JP4658283B2 - Method for producing methacrylic resin plate - Google Patents

Method for producing methacrylic resin plate Download PDF

Info

Publication number
JP4658283B2
JP4658283B2 JP2000082290A JP2000082290A JP4658283B2 JP 4658283 B2 JP4658283 B2 JP 4658283B2 JP 2000082290 A JP2000082290 A JP 2000082290A JP 2000082290 A JP2000082290 A JP 2000082290A JP 4658283 B2 JP4658283 B2 JP 4658283B2
Authority
JP
Japan
Prior art keywords
polymerization
resin plate
plate
methacrylic resin
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000082290A
Other languages
Japanese (ja)
Other versions
JP2001261850A (en
Inventor
浩敏 溝田
壽晃 好村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2000082290A priority Critical patent/JP4658283B2/en
Publication of JP2001261850A publication Critical patent/JP2001261850A/en
Application granted granted Critical
Publication of JP4658283B2 publication Critical patent/JP4658283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に成形性の改良されたメタクリル系樹脂板の製造方法に関する。
【0002】
【従来の技術】
キャスト重合(注型重合)によるメタクリル系樹脂板の製造方法としては、例えば特開平8−151498号公報の実施例に記載されるように、2枚のガラス板の間を軟質ガスケットで支持して空間を設けたセルに、単量体または単量体と重合体との混合物であるシロップを注入し、温水浴中で重合硬化させ、その後熱風乾燥炉中で熱処理する方法がある。また例えば、特公昭46−41602号公報に記載のように、相対向するステンレスベルトとガスケットにより形成された空間に、連続的にシロップを供給し重合せしめ、供給口とは反対の方向から樹脂板を取り出す方法がある。
【0003】
このようなキャスト重合により製造した樹脂板は、一般にキャスト板と呼ばれている。そして、本発明者らが、従来のキャスト板を構成する重合体について、その板厚方向における分子量分布を測定してみたところ、板厚中心部の分子量が低く、板表面に向かうにしたがって高くなっていた。この傾向は、ガラスキャストによる方法、ステンレスキャストによる方法の何れの重合方法でも同じであった。ここで、各箇所における分子量の測定法としては、キャスト板をアセトン溶媒中に浸けておき、板表面から徐々に溶解させて板を薄肉化し、厚さ方向に細分化した重合体を分別して回収し、後述するGPC法により重量平均分子量を測定する方法を採用した。
【0004】
板厚方向に分子量の分布が形成される原因としては、従来のキャスト重合法ではシロップの中心部の重合温度が高く表面ほど低いので、中心部の方が重合開始剤の分解が速く、得られる重合体の分子量が低くなり、表面部は逆に分子量が高くなるからと考えられる。
【0005】
【発明が解決しようとする課題】
このようなキャスト板は、押出板に比べて耐溶剤性、外観良好性等に優れている。キャスト板の優れた耐溶剤性は、キャスト板を構成する重合体の分子量が、押出板に比べ格段に大きいことにより発現していると考えてよい。一方、キャスト板は、分子量が格段に大きく、しかも先に述べたように板厚方向における分子量に大きな差が有るので、押し出し板に比べて成形加工しにくい材料である。
【0006】
本発明の目的は、キャスト板の耐溶剤性、外観良好性等の優れた性質を損なうことなく成形加工性を改良したメタクリル系樹脂板(キャスト板)を製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討した結果、シロップの重合体転化率が少なくとも50質量%以上で且つ重合発熱ピークが現れない段階において、セルへの熱伝達に優れる温水浴または温水シャワー下で重合し(第1の重合工程)、引き続き、熱伝達の悪いガス雰囲気下で重合し、この雰囲気下で重合発熱ピークを迎える(第2の重合工程)ことにより、表面部と中心部の重量平均分子量との差が10万以下であり、成形加工性に優れた新規なメタクリル系樹脂板が得られることを見出し、本発明を完成するに至った。
【0009】
すなわち本発明は、メチルメタクリレートを含む重合性原料をキャスト重合して得られる、残存単量体量が3質量%以下で、直径0.5mm以上の気泡を含まないメタクリル系樹脂板であって、該メタクリル系樹脂板を、板の両表面から板厚中心部迄への距離を基準として板厚方向に均等幅にそれぞれ5分割したとき、板厚中心部に隣接する分割領域の重合体の平均として得られる重量平均分子量と、板の両表面に位置する分割領域の重合体の平均として得られる重量平均分子量との差が10万以下であるメタクリル系樹脂板を製造する為の方法において、
メチルメタクリレートを含む重合性原料を鋳型に注入する工程と、該重合性原料の重合体転化率が50質量%以上となり、且つ重合発熱ピークが未だ現れない時点までの間、60〜90℃の温水浴または温水シャワーの中で重合させる第1の重合工程と、重合発熱ピークが現れるまで30〜90℃のガス雰囲気下で重合させる第2の重合工程と、該樹脂板自体の温度を110〜140℃で3分以上保持する熱処理工程と、冷却する工程とを順次行うことを特徴とするメタクリル系樹脂板の製造方法である。
【0010】
本発明の方法の第1の重合工程では、熱媒体が温水なのでセルへの熱伝達が良く、熱伝導の律速は、シロップ内部の熱伝導によることになる。したがって、シロップの中心部の温度が高く、表面側になるに従い温度が低くなるといった温度分布が形成されると考えられる。そして、この結果、第1の重合工程では中心部の方が重合が速く進んで重合体の分子量は低くなり、表面側ほど相対的に分子量が高くなると推察される。
【0011】
本発明においては、このような第1の重合工程における分布の傾向を反転させる為に、引き続き第2の重合工程を行う。第2の重合工程では、ガス雰囲気下で重合を行なう。ガス雰囲気はセルへの熱伝達が悪いので、熱伝導の律速段階は、セルと熱媒体との境界の熱伝達によることになる。これにより、シロップの表面側の温度が重合発熱により上昇し、中心部との温度差が無くなる傾向になるのである。つまり、第1の重合工程での重合体転化率は、シロップの中心部よりも表面側の方が低いので、その差の分、逆に第2の重合工程では、重合体に転化する割合は表面側の方が多くなり、シロップの表面側の温度が重合発熱により上昇するのである。
【0012】
上述のような第1の重合工程と第2の重合工程を行なうことによって、シロップの中心部と表面部における総熱エネルギーの差を小さくすることができ、その結果、板厚方向の分子量の分布の少ない新規なメタクリル系樹脂板を製造することが可能になる。
【0013】
【発明の実施の形態】
以下、本発明の好適な実施形態について説明する。
【0014】
本発明で使用する重合性原料としては、例えば、メチルメタクリレート単独からなる単量体、またはメチルメタクリレートとその他の共重合可能なビニル単量体との単量体混合物が挙げられる。共重合可能なビニル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましい。またこれらの単量体や単量体混合物を、重合開始剤の存在下でその一部を重合させたシロップも挙げられる。この際、必要に応じて連鎖移動剤を添加しても良い。さらに、公知の塊状重合法や懸濁重合法等により重合したメタクリル系重合体を、メチルメタクリレート単独からなる単量体、またはメチルメタクリレートとその他の共重合可能なビニル単量体との単量体混合物中に溶解させたシロップも挙げられる。ただし、これらに限定されない。重合性原料中のメチルメタクリレート含有量は50質量%以上であることが好ましい。
【0015】
シロップを製造する際の重合温度は、70〜120℃程度が好ましい。また、その重合率は、10〜40質量%程度が好ましい。反応器としては、従来より知られる管型、槽型等の形状の反応器を使用できる。また、シロップの製造は、バッチ式、連続式の何れで行ってもよい。
【0016】
メタクリル系樹脂板を製造する為のキャスト重合を行なう際にも、重合性原料に重合開始剤を添加することが好ましい。この重合開始剤は特に限定されないが、10時間半減期温度が50℃〜70℃の有機過酸化物およびアゾ化合物の中から選択した1種単独を用いること、あるいは2種以上を併用することが好ましい。具体例としては、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、t−ブチルパーオキシネオヘキサノエート等のパーオキシエステル類;2,4−ジクロロベンゾイルパーオキサイド、O−メチルベンゾイルパーオキサイド等のジアシル類;2,2'−アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(2−メチルブチロニトリル)等のアゾ化合物;などが挙げられる。中でも、パーオキシエステル類が好ましい。
【0017】
重合性原料に対する重合開始剤の添加量は、有機過酸化物の場合、500ppm〜10000ppm程度が好ましく、1000ppm〜7000ppm程度がより好ましい。アゾ化合物の場合は、30ppm〜3000ppm程度が好ましく、50ppm〜2000ppm程度がより好ましい。
【0018】
本発明においては、重合開始剤等を添加した重合性原料を鋳型(セル)に注入し、60〜90℃の温水浴または温水シャワーの中で第1の重合工程を行なう。この第1の重合工程により、重合性原料の重合体転化率を50質量%以上にする。この重合体転化率が50質量%よりも低いと、次の第2の重合工程で重合性原料中に気泡が発生し、最終的に得られる樹脂板中に気泡がそのまま残ってしまう場合がある。さらに重合体転化率は、60質量%以上であることが好ましい。
【0019】
また、第1の重合工程では、少なくとも重合発熱ピークが現れる前に、その工程を終了することが重要である。この重合発熱ピークとは、重合性原料の重合が進むにつれてゲル効果により発熱の極大値を迎える時点を意味する。具体的には、セル中の重合性原料に熱電対を挿入して重合性原料の温度を記録すると、重合性原料温度が急激に上昇してピークを示し、その後徐々に低下することが分かる。このピーク点を、重合発熱ピークが現れた時点とする。仮に、この第1の重合工程を重合発熱ピークが現れるまで行なったとすると、従来の方法と同様に、樹脂板の板厚方向に大きな分子量の分布が形成されてしまう。
【0020】
第1の重合工程においては、60〜90℃の温水浴または温水シャワーの中で重合を行なう。温水の温度が60℃より低いと、重合速度が遅く工業的に不利である。一方、90℃以下であれば、温水の製造が容易である。さらに、その温度は70℃〜85℃であることが好ましい。また、温水浴を使用する場合は、浴内を攪拌または循環させて、温度分布が生じないようにすることが好ましい。
【0021】
第2の重合工程では、3090℃のガス雰囲気下で重合を進める。この第2の重合工程では、重合性原料の自然重合発熱で重合温度が上昇していくので、特に送風の必要は無く、逆に送風しない方が好ましい。また、セルへの熱伝達は無い方が好ましく、雰囲気温度を厳密に管理する必要もない。ただし、雰囲気温度を20℃より低くするには、冷却手段が必要となるので工業的に不利である。また、130℃以上にすると、重合発熱ピークの温度が高くなり過ぎて、樹脂板に気泡が発生するおそれがある
【0022】
本発明においては、第2の重合工程を重合発熱ピークが現れるまで継続することが重要である。重合発熱ピークは、前述の熱電対を挿入する方法により検知できる。同一条件で重合させる場合は、毎回熱電対を挿入する必要はない。重合発熱ピーク時点での重合率は、通常、90質量%以上である。この第2の重合工程において好ましい重合形態は、重合発熱ピークの温度が120℃〜130℃であり、第2の重合工程終了時の重合体転化率が95質量%以上となる重合形態である。
【0023】
第2の重合工程に引き続いて、樹脂板自体の温度を110℃〜140℃の条件下で3分以上保持する熱処理工程を行なう。この熱処理工程により、重合体転化率を97質量%以上にすることが必要である。熱処理温度が110℃未満であると、残存単量体がなかなか減少せず効率的でない。また、140℃を超えると、逆に残存単量体が増加してしまう。この温度は、120℃〜130℃であることがより好ましい。熱処理工程における保持時間は、重合体転化率が97質量%、好ましくは98質量%以上となるまで保持すればよい。すなわちメタクリル系樹脂板の残存単量体含有量は3質量%以下であり、2質量%以下であることが好ましい。重合体転化率を97質量%以上にする為には、保持時間は3分以上であることが好ましく、5分以上であることがより好ましい。保持時間の上限に制限は無いが、工業的には1時間以内が好ましい。
【0024】
本発明に用いる鋳型(セル)としては、例えば、強化ガラス、クロムメッキ板、ステンレス板等の板状体と軟質塩化ビニル型ガスケットで構成した鋳型や、同一方向へ同一速度で走行する一対のエンドレスベルトの相対する面とその両側辺部において両エンドレスベルトと同一速度で走行するガスケットとで構成される鋳型などが挙げられる。
【0025】
なお、この重合の際には、必要に応じて、着色剤、可塑剤、滑剤、離型剤、安定剤、充填剤等の添加材を重合性原料に添加しても良い。
【0026】
本発明のメタクリル系樹脂板は、板厚方向における表面部と中心部の分子量の差が小さいものである。具体的には、この樹脂板を、板の両表面から板厚中心部迄への距離を基準として板厚方向に均等幅にそれぞれ5分割したとき、板厚中心部に隣接する分割領域の重合体の平均として得られる重量平均分子量と、板の両表面に位置する分割領域の重合体の平均として得られる重量平均分子量との差が10万以下であることを特徴とする。さらに、この差は、7万以下であることが好ましく、5万以下であることがより好ましい。
【0027】
ここで、平均として得られる重量平均分子量とは、板の両表面から板厚中心部迄への距離を基準としているので、表側と裏側の二つの領域の重合体の平均としての分子量の意味である。
【0028】
メタクリル系樹脂板の各分割領域の重量平均分子量の測定は、メタクリル系樹脂板を適当な溶媒中に浸漬し、板表面から徐々に溶解させて所定の分割領域(板の両表面から板厚中心部迄の距離を基準として板厚方向に均等幅にそれぞれ5分割した各領域)の境界線まで薄肉化し、各領域ごとに溶媒中に溶解した重合体を回収し、その重量平均分子量を測定する方法により実施すればよい。具体的には、後述する実施例において採用した方法に従えばよい。
【0029】
本発明のメタクリル系樹脂板は、残存単量体量が3質量%以下で、直径0.5mm以上の気泡を含まない。残存単量体量は、樹脂板の全厚みを含む領域について測定したものである。また、本発明のメタクリル系樹脂板の厚さは、1〜12mmの範囲内であることが好ましい。
【0030】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。実施例中の評価は下記の方法に従った。
【0031】
(1)重合発熱ピークの記録は、ガスケットを通してシロップ中に1.5mm径の熱電対を挿入し、重合性原料内の最高温度に達した時点の温度を測定し、これを記録した。
【0032】
(2)キャスト板内の気泡は、肉眼にて有無を確認し、その大きさは長さ目盛りのついた30倍のルーペで測定した。
【0033】
(3)板厚方向の重量平均分子量の分布の測定:
重合完了したキャスト板を50mm角に切り出し、表裏面を残して全側辺部が覆われるようにアルミテープ(スコッチ耐熱アルミテープ、3M社製)を張り付け試料とした。この試料を200mlのアセトン中に沈め、放置し、適当に表面が膨潤したら、均等幅5分割領域のうちの板表面に位置する分割領域、すなわち板の表側の表面の領域と裏側の表面の領域を、分割領域の境界線までそぎ落とし、アセトン中に溶解させて、これを回収した。そして、再度この試料を新しいアセトンに沈め、同様の操作を側辺部のみを残し表裏面が完全に溶けてなくなるまで、5回繰り返した。このようにして得た各アセトン中に溶解した5種のポリマーを、それぞれn−ヘキサン中で再沈し、真空乾燥してポリマー分だけを回収し、GPC法により分子量を測定した。
【0034】
(4)GPC法による重量平均分子量の測定:
上記測定(3)により得たポリマーを、テトラヒドロフラン(THF)に40℃で1時間かけて溶解させて、東ソー(株)製液体クロマトグラフィーHLC−8020型を用い、分離カラムはTSK−GelのGMHXL2本直列、溶媒はTHF、流量は1.0ml/min、検出器は示差屈折計、測定温度は40℃、注入量は0.1mlの条件で測定した。標準ポリマーとしては、メタクリル樹脂を使用した。
【0035】
(5)残存単量体の量:
樹脂板を粉砕し、樹脂板の粉砕物(全厚味を含む)をアセトンに溶解し、ヒューレットパッカード社製ガスクロマトグラフィー:HP−6890型を用い、分離カラムはHP−Wax(0.25mm径×30m長)、測定温度は40℃、検出器はFID、内部標準物質はメチルイソブチルケトンの条件で測定した。
【0036】
(6)耐溶剤性の比較評価:
樹脂板を温度25℃の塩化メチレン中に10分間浸漬し、これを基準メタクリル樹脂板に接触させ、1時間風乾後の接着界面の状態を観察した。接着界面に泡が多発したものを×印、発生しなかったものを○印で表示した。
【0037】
7.成形加工性の比較評価:
φ220mm、深さ140mmの真空成形型を使用して、板温度140℃で真空成形し、得られた成型品の底部コーナーR(mm)を測定し、成形性の指標とした。
【0038】
[実施例1〜3]
重合開始剤として2,2'−アゾビス(2,4−ジメチルバレロニトリル)を使用し、メチルメタクリレート単量体を、90℃〜103℃に加熱してその一部を重合させることにより、重合率24質量%、粘度1.8Pa・s/20℃の重合性原料を得た。この重合性原料に、表1に示す重合開始剤と、離型剤、紫外線吸収剤、重合防止剤を添加し、真空中で脱気した。次いで、このシロップを、厚さ1.5mm、35cm×65cmのステンレス板、または、厚さ5mm、35cm×65cmの強化ガラス板と、クリップと、軟質塩化ビニル製ガスケットとから成るキャスト重合用セルに注入して重合を行い、厚さ5mmのキャスト板を製造した。その重合条件は表1に示し、得られたキャスト板の評価結果は表2に示す。
【0039】
また、実施例1〜3における第1の重合工程終了時の重合性原料の重合体転化率を調べる為に、実施例1〜3の第1の重合工程を実施し、その後急冷して重合体転化率を測定した。各実施例での第1の重合工程終了時の重合性原料の重合体転化率は、実施例1では平均65質量%、実施例2では平均63質量%、実施例3では平均68質量%であった。
【0040】
[比較例1〜4]
実施例1〜3と同じ重合性原料を用いて、表1に示す重合条件で厚さ5mmのキャスト板を製造した。評価結果を表2に示す。実施例と同様にして比較例3における第1の重合工程終了時の重合性原料の重合体転化率を調べた。第1の重合工程終了時のシロップの重合体転化率は、42質量%であった。
【0041】
【表1】

Figure 0004658283
【0042】
【表2】
Figure 0004658283
【0043】
実施例1〜3は、中心部の領域の重合体の重量平均分子量と両表面の領域の重合体の重量平均分子量との差が10万以下の本発明のメタクリル系樹脂板を製造した例であり、成形加工性(真空成形時のコーナーR)に非常に優れている。また、実施例1〜3は、本発明の方法を実施した例であり、耐溶剤性と外観良好性を損なうことなく、メタクリル系樹脂板の成形加工性を改良している。
【0044】
【発明の効果】
以上説明したように、本発明の方法により製造されるメタクリル系樹脂板は、成形加工性に優れているので、工業上非常に有用である。また、本発明のメタクリル系樹脂板の製造方法によれば、従来のキャスト板の耐溶剤性、外観良好性等の優れた性質を損なうことなく、成形加工性を改良したメタクリル系樹脂板を製造できるので、さらに工業上有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a method for producing a methacrylic resin plate having improved moldability.
[0002]
[Prior art]
As a method for producing a methacrylic resin plate by cast polymerization (cast polymerization), for example, as described in the example of JP-A-8-151498, a space between two glass plates is supported by a soft gasket. There is a method in which a syrup which is a monomer or a mixture of a monomer and a polymer is poured into a provided cell, polymerized and cured in a hot water bath, and then heat-treated in a hot air drying furnace. Further, for example, as described in Japanese Examined Patent Publication No. 46-41602, a syrup is continuously supplied and polymerized in a space formed by a stainless steel belt and a gasket that are opposed to each other, and a resin plate is formed from the direction opposite to the supply port. There is a way to take out.
[0003]
A resin plate produced by such cast polymerization is generally called a cast plate. And when the present inventors measured the molecular weight distribution in the thickness direction about the polymer which comprises the conventional cast board, the molecular weight of the thickness center part is low, and it becomes high as it goes to the plate surface. It was. This tendency was the same in any of the polymerization methods of the glass cast method and the stainless cast method. Here, as a method for measuring the molecular weight at each location, the cast plate is immersed in an acetone solvent, and the plate is gradually dissolved from the plate surface to thin the plate, and the polymer divided in the thickness direction is separated and collected. And the method of measuring a weight average molecular weight by GPC method mentioned later was employ | adopted.
[0004]
The reason why the molecular weight distribution is formed in the plate thickness direction is that the conventional cast polymerization method has a higher polymerization temperature at the center of the syrup and lower at the surface, so that the polymerization at the center is faster and the polymerization initiator is decomposed. This is probably because the molecular weight of the polymer is lowered, and the molecular weight of the surface portion is increased.
[0005]
[Problems to be solved by the invention]
Such a cast plate is superior in solvent resistance, good appearance and the like as compared with an extruded plate. It can be considered that the excellent solvent resistance of the cast plate is manifested by the molecular weight of the polymer constituting the cast plate being significantly higher than that of the extruded plate. On the other hand, a cast plate is a material that has a much larger molecular weight and has a large difference in molecular weight in the plate thickness direction as described above, and is thus a material that is difficult to form compared to an extruded plate.
[0006]
An object of the present invention is to provide a process for producing the solvent resistance of the casts plate, appearance methacrylic resin plate having improved moldability without impairing the excellent properties of the goodness or the like (cast plates) .
[0007]
[Means for Solving the Problems]
As a result of intensive investigations to achieve the above object, the present inventors have found that the polymer conversion rate of the syrup is at least 50% by mass or more and a hot water bath excellent in heat transfer to the cell at a stage where no polymerization exothermic peak appears. Polymerization is performed under a hot water shower (first polymerization step), followed by polymerization in a gas atmosphere with poor heat transfer, and a polymerization exothermic peak is reached in this atmosphere (second polymerization step), so that the surface portion and the center The difference from the weight average molecular weight of the parts was 100,000 or less, and it was found that a novel methacrylic resin plate excellent in molding processability was obtained, and the present invention was completed.
[0009]
That is, the present invention is a methacrylic resin plate obtained by cast polymerization of a polymerizable raw material containing methyl methacrylate, the residual monomer amount being 3% by mass or less, and containing no bubbles having a diameter of 0.5 mm or more, When the methacrylic resin plate is divided into five equal widths in the plate thickness direction based on the distance from both surfaces of the plate to the plate thickness center, the average of the polymers in the divided regions adjacent to the plate thickness center and weight-average molecular weight obtained as, Te method odor for producing methacrylic resin plate difference is 100,000 or less and a polymer weight average molecular weight obtained as an average of the divided regions located on both surfaces of the plate,
Hot water of 60 to 90 ° C. until the time when the polymerizable raw material containing methyl methacrylate is injected into the mold and the polymer conversion rate of the polymerizable raw material is 50% by mass or more and the polymerization exothermic peak does not yet appear. A first polymerization step for polymerization in a bath or hot water shower, a second polymerization step for polymerization in a gas atmosphere at 30 to 90 ° C. until a polymerization exothermic peak appears, and the temperature of the resin plate itself is 110 to 140. A method for producing a methacrylic resin plate, comprising sequentially performing a heat treatment step of holding at 3 ° C. for 3 minutes or more and a cooling step.
[0010]
In the first polymerization step of the method of the present invention, since the heat medium is hot water, heat transfer to the cell is good, and the rate of heat conduction is due to heat conduction inside the syrup. Therefore, it is considered that a temperature distribution is formed in which the temperature at the center of the syrup is high, and the temperature becomes lower as it approaches the surface side. As a result, it is presumed that in the first polymerization step, the polymerization proceeds faster in the central portion, the molecular weight of the polymer is lower, and the molecular weight is relatively higher toward the surface side.
[0011]
In the present invention, the second polymerization step is subsequently performed in order to reverse the distribution tendency in the first polymerization step. In the second polymerization step, polymerization is performed in a gas atmosphere. Since the gas atmosphere has poor heat transfer to the cell, the rate-limiting step of heat conduction is due to the heat transfer at the boundary between the cell and the heat medium. As a result, the temperature on the surface side of the syrup rises due to the heat generated by polymerization, and the temperature difference from the center tends to disappear. That is, since the polymer conversion rate in the first polymerization step is lower on the surface side than the center part of the syrup, on the contrary, in the second polymerization step, the rate of conversion to the polymer is The surface side increases, and the temperature on the surface side of the syrup rises due to polymerization heat generation.
[0012]
By performing the first polymerization step and the second polymerization step as described above, the difference in total thermal energy between the center portion and the surface portion of the syrup can be reduced, and as a result, the molecular weight distribution in the plate thickness direction. It is possible to produce a novel methacrylic resin plate with a small amount.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0014]
Examples of the polymerizable raw material used in the present invention include a monomer composed of methyl methacrylate alone, or a monomer mixture of methyl methacrylate and other copolymerizable vinyl monomers. As the copolymerizable vinyl monomer, for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate and the like are preferable. Moreover, the syrup which superposed | polymerized one part of these monomers and monomer mixtures in presence of a polymerization initiator is also mentioned. At this time, a chain transfer agent may be added as necessary. Furthermore, a methacrylic polymer polymerized by a known bulk polymerization method or suspension polymerization method is used as a monomer composed of methyl methacrylate alone, or a monomer composed of methyl methacrylate and other copolymerizable vinyl monomers. Mention may also be made of syrups dissolved in the mixture. However, it is not limited to these. The methyl methacrylate content in the polymerizable raw material is preferably 50% by mass or more.
[0015]
The polymerization temperature for producing the syrup is preferably about 70 to 120 ° C. The polymerization rate is preferably about 10 to 40% by mass. As the reactor, conventionally known reactors such as a tube type and a tank type can be used. The syrup may be produced either batchwise or continuously.
[0016]
Also when performing cast polymerization for producing a methacrylic resin plate, it is preferable to add a polymerization initiator to the polymerizable raw material. Although this polymerization initiator is not particularly limited, one type selected from organic peroxides and azo compounds having a 10-hour half-life temperature of 50 ° C. to 70 ° C. may be used alone, or two or more types may be used in combination. preferable. Specific examples include peroxyesters such as t-hexylperoxypivalate, t-butylperoxypivalate, t-butylperoxyneohexanoate; 2,4-dichlorobenzoyl peroxide, O-methylbenzoyl Diacyls such as peroxides; 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), etc. And the like. Of these, peroxyesters are preferred.
[0017]
In the case of an organic peroxide, the amount of the polymerization initiator added to the polymerizable raw material is preferably about 500 ppm to 10000 ppm, more preferably about 1000 ppm to 7000 ppm. In the case of an azo compound, about 30 ppm to 3000 ppm is preferable, and about 50 ppm to 2000 ppm is more preferable.
[0018]
In this invention, the polymeric raw material which added the polymerization initiator etc. is inject | poured into a casting_mold | template (cell), and a 1st superposition | polymerization process is performed in a 60-90 degreeC warm water bath or a warm water shower. By this first polymerization step, the polymer conversion rate of the polymerizable raw material is set to 50% by mass or more. If the polymer conversion rate is lower than 50% by mass, bubbles may be generated in the polymerizable raw material in the next second polymerization step, and the bubbles may remain in the finally obtained resin plate. . Further, the polymer conversion rate is preferably 60% by mass or more.
[0019]
In the first polymerization step, it is important to finish the step at least before the polymerization exothermic peak appears. This polymerization exothermic peak means the point at which the maximum value of exotherm is reached due to the gel effect as the polymerization of the polymerizable raw material proceeds. Specifically, when a thermocouple is inserted into the polymerizable raw material in the cell and the temperature of the polymerizable raw material is recorded, the temperature of the polymerizable raw material rapidly rises to show a peak and then gradually decreases. This peak point is defined as the point at which the polymerization exothermic peak appears. If this first polymerization step is performed until a polymerization exothermic peak appears, a large molecular weight distribution is formed in the thickness direction of the resin plate as in the conventional method.
[0020]
In the first polymerization step, polymerization is carried out in a hot water bath or hot water shower at 60 to 90 ° C. When the temperature of the hot water is lower than 60 ° C., the polymerization rate is slow, which is industrially disadvantageous. On the other hand, if it is 90 degrees C or less, manufacture of warm water is easy. Furthermore, the temperature is preferably 70 ° C to 85 ° C. Moreover, when using a warm water bath, it is preferable to stir or circulate in the bath so as not to generate a temperature distribution.
[0021]
In the second polymerization step, advancing the polymerization in a gas atmosphere of 30 ~ 90 ° C.. In a second polymerization step of this, since the polymerization temperature by natural heat generated by the polymerization of a polymerizable raw material rises, it is required blowing, it is preferable not to blow reversed. Further, it is preferable that there is no heat transfer to the cell, and it is not necessary to strictly control the ambient temperature. However, in order to lower the ambient temperature below 20 ° C., a cooling means is required, which is industrially disadvantageous. On the other hand, when the temperature is 130 ° C. or higher, the temperature of the polymerization exothermic peak becomes too high, and there is a possibility that bubbles are generated in the resin plate .
[0022]
In the present invention, it is important to continue the second polymerization step until a polymerization exothermic peak appears. The polymerization exothermic peak can be detected by the above-described method of inserting a thermocouple. When polymerizing under the same conditions, it is not necessary to insert a thermocouple every time. The polymerization rate at the time of the polymerization exothermic peak is usually 90% by mass or more. A preferable polymerization form in the second polymerization step is a polymerization form in which the temperature of the polymerization exothermic peak is 120 ° C. to 130 ° C., and the polymer conversion rate at the end of the second polymerization step is 95% by mass or more.
[0023]
Subsequent to the second polymerization step, a heat treatment step is performed in which the temperature of the resin plate itself is maintained at 110 ° C. to 140 ° C. for 3 minutes or longer. By this heat treatment step, it is necessary to set the polymer conversion rate to 97% by mass or more. When the heat treatment temperature is less than 110 ° C., the residual monomer is not easily reduced, which is not efficient. Moreover, when it exceeds 140 degreeC, a residual monomer will increase conversely. This temperature is more preferably 120 ° C to 130 ° C. The holding time in the heat treatment step may be held until the polymer conversion rate is 97% by mass, preferably 98% by mass or more. That is, the residual monomer content of the methacrylic resin plate is 3% by mass or less, and preferably 2% by mass or less. In order to make the polymer conversion rate 97% by mass or more, the holding time is preferably 3 minutes or more, and more preferably 5 minutes or more. The upper limit of the holding time is not limited, but industrially, it is preferably within 1 hour.
[0024]
As a mold (cell) used in the present invention, for example, a mold composed of a plate-like body such as tempered glass, a chrome plated plate, a stainless steel plate and a soft vinyl chloride type gasket, or a pair of endless members running at the same speed in the same direction Examples include a mold composed of a belt that faces the opposite surfaces of the belt and gaskets that run at the same speed as the endless belts on both sides.
[0025]
In this polymerization, additives such as a colorant, a plasticizer, a lubricant, a mold release agent, a stabilizer, and a filler may be added to the polymerizable raw material as necessary.
[0026]
The methacrylic resin plate of the present invention has a small difference in molecular weight between the surface portion and the center portion in the plate thickness direction. Specifically, when this resin plate is divided into five equal widths in the plate thickness direction based on the distance from both surfaces of the plate to the plate thickness center, the overlap of the divided areas adjacent to the plate thickness center is obtained. The difference between the weight average molecular weight obtained as the average of the coalescence and the weight average molecular weight obtained as the average of the polymers in the divided regions located on both surfaces of the plate is 100,000 or less. Furthermore, this difference is preferably 70,000 or less, and more preferably 50,000 or less.
[0027]
Here, since the weight average molecular weight obtained as an average is based on the distance from both surfaces of the plate to the center of the plate thickness, it means the molecular weight as the average of the two regions of the polymer on the front side and the back side. is there.
[0028]
The weight average molecular weight of each divided region of the methacrylic resin plate is measured by immersing the methacrylic resin plate in an appropriate solvent and gradually dissolving it from the surface of the plate to obtain a predetermined divided region (center of thickness from both surfaces of the plate). The thickness is reduced to the boundary line of each region divided into five equal widths in the thickness direction with reference to the distance to the part, and the polymer dissolved in the solvent is recovered for each region, and the weight average molecular weight is measured. What is necessary is just to implement by the method. Specifically, the method employed in the embodiments described later may be followed.
[0029]
The methacrylic resin plate of the present invention does not contain bubbles having a residual monomer amount of 3% by mass or less and a diameter of 0.5 mm or more. The residual monomer amount is measured for a region including the entire thickness of the resin plate. Moreover, it is preferable that the thickness of the methacrylic resin plate of this invention exists in the range of 1-12 mm.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The evaluation in the examples followed the following method.
[0031]
(1) The polymerization exothermic peak was recorded by inserting a thermocouple having a diameter of 1.5 mm into the syrup through the gasket, measuring the temperature when the maximum temperature in the polymerizable raw material was reached, and recording this.
[0032]
(2) The presence or absence of air bubbles in the cast plate was confirmed with the naked eye, and the size was measured with a 30-times magnifier with a length scale.
[0033]
(3) Measurement of distribution of weight average molecular weight in the thickness direction:
The cast plate after polymerization was cut into a 50 mm square, and an aluminum tape (Scotch heat-resistant aluminum tape, manufactured by 3M Company) was attached as a sample so that all sides were covered except for the front and back surfaces. When this sample is submerged in 200 ml of acetone and allowed to stand and the surface swells appropriately, the divided area located on the plate surface of the equal width of the five divided areas, that is, the front surface area and the back surface area Was cut down to the boundary line of the divided region, dissolved in acetone, and recovered. This sample was submerged again in new acetone, and the same operation was repeated 5 times until only the side portion was left and the front and back surfaces were not completely dissolved. The five polymers dissolved in each acetone thus obtained were reprecipitated in n-hexane, vacuum-dried and only the polymer content was collected, and the molecular weight was measured by the GPC method.
[0034]
(4) Measurement of weight average molecular weight by GPC method:
The polymer obtained by the above measurement (3) was dissolved in tetrahydrofuran (THF) at 40 ° C. over 1 hour, and liquid chromatography HLC-8020 manufactured by Tosoh Corp. was used. In this series, the solvent was THF, the flow rate was 1.0 ml / min, the detector was a differential refractometer, the measurement temperature was 40 ° C., and the injection amount was 0.1 ml. A methacrylic resin was used as the standard polymer.
[0035]
(5) Amount of residual monomer:
The resin plate is pulverized, and the pulverized resin plate (including the total thickness) is dissolved in acetone. Gas chromatography manufactured by Hewlett-Packard Company: HP-6890 type is used, and the separation column is HP-Wax (0.25 mm diameter). × 30 m length), the measurement temperature was 40 ° C., the detector was FID, and the internal standard substance was methyl isobutyl ketone.
[0036]
(6) Comparative evaluation of solvent resistance:
The resin plate was immersed in methylene chloride at a temperature of 25 ° C. for 10 minutes, and this was brought into contact with a reference methacrylic resin plate, and the state of the adhesive interface after air drying for 1 hour was observed. The case where bubbles occurred frequently on the adhesive interface was indicated by X, and the case where no bubbles were generated was indicated by ○.
[0037]
7). Comparative evaluation of moldability:
Using a vacuum forming die with a diameter of 220 mm and a depth of 140 mm, vacuum forming was performed at a plate temperature of 140 ° C., and the bottom corner R (mm) of the obtained molded product was measured, which was used as an index of formability.
[0038]
[Examples 1 to 3]
By using 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator and heating a methyl methacrylate monomer at 90 ° C. to 103 ° C. to polymerize a part thereof, the polymerization rate A polymerizable raw material having a viscosity of 24% by mass and a viscosity of 1.8 Pa · s / 20 ° C. was obtained. To this polymerizable raw material, a polymerization initiator shown in Table 1, a release agent, an ultraviolet absorber, and a polymerization inhibitor were added and deaerated in a vacuum. Next, this syrup was cast into a cell for casting polymerization consisting of a 1.5 mm thick, 35 cm × 65 cm stainless steel plate or a tempered glass plate having a thickness of 5 mm, 35 cm × 65 cm, a clip and a soft vinyl chloride gasket. Polymerization was performed by pouring to produce a cast plate having a thickness of 5 mm. The polymerization conditions are shown in Table 1, and the evaluation results of the cast plate obtained are shown in Table 2.
[0039]
Further, in order to examine the polymer conversion rate of the polymerizable raw material at the end of the first polymerization step in Examples 1 to 3, the first polymerization step of Examples 1 to 3 was performed, and then rapidly cooled to polymer. Conversion was measured. The polymer conversion rate of the polymerizable raw material at the end of the first polymerization step in each example was 65% by mass in Example 1, 63% by mass in Example 2, and 68% by mass in Example 3. there were.
[0040]
[Comparative Examples 1-4]
Using the same polymerizable raw material as in Examples 1 to 3, cast plates having a thickness of 5 mm were produced under the polymerization conditions shown in Table 1. The evaluation results are shown in Table 2. In the same manner as in the examples, the polymer conversion rate of the polymerizable raw material at the end of the first polymerization step in Comparative Example 3 was examined. The polymer conversion rate of the syrup at the end of the first polymerization step was 42% by mass.
[0041]
[Table 1]
Figure 0004658283
[0042]
[Table 2]
Figure 0004658283
[0043]
Examples 1 to 3 are examples in which the methacrylic resin plate of the present invention in which the difference between the weight average molecular weight of the polymer in the central region and the weight average molecular weight of the polymer in both surface regions was 100,000 or less was produced. Yes, it is extremely excellent in moldability (corner R during vacuum forming). Moreover, Examples 1-3 are the examples which implemented the method of this invention, and are improving the moldability of a methacrylic-type resin board, without impairing solvent resistance and an external appearance favorable property.
[0044]
【The invention's effect】
As described above, the methacrylic resin plate produced by the method of the present invention is very useful industrially because it is excellent in molding processability. In addition, according to the method for producing a methacrylic resin plate of the present invention, a methacrylic resin plate with improved moldability is produced without impairing excellent properties such as solvent resistance and good appearance of conventional cast plates. Since it can, it is industrially useful.

Claims (1)

メチルメタクリレートを含む重合性原料をキャスト重合して得られる、残存単量体量が3質量%以下で、直径0.5mm以上の気泡を含まないメタクリル系樹脂板であって、該メタクリル系樹脂板を、板の両表面から板厚中心部迄への距離を基準として板厚方向に均等幅にそれぞれ5分割したとき、板厚中心部に隣接する分割領域の重合体の平均として得られる重量平均分子量と、板の両表面に位置する分割領域の重合体の平均として得られる重量平均分子量との差が10万以下であるメタクリル系樹脂板を製造する為の方法において、
メチルメタクリレートを含む重合性原料を鋳型に注入する工程と、
該重合性原料の重合体転化率が50質量%以上となり、且つ重合発熱ピークが未だ現れない時点までの間、60〜90℃の温水浴または温水シャワーの中で重合させる第1の重合工程と、
重合発熱ピークが現れるまで30〜90℃のガス雰囲気下で重合させる第2の重合工程と、
該樹脂板自体の温度を110〜140℃で3分以上保持する熱処理工程と、
冷却する工程と
を順次行うことを特徴とするメタクリル系樹脂板の製造方法。
A methacrylic resin plate obtained by cast polymerization of a polymerizable raw material containing methyl methacrylate, having a residual monomer amount of 3% by mass or less and free of bubbles having a diameter of 0.5 mm or more, the methacrylic resin plate Is divided into five equal widths in the thickness direction with reference to the distance from both surfaces of the plate to the thickness center, and the weight average obtained as the average of the polymers in the divided areas adjacent to the thickness center and molecular weight, Te method odor for producing methacrylic resin plate the difference between the polymer weight average molecular weight obtained as an average of the divided regions located on both surface is 100,000 or less of the plate,
Injecting a polymerizable raw material containing methyl methacrylate into a mold;
A first polymerization step of polymerizing in a hot water bath or hot water shower at 60 to 90 ° C. until the polymer conversion rate of the polymerizable raw material is 50% by mass or more and a polymerization exothermic peak has not yet appeared; ,
A second polymerization step of polymerizing in a gas atmosphere of 30 to 90 ° C. until a polymerization exothermic peak appears;
A heat treatment step of maintaining the temperature of the resin plate itself at 110 to 140 ° C. for 3 minutes or more;
A method for producing a methacrylic resin plate, comprising sequentially performing a cooling step.
JP2000082290A 2000-03-23 2000-03-23 Method for producing methacrylic resin plate Expired - Fee Related JP4658283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082290A JP4658283B2 (en) 2000-03-23 2000-03-23 Method for producing methacrylic resin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082290A JP4658283B2 (en) 2000-03-23 2000-03-23 Method for producing methacrylic resin plate

Publications (2)

Publication Number Publication Date
JP2001261850A JP2001261850A (en) 2001-09-26
JP4658283B2 true JP4658283B2 (en) 2011-03-23

Family

ID=18599119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082290A Expired - Fee Related JP4658283B2 (en) 2000-03-23 2000-03-23 Method for producing methacrylic resin plate

Country Status (1)

Country Link
JP (1) JP4658283B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037799A (en) * 1998-07-21 2000-02-08 Mitsubishi Rayon Co Ltd Impact-resistant methacrylate resin plate excellent in molding appearance and production thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876408A (en) * 1981-10-30 1983-05-09 Mitsubishi Rayon Co Ltd Manufacture of methacrylic resin plate
JPS58118805A (en) * 1982-01-11 1983-07-15 Mitsubishi Rayon Co Ltd Production of methacrylate resin sheet
JP3508251B2 (en) * 1994-11-28 2004-03-22 住友化学工業株式会社 Method for producing methacrylic resin cast plate
JP3622309B2 (en) * 1996-01-08 2005-02-23 住友化学株式会社 Method for producing methacrylic resin cast plate
JPH11152341A (en) * 1997-11-21 1999-06-08 Mitsubishi Rayon Co Ltd Flame-retardant methacrylic resin plate, its production, and sound-isolating panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037799A (en) * 1998-07-21 2000-02-08 Mitsubishi Rayon Co Ltd Impact-resistant methacrylate resin plate excellent in molding appearance and production thereof

Also Published As

Publication number Publication date
JP2001261850A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US3954913A (en) Stabilized nitrile polymers
JPH0151497B2 (en)
JP2567726B2 (en) Method for producing methacrylic resin plate
JPH0216762B2 (en)
GB1590602A (en) Process for the continuous casting of liquid polymerizable compositions
JP4658283B2 (en) Method for producing methacrylic resin plate
JPS591518A (en) Production of lowly hygroscopic methacrylate resin sheet
JP3695239B2 (en) Manufacturing method of sanitary methacrylic resin plate
US2462895A (en) Preparation of modified polymeric methyl methacrylate
JPH0662694B2 (en) Method for producing copolymer having excellent heat resistance
JP3319485B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JP4763916B2 (en) Methacrylic resin composition and method for producing methacrylic resin molded product
JPH0461007B2 (en)
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JP7168908B2 (en) Carbon material precursor and method for producing carbon material using the same
TW389771B (en) Polymethacrylate-molding material with ethylene
JPH0221402B2 (en)
JP3557732B2 (en) Method for manufacturing acrylic resin plate
CA2134825A1 (en) Process for making an acrylonitrile/methacrylonitrile copolymer
JP2003040906A (en) Method for producing methacrylic resin plate
JPS5921324B2 (en) Methacrylic San Methyl Cage
JPS59184215A (en) Cast acryl film with improved heat relaxation resistance
JPS5811515A (en) Methacrylic resin material for information recording medium
JPH04117408A (en) Film
JPH08134117A (en) Production of styrenic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4658283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees