JP4657514B2 - Phase lag detector for maneuverability and stability feeling evaluation - Google Patents

Phase lag detector for maneuverability and stability feeling evaluation Download PDF

Info

Publication number
JP4657514B2
JP4657514B2 JP2001232018A JP2001232018A JP4657514B2 JP 4657514 B2 JP4657514 B2 JP 4657514B2 JP 2001232018 A JP2001232018 A JP 2001232018A JP 2001232018 A JP2001232018 A JP 2001232018A JP 4657514 B2 JP4657514 B2 JP 4657514B2
Authority
JP
Japan
Prior art keywords
maneuverability
phase lag
stability
vehicle
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001232018A
Other languages
Japanese (ja)
Other versions
JP2003042909A (en
Inventor
恒 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2001232018A priority Critical patent/JP4657514B2/en
Publication of JP2003042909A publication Critical patent/JP2003042909A/en
Application granted granted Critical
Publication of JP4657514B2 publication Critical patent/JP4657514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、運転操作に対する人間の感覚の位相遅れを検出する操縦性・安定性フィーリング評価用位相遅れ検出装置に関する。
【0002】
【従来の技術】
従来から車両の挙動を数値化して把握する試みが多数行われており、特に様々な物理量を計測するセンサにより車両の挙動は比較的良好に数値化されている。従って、これらの数値化された情報を利用して、車両の性能向上のための改良或いは車両の評価が行われ、一定の成果を得ている。
【0003】
しかしながら、車両の絶対性能に関しては、各種の物理量の計測による改良、評価が有効である一方、運転者等の車両の乗員が感じる感覚的性能に関しては、車両の乗員が感じる感覚が、これらの物理量を計測するセンサによる結果と一致しないことが多々あり、数値化が困難である。
【0004】
このような問題に対処するため、例えば、特開平9−11929号公報には、車両に取付けた加速度センサ、ブレーキペダルに取付けた踏力センサとストロークセンサの計測値を処理した操作フィーリングの指標値を、ニューラルネットワークに入力して複数のブレーキ操作のフィーリングを精度良く推定する技術が提案されている。
【0005】
【発明が解決しようとする課題】
ところで、操縦性・安定性のフィーリングは、運転操作に対する各所の位相遅れに相関があり、乗員の乗車位置での位相遅れを検出することで、乗員が感じる操縦性・安定性のフィーリングを適切に数値化することが可能となる。従来の技術では、運転操作に対する乗車位置での位相遅れが考慮されておらず、一義的に各部の挙動を検出するのみでは、操縦性・安定性のフィーリングに関係しない情報を取込む可能性があり、操縦性・安定性フィーリングの評価が不適切なものとなる虞がある。
【0006】
本発明は上記事情に鑑みてなされたもので、運転操作に対する人間の感覚の位相遅れを乗車位置で検出し、操縦性・安定性に直結した情報を収集することのできる操縦性・安定性評価用位相遅れ検出装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、乗員の乗車位置に一端が固定され、特定の軸を中心とした方向に予め定められた捩り剛性を有する捩りばね手段と、上記捩りばね手段の他端に固定され、予め定められた慣性マスを有する重鎮と、上記特定の軸の周りの上記重鎮の回転を検出する回転検出手段とを備え、上記回転検出手段の検出結果に基づいて、運転操作に対して乗員が感じる位相遅れを推定することを特徴とする。
【0008】
請求項2記載の発明は、請求項1記載の発明において、上記捩りばね手段に、上記重鎮の回転を減衰させる減衰手段を併設したことを特徴とする。
【0009】
請求項3記載の発明は、請求項1又は請求項2記載の発明において、上記特定の軸を、鉛直方向の軸とすることを特徴とする。
【0010】
請求項4記載の発明は、請求項1又は請求項2記載の発明において、上記特定の軸を、車両の長手方向の中心軸に平行な軸とすることを特徴とする。
【0011】
請求項5記載の発明は、請求項1又は請求項2記載の発明において、上記特定の軸を、車両の長手方向の中心軸に直交し、且つ水平方向の軸とすることを特徴とする。
【0012】
請求項6記載の発明は、請求項1,2,3,4,5の何れか一に記載の発明において、上記位相遅れを、車両の操舵装置の操舵角と上記重鎮の回転角との位相差とすることを特徴とする。
【0013】
請求項7記載の発明は、請求項1,2,3,4,5,6の何れか一に記載の発明において、上記捩りばね手段の一端を、車両の座席の取付け位置に台座を介して固定することを特徴とする。
【0014】
請求項8記載の発明は、請求項1,2,3,4,5,6,7の何れか一に記載の発明において、上記捩りばね手段の捩り剛性を、車体に固定される座席の捩り剛性と、この座席に着座する乗員の捩り剛性とを合成した値と同等なものとし、上記重鎮の慣性マスを、上記座席の慣性マスと上記乗員の慣性マスとを合成した値と同等なものとすることを特徴とする。
【0015】
すなわち、請求項1記載の発明は、特定の軸を中心とした方向に予め定められた捩り剛性を有する捩りばね手段の一端を乗車位置に固定し、戻りばね手段の他端に予め定められた慣性マスを有する重鎮を固定する。そして、特定の軸の周りの重鎮の回転を検出し、その検出結果に基づいて、運転操作に対して乗員が感じる位相遅れを推定することで、操縦性・安定性に直結した情報を収集し、乗員のフィーリングを数値化して操縦性・安定性の評価を可能とする。
【0016】
その際、請求項2記載の発明のように、捩りばね手段には、重鎮の回転を減衰させる減衰手段を併設することが望ましく、実際の乗員の減衰特性を近似したダンパー作用を持たせることにより、人間の感覚での位相遅れをより正確に把握することができる。
【0017】
捩りばね手段の特定の軸は、請求項3記載の発明のように、鉛直方向の軸とすることで、車両のヨー方向の位相遅れを検出することができ、請求項4記載の発明のように、車両の長手方向の中心軸に平行な軸とすることで、ロール方向の位相遅れを検出することができ、更に、請求項5記載の発明のように、車両の長手方向の中心軸に直交し、且つ水平方向の軸とすることで、ピッチ方向の位相遅れを検出することができる。その際の位相遅れは、請求項6記載の発明のように、車両の操舵装置の操舵角と重鎮の回転角との位相差によって検出することができる。
【0018】
また、捩りばね手段は、請求項7記載の発明のように、車両の座席の取付け位置に台座を介して一端を固定することが望ましく、捩りばね手段の捩り剛性は、請求項8記載の発明のように、車体に固定される座席の捩り剛性と、この座席に着座する乗員の捩り剛性とを合成した値と同等なものとし、重鎮の慣性マスを、座席の慣性マスと乗員の慣性マスとを合成した値と同等なものとすることで、座席に着座した状態での人間に相当する慣性モーメントを与えることができ、操縦性・安定性のフィーリングに無関係なノイズの除去が可能となる。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図1〜図5は本発明の実施の一形態に係わり、図1は車両に搭載された位相検出器を示す説明図、図2は位相検出器の構成を示す説明図、図3は位相検出器の取付方向を示す説明図、図4は操縦性・安定性フィーリング評価用位相遅れ検出装置の構成図、図5は車体と位相検出器との位相差を示す説明図である。
【0020】
図1において、符号1は自動車等の車両であり、符号2は車両1の操縦性・安定性に対する人間のフィーリングを数値的に評価するため、乗員の着座位置に設置される位相検出器である。この位相検出器2は、車体の座席取付け位置に固定される台座3と、この台座3に一端が固定されるシャフト4と、このシャフト4の他端に固定される重鎮5と、シャフト4に取付けられる歪ゲージ6とから構成されている。
【0021】
シャフト4は、特定の軸を中心とした方向に予め定められた捩り剛性を有する捩りばねとしての特性を有するものであり、また、重鎮5は、予め定められた慣性マスを備えるものである。具体的には、図2に示すように、シャフト4の捩り剛性は、座席7の捩り剛性と、この座席7に着座する乗員8の捩り剛性とを合成した値と同等となるように予め設定され、重鎮5の慣性マスは、座席7の慣性マスと、この座席7に着座する乗員8の慣性マスとを合成した値と同等となるように予め設定されている。
【0022】
一方、歪ゲージ6は、特定の軸周りの重鎮5の回転を検出する回転検出手段としての機能を有するものであり、検出した特定の軸周りの重鎮5の回転の検出結果に基づいて、運転操作に対して乗員が感じるヨー、ロール、ピッチ方向の位相遅れを数値的に把握することができる。尚、図2中に破線で示すように、台座3と重鎮5との間には、シャフト4と並列に弾性部材9を併設することが望ましい。この弾性部材9は、軸周りの回転に対する座席7及び乗員8の減衰特性と同等の特性を付加するための減衰手段としての機能を与えるものであり、この弾性部材9によるダンパー作用により、人間の感覚により近い位相遅れを把握することができる。
【0023】
位相検出器2によるヨー、ロール、ピッチの各方向の位相は、図3に示すように、シャフト4の捩り中心軸を適宜設定することにより検出される。すなわち、水平方向の軸をX軸、鉛直方向の軸をY軸、XY平面に直交して車両1の重心を通る長手方向の中心軸をZ軸とすると、X軸に平行にシャフト4を配置することで、車両1のピッチ方向の回転を検出することができ、Y軸に平行にシャフト4を配置することで、車両1のヨー方向の回転を検出することができる。また、Z軸に平行にシャフト4を配置することで、車両1のロール方向の回転を検出することができる。
【0024】
図4は、位相検出器2を用いた操縦性・安定性フィーリング評価用位相遅れ検出装置の構成を示すものであり、車両1に搭載される電子制御装置(ECU)20に、位相検出器2の歪ゲージ6、車両1の操舵角、アクセル開度、車速等の車両挙動を検出するための車両挙動検出用センサ10が接続され、ECU20とパーソナルコンピュータ等の外部のコンピュータ50とが接続可能に構成される。更に、各種操縦性・安定性試験を人間に代わって自動操縦で行う場合には、予めプログラムされた制御指令或いは外部からの無線通信等による制御指令に従って、アクセル操作、ステアリング操作、ブレーキ操作等の運転操作を行う操縦装置30が車両1に搭載され、この操縦装置30がECU20に接続される。
【0025】
車両1の各種操縦性・安定性試験においては、車両1の運転操作データ(人間或いは操縦装置30による運転操作データ)に対し、その操作に伴う車両挙動検出用センサ10からの車両挙動データ、位相検出器2の歪ゲージ6からの検出データがECU20に入力され、ECU20内のメモリに時系列的に蓄積される。ECU20内のメモリに蓄積されたデータは、試験終了後、ECU20とコンピュータ50とを接続することで、ECU20から外部のコンピュータ50に転送される。
【0026】
コンピュータ50には、位相検出器2の特性、すなわちシャフト4の捩り剛性や重鎮5の慣性マスのデータが予め入力されており、図5(a)に示すように、位相検出器2の歪ゲージ6の出力データから重鎮5の回転位相を算出し、また、図5(b)に示すように、車両挙動検出用センサ10の出力データから車体各部の回転位相を算出する。そして、位相検出2と車体との位相差を求め、実際に人間が感じる操縦性・安定性フィーリングの評価を行う。
【0027】
例えば、ステアリング操作に対する車体と人間の感覚との位相遅れを評価する場合、運転者の乗車位置で位相検出器2(シャフト4)を鉛直方向に設置して走行試験を行い、時系列的にデータを収集し、コンピュータ50で処理する。コンピュータ50では、車両1に備えられる車速センサ、操舵角センサ、及びヨーレートセンサ等の各出力値、位相検出器2の歪ゲージ6の出力値を時系列的に蓄積したデータから、車体のヨー角の変化、位相検出器2によるヨー角の変化を調べ、ニューラルネットワーク等を用いてステアリングの操舵角に対する人間の感覚でのヨー角変化の遅れを推定する。
【0028】
このような位相検出器2を用いた操縦性・安定性のフィーリング評価では、位相検出器2に、座席に着座した状態での人間に相当する慣性モーメントを与えて運転操作や車体各部に対する位相差を検出するため、人間が感じる操縦性・安定性のフィーリングに無関係なノイズを除去することが可能であり、操縦性・安定性に直結した位相情報を収集することができる。
【0029】
特に、位相検出器2を鉛直方向に設置して操舵系に対する乗員のフィーリングを評価する際には、操舵に対する位相遅れを乗員の頭部に近い位置で検出することが可能であり、人間の感覚を精度良く数値化することができる。
【0030】
【発明の効果】
以上説明したように本発明によれば、運転操作に対する人間の感覚の位相遅れを乗車位置で検出し、操縦性・安定性のフィーリングに無関係なノイズを排除して操縦性・安定性に直結した情報を収集することでき、人間の感覚を適切に数値化して操縦性・安定性フィーリングの適切な評価を可能とすることができる。
【図面の簡単な説明】
【図1】車両に搭載された位相検出器を示す説明図
【図2】位相検出器の構成を示す説明図
【図3】位相検出器の取付方向を示す説明図
【図4】操縦性・安定性フィーリング評価用位相遅れ検出装置の構成図
【図5】車体と位相検出器との位相差を示す説明図
【符号の説明】
1 車両
4 シャフト(捩りばね手段)
5 重鎮
6 歪ゲージ(回転検出手段)
20 電子制御装置
50 コンピュータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phase lag detecting apparatus for maneuverability / stability feeling evaluation for detecting a phase lag of a human sense with respect to a driving operation.
[0002]
[Prior art]
Conventionally, many attempts have been made to numerically grasp the behavior of the vehicle, and the behavior of the vehicle has been quantified relatively well by sensors that measure various physical quantities. Therefore, improvement for improving the performance of the vehicle or evaluation of the vehicle is performed using these digitized information, and a certain result is obtained.
[0003]
However, for the absolute performance of the vehicle, improvements and evaluations by measuring various physical quantities are effective. On the other hand, for the sensory performance felt by the vehicle occupant such as the driver, the sensation felt by the vehicle occupant is the physical quantity. In many cases, it does not agree with the result obtained by the sensor that measures the value, and it is difficult to quantify it.
[0004]
In order to deal with such a problem, for example, Japanese Patent Laid-Open No. 9-11929 discloses an index value of an operation feeling obtained by processing measured values of an acceleration sensor attached to a vehicle, a pedaling force sensor attached to a brake pedal, and a stroke sensor. Has been proposed to accurately estimate the feeling of a plurality of brake operations.
[0005]
[Problems to be solved by the invention]
By the way, the feeling of maneuverability / stability has a correlation with the phase lag at various locations with respect to driving operations. By detecting the phase lag at the boarding position of the occupant, the feeling of maneuverability / stability felt by the occupant is obtained. It becomes possible to digitize appropriately. The conventional technology does not take into account the phase lag at the boarding position with respect to driving operations, and it is possible to capture information that is not related to the feeling of maneuverability / stability by simply detecting the behavior of each part. There is a risk that the evaluation of the maneuverability / stability feeling becomes inappropriate.
[0006]
The present invention has been made in view of the above circumstances, and the maneuverability / stability evaluation capable of collecting information directly related to maneuverability / stability by detecting the phase delay of the human sense with respect to the driving operation at the boarding position. An object of the present invention is to provide a phase lag detection apparatus for use.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention provides a torsion spring means having one end fixed at a ride position of an occupant and having a predetermined torsional rigidity about a specific axis, and the torsion spring. And a rotation detecting means for detecting the rotation of the heavy weight around the specific axis, the rotation detecting means being fixed to the other end of the means, and having a predetermined inertial mass. The phase lag felt by the occupant with respect to the driving operation is estimated.
[0008]
According to a second aspect of the present invention, in the first aspect of the present invention, the torsion spring means is provided with a damping means for damping the rotation of the heavy load.
[0009]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the specific axis is an axis in the vertical direction.
[0010]
According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the specific axis is an axis parallel to a central axis in a longitudinal direction of the vehicle.
[0011]
According to a fifth aspect of the present invention, in the first or second aspect of the present invention, the specific axis is a horizontal axis perpendicular to the longitudinal center axis of the vehicle.
[0012]
According to a sixth aspect of the present invention, in the first, second, third, fourth, or fifth aspect of the invention, the phase lag is determined between the steering angle of a vehicle steering device and the rotation angle of the heavyweight. It is characterized by a phase difference.
[0013]
According to a seventh aspect of the present invention, in the invention according to any one of the first, second, third, fourth, fifth and sixth aspects, the one end of the torsion spring means is connected to a mounting position of a vehicle seat via a pedestal. It is fixed.
[0014]
The invention according to an eighth aspect is the invention according to any one of the first, second, third, fourth, fifth, sixth and seventh aspects, wherein the torsional rigidity of the torsion spring means is determined by a torsion of a seat fixed to the vehicle body. It is equivalent to the value obtained by combining the rigidity and the torsional rigidity of the occupant seated in this seat, and the inertial mass of the heavyweight is equivalent to the value obtained by combining the inertial mass of the seat and the inertial mass of the occupant. It is characterized by.
[0015]
That is, according to the first aspect of the present invention, one end of the torsion spring means having a predetermined torsional rigidity in a direction centered on a specific axis is fixed at the riding position, and the other end of the return spring means is predetermined. Fix heavyweight with inertial mass. Then, by detecting the rotation of heavy loads around a specific axis and estimating the phase lag felt by the occupant with respect to the driving operation based on the detection result, information directly related to maneuverability and stability is collected. The occupant's feeling can be digitized to enable evaluation of maneuverability and stability.
[0016]
At that time, as in the invention described in claim 2, it is desirable that the torsion spring means is provided with a damping means for damping the rotation of the heavy load, and by providing a damper action that approximates the damping characteristic of an actual passenger. The phase lag in human sense can be grasped more accurately.
[0017]
The specific axis of the torsion spring means is a vertical axis as in the third aspect of the invention, so that the phase lag in the yaw direction of the vehicle can be detected, as in the fourth aspect of the invention. In addition, the phase lag in the roll direction can be detected by setting the axis parallel to the central axis in the longitudinal direction of the vehicle. Further, as in the invention according to claim 5, the longitudinal axis in the longitudinal direction of the vehicle can be detected. By making the axes orthogonal and horizontal, the phase lag in the pitch direction can be detected. The phase delay at that time can be detected by the phase difference between the steering angle of the vehicle steering device and the rotation angle of the heavy load as in the sixth aspect of the invention.
[0018]
The torsion spring means preferably has one end fixed to the mounting position of the vehicle seat via a pedestal as in the invention described in claim 7, and the torsional rigidity of the torsion spring means is defined in claim 8. The torsional rigidity of the seat fixed to the vehicle body and the torsional rigidity of the occupant seated in this seat are equivalent to the combined value, and the inertial mass of the heavyweight is the inertial mass of the seat and the occupant's inertial mass. It is possible to give a moment of inertia equivalent to humans while sitting on the seat, and to eliminate noise unrelated to the feeling of maneuverability and stability. Become.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 relate to an embodiment of the present invention, FIG. 1 is an explanatory diagram showing a phase detector mounted on a vehicle, FIG. 2 is an explanatory diagram showing a configuration of the phase detector, and FIG. 3 is a phase detector. FIG. 4 is a configuration diagram of a phase lag detecting device for maneuverability / stability feeling evaluation, and FIG. 5 is an explanatory diagram showing a phase difference between a vehicle body and a phase detector.
[0020]
In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile, and reference numeral 2 denotes a phase detector installed at a seating position of an occupant in order to numerically evaluate human feelings regarding the maneuverability and stability of the vehicle 1. is there. The phase detector 2 includes a pedestal 3 fixed at a seat mounting position of the vehicle body, a shaft 4 fixed at one end to the pedestal 3, a heavyweight 5 fixed at the other end of the shaft 4, and a shaft 4. It is comprised from the strain gauge 6 attached.
[0021]
The shaft 4 has a characteristic as a torsion spring having a predetermined torsional rigidity in a direction around a specific axis, and the heavyweight 5 has a predetermined inertial mass. Specifically, as shown in FIG. 2, the torsional rigidity of the shaft 4 is set in advance to be equal to a value obtained by combining the torsional rigidity of the seat 7 and the torsional rigidity of the occupant 8 seated on the seat 7. The inertial mass of the heavyweight 5 is set in advance to be equal to a value obtained by combining the inertial mass of the seat 7 and the inertial mass of the occupant 8 seated on the seat 7.
[0022]
On the other hand, the strain gauge 6 has a function as a rotation detecting means for detecting the rotation of the heavyweight 5 around the specific axis, and is operated based on the detected detection result of the rotation of the heavyweight 5 around the specific axis. It is possible to numerically grasp the phase delay in the yaw, roll, and pitch directions that the occupant feels with respect to the operation. As indicated by a broken line in FIG. 2, it is desirable that an elastic member 9 be provided in parallel with the shaft 4 between the base 3 and the heavyweight 5. The elastic member 9 provides a function as a damping means for adding a characteristic equivalent to the damping characteristic of the seat 7 and the occupant 8 with respect to rotation around the axis. The phase delay closer to the sense can be grasped.
[0023]
The phase in each direction of yaw, roll, and pitch by the phase detector 2 is detected by appropriately setting the torsional central axis of the shaft 4 as shown in FIG. That is, if the horizontal axis is the X axis, the vertical axis is the Y axis, and the longitudinal central axis passing through the center of gravity of the vehicle 1 perpendicular to the XY plane is the Z axis, the shaft 4 is arranged parallel to the X axis. Thus, the rotation of the vehicle 1 in the pitch direction can be detected, and the rotation of the vehicle 1 in the yaw direction can be detected by arranging the shaft 4 parallel to the Y axis. Moreover, the rotation of the vehicle 1 in the roll direction can be detected by arranging the shaft 4 in parallel with the Z axis.
[0024]
FIG. 4 shows a configuration of a phase lag detecting device for maneuverability / stability feeling evaluation using the phase detector 2. An electronic control unit (ECU) 20 mounted on the vehicle 1 includes a phase detector. 2 strain gauges 6, a vehicle behavior detection sensor 10 for detecting vehicle behavior such as the steering angle of the vehicle 1, the accelerator opening, and the vehicle speed is connected, and an external computer 50 such as a personal computer can be connected. Configured. Furthermore, when performing various maneuverability / stability tests by automatic maneuvering on behalf of human beings, accelerator operation, steering operation, brake operation, etc. according to pre-programmed control commands or control commands by external wireless communication etc. A control device 30 that performs a driving operation is mounted on the vehicle 1, and the control device 30 is connected to the ECU 20.
[0025]
In various maneuverability / stability tests of the vehicle 1, vehicle behavior data and phase from the vehicle behavior detection sensor 10 associated with the operation of the vehicle 1 driving operation data (driving operation data by a person or the control device 30). Detection data from the strain gauge 6 of the detector 2 is input to the ECU 20 and stored in a memory in the ECU 20 in time series. The data stored in the memory in the ECU 20 is transferred from the ECU 20 to the external computer 50 by connecting the ECU 20 and the computer 50 after the test is completed.
[0026]
The characteristics of the phase detector 2, that is, the torsional rigidity of the shaft 4 and the inertia mass data of the heavy load 5 are input to the computer 50 in advance, and the strain gauge of the phase detector 2 as shown in FIG. 6 is calculated from the output data of No. 6, and the rotation phase of each part of the vehicle body is calculated from the output data of the vehicle behavior detection sensor 10, as shown in FIG. 5B. Then, the phase difference between the phase detection 2 and the vehicle body is obtained, and the maneuverability / stability feeling actually felt by humans is evaluated.
[0027]
For example, when evaluating the phase lag between the vehicle body and human senses with respect to the steering operation, the phase detector 2 (shaft 4) is installed in the vertical direction at the driver's boarding position, and a running test is performed. Are collected and processed by the computer 50. In the computer 50, the yaw angle of the vehicle body is obtained from data obtained by accumulating the output values of the vehicle speed sensor, the steering angle sensor, the yaw rate sensor and the like provided in the vehicle 1 and the output value of the strain gauge 6 of the phase detector 2 in time series. And a change in the yaw angle by the phase detector 2 are examined, and a delay in yaw angle change in a human sense with respect to the steering angle of the steering is estimated using a neural network or the like.
[0028]
In the feeling evaluation of the maneuverability / stability using the phase detector 2 as described above, an inertia moment corresponding to a human being seated on the seat is given to the phase detector 2 to perform driving operation and position relative to each part of the vehicle body. Since the phase difference is detected, it is possible to remove noise irrelevant to the feeling of maneuverability / stability felt by humans, and it is possible to collect phase information directly related to maneuverability / stability.
[0029]
In particular, when the phase detector 2 is installed in the vertical direction to evaluate the occupant's feeling with respect to the steering system, it is possible to detect the phase lag with respect to the steering at a position close to the head of the occupant. Sense can be digitized with high accuracy.
[0030]
【The invention's effect】
As described above, according to the present invention, the human sensory phase lag with respect to driving operation is detected at the boarding position, and noise unrelated to the feeling of maneuverability / stability is eliminated, and the maneuverability / stability is directly related. Information can be collected, and human senses can be appropriately digitized to enable appropriate evaluation of maneuverability and stability feeling.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a phase detector mounted on a vehicle. FIG. 2 is an explanatory view showing a configuration of the phase detector. FIG. 3 is an explanatory view showing an installation direction of the phase detector. Configuration diagram of a phase lag detector for stability feeling evaluation [FIG. 5] An explanatory diagram showing a phase difference between a vehicle body and a phase detector [Explanation of symbols]
1 vehicle 4 shaft (torsion spring means)
5 Heavy strain 6 Strain gauge (Rotation detection means)
20 electronic control unit 50 computer

Claims (8)

乗員の乗車位置に一端が固定され、特定の軸を中心とした方向に予め定められた捩り剛性を有する捩りばね手段と、
上記捩りばね手段の他端に固定され、予め定められた慣性マスを有する重鎮と、
上記特定の軸の周りの上記重鎮の回転を検出する回転検出手段とを備え、
上記回転検出手段の検出結果に基づいて、運転操作に対して乗員が感じる位相遅れを推定することを特徴とする操縦性・安定性フィーリング評価用位相遅れ検出装置。
A torsion spring means having one end fixed at the boarding position of the occupant and having a predetermined torsional rigidity in a direction around a specific axis;
A heavyweight fixed to the other end of the torsion spring means and having a predetermined inertial mass;
Rotation detection means for detecting rotation of the heavy load around the specific axis,
A phase lag detecting device for evaluating maneuverability / stability feeling, wherein a phase lag felt by an occupant with respect to a driving operation is estimated based on a detection result of the rotation detecting means.
上記捩りばね手段に、上記重鎮の回転を減衰させる減衰手段を併設したことを特徴とする請求項1記載の操縦性・安定性フィーリング評価用位相遅れ検出装置。2. The phase lag detecting apparatus for maneuverability / stability feeling evaluation according to claim 1, wherein the torsion spring means is provided with an attenuating means for attenuating the rotation of the heavy load. 上記特定の軸を、鉛直方向の軸とすることを特徴とする請求項1又は請求項2記載の操縦性・安定性フィーリング評価用位相遅れ検出装置。3. The phase lag detecting apparatus for maneuverability / stability feeling evaluation according to claim 1, wherein the specific axis is a vertical axis. 上記特定の軸を、車両の長手方向の中心軸に平行な軸とすることを特徴とする請求項1又は請求項2記載の操縦性・安定性フィーリング評価用位相遅れ検出装置。3. The phase lag detecting apparatus for maneuverability / stability feeling evaluation according to claim 1, wherein the specific axis is an axis parallel to a central axis in a longitudinal direction of the vehicle. 上記特定の軸を、車両の長手方向の中心軸に直交し、且つ水平方向の軸とすることを特徴とする請求項1又は請求項2記載の操縦性・安定性フィーリング評価用位相遅れ検出装置。3. The phase lag detection for maneuverability / stability feeling evaluation according to claim 1 or 2, wherein the specific axis is a horizontal axis orthogonal to a central axis in a longitudinal direction of the vehicle. apparatus. 上記位相遅れを、車両の操舵装置の操舵角と上記重鎮の回転角との位相差とすることを特徴とする請求項1,2,3,4,5の何れか一に記載の操縦性・安定性フィーリング評価用位相遅れ検出装置。6. The maneuverability as claimed in claim 1, wherein the phase delay is a phase difference between a steering angle of a vehicle steering device and a rotation angle of the heavy load. Phase lag detector for stability feeling evaluation. 上記捩りばね手段の一端を、車両の座席の取付け位置に台座を介して固定することを特徴とする請求項1,2,3,4,5,6の何れか一に記載の操縦性・安定性フィーリング評価用位相遅れ検出装置。7. The maneuverability / stability according to claim 1, wherein one end of the torsion spring means is fixed to a mounting position of a vehicle seat via a pedestal. Phase lag detector for evaluating the sexual feeling. 上記捩りばね手段の捩り剛性を、車体に固定される座席の捩り剛性と、この座席に着座する乗員の捩り剛性とを合成した値と同等なものとし、上記重鎮の慣性マスを、上記座席の慣性マスと上記乗員の慣性マスとを合成した値と同等なものとすることを特徴とする請求項1,2,3,4,5,6,7の何れか一に記載の操縦性・安定性フィーリング評価用位相遅れ検出装置。The torsional rigidity of the torsion spring means is equivalent to a value obtained by combining the torsional rigidity of the seat fixed to the vehicle body and the torsional rigidity of the occupant seated on the seat. The maneuverability and stability according to any one of claims 1, 2, 3, 4, 5, 6 and 7, wherein the inertial mass is equivalent to a value obtained by synthesizing the inertial mass of the occupant. Phase lag detector for evaluating the sexual feeling.
JP2001232018A 2001-07-31 2001-07-31 Phase lag detector for maneuverability and stability feeling evaluation Expired - Fee Related JP4657514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232018A JP4657514B2 (en) 2001-07-31 2001-07-31 Phase lag detector for maneuverability and stability feeling evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232018A JP4657514B2 (en) 2001-07-31 2001-07-31 Phase lag detector for maneuverability and stability feeling evaluation

Publications (2)

Publication Number Publication Date
JP2003042909A JP2003042909A (en) 2003-02-13
JP4657514B2 true JP4657514B2 (en) 2011-03-23

Family

ID=19063995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232018A Expired - Fee Related JP4657514B2 (en) 2001-07-31 2001-07-31 Phase lag detector for maneuverability and stability feeling evaluation

Country Status (1)

Country Link
JP (1) JP4657514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220378A (en) * 2011-04-11 2012-11-12 Mitsubishi Motors Corp Vehicle behavior simulation device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249032A (en) * 1984-05-24 1985-12-09 Toyota Central Res & Dev Lab Inc Comfortable riding sense measuring instrument for automobile
JPH06156037A (en) * 1992-11-20 1994-06-03 Nippondenso Co Ltd Control gain adjusting device for suspension
JPH07244065A (en) * 1994-03-03 1995-09-19 Hitachi Ltd Motion evaluation method
JPH0911929A (en) * 1995-06-30 1997-01-14 Toyota Central Res & Dev Lab Inc Estimation method and device for operation feeling
JPH09145552A (en) * 1995-11-20 1997-06-06 Toyota Central Res & Dev Lab Inc Spin limit-detecting apparatus and spin-preventing apparatus
JPH10281945A (en) * 1997-03-31 1998-10-23 Toyota Central Res & Dev Lab Inc Riding comfort evaluating device
JP2000121506A (en) * 1998-10-20 2000-04-28 Kawasaki Heavy Ind Ltd Method and device for evaluating comfort ableness to ride in vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249032A (en) * 1984-05-24 1985-12-09 Toyota Central Res & Dev Lab Inc Comfortable riding sense measuring instrument for automobile
JPH06156037A (en) * 1992-11-20 1994-06-03 Nippondenso Co Ltd Control gain adjusting device for suspension
JPH07244065A (en) * 1994-03-03 1995-09-19 Hitachi Ltd Motion evaluation method
JPH0911929A (en) * 1995-06-30 1997-01-14 Toyota Central Res & Dev Lab Inc Estimation method and device for operation feeling
JPH09145552A (en) * 1995-11-20 1997-06-06 Toyota Central Res & Dev Lab Inc Spin limit-detecting apparatus and spin-preventing apparatus
JPH10281945A (en) * 1997-03-31 1998-10-23 Toyota Central Res & Dev Lab Inc Riding comfort evaluating device
JP2000121506A (en) * 1998-10-20 2000-04-28 Kawasaki Heavy Ind Ltd Method and device for evaluating comfort ableness to ride in vehicle

Also Published As

Publication number Publication date
JP2003042909A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US20150292934A1 (en) Method and device for ascertaining the total mass of an electrically drivable vehicle
US9150176B2 (en) Device and method for triggering passenger protection system in consideration of road grip coefficient
CN112829864B (en) Single-vehicle manned detection method and system
KR102190378B1 (en) Integrated testing apparatus for a self balancing robot
JP5089881B2 (en) Vehicle load estimation method and apparatus, and vehicle load estimation program
JP3518238B2 (en) Ride comfort evaluation device
JP4657514B2 (en) Phase lag detector for maneuverability and stability feeling evaluation
US11565714B2 (en) System for estimating riding posture
JP4121695B2 (en) Tire exterior noise prediction method and recording medium recording tire exterior noise prediction program
EP0363014A2 (en) System for detecting rorational imbalance of vehicle roadwheels
US5847290A (en) Apparatus and method for measuring both suspension displacement and spring force in vehicle
Nieboer et al. Motorcycle crash test modelling
JP3448559B2 (en) Vehicle mass estimation arithmetic unit
JP7378340B2 (en) Vehicle control device
JP2002181522A (en) Method for obtaining seating location of object on vehicle seat and device for implementing the same
JP6835034B2 (en) Characteristics test method for automobile bodies
US20040051376A1 (en) Method for weighting a seat profile
JP2003118458A (en) Method of evaluating sitting/travelling fatigue, method of evaluating seat for vehicle and on-vehicle seat evaluation simulator
CN115326423A (en) Objective test method for initial-stage ride comfort of passenger car
JP2579645B2 (en) Vehicle driving performance detection method
CN216467745U (en) Turn to and prevent controlling means that turns on one's side
CN112193007B (en) Damper control system and method based on rough road determination
Yoo et al. Design of single axis vibration simulators for investigation of plantar sensitivity
KR100435398B1 (en) Method and apparatus for offset clash test
Bhoraskar et al. Ride Comfort Analysis of Motor Vehicles using Analytical and Experimental Procedures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees