JP4660998B2 - Bonding inspection device - Google Patents

Bonding inspection device Download PDF

Info

Publication number
JP4660998B2
JP4660998B2 JP2001232541A JP2001232541A JP4660998B2 JP 4660998 B2 JP4660998 B2 JP 4660998B2 JP 2001232541 A JP2001232541 A JP 2001232541A JP 2001232541 A JP2001232541 A JP 2001232541A JP 4660998 B2 JP4660998 B2 JP 4660998B2
Authority
JP
Japan
Prior art keywords
brightness
unit pixel
defect
determination range
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001232541A
Other languages
Japanese (ja)
Other versions
JP2003042975A (en
Inventor
陽一郎 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001232541A priority Critical patent/JP4660998B2/en
Publication of JP2003042975A publication Critical patent/JP2003042975A/en
Application granted granted Critical
Publication of JP4660998B2 publication Critical patent/JP4660998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、接合検査装置に関し、詳しくは、基板上に部品が接合された接合品の接合部分の内部欠陥を、該接合部にX線を照射して得られる透過画像を用いて検査する接合検査装置に関する。
【0002】
【従来の技術】
従来、この種の接合検査装置としては、例えば、基板上に電子部品がはんだ接合された接合品にX線を照射して得られた透過画像を用いて気泡(ボイド)などの接合欠陥の有無を判定するものが提案されている(例えば、特開平5−172772号公報や特開平6−117828号公報)。この装置では、接合品にX線を照射して得られた透過画像を2値化処理して、暗画素(欠陥画素)の計数から暗部(欠陥部分)の面積を算出すると共に暗部の面積と判定基準となる基準面積との大小比較により接合欠陥の有無を判定している。
【0003】
【発明が解決しようとする課題】
しかしながら、こうした装置では、X線照射の強度分布は考慮されていない。
即ち、X線照射の強度分布が生じると、本来欠陥部分ではないにも拘わらず、2値化処理により暗部(欠陥画素)と認識されてしまい、誤判定がなされる場合がある。
【0004】
また、こうした装置を用いて基板上に複数の部品が積層構造として接合されて2層以上が重なり合うような接合層を有する接合品の接合欠陥の有無を検査する場合には、複数の接合層が重なった状態の透過画像が得られることになり、接合部分の欠陥を判定することができなくなってしまう。
【0005】
本発明の接合検査装置は、より正確に接合欠陥の検査を行なうことを目的の一つとする。また、本発明の接合検査装置は、X線照射の強度分布による影響を除去してより正確に接合欠陥の検査を行なうことを目的の一つとする。また、本発明の接合検査装置は、積層構造の接合品のX線透過画像における2層以上の接合層の重なりによる影響を除去してより正確に接合欠陥の検査を行なうことを目的の一つとする。
【0006】
【課題を解決するための手段およびその作用・効果】
本発明の接合検査装置およびその方法は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0009】
本発明の第1の接合検査装置は、基板上に複数の部品が接合されて2層以上の接合層が形成された接合品の接合部分の内部欠陥を、該接合品にX線を照射して得られる透過画像を用いて検査する接合検査装置であって、前記透過画像中の判定範囲によって隔てられた所定の2点の明度を検出し、該検出した明度と該所定の2点間の距離とに基づいて該所定の2点を結ぶラインの方向のX線照射強度分布を演算する強度分布演算手段と、該演算の結果に基づいて前記判定範囲内の各単位画素の明度を補正する明度補正手段と、該補正後の判定範囲内の各単位画素における予め設定された前記2層以上の接合層が重なる重層領域の輪郭部位での隣接画素間の明度差を算出すると共に該算出された明度差を打ち消す方向に該重層領域内の各単位画素を補正する重層領域補正手段と、該補正後の判定範囲内の各単位画素の明度が所定の閾値を超えるときに、該閾値を超える単位画素を欠陥画素として設定する欠陥画素設定手段と、該設定された欠陥画素の面積に基づいて前記接合部分の欠陥の有無を判定する欠陥判定手段とを備える接合検査装置。
【0010】
この本発明の第1の接合検査装置では、強度分布演算手段が、透過画像中の判定範囲によって隔てられた所定の2点の明度を検出しこの検出した明度と所定の2点間の距離とに基づいて所定の2点を結ぶラインの方向のX線照射強度分布を演算し、明度補正手段が、この演算結果に基づいて判定範囲内の各単位画素の明度を補正する。そして、重層領域補正手段が、その補正後の判定範囲内の各単位画素における予め設定された2層以上の接合層が重なる重層領域の輪郭部位での隣接画素間の明度差を算出すると共にこの算出された明度差を打ち消す方向に重層領域内の各単位画素の明度を補正する。その後、欠陥画素設定手段が、補正後の判定範囲内の各単位画素の明度が所定の閾値を超えるときにこの閾値を超える単位画素を欠陥画素として設定し、欠陥判定手段が、設定された欠陥画素の面積に基づいて接合部分の欠陥の有無を判定する。これにより、複数の部品が接合されて2層以上の接合層が重なる領域を有する場合でも、X線照射の強度分布に起因する誤判定や接合層が重なる領域を有することに起因する誤判定を抑制することができ、より正確に接合部分の欠陥を検査することができる。ここで、「単位画素」は、1画素とすることもできるし、隣接する2画素や4画素などの複数の画素をまとめた画素とすることもできる。
【0011】
本発明の第の接合検査装置は、基板上に部品が接合された接合品の接合部分の内部欠陥を、該接合品にX線を照射して得られる透過画像を用いて検査する接合検査装置であって、前記透過画像中の判定範囲によって隔てられる所定の2点の明度を検出し、該検出した明度と該所定の2点間の距離とに基づいて該所定の2点を結ぶラインの方向のX線照射強度分布を演算する強度分布演算手段と、該演算の結果に基づいて前記判定範囲内の各単位画素の明度を補正する明度補正手段と、該補正後の前記判定範囲内の各単位画素の明度が所定の閾値を超えるときに、該閾値を超える単位画素を欠陥画素として設定する欠陥画素設定手段と、該設定された欠陥画素の面積に基づいて前記接合部分の欠陥の有無を判定する欠陥判定手段とを備えることを要旨とする。
【0012】
この本発明の第の接合検査装置では、強度分布演算手段が、透過画像中の判定範囲によって隔てられる所定の2点の明度を検出しこの検出した明度と所定の2点間の距離とに基づいて所定の2点を結ぶラインの方向のX線照射強度分布を演算し、明度補正手段が、この演算結果に基づいて判定範囲内の各単位画素の明度を補正する。そして、欠陥画素設定手段が、この補正後の判定範囲内の各単位画素の明度が所定の閾値を超えるときにこの閾値を超える単位画素を欠陥画素として設定し、欠陥判定手段が、この設定された欠陥画素の面積に基づいて接合部分の欠陥の有無を判定する。これにより、X線照射の強度分布に起因する誤判定を抑制することができ、より正確に接合部分の欠陥を検査することができる。
【0013】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である接合検査装置20の構成の概略を示す構成図である。実施例の接合検査装置20は、基板上に部品が接合された接合品10(例えば、基板上にトランジスタやダイオードなどの電子部品がはんだ接合された接合品)の接合部分の内部欠陥の検査を行なうための装置である。実施例の接合検査装置20は、図1に示すように、ワーク搬送機22により搬送されたワークとしての接合品10に対してX線を照射してX線透過画像を撮像するX線検査装置30と、X線検査装置30により撮像されたX線透過画像を解析して接合部分の欠陥の有無を判定すると共に装置全体をコントロールするコントローラ40と、X線透過画像や判定結果などを表示する表示装置42とを備える。
【0014】
X線検査装置30は、例えば、マイクロフォーカスX線検査装置として構成されており、その筐体32内には、接合品10に対してX線を照射するX線発生器34と、X線発生器34により照射され接合品10を透過したX線をシンチレータなどの蛍光体(図示せず)を介してX線透過画像として検出するCCDカメラ36が備えられている。筐体32には、ワーク搬送機22により搬送されたワーク(接合品10)を内部に搬入するためのシャッター38が設けられている。なお、X線検査装置30は、実施例では、はんだの透過画像を得るために、少なくとも2種類の波長分布を有するX線を照射して透過画像を撮像し、これら相互演算により接合品10におけるはんだ以外の成分を除去してはんだのみによる透過画像を抽出するものとした。
【0015】
コントローラ40は、図示しないがCPUを中心としたマイクロプロセッサとして構成されており、処理プログラムを記憶したROMと、一時的にデータを記憶するRAMと、入出力ポートとを備える。このコントローラ40には、各装置の動作を指令する操作盤44からの指令信号やCCDカメラ36により検出された画像信号などが入力ポートを介して入力されている。また、コントローラ40からは、X線発生器34やワーク搬送機22の動作を制御する制御信号や表示装置42へ表示信号などが出力ポートを介して出力されている。
【0016】
こうして構成された実施例の接合検査装置20の動作、特に、接合品10の接合部分の欠陥の有無を接合品10にX線を照射して得られる透過画像を用いて検査する際の動作について説明する。図2は、コントローラ40のCPUにより実行される接合検査処理ルーチンの一例を示すフローチャートである。
【0017】
この接合検査処理ルーチンが実行されると、コントローラ40のCPUは、まず、接合品10に対してX線を照射して(ステップS100)、CCDカメラ36から検出された画像信号に基づき接合品10の透過画像を取得する(ステップS102)。次に、取得した透過画像における接合欠陥の判定範囲を読み込む(ステップS104)。この判定範囲の読み込みは、例えば、作業者が表示装置42に表示されている透過画像を見ながら操作盤44を操作して、はんだ部分を囲うことにより設定された接合欠陥の判定範囲を読み込むことにより行なわれる。そして、設定された判定範囲の画像に含まれるノイズをメジアンフィルタ等のフィルタを用いて除去し(ステップS106)、ノイズ除去された透過画像の判定範囲内に存在する欠陥(ボイド)の輪郭を抽出する輪郭抽出処理を行なう(ステップS108)。
【0018】
この輪郭抽出処理では、透過画像の判定範囲内の各単位画素(1画素あるいは隣接の2画素や4画素などをまとめた画素群を単位画素として設定)毎に隣接画素との明度差を算出し、算出した明度差が所定の閾値以上であるときに、その単位画素を輪郭画素として抽出する処理である。ここで、所定の閾値は、欠陥(ボイド)の輪郭部位における隣接画素間の明度差とX線照射の強度分布に基づく隣接画素間の明度差とを識別する閾値である。これは、通常、欠陥(ボイド)の輪郭部位の隣接画素間の明度差は大きくなるが、X線照射の強度分布は比較的なだらかであり透過画像全域に亘って隣接画素間の明度差は小さくなることに基づいている。この閾値を超える単位画素を、輪郭画素として例えば最大明度に設定し、その他の単位画素を例えば値0に設定することにより、2つの明度に設定する。これにより、透過画像の判定範囲は、輪郭を示す明部とそれ以外の暗部とからなる2値化画像となる。こうした輪郭抽出処理を具体的に示す。例えば、単位画素の明度をf(x,y)((x,y)は判定範囲における位置座標を表わす)とし、その単位画素と隣接画素との明度差をg(x,y)とすると、明度差g(x,y)は、次式で表わすことができる。
【0019】
g(x,y)=|f(x,y)−f(x+1,y)| ・・・(1)
【0020】
このとき、閾値をArefとすると、明度差g(x,y)が閾値Arefを超える場合は、明度f(x,y)として最大値を設定し、明度差g(x,y)が閾値Aref以下の場合は、明度f(x,y)として値0を設定することにより、X線照射の強度分布の影響を除去しつつ欠陥部分の輪郭が抽出されることになる。
【0021】
こうして輪郭抽出が行なわれると、輪郭追跡により各輪郭画素を辿っていくことで、輪郭画素により囲まれる領域を特定し、この領域内の全ての単位画素を輪郭画素と同じ明度(実施例では、最大明度)に設定することにより、輪郭画素によって囲まれる領域の塗りつぶし行なう(ステップS110)。この塗りつぶしにより、輪郭画素によって囲まれる領域の全ての単位画素が欠陥画素として設定される。そして、塗りつぶされた領域の面積、即ち最大明度に設定されている単位画素の数を計測し、ステップS104により読み込まれた判定範囲の全単位画素数における欠陥画素数の割合(ボイド率)を算出して(ステップS112)、欠陥判定の処理を行なう(ステップS114)。この処理は、ボイド率が所定の閾値を超えているか否かを判定することにより接合欠陥の有無を判定する処理であり、この閾値は、要求される接合精度などに基づいて適切な値が設定される。なお、この欠陥判定では、ボイド率を算出することなく、欠陥画素数が予め設定された基準欠陥画素数を超える場合に接合欠陥と判定する方法を採用することもできる。
【0022】
こうして欠陥判定の処理が行なわれると、この判定結果を表示装置42に出力して(ステップS116)本ルーチンを終了する。これにより、作業者は、接合品10の接合部分に欠陥があるか否かを知ることができる。
【0023】
以上説明した実施例の接合検査装置20によれば、接合欠陥部分の輪郭とX線強度分布とを区別する閾値を用いることにより、X線照射の強度分布の影響を除去するから、接合部分の欠陥をより正確に検査することができる。
【0024】
次に、本発明の第2の実施例である接合検査装置120について説明する。第2実施例の接合検査装置120は、欠陥を検査する対象(接合品)が異なる点と、コントローラ140における処理が異なる点を除いて実施例の接合検査装置20と同一の構成をしている。したがって、実施例の接合検査装置20と同一部分については同じ符号を付しその説明を省略する。第2実施例の接合検査装置120では、複数の部品が接合されて2層以上の重なり合う接合層が形成された接合品の接合部分の内部欠陥、例えば、図3における接合品110の側面図(図3(a))および正面図(図3(b))に示すように、トランジスタやダイオードなどの素子112と、素子112の動作に基づき発生する熱を放出するための導電性の放熱板114と、素子112と放熱板14との間の絶縁を確保する絶縁基板116とをはんだにより接合された接合品110の第1の接合層118と第2の接合層119の接合欠陥の有無を検査する場合を考える。図4は、コントローラ140のCPUにより実行される接合検査処理ルーチンの一例を示すフローチャートである。以下、このルーチンにおける処理内容を図5の透過画像の処理過程を参照しながら説明する。
【0025】
コントローラ140のCPUは、まず、図2のルーチンのステップS100〜S104と同様の処理、即ち、接合品110にX線を照射して透過画像を取得し透過画像の判定範囲(図5(a)の第2はんだ層119の範囲)を設定する(ステップS200〜S204、図5(a))。次に、X線照射の強度分布を補正する処理を行なう(ステップS206、図5(b))。この強度分布を補正する処理は、X線照射の強度分布が線形的な分布であるとみなせる(X線照射強度がある方向で線形的に変化するとみなせる)場合を仮定すると、この線形的な分布が透過画像の各単位画素の明度に与える影響を除去する処理である。具体的には、まず、判定範囲によって隔てられる2つの点A,Bを設定し、点A,B各々の明度を検出する。そして、点A,Bの明度差を算出し、点A,B間の距離(単位画素数)と点A,Bの明度差との比に基づいてX線強度分布の傾きを求め、この傾きに基づいて算出された点A,Bのライン方向のX線強度分布を実際に取得された透過画像の点A,Bのライン方向の単位画素列の明度から減算することにより、X線照射強度分布に基づく影響を除去できる。ここで、点A,Bの位置は、点A,Bを結ぶラインの方向にX線強度分布が生じる方向となるようにX線照射方向や接合品110の位置などからの予測あるいは実験に基づいて予め設定しておく。また、点A,Bは、透過画像内の接合部分の領域外(実施例では、透過画像内の図5(a)の第2はんだ層119の領域外)となるように設定する。これは、接合部分(はんだ層)のみを抽出した透過画像では、接合部分の領域外の画素の明度は本来全て同じ値となるはずであるから、X線の強度分布による影響のみを考慮に入れればよいからである。
【0026】
図6は、点Aから点Bまでの判定範囲内の単位画素列の明度とX線強度分布の影響との関係を示す図である。図6に示すように、X線検査装置30により実際に撮像された透過画像の各単位画素列の明度cは、主に、X線照射強度分布の影響のない本来の単位画素列の明度aと、X線照射強度分布(明度)bとを加算したもの(a+b)として表わすことができる。このとき点A,Bの明度も検出されているから、X線強度分布として明度が線形的に変化する場合を考えると、X線強度分布bの傾きを点A,B間に存在する単位画素の数に対する点A,B間の明度差の割合として表現できる。したがって、実際に撮像された単位画素列の明度cから傾きに基づき算出されるX線強度分布bを減算(c−b)することにより、X線強度分布の影響が除去された単位画素列の明度aを得ることができる。このようにして、透過画像の判定範囲内の各単位画素列毎に上記処理を行なうことにより、透過画像の判定範囲全体においてX線強度分布の影響が除去された画像を得ることができるのである。なお、X線強度分布は判定範囲内の各単位画素列毎に算出するものとしてもよく、ある単位画素列において算出されたX線強度分布を他の単位画素列に適用するものとしても構わない。
【0027】
こうしてX線強度分布による影響が除去されると、次に、素子影部の補正、即ち複数の接合層が重なる重層領域(実施例では、第2はんだ層119上に位置する第1はんだ層118の領域)を補正する処理を行なう(ステップS208、図5(c))。この処理は、複数の接合層が重なる重層領域では、その領域内の各単位画素の明度が暗画素を示す値として検出されるから、これを除去する処理である。この補正処理は、具体的にはパターンマッチング処理により行なう。図7は、透過画像の判定範囲内の単位画素列の明度と重層領域の影響との関係を示す図である。図7に示すように、X線強度分布が除去された単位画素列の明度aにおいて、重層領域を予め設定しておき、この領域の輪郭部位(図7の点C、D)における隣接画素間の明度差を求め、この明度差を打ち消す補正係数を算出する。そして、重層領域内の全ての単位画素の明度に補正係数を加える(図7の破線部分)ことで、重層領域内の各単位画素の明度を周囲の画素の明度に合わせることができ、重層領域の影響を除去することができる。
【0028】
その後、メジアンフィルタ等のフィルタを用いて透過画像の判定範囲内に含まれるノイズの除去を行ない(ステップS210)、透過画像の判定範囲内の各単位画素毎に明画素と暗画素とを分ける2値化処理を行なう(ステップS212)。この処理は、単位画素の明度が所定の閾値を超えるときに欠陥画素として例えば最大明度に設定し、それ以外の単位画素を正常画素として例えば値0に設定する処理である。これにより、欠陥画素と正常画素とを区別した2値化画像を得ることができる。2値化処理を行なうと、欠陥画素の数(最大明度の画素数)を計測し、判定範囲の全単位画素数における欠陥画素数の割合(ボイド率)を算出して(ステップS214)、欠陥判定の処理を行なう(ステップS216)。この処理は、ボイド率が所定の閾値を超えているか否かを判定することにより接合欠陥の有無を判定する処理であり、この閾値の具体的な値は、要求される接合精度などに基づいて適切な値が設定される。なお、この欠陥判定では、ボイド率を算出することなく、欠陥画素数が予め設定された基準欠陥画素数を超える場合に接合欠陥と判定する方法を採用することもできる。
【0029】
こうして欠陥判定の処理が行なわれると、この判定結果を表示装置42に出力して(ステップS218)本ルーチンを終了する。これにより、作業者は、接合品110の接合部分に欠陥があるか否かを知ることができる。
【0030】
以上説明した第2実施例の接合検査装置20によれば、接合品110として複数の部品が接合された2層以上の接合層が重なる重層領域が形成された場合であっても、X線照射の強度分布と重量領域の影響を除去するから、より正確な接合部分の欠陥検査を行なうことができる。
【0031】
第2実施例の接合検査装置120では、接合品110として複数の部品が接合された2層以上の接合層が重なる重層領域が形成された場合を考えたが、重層領域が形成されていない1層の接合層の接合品にも適用可能である。このとき、X線照射強度分布による影響のみを考慮すればよいから、重層領域の補正処理は不要である。
【0032】
第1および第2実施例の接合検査装置20,120では、はんだの接合欠陥を検査するものとしたが、はんだ以外の他の接合材料(例えば、導電ペースト)により接合された接合品の接合欠陥の検査にも適用可能である。
【0033】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明のこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例である接合検査装置20の構成の概略を示す構成図である。
【図2】 実施例の接合検査装置20のコントローラ40により実行される接合検査処理ルーチンの一例を示すフローチャートである。
【図3】 接合品110を例示する図である。
【図4】 実施例の接合検査装置120のコントローラ140により実行される接合検査処理ルーチンの一例を示すフローチャートである。
【図5】 接合品の透過画像の処理の過程を説明する説明図である。
【図6】 透過画像の判定範囲内の単位画素列の明度とX線強度分布との関係を示す図である。
【図7】 透過画像の判定範囲内の単位画素列の明度と重層領域の影響との関係を示す図である。
【符号の説明】
10 接合品、20 接合検査装置、22 ワーク搬送機、30 X線検査装置、32 筐体、34 X線発生器、36 CCDカメラ、40 コントローラ、42 表示装置、44 操作盤、110 接合品、112 素子、114 放熱板、116 絶縁基板、118 第1はんだ層、119 第2はんだ層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonding inspection apparatus, and more specifically, bonding for inspecting an internal defect of a bonded portion of a bonded product in which components are bonded on a substrate, using a transmission image obtained by irradiating the bonded portion with X-rays. It relates to an inspection device.
[0002]
[Prior art]
Conventionally, as this type of bonding inspection apparatus, for example, the presence or absence of bonding defects such as air bubbles (voids) using a transmission image obtained by irradiating X-rays to a bonded product in which an electronic component is soldered on a substrate Have been proposed (for example, Japanese Patent Application Laid-Open Nos. Hei 5-172727 and Hei 6-117828). In this apparatus, the transmission image obtained by irradiating the bonded product with X-rays is binarized to calculate the area of the dark part (defective part) from the count of dark pixels (defective pixels) and the area of the dark part. The presence or absence of a bonding defect is determined by comparing the size with a reference area serving as a determination criterion.
[0003]
[Problems to be solved by the invention]
However, in such an apparatus, the intensity distribution of X-ray irradiation is not considered.
That is, when the intensity distribution of X-ray irradiation occurs, it is recognized as a dark part (defective pixel) by the binarization process even though it is not originally a defective part, and an erroneous determination may be made.
[0004]
In addition, when such a device is used to inspect the presence or absence of a bonding defect of a bonded product having a bonding layer in which a plurality of components are bonded as a laminated structure on a substrate and two or more layers overlap, As a result, overlapping transmission images are obtained, and it becomes impossible to determine the defect of the joint portion.
[0005]
One object of the bonding inspection apparatus of the present invention is to more accurately inspect a bonding defect. Another object of the bonding inspection apparatus of the present invention is to more accurately inspect bonding defects by removing the influence of the intensity distribution of X-ray irradiation. Another object of the bonding inspection apparatus of the present invention is to more accurately inspect a bonding defect by removing the influence of overlapping of two or more bonding layers in an X-ray transmission image of a bonded product having a laminated structure. To do.
[0006]
[Means for solving the problems and their functions and effects]
In order to achieve at least a part of the above object, the bonding inspection apparatus and method of the present invention employ the following means.
[0009]
The first bonding inspection apparatus of the present invention irradiates an X-ray on an internal defect of a bonded portion of a bonded product in which a plurality of components are bonded on a substrate to form two or more bonding layers. A joint inspection apparatus for inspecting using a transmission image obtained by detecting brightness of two predetermined points separated by a determination range in the transmission image, and detecting the brightness between the detected brightness and the two predetermined points Intensity distribution calculating means for calculating the X-ray irradiation intensity distribution in the direction of the line connecting the two predetermined points based on the distance, and correcting the brightness of each unit pixel within the determination range based on the calculation result The lightness correction means calculates the lightness difference between adjacent pixels in the contour region of the overlapping region where the two or more layers of the joint layers previously set in each unit pixel within the corrected determination range overlap. Each unit pixel in the multi-layer area in the direction to cancel the brightness difference Overlapping region correction means for correcting, defective pixel setting means for setting a unit pixel exceeding the threshold value as a defective pixel when the brightness of each unit pixel within the corrected determination range exceeds a predetermined threshold value, and the setting And a defect determination means for determining the presence or absence of a defect in the bonded portion based on the area of the defective pixel.
[0010]
In the first joining inspection apparatus of the present invention, the intensity distribution calculating means detects the brightness of two predetermined points separated by the determination range in the transmission image, and the detected brightness and the distance between the two predetermined points Based on the above, the X-ray irradiation intensity distribution in the direction of the line connecting the two predetermined points is calculated, and the brightness correction means corrects the brightness of each unit pixel within the determination range based on the calculation result. Then, the multi-layer region correction means calculates the brightness difference between adjacent pixels at the contour portion of the multi-layer region where two or more preset joining layers in each unit pixel within the corrected determination range overlap. The brightness of each unit pixel in the multi-layer area is corrected in a direction to cancel the calculated brightness difference. Thereafter, when the brightness of each unit pixel within the corrected determination range exceeds a predetermined threshold, the defective pixel setting unit sets a unit pixel that exceeds this threshold as a defective pixel, and the defect determination unit sets the set defect. Based on the area of the pixel, the presence / absence of a defect in the joint portion is determined. As a result, even when a plurality of components are bonded and have a region where two or more bonding layers overlap, erroneous determination due to the intensity distribution of X-ray irradiation and erroneous determination due to having a region where bonding layers overlap. It is possible to suppress the defect of the joint portion more accurately. Here, the “unit pixel” may be one pixel, or may be a pixel in which a plurality of adjacent pixels such as two pixels or four pixels are combined.
[0011]
The second bonding inspection apparatus of the present invention is a bonding inspection for inspecting an internal defect in a bonded portion of a bonded product in which components are bonded on a substrate, using a transmission image obtained by irradiating the bonded product with X-rays. A line that detects brightness at two predetermined points separated by a determination range in the transmission image and connects the two predetermined points based on the detected brightness and a distance between the two predetermined points. Intensity distribution calculating means for calculating the X-ray irradiation intensity distribution in the direction, brightness correction means for correcting the brightness of each unit pixel in the determination range based on the result of the calculation, and within the determination range after the correction When the brightness of each unit pixel exceeds a predetermined threshold value, defective pixel setting means for setting a unit pixel exceeding the threshold value as a defective pixel, and the defect of the joint portion based on the set area of the defective pixel Defect determination means for determining presence or absence The the gist.
[0012]
In the second joining inspection apparatus of the present invention, the intensity distribution calculation means detects the brightness of two predetermined points separated by the determination range in the transmission image, and uses the detected brightness and the distance between the two predetermined points. Based on this, the X-ray irradiation intensity distribution in the direction of the line connecting the two predetermined points is calculated, and the brightness correction means corrects the brightness of each unit pixel within the determination range based on the calculation result. Then, the defective pixel setting means sets the unit pixel exceeding this threshold as a defective pixel when the brightness of each unit pixel within the corrected determination range exceeds a predetermined threshold, and the defect determination means is set to this The presence / absence of a defect in the joint portion is determined based on the area of the defective pixel. Thereby, the erroneous determination resulting from the intensity distribution of X-ray irradiation can be suppressed, and the defect in the joint portion can be inspected more accurately.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram showing an outline of the configuration of a bonding inspection apparatus 20 according to an embodiment of the present invention. The joint inspection apparatus 20 according to the embodiment inspects internal defects in a joint portion of a joint product 10 in which components are joined on a substrate (for example, a joint product in which electronic components such as transistors and diodes are soldered on the substrate). It is a device for performing. As shown in FIG. 1, the bonding inspection apparatus 20 of the embodiment irradiates an X-ray transmission image by irradiating a bonded product 10 as a work conveyed by a work conveying machine 22 with X-rays. 30 and analyzing the X-ray transmission image captured by the X-ray inspection apparatus 30 to determine the presence / absence of a defect in the joint portion and to display the X-ray transmission image and the determination result, etc. And a display device 42.
[0014]
The X-ray inspection apparatus 30 is configured as, for example, a microfocus X-ray inspection apparatus, and an X-ray generator 34 that irradiates the bonded product 10 with X-rays and an X-ray generation in the housing 32 thereof. A CCD camera 36 is provided that detects X-rays irradiated by the instrument 34 and transmitted through the bonded article 10 as an X-ray transmission image through a phosphor (not shown) such as a scintillator. The housing 32 is provided with a shutter 38 for carrying the work (joined product 10) conveyed by the work conveyance machine 22 into the inside. In the embodiment, the X-ray inspection apparatus 30 irradiates with X-rays having at least two types of wavelength distributions to obtain a transmission image in order to obtain a transmission image of the solder. Components other than solder were removed, and a transmission image using only solder was extracted.
[0015]
Although not shown, the controller 40 is configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, and an input / output port. A command signal from an operation panel 44 that commands the operation of each device, an image signal detected by the CCD camera 36, and the like are input to the controller 40 via an input port. Further, the controller 40 outputs a control signal for controlling the operation of the X-ray generator 34 and the workpiece transfer machine 22 and a display signal to the display device 42 via an output port.
[0016]
The operation of the bonding inspection apparatus 20 of the embodiment thus configured, particularly the operation when inspecting the bonded product 10 for the presence or absence of defects using a transmission image obtained by irradiating the bonded product 10 with X-rays. explain. FIG. 2 is a flowchart illustrating an example of a bonding inspection processing routine executed by the CPU of the controller 40.
[0017]
When this bonding inspection processing routine is executed, the CPU of the controller 40 first irradiates the bonded product 10 with X-rays (step S100), and the bonded product 10 is based on the image signal detected from the CCD camera 36. Is acquired (step S102). Next, the determination range of the bonding defect in the acquired transmission image is read (step S104). The determination range is read by, for example, reading the determination range of the joint defect set by surrounding the solder portion by operating the operation panel 44 while viewing the transmission image displayed on the display device 42. It is done by. Then, noise included in the set determination range image is removed using a filter such as a median filter (step S106), and the outline of a defect (void) existing in the determination range of the transmission image from which noise is removed is extracted. The contour extraction process is performed (step S108).
[0018]
In this contour extraction process, a brightness difference with an adjacent pixel is calculated for each unit pixel (a pixel group in which one pixel or two adjacent pixels or four pixels are grouped together is set as a unit pixel) within the determination range of the transparent image. When the calculated brightness difference is equal to or greater than a predetermined threshold, the unit pixel is extracted as a contour pixel. Here, the predetermined threshold value is a threshold value for discriminating a brightness difference between adjacent pixels in a contour portion of a defect (void) and a brightness difference between adjacent pixels based on the intensity distribution of X-ray irradiation. In general, the brightness difference between adjacent pixels in the outline of a defect (void) is large, but the intensity distribution of X-ray irradiation is relatively gentle, and the brightness difference between adjacent pixels is small over the entire transmission image. Is based on becoming. A unit pixel exceeding this threshold is set to, for example, the maximum brightness as a contour pixel, and the other unit pixels are set to, for example, a value of 0, thereby setting two brightnesses. As a result, the determination range of the transmission image is a binarized image including a bright part indicating the outline and a dark part other than the bright part. Such contour extraction processing is specifically shown. For example, if the brightness of a unit pixel is f (x, y) ((x, y) represents a position coordinate in the determination range) and the brightness difference between the unit pixel and an adjacent pixel is g (x, y), The brightness difference g (x, y) can be expressed by the following equation.
[0019]
g (x, y) = | f (x, y) −f (x + 1, y) | (1)
[0020]
At this time, when the threshold value is Aref, when the brightness difference g (x, y) exceeds the threshold value Aref, the maximum value is set as the brightness f (x, y), and the brightness difference g (x, y) is set to the threshold value Aref. In the following cases, the value 0 is set as the brightness f (x, y), so that the outline of the defective portion is extracted while removing the influence of the intensity distribution of the X-ray irradiation.
[0021]
When contour extraction is performed in this way, by tracing each contour pixel by contour tracking, the region surrounded by the contour pixel is specified, and all unit pixels in this region have the same brightness (in the embodiment, By setting the maximum brightness, the area surrounded by the contour pixels is filled (step S110). By this filling, all the unit pixels in the area surrounded by the contour pixels are set as defective pixels. Then, the area of the filled region, that is, the number of unit pixels set to the maximum brightness is measured, and the ratio (void ratio) of the number of defective pixels to the total number of unit pixels in the determination range read in step S104 is calculated. Then (step S112), defect determination processing is performed (step S114). This process is a process for determining the presence or absence of a bonding defect by determining whether or not the void ratio exceeds a predetermined threshold, and this threshold is set to an appropriate value based on the required bonding accuracy. Is done. In this defect determination, a method of determining a bonding defect when the number of defective pixels exceeds a preset reference number of defective pixels can be adopted without calculating the void ratio.
[0022]
When the defect determination process is thus performed, the determination result is output to the display device 42 (step S116), and this routine is terminated. Thereby, the operator can know whether or not there is a defect in the joint portion of the joint article 10.
[0023]
According to the bonding inspection apparatus 20 of the embodiment described above, the influence of the intensity distribution of the X-ray irradiation is removed by using a threshold value that distinguishes the outline of the bonding defect portion and the X-ray intensity distribution. Defects can be inspected more accurately.
[0024]
Next, a bonding inspection apparatus 120 that is a second embodiment of the present invention will be described. The bonding inspection apparatus 120 of the second embodiment has the same configuration as the bonding inspection apparatus 20 of the embodiment except that the object (bonded product) to be inspected for defects is different and the processing in the controller 140 is different. . Accordingly, the same parts as those of the bonding inspection apparatus 20 of the embodiment are denoted by the same reference numerals and the description thereof is omitted. In the bonding inspection apparatus 120 according to the second embodiment, an internal defect of a bonded portion of a bonded product in which a plurality of components are bonded and two or more overlapping bonding layers are formed, for example, a side view of the bonded product 110 in FIG. 3A) and a front view (FIG. 3B), an element 112 such as a transistor or a diode, and a conductive heat radiating plate 114 for releasing heat generated based on the operation of the element 112. And the presence or absence of a bonding defect between the first bonding layer 118 and the second bonding layer 119 of the bonded product 110 in which the insulating substrate 116 that secures insulation between the element 112 and the heat sink 14 is bonded by solder. Consider the case. FIG. 4 is a flowchart showing an example of a bonding inspection processing routine executed by the CPU of the controller 140. The processing contents in this routine will be described below with reference to the transparent image processing process of FIG.
[0025]
First, the CPU of the controller 140 performs the same processing as steps S100 to S104 of the routine of FIG. 2, that is, the X-ray is irradiated to the bonded product 110 to acquire a transmission image, and a transmission image determination range (FIG. 5A). (The range of the second solder layer 119) is set (steps S200 to S204, FIG. 5A). Next, processing for correcting the intensity distribution of X-ray irradiation is performed (step S206, FIG. 5B). The processing for correcting the intensity distribution assumes that the X-ray irradiation intensity distribution can be regarded as a linear distribution (it can be assumed that the X-ray irradiation intensity changes linearly in a certain direction). Is a process for removing the influence of the unit image on the brightness of the transmission image. Specifically, first, two points A and B separated by the determination range are set, and the brightness of each of the points A and B is detected. Then, the brightness difference between the points A and B is calculated, and the slope of the X-ray intensity distribution is obtained based on the ratio between the distance between the points A and B (number of unit pixels) and the brightness difference between the points A and B. The X-ray irradiation intensity is obtained by subtracting the X-ray intensity distribution in the line direction of points A and B calculated on the basis of the brightness of the unit pixel column in the line direction of points A and B in the actually acquired transmission image. The influence based on distribution can be removed. Here, the positions of the points A and B are based on predictions or experiments based on the X-ray irradiation direction and the position of the joint 110 so that the X-ray intensity distribution is generated in the direction of the line connecting the points A and B. Set in advance. Further, the points A and B are set so as to be outside the region of the joining portion in the transmission image (in the embodiment, outside the region of the second solder layer 119 in FIG. 5A in the transmission image). This is because in the transmission image in which only the joint portion (solder layer) is extracted, the brightness of the pixels outside the joint portion region should all be the same value, so only the influence of the X-ray intensity distribution is taken into account. It is because it is good.
[0026]
FIG. 6 is a diagram showing the relationship between the brightness of the unit pixel column in the determination range from point A to point B and the influence of the X-ray intensity distribution. As shown in FIG. 6, the lightness c of each unit pixel column of the transmission image actually captured by the X-ray inspection apparatus 30 is mainly the lightness a of the original unit pixel column that is not affected by the X-ray irradiation intensity distribution. And X-ray irradiation intensity distribution (brightness) b can be expressed as (a + b). Since the brightness of the points A and B is also detected at this time, considering the case where the brightness changes linearly as the X-ray intensity distribution, the unit pixel existing between the points A and B indicates the slope of the X-ray intensity distribution b. It can be expressed as the ratio of the brightness difference between points A and B to the number of. Therefore, by subtracting (c−b) the X-ray intensity distribution b calculated based on the inclination from the lightness c of the actually captured unit pixel column, the influence of the X-ray intensity distribution is removed. The brightness a can be obtained. In this way, by performing the above processing for each unit pixel column in the transmission image determination range, it is possible to obtain an image in which the influence of the X-ray intensity distribution is removed in the entire transmission image determination range. . Note that the X-ray intensity distribution may be calculated for each unit pixel column in the determination range, or the X-ray intensity distribution calculated in a certain unit pixel column may be applied to another unit pixel column. .
[0027]
When the influence of the X-ray intensity distribution is removed in this way, the correction of the element shadow portion, that is, the overlapping region where the plurality of bonding layers overlap (in the embodiment, the first solder layer 118 positioned on the second solder layer 119) is performed. Is corrected (step S208, FIG. 5C). This process is a process of removing the brightness of each unit pixel in the overlapping area where a plurality of bonding layers overlap as a value indicating a dark pixel. Specifically, this correction processing is performed by pattern matching processing. FIG. 7 is a diagram illustrating the relationship between the brightness of the unit pixel column within the determination range of the transparent image and the influence of the multi-layer area. As shown in FIG. 7, a multi-layer region is set in advance at the brightness a of the unit pixel column from which the X-ray intensity distribution has been removed, and adjacent pixels in the contour part (points C and D in FIG. 7) of this region. Is calculated, and a correction coefficient for canceling the brightness difference is calculated. Then, by adding a correction coefficient to the brightness of all unit pixels in the multi-layer area (the broken line portion in FIG. 7), the brightness of each unit pixel in the multi-layer area can be matched with the brightness of surrounding pixels. Can be removed.
[0028]
Thereafter, noise included in the transmission image determination range is removed using a filter such as a median filter (step S210), and the bright pixel and the dark pixel are divided for each unit pixel in the transmission image determination range. A value process is performed (step S212). This process is a process of setting, for example, the maximum brightness as a defective pixel when the brightness of the unit pixel exceeds a predetermined threshold, and setting the other unit pixels as, for example, a value 0, for example, as normal pixels. Thereby, the binarized image which distinguished the defective pixel and the normal pixel can be obtained. When the binarization process is performed, the number of defective pixels (the number of pixels having the maximum brightness) is measured, and the ratio (void ratio) of the number of defective pixels to the total number of unit pixels in the determination range is calculated (step S214). A determination process is performed (step S216). This process is a process for determining the presence or absence of a bonding defect by determining whether or not the void ratio exceeds a predetermined threshold, and the specific value of this threshold is based on the required bonding accuracy and the like. An appropriate value is set. In this defect determination, a method of determining a bonding defect when the number of defective pixels exceeds a preset reference number of defective pixels can be adopted without calculating the void ratio.
[0029]
When the defect determination process is thus performed, the determination result is output to the display device 42 (step S218), and this routine is terminated. Thereby, the operator can know whether or not there is a defect in the bonded portion of the bonded product 110.
[0030]
According to the bonding inspection apparatus 20 of the second embodiment described above, X-ray irradiation is performed even when a multi-layered region where two or more bonding layers in which a plurality of components are bonded is formed as the bonded product 110. Since the influence of the strength distribution and the weight region is removed, the defect inspection of the joint portion can be performed more accurately.
[0031]
In the bonding inspection apparatus 120 according to the second embodiment, a case where a multilayer region where two or more layers in which a plurality of components are bonded is formed as the bonded product 110 is considered, but the multilayer region is not formed 1 The present invention can also be applied to a joined product of a joining layer. At this time, since only the influence of the X-ray irradiation intensity distribution has to be taken into consideration, the correction process for the multi-layer region is unnecessary.
[0032]
In the joint inspection apparatuses 20 and 120 of the first and second embodiments, solder joint defects are inspected, but joint defects of joints joined by joint materials other than solder (for example, conductive paste). It can also be applied to other inspections.
[0033]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of a configuration of a bonding inspection apparatus 20 according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating an example of a bonding inspection processing routine executed by a controller 40 of the bonding inspection apparatus 20 according to the embodiment.
FIG. 3 is a diagram illustrating a bonded product 110;
FIG. 4 is a flowchart illustrating an example of a bonding inspection processing routine executed by a controller 140 of the bonding inspection apparatus 120 according to the embodiment.
FIG. 5 is an explanatory diagram illustrating a process of processing a transmission image of a bonded product.
FIG. 6 is a diagram showing a relationship between brightness of a unit pixel column within a transmission image determination range and an X-ray intensity distribution;
FIG. 7 is a diagram illustrating a relationship between the brightness of a unit pixel row within a transmission image determination range and the influence of a multi-layer region.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Joined goods, 20 Joined inspection apparatus, 22 Work conveyance machine, 30 X-ray inspection apparatus, 32 Case, 34 X-ray generator, 36 CCD camera, 40 Controller, 42 Display apparatus, 44 Operation panel, 110 Joined article, 112 Element, 114 heat sink, 116 insulating substrate, 118 first solder layer, 119 second solder layer.

Claims (2)

基板上に複数の部品が接合されて2層以上の接合層が形成された接合品の接合部分の内部欠陥を、該接合品にX線を照射して得られる透過画像を用いて検査する接合検査装置であって、
前記透過画像中の判定範囲によって隔てられた所定の2点の明度を検出し、該検出した明度と該所定の2点間の距離とに基づいて該所定の2点を結ぶラインの方向のX線照射強度分布を演算する強度分布演算手段と、
該演算の結果に基づいて前記判定範囲内の各単位画素の明度を補正する明度補正手段と、
該補正後の判定範囲内の各単位画素における予め設定された前記2層以上の接合層が重なる重層領域の輪郭部位での隣接画素間の明度差を算出すると共に該算出された明度差を打ち消す方向に該重層領域内の各単位画素を補正する重層領域補正手段と、
該補正後の判定範囲内の各単位画素の明度が所定の閾値を超えるときに、該閾値を超える単位画素を欠陥画素として設定する欠陥画素設定手段と、
該設定された欠陥画素の面積に基づいて前記接合部分の欠陥の有無を判定する欠陥判定手段と、
を備える接合検査装置。
Bonding in which a plurality of components are bonded on a substrate to inspect internal defects in a bonded portion of a bonded product formed of two or more layers using a transmission image obtained by irradiating the bonded product with X-rays An inspection device,
X of the direction of the line connecting the two predetermined points is detected based on the detected lightness and the distance between the two predetermined points, by detecting the brightness of the two predetermined points separated by the determination range in the transmission image. Intensity distribution calculating means for calculating the irradiation intensity distribution of the beam,
Brightness correction means for correcting the brightness of each unit pixel within the determination range based on the result of the calculation;
Calculate the brightness difference between adjacent pixels at the contour region of the overlap region where the two or more layers of the joint layers set in advance in each unit pixel within the corrected determination range, and cancel the calculated brightness difference Multi-layer region correction means for correcting each unit pixel in the multi-layer region in the direction;
A defective pixel setting means for setting a unit pixel exceeding the threshold as a defective pixel when the brightness of each unit pixel within the determination range after the correction exceeds a predetermined threshold;
Defect determining means for determining the presence or absence of a defect in the joint portion based on the set area of the defective pixel;
A joining inspection apparatus comprising:
基板上に部品が接合された接合品の接合部分の内部欠陥を、該接合品にX線を照射して得られる透過画像を用いて検査する接合検査装置であって、
前記透過画像中の判定範囲によって隔てられる所定の2点の明度を検出し、該検出した明度と該所定の2点間の距離とに基づいて該所定の2点を結ぶラインの方向のX線照射強度分布を演算する強度分布演算手段と、
該演算の結果に基づいて前記判定範囲内の各単位画素の明度を補正する明度補正手段と、
該補正後の前記判定範囲内の各単位画素の明度が所定の閾値を超えるときに、該閾値を超える単位画素を欠陥画素として設定する欠陥画素設定手段と、
該設定された欠陥画素の面積に基づいて前記接合部分の欠陥の有無を判定する欠陥判定手段と、
を備える接合検査装置。
A bonding inspection apparatus for inspecting an internal defect of a bonded portion of a bonded product in which components are bonded on a substrate using a transmission image obtained by irradiating the bonded product with X-rays,
X-rays in the direction of a line connecting the two predetermined points based on the detected lightness and the distance between the two predetermined points are detected based on the detected lightness and the distance between the two predetermined points. Intensity distribution calculating means for calculating the irradiation intensity distribution;
Brightness correction means for correcting the brightness of each unit pixel within the determination range based on the result of the calculation;
Defective pixel setting means for setting a unit pixel exceeding the threshold as a defective pixel when the brightness of each unit pixel within the determination range after the correction exceeds a predetermined threshold;
Defect determining means for determining the presence or absence of a defect in the joint portion based on the set area of the defective pixel;
A joining inspection apparatus comprising:
JP2001232541A 2001-07-31 2001-07-31 Bonding inspection device Expired - Fee Related JP4660998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232541A JP4660998B2 (en) 2001-07-31 2001-07-31 Bonding inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232541A JP4660998B2 (en) 2001-07-31 2001-07-31 Bonding inspection device

Publications (2)

Publication Number Publication Date
JP2003042975A JP2003042975A (en) 2003-02-13
JP4660998B2 true JP4660998B2 (en) 2011-03-30

Family

ID=19064451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232541A Expired - Fee Related JP4660998B2 (en) 2001-07-31 2001-07-31 Bonding inspection device

Country Status (1)

Country Link
JP (1) JP4660998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896746A (en) * 2018-07-06 2018-11-27 中南大学 Non-fragment orbit self-compacting concrete filling layer defects quantitative testing device and method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943099B2 (en) * 2003-06-09 2007-07-11 アンリツ産機システム株式会社 X-ray inspection equipment
JP2005003480A (en) * 2003-06-11 2005-01-06 Ishida Co Ltd X-ray examination apparatus
JP5147547B2 (en) * 2008-05-30 2013-02-20 名古屋電機工業株式会社 Reference position specifying method and reference position specifying apparatus for solder joint
JP5417804B2 (en) * 2008-11-06 2014-02-19 株式会社ジェイテクト Bubble rate calculation method and bubble rate calculation device
JP5192997B2 (en) * 2008-11-25 2013-05-08 パナソニック株式会社 X-ray inspection equipment
JP5408377B2 (en) * 2013-04-01 2014-02-05 株式会社ジェイテクト Bubble rate calculation method and bubble rate calculation device
JP5408376B2 (en) * 2013-04-01 2014-02-05 株式会社ジェイテクト Bubble rate calculation method and bubble rate calculation device
CN110361400A (en) * 2019-07-01 2019-10-22 创新奇智(合肥)科技有限公司 A kind of bubble detecting method and electronic equipment of cast iron part
JP7098591B2 (en) 2019-09-30 2022-07-11 本田技研工業株式会社 Electrode structure inspection method
FR3111703B1 (en) 2020-06-18 2022-05-20 Skf Svenska Kullagerfab Ab Method for detecting a critical fault for a rolling element made of ceramic material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182784A (en) * 1981-05-06 1982-11-10 Tokyo Shibaura Electric Co Image contour extractor
JPS5914605U (en) * 1982-07-21 1984-01-28 株式会社日立メデイコ X-ray CT device
JPS63240832A (en) * 1987-03-30 1988-10-06 コニカ株式会社 Image measuring method for calculating contour line of lung part
JPS63261145A (en) * 1987-04-20 1988-10-27 Hitachi Ltd X-ray tomographic apparatus
JPH0496875A (en) * 1990-08-15 1992-03-30 Toshiba Corp Area measuring system for tomographic image
JPH04355946A (en) * 1991-02-15 1992-12-09 Matsushita Electric Works Ltd Inspection of soldered part of electronic component
JPH04359447A (en) * 1991-06-05 1992-12-11 Fujitsu Ltd Soldering-junction inspecting apparatus for semiconductor device
JPH05172772A (en) * 1991-12-25 1993-07-09 Shuji Nakada Inspecting method for bonded part of electronic component
JPH06117828A (en) * 1992-10-05 1994-04-28 Rozefu Technol:Kk Method of detecting soldering defect of discrete part
JPH06317544A (en) * 1993-05-06 1994-11-15 Toyota Motor Corp Method for examining safety-pad
JP2001012932A (en) * 1999-06-28 2001-01-19 Nagoya Electric Works Co Ltd Method for inspecting packaging component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182784A (en) * 1981-05-06 1982-11-10 Tokyo Shibaura Electric Co Image contour extractor
JPS5914605U (en) * 1982-07-21 1984-01-28 株式会社日立メデイコ X-ray CT device
JPS63240832A (en) * 1987-03-30 1988-10-06 コニカ株式会社 Image measuring method for calculating contour line of lung part
JPS63261145A (en) * 1987-04-20 1988-10-27 Hitachi Ltd X-ray tomographic apparatus
JPH0496875A (en) * 1990-08-15 1992-03-30 Toshiba Corp Area measuring system for tomographic image
JPH04355946A (en) * 1991-02-15 1992-12-09 Matsushita Electric Works Ltd Inspection of soldered part of electronic component
JPH04359447A (en) * 1991-06-05 1992-12-11 Fujitsu Ltd Soldering-junction inspecting apparatus for semiconductor device
JPH05172772A (en) * 1991-12-25 1993-07-09 Shuji Nakada Inspecting method for bonded part of electronic component
JPH06117828A (en) * 1992-10-05 1994-04-28 Rozefu Technol:Kk Method of detecting soldering defect of discrete part
JPH06317544A (en) * 1993-05-06 1994-11-15 Toyota Motor Corp Method for examining safety-pad
JP2001012932A (en) * 1999-06-28 2001-01-19 Nagoya Electric Works Co Ltd Method for inspecting packaging component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896746A (en) * 2018-07-06 2018-11-27 中南大学 Non-fragment orbit self-compacting concrete filling layer defects quantitative testing device and method

Also Published As

Publication number Publication date
JP2003042975A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP4660998B2 (en) Bonding inspection device
US10054432B2 (en) X-ray inspection apparatus and control method
JP5646769B2 (en) X-ray inspection method and apparatus
JP3943099B2 (en) X-ray inspection equipment
JP5830928B2 (en) Inspection area setting method and X-ray inspection system
JP2015148509A (en) Quality control system and internal inspection device
JP3629397B2 (en) Joining inspection apparatus and method, and recording medium recording program for executing joining inspection method
JP3942786B2 (en) Bonding inspection apparatus and method
JP2005003480A (en) X-ray examination apparatus
JP4228773B2 (en) Board inspection equipment
JP6387620B2 (en) Quality control system
JP2001012932A (en) Method for inspecting packaging component
JP2015137858A (en) Inspection device
JP3955558B2 (en) X-ray inspection equipment
JP2006153633A (en) Flaw determining device of matter to be inspected
JP3089079B2 (en) Circuit pattern defect inspection method
JP4170366B2 (en) X-ray inspection equipment
JP3955559B2 (en) X-ray inspection equipment
JP2003075352A (en) Method and device for inspecting heat-bonding part of sealed package
Teramoto et al. Development of an automated X-ray inspection method for microsolder bumps
JP2570508B2 (en) Soldering inspection equipment
JPH04330761A (en) Inspection method and device of electronic device
JP3902017B2 (en) Solder height measuring apparatus and method
JP2007048841A (en) Inspection device of structure bump-joining chip by silicon substrate with base material
JPH03176654A (en) Method and device for inspecting solder zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees