JP4655336B2 - Paper and paper containers using modified pulp fibers - Google Patents

Paper and paper containers using modified pulp fibers Download PDF

Info

Publication number
JP4655336B2
JP4655336B2 JP2000193590A JP2000193590A JP4655336B2 JP 4655336 B2 JP4655336 B2 JP 4655336B2 JP 2000193590 A JP2000193590 A JP 2000193590A JP 2000193590 A JP2000193590 A JP 2000193590A JP 4655336 B2 JP4655336 B2 JP 4655336B2
Authority
JP
Japan
Prior art keywords
paper
pulp
carboxyl group
papermaking
internal additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000193590A
Other languages
Japanese (ja)
Other versions
JP2001336084A (en
Inventor
友美子 加藤
健太郎 山脇
龍吉 松尾
敦子 西野
純一 神永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2000193590A priority Critical patent/JP4655336B2/en
Publication of JP2001336084A publication Critical patent/JP2001336084A/en
Application granted granted Critical
Publication of JP4655336B2 publication Critical patent/JP4655336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Paper (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐水性、撥水性、湿潤紙力などの機能を付与する内添剤の歩留まりを向上させる改質パルプ繊維を使用した紙および紙容器に関するもので、耐水性と紙力が要求される各種包装用紙、建装用紙、また保型性が必要な冷凍食品用やテイクアウト用食品紙トレイ、紙カップ、段ボールライナー及び中芯原紙、インスタント食品用紙容器、化粧紙、紙製育苗ポットなどの用途に使用できる。
【0002】
【従来の技術】
近年、これまでの環境負荷型技術から環境保全型への技術転換が世界中で巻き起こっている。その一つとして、有限な資源である石油由来のプラスチック材料から再生可能な天然資源である木材セルロースが注目され、例えば従来、発泡ポリスチレンなどの合成樹脂を使用した容器に代わり、環境ホルモンの問題解決も兼ねて、紙容器へ移行し、需要も増加してきている。
【0003】
また、製紙業界では古紙の再利用が活発に行われること、プラスチックに比べて燃焼熱が低いことから焼却炉を傷めずにサーマルリサイクルによってエネルギーに変換が可能である等の理由からその需要はますます増加している。
【0004】
また、このような状況で増加する紙ゴミは、CO2 量削減による地球温暖化防止や2000年の紙容器を対象とした容器包装リサイクル法の施行に伴い、紙ゴミを回収し、原料として再利用することが望まれている。
【0005】
しかし、紙はプラスチックに比べ劣る物性があり、中でも紙はセルロース繊維が水素結合したものである為、繊維間に容易に水が入り込み耐水性が低い課題がある。
【0006】
従来、耐水性等の機能を紙に付与する方法としては、(1)紙を抄紙・抄造する際に、機能性を付与する薬剤をパルプ原料へ添加(内添)、あるいは機能材料(繊維)の混抄、(2)抄紙・抄造された紙へ機能性薬剤の塗工、あるいは含浸(外添)、(3)紙表面へポリエチレンやポリエチレンテレフタラート等のプラスチックフィルムのラミネート等の方法がある。
【0007】
上記(2)の外添、あるいは(3)のラミネートの手法を用いた紙は端面に加工がされていない為、その部分からの浸水が生じてしまう為に紙の各種機能が低下するという欠点を有していた。またパルプモールド等の3次元成形体には、外添やラミネートの工程が効率的でないという欠点も有している。
【0008】
(1)の内添ではセルロース分子の親水性基を効率的に封鎖し、且つ全層に渡って容易に改質できる為、外添法で挙げられる紙の切断面からや摩擦破損による浸水による耐水性の低下は起こらない。
【0009】
しかし、古くから用いられてきた内添剤として、ロジンやアルキルケテンダイマー(AKD)等のサイズ剤、カチオンデンプンやポリアクリルアミド(PAM)等の乾燥紙力増強剤、エポキシ化ポリアミドポリアミンやジアルデヒドデンプン等の湿潤紙力増強剤等が挙げられ、筆記性や軽度の耐水性の付与は可能であるが、今後展開が予想される各種用途に対して十分な物性とは言えない。
【0010】
最近では、フッ素系の薬剤や、シリコーン系の薬剤を使用したものもあるが、薬剤が概ね高価で、また本来、水不溶性の薬剤を水溶化させるために、親水基を導入したものがあるが、多くはノニオン性かアニオン性であり、各種歩留り向上剤や定着剤の併用が必要で、又は親水基を導入せずカチオン系界面活性剤を使用して水に分散化、あるいは乳化したりするが、パルプへの吸着が低く、定着量に限界がある為、高い耐水性が望めず、白水中へ薬剤が流出し、公害対策から廃水処理における回収操作や設備が必要な場合が多い。
【0011】
このような課題を解決する技術として、特開平9−16817号公報等で、各種有機金属アルコキシド、及びその重合体を内添剤として紙の全層に、且つ有効的にシロキサン架橋構造等の金属架橋構造を形成させ、各種機能性(特に耐水性)を付与させる内添剤及びその内添紙を提案した。
【0012】
一般的に抄紙用内添剤は、少量の使用量で機能を発現することが望ましい。そのためには抄紙工程中に内添剤が添加された時、水中に分散しているパルプ繊維に対して選択的に定着し、機能する事が効率的であると考えられる。
【0013】
また、パルプ繊維は水に分散させると、カルボキシル基の様な表面の官能基の解離や自らの水酸イオンの選択的吸着によりアニオン性に帯電するといわれている。アニオン性に帯電したパルプ繊維に対して反対の電荷であるカチオン性の内添剤を添加することにより、両者間で電気的作用が働き、内添剤とパルプ繊維とが水中で選択的に結合すると考えられる。
【0014】
従って、パルプ繊維表面にカルボキシル基の様な表面の官能基を導入することが、抄紙用内添薬剤の歩留りを向上させると考えられる。
【0015】
【発明が解決しようとする課題】
本発明は、上記課題を鑑みてなされたものである。即ち、抄紙用内添剤のパルプ繊維への定着性を改良すべくパルプ繊維を用いた紙、およびこのパルプ繊維に有機物による可塑性などと無機物による耐熱性、耐候性、耐水性などの特性を同時に兼ね備えた抄紙用内添剤を使用して、より紙の表面と端面からの浸水に強い紙および紙容器を提供することを目的とするものである。
【0016】
【課題を解決する為の手段】
本発明の第1の発明は、パルプ繊維を酸化処理して、パルプ繊維の構成単位であるセルロース分子の還元末端、またはセルロース骨格におけるピラノース環の第6位が選択的に酸化され、カルボキシル基に変換された構造を含む改質パルプ繊維を含むことを特徴とした紙および紙容器を提供する。
【0017】
本発明の第2の発明は、カルボキシル基に変換された構造が表面に偏積したパルプ繊維を含むことを特徴とした紙および紙容器を提供する。
【0018】
本発明の第3の発明は、第1の発明において、TAPPI TEST METHODS T237 om−93に従って定量した紙中の全パルプ中のカルボキシル基量X1 が、改質処理前の木材パルプのカルボキシル基量をX0 とした場合、X0 <X1 ≦30X0 の範囲、より好ましくはX0 <X1 ≦10X0 の範囲にある紙および紙容器を提供する。
【0019】
具体的には、標準的な針葉樹クラフトパルプ全体のカルボキシル基量が約0.04mmol/gとすると紙全体のパルプのカルボキシル基量が0.04から1.2mmol/g、より好ましくは0.04から0.4mmol/gの範囲にある紙および紙容器を提供する。
【0020】
本発明の第4の発明は、第1から3の発明のいずれかの改質パルプ繊維を含む紙において、抄紙用内添剤が添加されていることを特徴とする紙および紙容器を提供する。
【0021】
本発明の第5の発明は、第4の発明における抄紙用内添剤として、Am M(OR)n−m (Aはアミノ基を少なくとも1つ有する置換基、Mは金属原子)で示される有機金属化合物と、Bm M(OR)n−m (Bはビニル基、エポキシ基、アルキル基を少なくとも1つ有する置換基、Mは金属原子)で示される有機金属化合物との混合物、又は該有機金属化合物の共重合体からなるものを含むことを特徴とする紙および紙容器を提供する。
【0022】
本発明の第6の発明は、前記金属元素Mが、ケイ素(Si)であることを特徴とする紙および紙容器を提供する。
【0023】
【発明の実施の形態】
以下、本発明の詳細について説明する。
【0024】
本発明に関わるパルプ繊維は、木材などの通常のパルプ原料から選ばれる。1種類又は2種類以上を混ぜたものでも良い。特に限定されるものではない。
【0025】
本発明の紙および紙容器に含まれる改質パルプ繊維は、N−オキシル化合物(オキソアンモニウム塩)の存在下、酸化剤を用いて、パルプ繊維を酸化することにより得ることができる。N−オキシル化合物には、2,2,6,6−テトラメチル−1−ピペリジンN−オキシル(以下TEMPOと称する)などが含まれる。
【0026】
この酸化方法では、酸化の程度に応じて、カルボキシル基を均一かつ効率よく導入できる。本酸化反応は、前記N−オキシル化合物と、臭化物又はヨウ化物との共存下で行うのが有利である。
【0027】
臭化物又はヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが使用できる。酸化剤としては、ハロゲン、次亜ハロゲン酸,亜ハロゲン酸や過ハロゲン酸又はそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。
【0028】
本発明の酸化では、パルプ繊維中のセルロース骨格中の水酸基を選択的に酸化するものである。N−オキシル化合物は触媒量で済み、例えば、パルプ重量に対して2%から10ppmあれば充分である。
【0029】
本発明の酸化反応条件などは特に限定されず、セルロースの性状、使用する設備などによって最適化されるべきであるが、臭化物やヨウ化物との共存下で酸化反応を行うと、温和な条件下でも酸化反応を円滑に進行させることができ、カルボキシル基の導入効率を大きく改善できる。
【0030】
臭化物及び/又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択でき、例えば、パルプ繊維重量に対し20%から100ppmである。
【0031】
本発明におけるパルプ繊維の酸化反応系は、N−オキシル化合物にはTEMPOを用い、臭化ナトリウムの存在下、酸化剤として次亜塩素酸ナトリウムを用いるのが好ましい。
【0032】
本発明におけるパルプの酸化反応では、セルロースの1級水酸基への酸化の選択性を上げ、副反応を抑える目的で、反応温度は室温以下で反応させることが望ましい。
【0033】
また、本発明におけるパルプの酸化反応における反応系のpHは、反応の効率の面から、pH9から12の間で反応を行うことが望ましい。
【0034】
本発明の紙および紙容器は、上記の改質パルプを用い抄紙、プレス、乾燥を行い作製したもの、または、前述の抄紙用内添剤をパルプスラリー中に内添し、抄紙、プレス、乾燥を行い作製したもの、および同様に湿式のパルプモールド成形手法によりモールド成形した紙容器である。
【0035】
本発明に係る内添紙の抄紙用内添剤は、Am M(OR)n−m (Aはアミノ基を少なくとも1つ有する置換基、Mは金属原子)、若しくはそれからなる重合体、あるいは共重合体であるために、有機物による可塑性などと、無機物による耐熱性、耐候性、耐水性などの特性を同時に兼ね備えることが可能となる。
【0036】
また、本発明に係る内添紙の抄紙用内添剤は、Am M(OR)n−m (Aはアミノ基を少なくとも1つ有する置換基、Mは金属原子)の置換基が官能基であるアミノ基を有しているために、その極性がカチオン性となり、アニオン性基であるカルボキシル基を導入したパルプ繊維へ選択的に結合が生じ、高い定着性を示す。
【0037】
また、本発明に係る抄紙用内添剤は、Am M(OR)n−m (Aはアミノ基を少なくとも1つ有する置換基、Mは金属原子)又は該有機金属化合物の重合体と、Bm M(OR)n−m (Bはビニル基、エポキシ基、アルキル基を少なくとも1つ有する置換基、Mは金属原子)又は該有機金属化合物からなる重合体との共重合体であるために、それらを高定着させた紙は有機物による可塑性などと、無機物による耐熱性、耐候性、耐水性などの特性を同時に兼ね備えることが可能となる。
【0038】
本発明に係る内添紙の抄紙用内添剤として、Am M(OR)n−m (Aはアミノ基を少なくとも1つ有する置換基、Mは金属原子)を使用すると、その極性がカチオン性となり、アニオン性基であるカルボキシル基を導入したパルプ繊維へ選択的に結合が生じ、高い定着性を示すと考えられる。
【0039】
さらに併用されるBm M(OR)n−m (Bはビニル基、エポキシ基、アルキル基を少なくとも1つ有する置換基、Mは金属原子)で、それらを高定着させた紙は、各種機能、特に高度の耐水性を保持することが可能となる。
【0040】
本発明に係る内添紙および紙容器は、これらの抄紙用内添剤を抄紙工程中に内添し作製していることから、紙全層からの機能化が生じ紙の表面と端面からの浸水に強い耐水性および容器としての保形性を有する。
【0041】
【実施例】
以下、本発明の実施例について詳細に説明するが本発明は実施例に記載の材料に限定されるものではない。
【0042】
原料は針葉樹漂白クラフトパルプ(以下NBKPとする。)をカナダ標準濾水度試験方法で350csfの叩解度のものを使用した。
【0043】
抄紙用内添剤としてはN−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン(チッソ(株)製、商品名;S320)2.77g(12.24mmol)と2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(チッソ(株)製、商品名;S530)4.525g(18.36mmol)、及び0.1N−塩酸10molを混合し約15分間攪拌した後、イソプロパノールを適量添加し、約15分間攪拌した。
【0044】
<製造例1> 叩解したパルプの水分散スラリー(絶乾パルプ量=50g相当)にTEMPO0.125g、臭化ナトリウム1.25gを溶解させた水溶液を加え、パルプの全体に対する濃度が約1.3wt%になるよう調製した。
【0045】
パルプスラリーを冷却し、次亜塩素酸ナトリウム水溶液(Cl=5%)10mlを添加し、酸化反応を開始する。反応温度は常に5℃に維持した。反応中はスラリーのpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。15分後反応を停止し、十分に水洗後、約1.0wt%の酸化改質パルプスラリーを得た。
【0046】
<製造例2> 叩解したパルプの水分散スラリー(絶乾パルプ量=50g相当)にTEMPO0.125g、臭化ナトリウム1.25gを溶解させた水溶液を加え、パルプの全体に対する濃度が約1.3wt%になるよう調製した。
【0047】
パルプスラリーを冷却し、次亜塩素酸ナトリウム水溶液(Cl=5%)50mlを添加し、酸化反応を開始する。反応温度は常に5℃に維持した。反応中はスラリーのpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。60分後反応を停止し、十分に水洗後、約1.0wt%の酸化改質パルプスラリーを得た。
【0048】
<比較製造例> 同様に、叩解したパルプの水分散スラリー(絶乾パルプ量=50g相当)にTEMPO1.25g、臭化ナトリウム2.5gを溶解させた水溶液を加え、パルプの全体に対する濃度が約1.3wt%になるよう調製した。
【0049】
パルプスラリーを冷却し、次亜塩素酸ナトリウム水溶液(Cl=5%)300mlを添加し、酸化反応を開始する。室温で反応させ、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。この反応をpHの低下が起こらなくなるまで続け、十分に水洗後、約1.0wt%の酸化改質パルプスラリーを得た。
【0050】
次に、前記製造した本発明に関わる酸化改質パルプと、前記した抄紙用内添剤を利用した本発明の紙の実施例を示すが、これらは本発明を限定するものではない。
【0051】
<実施例1、2> 製造例1から2で調整した酸化改質パルプスラリーをそのまま、標準型手すき角型抄紙機で、坪量約80g/m2 の紙を抄紙し、脱水プレス(35N/cm2 )を5分間行い、ドラム式乾燥機(表面温度約120℃)で乾燥させ、紙を得た。
【0052】
<実施例3、4> 製造例1から2で調整した酸化改質パルプスラリーに、前記の抄紙用内添剤1wt%水溶液をSiO2 濃度換算で対絶乾パルプ重量比10wt%混合し5分間攪拌後、標準型手すき角型抄紙機で、坪量約80g/m2 の内添紙を抄紙し、脱水プレス(35N/cm2 )を5分間行い、ドラム式乾燥機(表面温度約120℃)で乾燥させ、内添紙を得た。
【0053】
<比較例1、2> 非改質のNBKP(N.V.=1.0wt%、叩解度=350csf)水分散スラリー(比較例1)、比較製造例のパルプスラリー(比較例2)をそのまま、標準型手すき角型抄紙機で、坪量約80g/m2 の紙を抄紙し、脱水プレス(35N/cm2 )を5分間行い、ドラム式乾燥機(表面温度約120℃)で乾燥させ、紙を得た。
【0054】
<比較例3、4> 非改質のNBKP(N.V.=1.0wt%、叩解度=350csf)水分散スラリー(比較例1)、比較製造例のパルプスラリー(比較例2)に、それぞれ前記の抄紙用内添剤1wt%水溶液をSiO2 濃度換算で対絶乾パルプ重量比10wt%混合し5分間攪拌後、標準型手すき角型抄紙機で、坪量約80g/m2の内添紙を抄紙し、脱水プレス(35N/cm2 )を5分間行い、ドラム式乾燥機(表面温度約120℃)で乾燥させ、内添紙を得た。
【0055】
<分析例> 製造法1、2および、比較製造例、改質前のNBKPにおいて、パルプ中のカルボキシル基量をTAPPI TEST METHODS T237om−93に従い定量した。その結果を表1に示す。
【0056】
【表1】

Figure 0004655336
【0057】
この表から、酸化処理を行うことにより、パルプ中のカルボキシル基量が増加したことがわかった。
【0058】
実施例3、4、及び比較例2の合計4種類の作製した用紙のSiO2 定着量、及び実施例1から4、及び比較例1、2の合計8種類の作製した用紙の耐水性(wet/dry値)、吸水率を測定した。それぞれの試験方法とその結果について詳述する。
【0059】
各用紙は、各物性評価を行う前に、JIS−P8111に基づいて20℃−65%RH環境下で24時間以上の調湿を行った。
【0060】
<試験1>SiO2 定着量 抄紙用内添剤の紙への定着性を測定するために、実施例2および比較例2の合計4種類の用紙中のSiO2 の定量分析を行った。測定は蛍光X線分析法を用いた。詳しい測定方法を以下に示す。
【0061】
各試料を凍結粉砕機(SPEX 6700 Freezer/Mill)を用いて、粉末化した。粉砕時間は10分間とした。
【0062】
次に、ペレット成型機中に粉末化した試料を1.0g入れ、圧縮(20tf−5min.)し、ペレット(φ=40mm)を作製した。成型後、ペレット中の水分を除去するため、デシケータ中に24時間以上静置し、蛍光X線分析用試料を作製した。
【0063】
前記調製した各種用紙のペレットで、蛍光X線(リガク製システムス3270)を使用してSiの定量分析を行った、測定波長はSi−Kaである。結果を表2に示す。
【0064】
【表2】
Figure 0004655336
【0065】
表2からも明らかなように、本発明の表面にカルボキシル基を増加させた酸化改質パルプ繊維は、ブランクのNBKP(比較例2)と比較し、非常に高いSiO2 定着量を示した(実施例2)。これは、これらの内添剤の定着がパルプ表面のカルボキシル基の量に影響していることが示唆された。
【0066】
また、特にパルプ中のカルボキシル基量が0.04から0.45mmol/gのところでは、定着量が急激に増加しており、このあたりで最も効率が良いことが示唆された。それ以上のカルボキシル基量になると定着量の増加率が低くなった。
【0067】
<試験2>耐水性(wet/dry値) 実施例1、2および比較例1、2の合計8種類の用紙の耐水性を求めるため以下に記す試験を実施した。すなわち、先ず、JIS P8113に基づいてオートグラフ(島津製作所社製 島津オートグラフAG−500A)を用いて、乾燥状態(20°C−65%RH)と湿潤状態(試料片を蒸留水中に1時間浸水)における破断強度を測定した。
【0068】
また、上記より算出した破断応力を用いて、wet/dry(%)=湿潤紙力/乾燥紙力×100で、湿潤破断応力/乾燥破断応力比(wet/dry)を算出し、耐水性を評価した。 以上の結果を表3に示す。
【0069】
【表3】
Figure 0004655336
【0070】
<試験3>吸水率 吸水率(%)=浸水前と浸水後の重量差(g)/浸水前の重量(g)×100より、各試料の浸水前と浸水後の重量差から、吸水率(重量増加率)を算出した。各試料片は蒸留水中に1時間浸水した。 その結果を表4に示す。
【0071】
【表4】
Figure 0004655336
【0072】
上記、表3、表4から明らかなように、表面にカルボキシル基を増加させた酸化改質パルプから作成した紙は、比較例1と比べて、wet/dry値が高く、吸水率も低いことから、高い耐水性を示した(実施例1)。
【0073】
また、内添紙においては、定着量の増加により比較例1、2のどちらと比べてもwet/dry値が高く、吸水率も低いことから、高い耐水性を示した(実施。
【0074】
パルプ繊維表面にカルボキシル基を導入する事はパルプ繊維自体の結合を強め、紙としての耐水性、強度が高まる。また、内添剤を添加した際にも非常に高い定着性を示し、耐水性、強度もさらに向上する。しかし、過剰に酸化すると、内添剤を添加した際の定着量は高く、吸水率も低いが、パルプ繊維自体の強度が弱まり、紙の強度は上がらない。
【0075】
次に、前記製造した本発明に関わる酸化改質パルプと、前記した抄紙用内添剤を利用した本発明の紙容器の実施例としてパルプモールドを示すが、これらは本発明を限定するものではなく、前記した本発明の紙を用いて容器成形したものであっても構わない。
【0076】
<実施例5、6> 製造例1から2で調整した酸化改質パルプスラリーに、前記の抄紙用内添剤1wt%水溶液をSiO2 濃度換算で対絶乾パルプ重量比10wt%混合し5分間攪拌後、湿式のパルプモールド成形機により、重量15gの紙容器を作成した。
【0077】
<比較例5> 非改質のNBKP(N.V.=1.0wt%、叩解度=350csf)水分散スラリーをそのまま、湿式のパルプモールド成形機により、重量15gの紙容器を作成した。
【0078】
<比較例6> 非改質のNBKP(N.V.=1.0wt%、叩解度=350csf)水分散スラリーに、前記の抄紙用内添剤1wt%水溶液をSiO2 濃度換算で対絶乾パルプ重量比10wt%混合し5分間攪拌後、湿式のパルプモールド成形機により、重量15gの紙容器を作成した。
【0079】
<試験4>容器としての耐水強度 実施例5、6および比較例5、6の紙容器の容器としての耐水強度を求めるため以下に記す試験を実施した。すなわち、先ず、オートグラフ(島津製作所社製 島津オートグラフAG−500A)を用いて、乾燥状態(20°C−65%RH)における定速圧縮試験による座屈時の荷重を測定した。さらに80℃熱水を紙容器に満たし、30分経過後、熱水を捨てて、直ちに同様の定速圧縮試験を行い、湿潤状態での座屈時の荷重を測定した。結果を表5に示す。
【0080】
【表5】
Figure 0004655336
【0081】
上記、表5から明らかなように、本発明の紙容器は、比較例6と比べて、湿潤時の強度が高く、湿潤条件下においても容器としての保形性が維持されている。
【0082】
【発明の効果】
本発明の酸化改質パルプ繊維は、パルプ繊維の形状は殆ど損傷させることなく、パルプ繊維の構成単位であるセルロース分子の還元末端、またはセルロース骨格におけるピラノース環の第6位が選択的に酸化され、カルボキシル基に変換された構造を含み、変換されたカルボキシル基が特にパルプ繊維表面に偏在するパルプ繊維である。そのため、効率よく抄紙用内添剤を歩留まらせることができ、酸化改質されていない標準のパルプと比較し、非常に高い定着量の紙および紙容器を提供することができる。さらに、この酸化方法では、反応中のpHが9から12、反応温度が0℃から室温までの温和な条件で、効率よく改質パルプ繊維を調製することが可能である。
【0083】
本発明の紙では、パルプ繊維表面にカルボキシル基を導入したことによる高い電荷極性から、強固な水素結合を形成し、通常の紙よりも高い繊維間結合が生じ、内添剤を使用しなくても従来の湿潤強化紙並みの強度をもつ、しなやかな紙が作成できた。
【0084】
さらに、内添紙および紙容器では、添加した抄紙用内添剤のアミノ系有機金属アルコキシドとエポキシ系有機金族アルコキシドの混合物、あるいは重合体を基本として、触媒存在下、水中の加水分解重合反応によってその内添紙の耐水性をさらに向上させることが可能であり、容器としての耐水強度も向上し、液体容器や、湿潤雰囲気下での使用に耐える耐水容器としても高い保形性が得られる。
【0085】
これらの内添剤は、一般の抄紙用内添剤特にカチオン性高分子のように、パルプ繊維への吸着サイトとしてアミノ系有機金属アルコキシド中のアミノ基が機能を有し、パルプ中のアニオン性基となるカルボキシル基へ、高い定着性を示す。
【0086】
そのため、表面にカルボキシル基を導入したパルプ繊維から作成した紙および紙容器では非常に高い定着性を示し、それにより、さらに耐水性や紙力を向上させることが可能になり、プラスチック容器代替の可能性も高まった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a paper and a paper container using a modified pulp fiber that improves the yield of an internal additive that provides functions such as water resistance, water repellency, and wet paper strength. Water resistance and paper strength are required. Various packaging papers, construction papers, frozen food and takeout food paper trays that require shape retention, paper cups, corrugated liners and core base paper, instant food paper containers, decorative paper, paper seedling pots, etc. Can be used for
[0002]
[Prior art]
In recent years, a technology shift from the conventional environmental load type technology to the environmental conservation type has occurred around the world. As one of them, wood cellulose, a natural resource that can be regenerated from plastic materials derived from petroleum, which is a finite resource, has attracted attention. For example, instead of containers using synthetic resins such as expanded polystyrene, the problem of environmental hormones has been solved. At the same time, there is a shift to paper containers and demand is increasing.
[0003]
In addition, the paper industry is actively reusing used paper, and because it has lower combustion heat than plastic, it can be converted into energy by thermal recycling without damaging the incinerator. Increasingly.
[0004]
In addition, paper waste that increases in this situation is collected and reused as a raw material in line with the prevention of global warming by reducing CO2 and the enforcement of the Containers and Packaging Recycling Law for paper containers in 2000. It is hoped to do.
[0005]
However, paper has physical properties inferior to those of plastic, and among them, paper is a material in which cellulose fibers are hydrogen-bonded. Therefore, there is a problem that water easily enters between the fibers and the water resistance is low.
[0006]
Conventional methods for imparting water resistance and other functions to paper are as follows: (1) When paper is made or made, a chemical imparting functionality is added to the pulp raw material (internal addition), or a functional material (fiber) (2) Application of functional agents to paper or paper, or impregnation (external addition), and (3) lamination of a plastic film such as polyethylene or polyethylene terephthalate on the paper surface.
[0007]
The paper that uses the external addition of (2) or the laminate method of (3) is not processed on the end face, so that water is spilled from that portion, and various functions of the paper are reduced. Had. Further, a three-dimensional molded body such as a pulp mold has a disadvantage that the process of external addition and lamination is not efficient.
[0008]
In the internal addition of (1), the hydrophilic group of the cellulose molecule is effectively blocked and can be easily modified over the entire layer. There is no reduction in water resistance.
[0009]
However, sizing agents such as rosin and alkyl ketene dimer (AKD), dry paper strength enhancers such as cationic starch and polyacrylamide (PAM), epoxidized polyamide polyamine and dialdehyde starch have been used for a long time. Wet paper strength enhancers, etc. can be mentioned, and it is possible to impart writing properties and mild water resistance, but it cannot be said to be sufficient physical properties for various uses that are expected to be developed in the future.
[0010]
Recently, there are those that use fluorine-based drugs and silicone-based drugs, but the drugs are generally expensive, and there are those that have hydrophilic groups introduced to make water-insoluble drugs water-soluble. , Many are nonionic or anionic and require the use of various retention aids and fixing agents, or are dispersed in water or emulsified using a cationic surfactant without introducing a hydrophilic group However, since the adsorption to the pulp is low and the amount of fixing is limited, high water resistance cannot be expected, the chemical flows out into the white water, and in many cases, a recovery operation and equipment for wastewater treatment are necessary for pollution control.
[0011]
As a technique for solving such a problem, in Japanese Patent Laid-Open No. 9-16817, etc., various organometallic alkoxides and polymers thereof are used as an internal additive in all layers of paper, and effectively a metal such as a siloxane crosslinked structure. We have proposed an internal additive that forms a cross-linked structure and imparts various functions (especially water resistance) and its internal paper.
[0012]
In general, it is desirable that an internal additive for papermaking exhibits a function with a small amount of use. For this purpose, when an internal additive is added during the paper making process, it is considered efficient to selectively fix and function on the pulp fibers dispersed in water.
[0013]
Further, when the pulp fiber is dispersed in water, it is said that it is charged anionic due to dissociation of functional groups on the surface such as carboxyl groups and selective adsorption of its own hydroxide ions. By adding a cationic internal additive, which has the opposite charge to the anionically charged pulp fiber, an electrical action works between the two, and the internal additive and the pulp fiber are selectively bonded in water. I think that.
[0014]
Therefore, it is considered that introduction of a functional group on the surface of the pulp fiber such as a carboxyl group improves the yield of the internal additive for papermaking.
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems. That is, paper using pulp fibers to improve the fixability of pulp additives to the pulp fibers, and the properties of the pulp fibers such as plasticity by organic matter and heat resistance, weather resistance, water resistance by inorganic matter at the same time An object of the present invention is to provide a paper and a paper container that are more resistant to water immersion from the paper surface and end face by using the paper additive.
[0016]
[Means for solving the problems]
In the first invention of the present invention, the pulp fiber is oxidized to selectively oxidize the reducing end of the cellulose molecule, which is a constituent unit of the pulp fiber, or the 6th position of the pyranose ring in the cellulose skeleton, to form a carboxyl group. Provided are paper and paper containers characterized by comprising modified pulp fibers comprising a converted structure.
[0017]
According to a second aspect of the present invention, there is provided a paper and a paper container characterized in that the structure converted into a carboxyl group includes pulp fibers unevenly deposited on the surface.
[0018]
According to a third aspect of the present invention, in the first aspect, the amount X1 of carboxyl groups in the total pulp in the paper determined according to TAPPI TEST METHODS T237 om-93 is the amount of carboxyl groups in the wood pulp before the modification treatment. When X0 is satisfied, paper and paper containers in the range of X0 <X1 ≦ 30X0, more preferably in the range of X0 <X1 ≦ 10X0 are provided.
[0019]
Specifically, when the amount of carboxyl groups in the whole standard softwood kraft pulp is about 0.04 mmol / g, the amount of carboxyl groups in the whole paper pulp is 0.04 to 1.2 mmol / g, more preferably 0.04. And paper containers in the range of 0.4 to 0.4 mmol / g.
[0020]
According to a fourth aspect of the present invention, there is provided a paper and a paper container, wherein a papermaking internal additive is added to the paper containing the modified pulp fiber of any one of the first to third aspects. .
[0021]
The fifth invention of the present invention is represented by Am M (OR) nm (A is a substituent having at least one amino group, and M is a metal atom) as an internal additive for papermaking in the fourth invention. A mixture of an organometallic compound and an organometallic compound represented by Bm M (OR) nm (where B is a substituent having at least one vinyl group, epoxy group or alkyl group, and M is a metal atom), or the organic Provided is a paper and a paper container characterized by comprising a copolymer of a metal compound.
[0022]
A sixth invention of the present invention provides a paper and a paper container, wherein the metal element M is silicon (Si).
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0024]
The pulp fiber according to the present invention is selected from ordinary pulp materials such as wood. One type or a mixture of two or more types may be used. It is not particularly limited.
[0025]
The modified pulp fiber contained in the paper and paper container of the present invention can be obtained by oxidizing pulp fiber using an oxidizing agent in the presence of an N-oxyl compound (oxoammonium salt). N-oxyl compounds include 2,2,6,6-tetramethyl-1-piperidine N-oxyl (hereinafter referred to as TEMPO) and the like.
[0026]
In this oxidation method, carboxyl groups can be uniformly and efficiently introduced according to the degree of oxidation. This oxidation reaction is advantageously performed in the presence of the N-oxyl compound and bromide or iodide.
[0027]
As the bromide or iodide, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used. As the oxidizing agent, halogen, hypohalous acid, halohalic acid, perhalogenic acid or salts thereof, halogen oxide, nitrogen oxide, peroxide, etc., as long as the oxidizing agent can promote the target oxidation reaction Any oxidizing agent can be used.
[0028]
In the oxidation of the present invention, hydroxyl groups in the cellulose skeleton in the pulp fiber are selectively oxidized. The N-oxyl compound may be a catalytic amount, for example, 2% to 10 ppm is sufficient based on the pulp weight.
[0029]
The oxidation reaction conditions of the present invention are not particularly limited and should be optimized depending on the properties of cellulose, the equipment used, etc., but if the oxidation reaction is carried out in the presence of bromide or iodide, However, the oxidation reaction can proceed smoothly and the carboxyl group introduction efficiency can be greatly improved.
[0030]
The amount of bromide and / or iodide used can be selected within a range that can promote the oxidation reaction, and is, for example, 20% to 100 ppm based on the pulp fiber weight.
[0031]
In the pulp fiber oxidation reaction system in the present invention, TEMPO is preferably used as the N-oxyl compound, and sodium hypochlorite is preferably used as the oxidizing agent in the presence of sodium bromide.
[0032]
In the oxidation reaction of the pulp in the present invention, it is desirable to carry out the reaction at a reaction temperature of room temperature or lower for the purpose of increasing the selectivity of oxidation of cellulose to primary hydroxyl groups and suppressing side reactions.
[0033]
In addition, the pH of the reaction system in the pulp oxidation reaction in the present invention is preferably between 9 and 12 from the viewpoint of reaction efficiency.
[0034]
The paper and paper container of the present invention were prepared by papermaking, pressing and drying using the above-described modified pulp, or the above papermaking internal additives were internally added to the pulp slurry, and papermaking, pressing and drying. And a paper container molded by a wet pulp molding method.
[0035]
The internal additive for papermaking of the internal paper according to the present invention includes Am M (OR) nm (A is a substituent having at least one amino group, M is a metal atom), a polymer composed thereof, or a co-polymer. Since it is a polymer, it is possible to simultaneously have plasticity due to organic matter and properties such as heat resistance, weather resistance, and water resistance due to inorganic matter.
[0036]
Further, the internal additive for papermaking of the internal paper according to the present invention has a functional group as a substituent of Am M (OR) nm (A is a substituent having at least one amino group, M is a metal atom). Since it has a certain amino group, its polarity becomes cationic, and a bond is selectively generated to the pulp fiber introduced with a carboxyl group, which is an anionic group, and exhibits high fixability.
[0037]
Further, the internal additive for papermaking according to the present invention comprises Am M (OR) nm (A is a substituent having at least one amino group, M is a metal atom) or a polymer of the organometallic compound, and Bm M (OR) n-m (B is a vinyl group, epoxy group, substituent having at least one alkyl group, M is a metal atom) or a copolymer with a polymer comprising the organometallic compound, The paper on which they are highly fixed can simultaneously have plasticity due to organic matter, and properties such as heat resistance, weather resistance, and water resistance due to inorganic matter.
[0038]
When Am M (OR) nm (A is a substituent having at least one amino group and M is a metal atom) is used as an internal additive for papermaking of the internal paper according to the present invention, the polarity is cationic. Thus, it is considered that a bond is selectively generated to the pulp fiber introduced with a carboxyl group, which is an anionic group, and exhibits high fixability.
[0039]
Furthermore, Bm M (OR) nm (B is a substituent having at least one vinyl group, epoxy group, alkyl group, and M is a metal atom), and the paper on which they are highly fixed has various functions, In particular, high water resistance can be maintained.
[0040]
Since the internal paper and paper container according to the present invention are prepared by internally adding these paper additives during the paper making process, functionalization from the entire paper layer occurs and the paper surface and end surfaces are It has strong water resistance against water immersion and shape retention as a container.
[0041]
【Example】
Examples of the present invention will be described in detail below, but the present invention is not limited to the materials described in the examples.
[0042]
The raw material used was softwood bleached kraft pulp (hereinafter referred to as NBKP) having a beating degree of 350 csf according to the Canadian standard freeness test method.
[0043]
As an internal additive for papermaking, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (manufactured by Chisso Corporation, trade name: S320) 2.77 g (12.24 mmol) and 2- (3,4) -Epoxycyclohexyl) ethyltrimethoxysilane (trade name; S530, manufactured by Chisso Corporation) 4.525 g (18.36 mmol) and 0.1N hydrochloric acid 10 mol were mixed and stirred for about 15 minutes, and then an appropriate amount of isopropanol was added. And stirred for about 15 minutes.
[0044]
<Production Example 1> An aqueous solution in which 0.125 g of TEMPO and 1.25 g of sodium bromide are added to a water-dispersed slurry of pulp that has been beaten (equivalent to an absolute dry pulp amount of 50 g), and the concentration with respect to the whole pulp is about 1.3 wt. %.
[0045]
The pulp slurry is cooled and 10 ml of aqueous sodium hypochlorite solution (Cl = 5%) is added to initiate the oxidation reaction. The reaction temperature was always maintained at 5 ° C. While the pH of the slurry was lowered during the reaction, 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. After 15 minutes, the reaction was stopped, and after sufficiently washing with water, an oxidized modified pulp slurry of about 1.0 wt% was obtained.
[0046]
<Production Example 2> An aqueous solution in which 0.125 g of TEMPO and 1.25 g of sodium bromide are added to a water-dispersed slurry of pulp beaten (equivalent to 50 g of dry pulp), and the concentration of the pulp as a whole is about 1.3 wt. %.
[0047]
The pulp slurry is cooled and 50 ml of aqueous sodium hypochlorite solution (Cl = 5%) is added to start the oxidation reaction. The reaction temperature was always maintained at 5 ° C. While the pH of the slurry was lowered during the reaction, 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. After 60 minutes, the reaction was stopped, and after sufficiently washing with water, an oxidized modified pulp slurry of about 1.0 wt% was obtained.
[0048]
<Comparative Production Example> Similarly, an aqueous solution in which 1.25 g of TEMPO and 2.5 g of sodium bromide are dissolved in a water-dispersed slurry of beaten pulp (equivalent to 50 g of dry pulp) is added, and the concentration with respect to the whole pulp is about It prepared so that it might become 1.3 wt%.
[0049]
The pulp slurry is cooled and 300 ml of sodium hypochlorite aqueous solution (Cl = 5%) is added to start the oxidation reaction. The reaction was carried out at room temperature, and a 0.5N NaOH aqueous solution was successively added to adjust the pH to around 10.8. This reaction was continued until no pH drop occurred, and after sufficiently washing with water, an oxidized modified pulp slurry of about 1.0 wt% was obtained.
[0050]
Next, examples of the paper of the present invention using the produced oxidized modified pulp according to the present invention and the above-mentioned internal additive for papermaking will be shown, but these do not limit the present invention.
[0051]
<Examples 1 and 2> Paper with a basis weight of about 80 g / m2 was made on a standard handsheet square paper machine using the oxidized modified pulp slurry prepared in Production Examples 1 and 2 as it was, and a dehydration press (35 N / cm2). ) For 5 minutes and dried with a drum dryer (surface temperature of about 120 ° C.) to obtain a paper.
[0052]
<Examples 3 and 4> To the oxidized modified pulp slurry prepared in Production Examples 1 and 2, the 1 wt% aqueous solution for papermaking additive is mixed with 10 wt% of dry pulp weight ratio in terms of SiO2 concentration and stirred for 5 minutes. After that, the paper with the basis weight of about 80g / m2 was made with a standard hand-made square paper machine, dehydrated press (35N / cm2) was performed for 5 minutes, and dried with a drum dryer (surface temperature about 120 ° C). To obtain an internal paper.
[0053]
<Comparative Examples 1 and 2> Unmodified NBKP (NV = 1.0 wt%, beating degree = 350 csf) water dispersion slurry (Comparative Example 1) and pulp slurry of Comparative Production Example (Comparative Example 2) as they are , Paper with a standard hand-sheet square paper machine with a basis weight of about 80 g / m 2, dehydration press (35 N / cm 2) for 5 minutes, and dried with a drum dryer (surface temperature of about 120 ° C.) Got.
[0054]
<Comparative Examples 3 and 4> Unmodified NBKP (NV = 1.0 wt%, beating degree = 350 csf) water dispersion slurry (Comparative Example 1), pulp slurry of Comparative Production Example (Comparative Example 2) Each of the above paper additive 1 wt% aqueous solution was mixed with 10 wt% of dry pulp weight ratio in terms of SiO2 concentration and stirred for 5 minutes, and then the internal paper with a basis weight of about 80 g / m2 was measured with a standard handrail square paper machine. Was subjected to a dehydration press (35 N / cm 2) for 5 minutes and dried with a drum dryer (surface temperature of about 120 ° C.) to obtain an internal paper.
[0055]
<Analytical Example> In production methods 1 and 2, comparative production examples, and NBKP before modification, the amount of carboxyl groups in the pulp was quantified according to TAPPI TEST METHODS T237om-93. The results are shown in Table 1.
[0056]
[Table 1]
Figure 0004655336
[0057]
From this table, it was found that the amount of carboxyl groups in the pulp was increased by performing the oxidation treatment.
[0058]
Examples 3 and 4 and Comparative Example 2 for a total of 4 types of prepared papers with SiO2 fixing amount, and Examples 1 to 4 and Comparative Examples 1 and 2 for a total of 8 types of prepared papers with water resistance (wet / dry value) and water absorption. Each test method and the results will be described in detail.
[0059]
Each paper was conditioned for 24 hours or more in a 20 ° C.-65% RH environment based on JIS-P8111 before each physical property evaluation.
[0060]
<Test 1> Amount of SiO2 Fixation In order to measure the fixability of the internal additive for papermaking to paper, quantitative analysis of SiO2 in a total of four types of paper of Example 2 and Comparative Example 2 was performed. The measurement used the fluorescent X ray analysis method. The detailed measurement method is shown below.
[0061]
Each sample was pulverized using a freeze pulverizer (SPEX 6700 Freezer / Mill). The grinding time was 10 minutes.
[0062]
Next, 1.0 g of the powdered sample was put in a pellet molding machine and compressed (20 tf-5 min.) To produce a pellet (φ = 40 mm). After molding, in order to remove moisture in the pellets, the sample was left in a desiccator for 24 hours or more to prepare a sample for fluorescent X-ray analysis.
[0063]
In the prepared pellets of various papers, the quantitative analysis of Si was performed using fluorescent X-rays (Rigaku Systems 3270), and the measurement wavelength was Si-Ka. The results are shown in Table 2.
[0064]
[Table 2]
Figure 0004655336
[0065]
As is clear from Table 2, the oxidized modified pulp fiber having an increased carboxyl group on the surface of the present invention showed a very high SiO2 fixing amount as compared with the blank NBKP (Comparative Example 2). Example 2). This suggests that the fixing of these internal additives affects the amount of carboxyl groups on the pulp surface.
[0066]
In particular, when the amount of carboxyl groups in the pulp was 0.04 to 0.45 mmol / g, the fixing amount increased abruptly, suggesting that the efficiency is highest in this area. When the amount of carboxyl group was more than that, the increase rate of the fixing amount was low.
[0067]
<Test 2> Water resistance (wet / dry value) In order to determine the water resistance of a total of eight types of papers of Examples 1 and 2 and Comparative Examples 1 and 2, the following test was performed. That is, first, using an autograph (Shimadzu Autograph AG-500A manufactured by Shimadzu Corporation) based on JIS P8113, a dry state (20 ° C.-65% RH) and a wet state (sample piece in distilled water for 1 hour) The breaking strength in water immersion was measured.
[0068]
Further, using the breaking stress calculated from the above, wet / dry (%) = wet paper strength / dry paper strength × 100, and the wet rupture stress / dry rupture stress ratio (wet / dry) was calculated, and the water resistance was determined. evaluated. The above results are shown in Table 3.
[0069]
[Table 3]
Figure 0004655336
[0070]
<Test 3> Water absorption rate Water absorption rate (%) = weight difference before and after immersion (g) / weight before immersion (g) × 100 From the difference in weight of each sample before and after immersion, the water absorption rate (Weight increase rate) was calculated. Each sample piece was immersed in distilled water for 1 hour. The results are shown in Table 4.
[0071]
[Table 4]
Figure 0004655336
[0072]
As apparent from Tables 3 and 4 above, the paper made from the oxidized modified pulp having an increased carboxyl group on the surface has a higher wet / dry value and a lower water absorption rate than Comparative Example 1. Thus, high water resistance was shown (Example 1).
[0073]
Further, the internal paper showed a high water resistance because the wet / dry value was high and the water absorption rate was low compared to either of Comparative Examples 1 and 2 due to an increase in the fixing amount (implementation).
[0074]
Introducing a carboxyl group on the surface of the pulp fiber strengthens the bond of the pulp fiber itself and increases the water resistance and strength of the paper. In addition, when an internal additive is added, very high fixability is exhibited, and water resistance and strength are further improved. However, when excessively oxidized, the fixing amount when the internal additive is added is high and the water absorption is low, but the strength of the pulp fiber itself is weakened and the strength of the paper is not increased.
[0075]
Next, a pulp mold is shown as an example of the paper container of the present invention using the produced oxidized modified pulp according to the present invention and the above-mentioned internal additive for papermaking, but these do not limit the present invention. Alternatively, the container may be formed using the paper of the present invention described above.
[0076]
<Examples 5 and 6> To the oxidized modified pulp slurry prepared in Production Examples 1 and 2, the 1 wt% aqueous solution for papermaking additive described above is mixed with 10 wt% of the dry pulp weight ratio in terms of SiO2 concentration and stirred for 5 minutes. Thereafter, a paper container having a weight of 15 g was prepared by a wet pulp molding machine.
[0077]
<Comparative Example 5> A non-modified NBKP (NV = 1.0 wt%, beating degree = 350 csf) water dispersion slurry was used as it was to prepare a paper container having a weight of 15 g by a wet pulp molding machine.
[0078]
<Comparative Example 6> An unmodified NBKP (NV = 1.0 wt%, beating degree = 350 csf) aqueous dispersion slurry was mixed with the above 1 wt% aqueous solution for papermaking internal additive in terms of SiO2 concentration. After mixing at a weight ratio of 10 wt% and stirring for 5 minutes, a paper container having a weight of 15 g was prepared by a wet pulp molding machine.
[0079]
<Test 4> Water resistance strength as a container In order to determine the water resistance strength of the paper containers of Examples 5 and 6 and Comparative Examples 5 and 6, the tests described below were performed. That is, first, using an autograph (Shimadzu Autograph AG-500A manufactured by Shimadzu Corporation), the load at the time of buckling by a constant speed compression test in a dry state (20 ° C.-65% RH) was measured. Further, 80 ° C. hot water was filled into a paper container, and after 30 minutes, the hot water was discarded, and a similar constant speed compression test was immediately performed to measure the load during buckling in a wet state. The results are shown in Table 5.
[0080]
[Table 5]
Figure 0004655336
[0081]
As is apparent from Table 5 above, the paper container of the present invention has a higher strength when wet than Comparative Example 6, and the shape retention as a container is maintained even under wet conditions.
[0082]
【The invention's effect】
In the oxidized modified pulp fiber of the present invention, the reducing end of the cellulose molecule, which is a constituent unit of the pulp fiber, or the 6th position of the pyranose ring in the cellulose skeleton is selectively oxidized without damaging the shape of the pulp fiber. The pulp fiber includes a structure converted into a carboxyl group, and the converted carboxyl group is particularly unevenly distributed on the surface of the pulp fiber. Therefore, the internal additive for papermaking can be efficiently produced, and a paper and a paper container having a very high fixing amount can be provided as compared with standard pulp that has not been oxidized and modified. Furthermore, in this oxidation method, it is possible to efficiently prepare modified pulp fibers under mild conditions of a pH of 9 to 12 and a reaction temperature of 0 ° C. to room temperature.
[0083]
In the paper of the present invention, from the high charge polarity due to the introduction of carboxyl groups on the pulp fiber surface, a strong hydrogen bond is formed, resulting in a higher inter-fiber bond than ordinary paper, and no internal additives are used. Was able to produce a supple paper with the same strength as conventional wet reinforced paper.
[0084]
Furthermore, in the case of internal paper and paper container, hydrolysis polymerization reaction in water in the presence of a catalyst, based on the mixture of amino-based organometallic alkoxide and epoxy-based organometallic alkoxide or polymer of the added internal additive for papermaking. It is possible to further improve the water resistance of the inner paper, improve the water resistance strength as a container, and obtain a high shape retention as a liquid container or a water resistant container that can withstand use in a humid atmosphere. .
[0085]
These internal additives, such as general paper making additives, especially cationic polymers, have an amino group in the amino-based organometallic alkoxide as an adsorption site for pulp fibers, and anionic properties in pulp. High fixability to a carboxyl group as a group.
[0086]
For this reason, paper and paper containers made from pulp fibers with carboxyl groups introduced on the surface show extremely high fixability, which can further improve water resistance and paper strength, and can be used as a substitute for plastic containers. The nature also increased.

Claims (11)

パルプ繊維を酸化処理して、パルプ繊維の構成単位であるセルロース分子の還元末端、またはセルロース骨格におけるピラノース環の第6位を選択的に酸化し、カルボキシル基に変換された構造を含む改質パルプ繊維を含み、
前記改質パルプ繊維に、抄紙用内添剤を添加し、抄紙したものであり、
前記抄紙用内添剤としてAm M(OR)n−m (Aはアミノ基を少なくとも1つ有する置換基、Mは金属原子)で示される有機金属化合物と、Bm M(OR)n−m (Bはビニル基、エポキシ基、アルキル基を少なくとも1つ有する置換基、Mは金属元素)で示される有機金属化合物との混合物、又は該有機金属化合物の共重合体からなるものを含むことを特徴とする紙。
Modified pulp containing a structure in which pulp fibers are oxidized to selectively oxidize the reducing end of cellulose molecules, which are constituent units of pulp fibers, or the 6th position of the pyranose ring in the cellulose skeleton and converted to carboxyl groups fiber only including,
To the modified pulp fiber, an internal additive for papermaking is added to make paper,
As an internal additive for papermaking, an organic metal compound represented by Am M (OR) nm (A is a substituent having at least one amino group, M is a metal atom), and Bm M (OR) nm ( B is a vinyl group, an epoxy group, a substituent having at least one alkyl group, M is a metal element), or a mixture of the organometallic compound or a copolymer of the organometallic compound. Paper.
カルボキシル基に変換された構造が表面に偏積したパルプ繊維を含むことを特徴とした請求項1記載の紙。  The paper according to claim 1, wherein the structure converted into a carboxyl group includes pulp fibers unevenly deposited on the surface. 紙全体のパルプ中のカルボキシル基量X1 が、改質処理前の木材パルプのカルボキシル基量をX0とした場合、X0 <X1 ≦30X0の範囲にある請求項1または2記載の紙。  The paper according to claim 1 or 2, wherein the carboxyl group amount X1 in the pulp of the entire paper is in the range of X0 <X1 ≤30X0, where X0 is the carboxyl group amount of the wood pulp before the modification treatment. 紙全体のパルプ中のカルボキシル基量X1 が、改質処理前の木材パルプのカルボキシル基量をX0とした場合、X0 <X1 ≦10X0の範囲にある請求項1または2記載の紙。  The paper according to claim 1 or 2, wherein the carboxyl group amount X1 in the pulp of the entire paper is in the range of X0 <X1 ≤ 10X0, where X0 is the carboxyl group amount of the wood pulp before the modification treatment. 請求項中の金属元素Mが、ケイ素(Si)であることを特徴とする請求項の紙。The metal element M in claim 4, the paper according to claim 4, characterized in that the silicon (Si). パルプ繊維を酸化処理して、パルプ繊維の構成単位であるセルロース分子の還元末端、またはセルロース骨格におけるピラノース環の第6位を選択的に酸化し、カルボキシル基に変換された構造を含む改質パルプ繊維を含み、
改質パルプ繊維に、抄紙用内添剤を添加し、抄紙したものであり、
前記抄紙用内添剤としてAm M(OR)n−m (Aはアミノ基を少なくとも1つ有する置換基、Mは金属原子)で示される有機金属化合物と、Bm M(OR)n−m (Bはビニル基、エポキシ基、アルキル基を少なくとも1つ有する置換基、Mは金属元素)で示される有機金属化合物との混合物、又は該有機金属化合物の共重合体からなるものを含むことを特徴とする紙容器。
Modified pulp containing a structure in which pulp fibers are oxidized to selectively oxidize the reducing end of cellulose molecules, which are constituent units of pulp fibers, or the 6th position of the pyranose ring in the cellulose skeleton and converted to carboxyl groups fiber only including,
The paper is made by adding an internal additive for papermaking to the modified pulp fiber,
As an internal additive for papermaking, an organic metal compound represented by Am M (OR) nm (A is a substituent having at least one amino group, M is a metal atom), and Bm M (OR) nm ( B is a vinyl group, an epoxy group, a substituent having at least one alkyl group, M is a metal element), or a mixture of the organometallic compound or a copolymer of the organometallic compound. A paper container.
カルボキシル基に変換された構造が表面に偏積したパルプ繊維を含むことを特徴とした請求項記載の紙容器。The paper container according to claim 6 , wherein the structure converted into a carboxyl group includes pulp fibers unevenly deposited on the surface. 紙全体のパルプ中のカルボキシル基量X1が、改質処理前の木材パルプのカルボキシル基量をX0とした場合、X0<X1≦30X0の範囲にある請求項6または7記載の紙容器。The paper container according to claim 6 or 7 , wherein the carboxyl group amount X1 in the pulp of the entire paper is in the range of X0 <X1 ≦ 30X0, where X0 is the carboxyl group amount of the wood pulp before the modification treatment. 紙全体のパルプ中のカルボキシル基量X1が、改質処理前の木材パルプのカルボキシル基量をX0とした場合、X0<X1≦10X0の範囲にある請求項6または7記載の紙容器。The paper container according to claim 6 or 7 , wherein the carboxyl group amount X1 in the pulp of the whole paper is in the range of X0 <X1 ≦ 10X0, where X0 is the carboxyl group amount of the wood pulp before the modification treatment. 改質パルプ繊維に、抄紙用内添剤を添加し、抄紙したことを特徴とする請求項6から9何れかに記載の紙容器。The paper container according to any one of claims 6 to 9 , wherein paper is made by adding an internal additive for paper making to the modified pulp fiber. 請求項10中の金属元素Mが、ケイ素(Si)であることを特徴とする請求項10の紙容器。The metal element M in claim 10, the paper container according to claim 10, characterized in that the silicon (Si).
JP2000193590A 2000-03-23 2000-06-27 Paper and paper containers using modified pulp fibers Expired - Fee Related JP4655336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000193590A JP4655336B2 (en) 2000-03-23 2000-06-27 Paper and paper containers using modified pulp fibers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000082518 2000-03-23
JP2000-82518 2000-03-23
JP2000193590A JP4655336B2 (en) 2000-03-23 2000-06-27 Paper and paper containers using modified pulp fibers

Publications (2)

Publication Number Publication Date
JP2001336084A JP2001336084A (en) 2001-12-07
JP4655336B2 true JP4655336B2 (en) 2011-03-23

Family

ID=26588181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193590A Expired - Fee Related JP4655336B2 (en) 2000-03-23 2000-06-27 Paper and paper containers using modified pulp fibers

Country Status (1)

Country Link
JP (1) JP4655336B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816848B2 (en) * 2001-05-29 2011-11-16 凸版印刷株式会社 Coating agent and laminated material using the coating agent
JP5376193B2 (en) * 2007-06-11 2013-12-25 星光Pmc株式会社 Oxidized cellulose microfiber molded product with suppressed water absorption
JP5082609B2 (en) * 2007-06-12 2012-11-28 星光Pmc株式会社 Cellulose-based molded article having hydrophobicity
JP2008308802A (en) * 2007-06-18 2008-12-25 Univ Of Tokyo Method for producing cellulose nanofibers
JP5025348B2 (en) * 2007-06-22 2012-09-12 花王株式会社 Oxidation method of molded body
WO2011071156A1 (en) 2009-12-11 2011-06-16 花王株式会社 Composite material
JP5195969B2 (en) * 2011-07-12 2013-05-15 凸版印刷株式会社 Laminated material using coating agent
JP6428172B2 (en) * 2014-11-07 2018-11-28 凸版印刷株式会社 Water resistant paper, paper container using the same, and manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131891A (en) * 1999-08-24 2001-05-15 Toppan Printing Co Ltd Waterproof paper and method for manufacturing the same, and paper container
JP2003512540A (en) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー Method for producing carboxylated cellulose fibers and products of the method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627425B2 (en) * 1997-02-13 2005-03-09 凸版印刷株式会社 Internal additive for papermaking and functional paper using the internal additive
JP4074680B2 (en) * 1997-03-12 2008-04-09 ダイセル化学工業株式会社 Cellulose derivative and method for producing the same
JP2002537503A (en) * 1999-02-24 2002-11-05 エスシーエー ハイジーン プロダクツ ゲゼルシャフト ミト ベシュレンクテル ハフツング Oxidized cellulose-containing fibrous materials and articles made therefrom
JP2001049591A (en) * 1999-05-31 2001-02-20 Daicel Chem Ind Ltd Fiber raw material and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131891A (en) * 1999-08-24 2001-05-15 Toppan Printing Co Ltd Waterproof paper and method for manufacturing the same, and paper container
JP2003512540A (en) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー Method for producing carboxylated cellulose fibers and products of the method

Also Published As

Publication number Publication date
JP2001336084A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
Hubbe et al. Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: A review
RU2672648C2 (en) Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose
EP2519692B1 (en) Process to enhancing dry strength of paper by treatment with vinylamine-containing polymers and acrylamide containing polymers
CN105392625B (en) The block packing container of sheet material and the use sheet material and the manufacturing method of sheet material
JP2015110858A (en) Method for producing fine-fibrous cellulose composite sheet and method for producing fine-fibrous cellulose composite sheet laminate
RU2644321C2 (en) Sewing/functionalizing system for paper or nonwoven cloth
US20070158043A1 (en) Moisture absorptive and desorptive paper and a method for manufacturing the same
JPH02251696A (en) Dry strength-reinforcing agent for paper-making
JP4655336B2 (en) Paper and paper containers using modified pulp fibers
JPS6038473A (en) Modified inorganic filler
JP2008525570A (en) Chemical compositions and methods
WO2017179740A1 (en) Barrier paper and paper cup
CN111519466A (en) Fluorocarbon-free biodegradable oil-proof paper and preparation method thereof
CA2197349A1 (en) Improvements in or relating to application of material to a substrate
WO1997016597A1 (en) Process for preparing hydrolyzable sheet
JP5257933B2 (en) Paper making flocculant
CN106283869A (en) A kind of novel organic/inorganic is combined the preparation of glue system
CN101949110A (en) Preparation method of modified PAE wet strength agent
JP4872145B2 (en) Water-resistant paper and paper container using modified pulp fiber and modified cellulose powder
JP2002322313A (en) Cellulose composite, and paper product with additive using the same
Shen et al. A review on the use of lignocellulose-derived chemicals in wet-end application of papermaking
CN101225624A (en) Method for preparing corrugated medium circling pressure strengthening agent by employing cation epoxy resin
JP2001131891A (en) Waterproof paper and method for manufacturing the same, and paper container
JP2021508007A (en) Cellulose paper compound and the process of producing it
JP4359951B2 (en) Internal additive for paper making and its internal paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees