サイクルの低圧側もしくは高圧側に切換え、上記シリンダ室に低圧冷媒を導入して通常の圧縮運転を行わせ、もしくは上記シリンダ室に高圧冷媒を導入して圧縮停止である非圧縮運転をなすように切換える切換え手段とを具備し、
上記切換え手段は、
冷凍サイクルの高圧側と上記吸込み通路とを連通し、その中途部に第1の開閉弁を有する分岐管と、
上記吸込み通路における上記分岐管との接続部よりも上流側に設けられた逆止弁とを備え、
上記冷凍サイクルの高圧側に接続される吐出管の内径をDdとし、上記分岐管の内径Dbpおよび上記第1の開閉弁における弁座口径部の直径D2Wのうちの、いずれか小さい方の径をdとしたとき、以下の(1)式を満足するように設定することを特徴とする冷凍サイクル装置。
d / Dd ≧ 0.2 ……(1)
A motor unit, a first compression mechanism unit coupled to the motor unit, and a vane chamber that houses the vane are exposed in the sealed case to apply a back pressure to the vane with the pressure in the case. A two-cylinder rotary compressor that accommodates two compression mechanism portions, and the inside of the sealed case is under a high-pressure atmosphere with discharge pressure by the first compression mechanism portion and the second compression mechanism portion;
A suction passage communicating with the cylinder chamber of the second compression mechanism in the two-cylinder rotary compressor;
It is provided in this suction passage, and the connection to the cylinder chamber is switched to the low pressure side or the high pressure side of the refrigeration cycle, a low pressure refrigerant is introduced into the cylinder chamber to perform a normal compression operation, or a high pressure refrigerant is supplied to the cylinder chamber. Switching means for switching so as to perform non-compression operation which is introduced and stopped in compression,
The switching means is
A branch pipe that communicates the high-pressure side of the refrigeration cycle with the suction passage, and has a first on-off valve in the middle thereof;
A check valve provided on the upstream side of the connection portion with the branch pipe in the suction passage,
The inner diameter of the discharge pipe connected to the high pressure side of the refrigeration cycle is Dd, and the smaller one of the inner diameter Dbp of the branch pipe and the diameter D2W of the valve seat port diameter portion of the first on-off valve is A refrigerating cycle apparatus, wherein d is set so as to satisfy the following expression (1):
d / Dd ≧ 0.2 (1)
上記逆止弁は、
上記吸込み通路に嵌め込まれる、所定口径の導通路を備えた弁本体と、
この弁本体に取付けられ、周面に開口部を有するとともに、底面に開口部を備えた弁座が設けられる筒状の弁ガイドと、
この弁ガイド内に移動自在に設けられ、上記吸込み通路から上記導通路を介して低圧冷媒が導かれたときに、この低圧冷媒に押されて導通路を開放するとともに上記弁座の底面開口部を閉成し、上記周面開口部を介して上記第2の圧縮機構部のシリンダ室に低圧冷媒を案内し、
上記分岐管から高圧冷媒が導かれたときに、上記弁座の底面開口部および上記周面開口部を導かれる高圧冷媒に押されて上記導通路を閉塞し、上記第2の圧縮機構部のシリンダ室への低圧冷媒の通過を阻止する弁体からなる
ことを特徴とする請求項1記載の冷凍サイクル装置。
The check valve
A valve body having a conduction path of a predetermined diameter, which is fitted into the suction passage;
A cylindrical valve guide that is attached to the valve body, has an opening on the peripheral surface, and is provided with a valve seat having an opening on the bottom surface;
This valve guide is movably provided in the valve guide, and when a low-pressure refrigerant is introduced from the suction passage through the conduction path, the conduction path is opened by being pushed by the low-pressure refrigerant and the bottom opening of the valve seat And guiding the low-pressure refrigerant to the cylinder chamber of the second compression mechanism through the peripheral opening,
When high-pressure refrigerant is introduced from the branch pipe, the conducting passage is closed by being pushed by the high-pressure refrigerant introduced through the bottom opening and the peripheral opening of the valve seat, and the second compression mechanism part. The refrigeration cycle apparatus according to claim 1, comprising a valve body that prevents passage of low-pressure refrigerant into the cylinder chamber .
上記逆止弁は、
上記弁体が上記弁座の開口部を閉成し、かつ上記弁ガイド周面の開口部が開放している状態で、弁体の振動を抑制する振動抑制手段を備えたことを特徴とする請求項2記載の冷凍サイクル装置。
The check valve
The valve body is provided with vibration suppressing means for suppressing vibration of the valve body in a state in which the valve body closes the opening of the valve seat and the opening of the valve guide peripheral surface is open. The refrigeration cycle apparatus according to claim 2.
上記第1の開閉弁は電磁開閉弁であり、
上記振動抑制手段は、上記吸込み通路が低圧側に接続された状態で、上記弁体を上記弁ガイドに押付ける力を付勢する電磁石であり、上記第1の開閉弁と同期して通電制御されることを特徴とする請求項3記載の冷凍サイクル装置。
The first on-off valve is an electromagnetic on-off valve;
The vibration suppression means is an electromagnet that urges a force that presses the valve body against the valve guide in a state where the suction passage is connected to the low pressure side, and controls energization in synchronization with the first on-off valve. The refrigeration cycle apparatus according to claim 3, wherein
JP2003413632A 2003-12-11 2003-12-11 Refrigeration cycle equipment Expired - Fee Related JP4663978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413632A JP4663978B2 (en) 2003-12-11 2003-12-11 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413632A JP4663978B2 (en) 2003-12-11 2003-12-11 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2005171897A JP2005171897A (en) 2005-06-30
JP4663978B2 true JP4663978B2 (en) 2011-04-06

Family

ID=34733716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413632A Expired - Fee Related JP4663978B2 (en) 2003-12-11 2003-12-11 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4663978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020138A (en) * 2014-04-17 2015-11-04 珠海格力节能环保制冷技术研究中心有限公司 Two-cylinder positive displacement compressor and control method
CN105221422A (en) * 2015-10-16 2016-01-06 广东美芝制冷设备有限公司 Rotary compressor and the heat-exchange system with it

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357495B2 (en) * 2008-10-20 2013-12-04 東芝キヤリア株式会社 Refrigeration cycle equipment
WO2015051537A1 (en) * 2013-10-11 2015-04-16 广东美芝制冷设备有限公司 Refrigeration circulation apparatus
CN105275814A (en) * 2015-08-04 2016-01-27 广东美芝制冷设备有限公司 Multi-cylinder rotation type compressor
CN115467829A (en) * 2022-09-27 2022-12-13 珠海格力电器股份有限公司 Pump body subassembly, compressor unit spare and air conditioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203989U (en) * 1986-06-16 1987-12-26
JPS6388297A (en) * 1986-09-30 1988-04-19 Mitsubishi Electric Corp Multi-cylinder rotary compressor
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH05172076A (en) * 1991-10-23 1993-07-09 Mitsubishi Electric Corp Multicylinder rotary compressor
JPH05256286A (en) * 1992-03-13 1993-10-05 Toshiba Corp Multicylinder rotary compressor
JP2000291558A (en) * 1999-04-06 2000-10-17 Matsushita Refrig Co Ltd Hermetic compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203989U (en) * 1986-06-16 1987-12-26
JPS6388297A (en) * 1986-09-30 1988-04-19 Mitsubishi Electric Corp Multi-cylinder rotary compressor
JPH01247786A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder type rotary compressor
JPH05172076A (en) * 1991-10-23 1993-07-09 Mitsubishi Electric Corp Multicylinder rotary compressor
JPH05256286A (en) * 1992-03-13 1993-10-05 Toshiba Corp Multicylinder rotary compressor
JP2000291558A (en) * 1999-04-06 2000-10-17 Matsushita Refrig Co Ltd Hermetic compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020138A (en) * 2014-04-17 2015-11-04 珠海格力节能环保制冷技术研究中心有限公司 Two-cylinder positive displacement compressor and control method
CN105221422A (en) * 2015-10-16 2016-01-06 广东美芝制冷设备有限公司 Rotary compressor and the heat-exchange system with it

Also Published As

Publication number Publication date
JP2005171897A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4343627B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
KR100961301B1 (en) Hermetic compressor and refrigeration cycle device
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP4700624B2 (en) Refrigeration cycle apparatus and rotary hermetic compressor
CN100386523C (en) Air conditioner
JP4594301B2 (en) Hermetic rotary compressor
JP2006207559A (en) Refrigerating cycle device and rotary compressor
JP4663978B2 (en) Refrigeration cycle equipment
JP2005171848A (en) Refrigerating cycle device
JP4398321B2 (en) Refrigeration cycle equipment
JP4634191B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5448927B2 (en) Hermetic compressor and refrigeration cycle equipment
JP2007064016A (en) Hermetic compressor and refrigerating cycle device
JP2011064184A (en) Compressor and refrigerating cycle device
JP6324624B2 (en) Refrigerant compressor and vapor compression refrigeration cycle apparatus equipped with the same
JP6391816B2 (en) Rotary compressor and vapor compression refrigeration cycle apparatus
JP2007092534A (en) Two-cylinder type rotary compressor and refrigeration cycle device
JP5703013B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
JP2006207381A (en) Hermetic compressor and refrigeration cycle device
WO2006126399A1 (en) Hermetic compressor and refrigeration cycle device
WO2014155802A1 (en) Multiple cylinder rotary compressor and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4663978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees