JP4654901B2 - Optical waveguide device, temperature measuring device, and temperature measuring method - Google Patents

Optical waveguide device, temperature measuring device, and temperature measuring method Download PDF

Info

Publication number
JP4654901B2
JP4654901B2 JP2005360721A JP2005360721A JP4654901B2 JP 4654901 B2 JP4654901 B2 JP 4654901B2 JP 2005360721 A JP2005360721 A JP 2005360721A JP 2005360721 A JP2005360721 A JP 2005360721A JP 4654901 B2 JP4654901 B2 JP 4654901B2
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
light
temperature
partial section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005360721A
Other languages
Japanese (ja)
Other versions
JP2007163886A (en
Inventor
智恵 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005360721A priority Critical patent/JP4654901B2/en
Publication of JP2007163886A publication Critical patent/JP2007163886A/en
Application granted granted Critical
Publication of JP4654901B2 publication Critical patent/JP4654901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、温度を計測する装置および方法、ならびに、この温度計測に用いられる光導波路型デバイスに関するものである。   The present invention relates to an apparatus and method for measuring temperature, and an optical waveguide device used for temperature measurement.

光ファイバ等の光導波路を用いた温度計測技術として例えば特許文献1,2に開示されたものが知られている。特許文献1に開示された技術は、終端部に無反射処理を施した光ファイバの一端に光を入射させ、その光ファイバにおいて生じる後方散乱光のうち特定波長の光パワーを検出することで、その光ファイバにおける長手方法の温度分布を計測するものである。また、特許文献2に開示された技術は、測定対象からの放射光を光ファイバにより導光し、その導光した放射光のうちの互いに異なる2つの波長帯それぞれにおいて光パワーを検出して、これら2つの光パワーに基づいて測定対象の温度を計測するものである。
特許第2724246号公報 特許第3325700号公報
As a temperature measurement technique using an optical waveguide such as an optical fiber, for example, those disclosed in Patent Documents 1 and 2 are known. The technique disclosed in Patent Document 1 allows light to be incident on one end of an optical fiber that has been subjected to non-reflective treatment at the terminal portion, and detects the optical power of a specific wavelength among the backscattered light generated in the optical fiber. The temperature distribution of the longitudinal method in the optical fiber is measured. In addition, the technique disclosed in Patent Document 2 guides the radiated light from the measurement target through an optical fiber, detects the optical power in each of two different wavelength bands of the guided radiated light, The temperature of the measurement object is measured based on these two optical powers.
Japanese Patent No. 2724246 Japanese Patent No. 3325700

これらの文献に記載された温度測定技術は、何れも、比較的広い温度範囲で温度を計測することができるものの、正確な温度の計測が困難である。本発明は、上記問題点を解消する為になされたものであり、より正確に温度を計測することができる温度計測装置および温度計測方法、ならびに、これらの装置または方法において好適に用いられ得る光導波路型デバイスを提供することを目的とする。   Any of the temperature measurement techniques described in these documents can measure the temperature in a relatively wide temperature range, but it is difficult to measure the temperature accurately. The present invention has been made to solve the above-described problems, and is a temperature measuring device and a temperature measuring method capable of measuring temperature more accurately, and an optical beam that can be suitably used in these devices or methods. An object is to provide a waveguide device.

本発明に係る温度計測装置または温度計測方法において用いられる光導波路型デバイスは、基板上に第1光導波路および第2光導波路が形成され、第1光導波路と第2光導波路とが第1光カプラおよび第2光カプラそれぞれにおいて光結合されて1個のマッハツェンダ干渉計を構成し、第1光カプラと第2光カプラとの間において第2光導波路の一部区間のクラッドの屈折率の温度依存性が他の光導波路部分と異なる、ことを特徴とする。また、第2光導波路の一部区間のクラッドが樹脂からなり、第1光導波路のコアおよびクラッド、第2光導波路のコア、ならびに、第2光導波路の一部区間以外のクラッドが石英ガラスを主成分とすることを特徴とする。
An optical waveguide device used in a temperature measuring apparatus or a temperature measuring method according to the present invention has a first optical waveguide and a second optical waveguide formed on a substrate, and the first optical waveguide and the second optical waveguide are the first light. Each of the coupler and the second optical coupler is optically coupled to constitute one Mach-Zehnder interferometer, and the temperature of the refractive index of the cladding in a partial section of the second optical waveguide between the first optical coupler and the second optical coupler. The dependency is different from other optical waveguide portions. Further, the clad in a partial section of the second optical waveguide is made of resin, and the core and clad of the first optical waveguide, the core of the second optical waveguide, and the clad other than the partial section of the second optical waveguide are made of quartz glass. It is characterized by having a main component.

本発明に係る光導波路型デバイスでは、第1光導波路および第2光導波路の何れか一方の一端に光が入射すると、マッハツェンダ干渉計を経て第1光導波路および第2光導波路それぞれの他端から光が出射されるが、第2光導波路の一部区間のクラッドの屈折率の温度依存性が他の光導波路部分と異なることから、そのときの各々の光透過特性は温度により変化する。このような光導波路型デバイスの特性を利用することで、正確に温度を計測することが可能となる。   In the optical waveguide device according to the present invention, when light is incident on one end of either the first optical waveguide or the second optical waveguide, the other end of each of the first optical waveguide and the second optical waveguide passes through the Mach-Zehnder interferometer. Although light is emitted, since the temperature dependence of the refractive index of the cladding in a partial section of the second optical waveguide is different from that of other optical waveguide portions, each light transmission characteristic at that time varies depending on the temperature. By utilizing the characteristics of such an optical waveguide device, the temperature can be accurately measured.

本発明に係る温度計測装置は、(1) 上記の光導波路型デバイスと、(2) 単色のレーザ光を出力する光源部と、(3) 光源部から出力された光を光導波路型デバイスの第1光導波路および第2光導波路の何れか一方の一端に入射させる入射光学系と、(4) 光導波路型デバイスの第1光導波路および第2光導波路それぞれの他端から出射される光のパワーを検出する検出部と、(5) 光導波路型デバイスの第1光導波路および第2光導波路それぞれの他端から検出部へ光を導く出射光学系と、(6) 検出部による検出結果に基づいて光導波路型デバイスの温度を求める解析部と、を備えることを特徴とする。また、光導波路デバイスが、第2光導波路の一部区間の長さが所定の温度範囲において、一端から第1光導波路の他端までの光の透過損失α および一端から第2光導波路の他端までの光の透過損失α のうち一方が単調に増加し他方が単調に減少するように設定されており、解析部が、検出部による検出結果に基づいて透過損失α ,α を求め、この求めた透過損失α ,α に基づいて光導波路型デバイスの温度を求めることを特徴とする。また、入射光学系および出射光学系それぞれが、光導波路型デバイスに対して光を入出射する光ファイバを含むのが好適である。また、光源部が半導体レーザ素子を含むように構成してもよい。
A temperature measurement apparatus according to the present invention includes (1) the above-described optical waveguide device, (2) a light source unit that outputs monochromatic laser light, and (3) light output from the light source unit of the optical waveguide device. An incident optical system that enters one end of either the first optical waveguide or the second optical waveguide; and (4) light emitted from the other end of each of the first optical waveguide and the second optical waveguide of the optical waveguide device. A detection unit for detecting power, (5) an output optical system for guiding light from the other end of each of the first optical waveguide and the second optical waveguide of the optical waveguide device to the detection unit, and (6) a detection result by the detection unit And an analysis unit for determining the temperature of the optical waveguide device. Further, in the optical waveguide device, the transmission loss α1 from one end to the other end of the first optical waveguide and the second optical waveguide from the one end to the other end of the first optical waveguide in a predetermined temperature range of the length of a part of the second optical waveguide. One of the light transmission losses α 2 up to the other end is set so as to increase monotonously and the other decreases monotonously, and the analysis unit transmits the transmission losses α 1 , α 2 based on the detection result by the detection unit. And the temperature of the optical waveguide device is obtained based on the obtained transmission losses α 1 and α 2 . In addition, it is preferable that each of the incident optical system and the output optical system includes an optical fiber that inputs and outputs light with respect to the optical waveguide device. Moreover, you may comprise so that a light source part may include a semiconductor laser element.

本発明に係る温度計測方法は、(1) 上記の光導波路型デバイスを用い、(2) 第1光導波路および第2光導波路の何れか一方の一端に単色のレーザ光を入射させて、マッハツェンダ干渉計を経て第1光導波路の他端から出射する光のパワーPを検出するとともに、マッハツェンダ干渉計を経て第2光導波路の他端から出射する光のパワーPを検出し、(3) 光導波路デバイスにおいて、第2光導波路の一部区間の長さが所定の温度範囲において、一端から第1光導波路の他端までの光の透過損失α および一端から第2光導波路の他端までの光の透過損失α のうち一方が単調に増加し他方が単調に減少するように設定しておき、(4) あらかじめ第1光導波路の光透過損失および第2光導波路の光透過損失と温度との関係を取得しておき、2つの光パワーP,Pに基づいて透過損失α ,α を求め、この求めた透過損失α ,α に基づいて温度を計測する、ことを特徴とする。また、光ファイバを用いて光導波路型デバイスに対して光を入出射するのが好適である。 A temperature measurement method according to the present invention includes (1) using the above-described optical waveguide device, (2) making a monochromatic laser beam incident on one end of either the first optical waveguide or the second optical waveguide, The power P 1 of light emitted from the other end of the first optical waveguide through the interferometer is detected, and the power P 2 of light emitted from the other end of the second optical waveguide through the Mach-Zehnder interferometer is detected. ) In the optical waveguide device, the transmission loss α 1 from one end to the other end of the first optical waveguide and the other end of the second optical waveguide from one end to the other end of the second optical waveguide in a predetermined temperature range. and one is monotonically increasing of transmission loss alpha 2 of the light to the edge may be set as the other decreases monotonically, (4) advance first optical waveguide of the light transmission loss and the second optical waveguide of the light transmission Obtain the relationship between loss and temperature Transmission losses α 1 and α 2 are obtained based on the powers P 1 and P 2 , and the temperature is measured based on the obtained transmission losses α 1 and α 2 . In addition, it is preferable to use an optical fiber to input / output light to / from the optical waveguide device.

本発明によれば、より正確に温度を計測することができる。   According to the present invention, the temperature can be measured more accurately.

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る温度計測装置1の構成図である。この図に示される温度計測装置1は、光導波路型デバイス10、光源部20、検出部30、解析部40、入射用光ファイバ51および出射用光ファイバ61,62を備える。   FIG. 1 is a configuration diagram of a temperature measuring apparatus 1 according to the present embodiment. The temperature measurement apparatus 1 shown in this figure includes an optical waveguide device 10, a light source unit 20, a detection unit 30, an analysis unit 40, an incident optical fiber 51, and outgoing optical fibers 61 and 62.

光導波路型デバイス10は、基板100に第1光導波路111および第2光導波路112が形成されたものである。第1光導波路111と第2光導波路112とは、各々の光路の途中の2箇所において互いに光結合し得る間隔になっていて第1光カプラ121および第2光カプラ122を構成している。すなわち、第1光導波路111と第2光導波路112とは、第1光カプラ121および第2光カプラ122それぞれにおいて光結合されていて、マッハツェンダ干渉計を構成している。   In the optical waveguide device 10, a first optical waveguide 111 and a second optical waveguide 112 are formed on a substrate 100. The first optical waveguide 111 and the second optical waveguide 112 form a first optical coupler 121 and a second optical coupler 122 at an interval where they can be optically coupled to each other at two locations in the middle of each optical path. That is, the first optical waveguide 111 and the second optical waveguide 112 are optically coupled in the first optical coupler 121 and the second optical coupler 122, respectively, and constitute a Mach-Zehnder interferometer.

光源部20は、光導波路型デバイス10の第1光導波路111の一端(入射端)に入射させるべき光を出力する。光ファイバ51は、光源部20から出力された光を一端に入射し、その一端に入射した光を他端まで導光し、その他端から光を出射して光導波路型デバイス10の第1光導波路111の入射端に入射させる。   The light source unit 20 outputs light to be incident on one end (incident end) of the first optical waveguide 111 of the optical waveguide device 10. The optical fiber 51 enters the light output from the light source unit 20 at one end, guides the light incident on the one end to the other end, emits the light from the other end, and outputs the first light of the optical waveguide device 10. The light is incident on the incident end of the waveguide 111.

検出部30は、光導波路型デバイス10の第1光導波路111および第2光導波路112それぞれの他端(出射端)から出射される光のパワーを検出する。光ファイバ61は、光導波路型デバイス10の第1光導波路111の出射端から出射された光を一端に入射し、その一端に入射した光を他端まで導光し、その他端から光を出射して検出部30の受光素子に入射させる。また、光ファイバ62は、光導波路型デバイス10の第2光導波路112の出射端から出射された光を一端に入射し、その一端に入射した光を他端まで導光し、その他端から光を出射して検出部30の受光素子に入射させる。   The detection unit 30 detects the power of light emitted from the other end (exit end) of each of the first optical waveguide 111 and the second optical waveguide 112 of the optical waveguide device 10. The optical fiber 61 enters light emitted from the emission end of the first optical waveguide 111 of the optical waveguide device 10 at one end, guides light incident on the one end to the other end, and emits light from the other end. Then, the light is incident on the light receiving element of the detection unit 30. Further, the optical fiber 62 enters light emitted from the emission end of the second optical waveguide 112 of the optical waveguide device 10 at one end, guides the light incident on the one end to the other end, and transmits light from the other end. Is incident on the light receiving element of the detection unit 30.

解析部40は、光源部20から出射され光導波路型デバイス10の第1光導波路111の入射端に入射された光のパワーP1,in、光導波路型デバイス10の第1光導波路111の出射端から出射され検出部30により検出された光のパワーP1,out、および、光導波路型デバイス10の第2光導波路112の出射端から出射され検出部30により検出された光のパワーP2,outを入力する。 The analysis unit 40 outputs the power P 1, in of the light emitted from the light source unit 20 and incident on the incident end of the first optical waveguide 111 of the optical waveguide device 10, and the output of the first optical waveguide 111 of the optical waveguide device 10. The light power P 1, out emitted from the end and detected by the detection unit 30 and the light power P 2 emitted from the emission end of the second optical waveguide 112 of the optical waveguide device 10 and detected by the detection unit 30 Enter , out .

さらに、解析部40は、入力光パワーP1,inおよび出力光パワーP1,outに基づいて第1光導波路111の入射端から第1光導波路111の出射端までの光の透過損失αを求め、また、入力光パワーP1,inおよび出力光パワーP2,outに基づいて第1光導波路111の入射端から第2光導波路112の出射端までの光の透過損失αを求める。そして、解析部40は、上記の透過損失α,αに基づいて、光導波路型デバイス10の温度を求める。 Further, the analyzing unit 40 transmits light loss α 1 from the incident end of the first optical waveguide 111 to the output end of the first optical waveguide 111 based on the input optical power P 1, in and the output optical power P 1, out. And a transmission loss α 2 of light from the incident end of the first optical waveguide 111 to the output end of the second optical waveguide 112 based on the input optical power P 1, in and the output optical power P 2, out. . And the analysis part 40 calculates | requires the temperature of the optical waveguide device 10 based on said transmission loss (alpha) 1 , (alpha) 2 .

なお、光ファイバ51,61,62については、例えば4芯の光ファイバテープ心線を用いることができる。このようなテープファイバを用いると、各光ファイバの局所的な曲げなどによって各光ファイバの損失が変動したとしても、3本の光ファイバにほぼ同じ変動が加わることになる。   For the optical fibers 51, 61, 62, for example, a four-core optical fiber ribbon can be used. When such a tape fiber is used, even if the loss of each optical fiber fluctuates due to local bending of each optical fiber, substantially the same fluctuation is applied to the three optical fibers.

図2は、本実施形態に係る光導波路型デバイス10の平面図である。光導波路型デバイス10は、基板100に第1光導波路111および第2光導波路112が形成されていて、第1光導波路111と第2光導波路112とが第1光カプラ121および第2光カプラ122それぞれにおいて光結合されていてマッハツェンダ干渉計を構成している。さらに、マッハツェンダ干渉計において第1光カプラ121と第2光カプラ122との間で、第2光導波路112の一部区間112Bのクラッドの屈折率の温度依存性は、第1光導波路111および第2光導波路112の他の光導波路部分112A,112Cと異なる。このような光導波路型デバイス10は、好適には、第2光導波路112の一部区間112Bを除く部分については、石英ガラスを主成分として、各々のコアに屈折率上昇材(例えばGeO)が添加されたものである。一方、第2光導波路112の一部区間112Bのオーバークラッドは樹脂からなるのが好適である。 FIG. 2 is a plan view of the optical waveguide device 10 according to the present embodiment. In the optical waveguide device 10, the first optical waveguide 111 and the second optical waveguide 112 are formed on the substrate 100, and the first optical waveguide 111 and the second optical waveguide 112 are the first optical coupler 121 and the second optical coupler. Each of 122 is optically coupled to constitute a Mach-Zehnder interferometer. Further, in the Mach-Zehnder interferometer, the temperature dependence of the refractive index of the cladding in the partial section 112B of the second optical waveguide 112 between the first optical coupler 121 and the second optical coupler 122 is the first optical waveguide 111 and the first optical coupler 111. 2 Different from the other optical waveguide portions 112A and 112C of the optical waveguide 112. In such an optical waveguide device 10, preferably, the portion except the second section 112 </ b> B of the second optical waveguide 112 is mainly composed of quartz glass and has a refractive index increasing material (for example, GeO 2 ) in each core. Is added. On the other hand, the overcladding in the partial section 112B of the second optical waveguide 112 is preferably made of resin.

図3は、本実施形態に係る光導波路型デバイス10における各所の光導波路の断面図である。同図(a)は、第2光導波路112の一部区間112Bを除く各所の光導波路(代表例として第1光導波路111)の断面図を示す。この図に示されるように、基板100の上に矩形断面のコアが形成され、これらの上にオーバークラッド130が形成されて、光導波路が構成されている。これら各領域は石英ガラスを主成分とする。   FIG. 3 is a cross-sectional view of optical waveguides at various points in the optical waveguide device 10 according to the present embodiment. FIG. 4A is a cross-sectional view of an optical waveguide (a first example is the first optical waveguide 111 as a representative example) excluding a partial section 112 </ b> B of the second optical waveguide 112. As shown in this figure, a core having a rectangular cross section is formed on a substrate 100, and an over clad 130 is formed thereon, thereby forming an optical waveguide. Each of these regions is mainly composed of quartz glass.

同図(b)は、第2光導波路112の一部区間112Bの断面図(図2中のA−A’断面)を示す。この図に示されるように、基板100の上に矩形断面のコアが形成され、これらの上にオーバークラッド131が形成されて、第2光導波路112の一部区間112Bが構成されている。基板100は石英ガラスを主成分する。一方、オーバークラッド131は樹脂からなる。   FIG. 2B shows a cross-sectional view (A-A ′ cross section in FIG. 2) of a partial section 112 </ b> B of the second optical waveguide 112. As shown in this figure, a core having a rectangular cross section is formed on a substrate 100, and an over clad 131 is formed thereon, so that a partial section 112B of the second optical waveguide 112 is formed. The substrate 100 is mainly composed of quartz glass. On the other hand, the over clad 131 is made of resin.

次に、光導波路型デバイス10の製造方法の一例を説明する。図4は、本実施形態に係る光導波路型デバイス10の製造方法を説明する工程図である。初めに、石英ガラスからなる基板100を用意し、プラズマCVD、FHDまたはスパッタ等の方法で、コアとなるべき所定厚のGe添加石英ガラス膜110を基板100上に堆積する(同図(a))。1回目のフォトリソグラフィーとリアクティブイオンエッチングで、このGe添加石英ガラス膜110を所定幅および所定高になるように加工して、第1光導波路111および第2光導波路112それぞれのコアを形成する(同図(b))。この上に更に、プラズマCVDまたはFHDにより、所定厚のオーバークラッド130を堆積する(図4(c))。さらに、2回目のフォトリソグラフィーとリアクティブイオンエッチングで、第2光導波路112の一部区間上に、所定幅,所定長および所定深さの溝131Aを形成する(図4(d))。この溝131Aに樹脂のモノマー(液状)を満たし、紫外線照射で硬化させて樹脂クラッド131を得る(図4(e))。   Next, an example of a method for manufacturing the optical waveguide device 10 will be described. FIG. 4 is a process diagram illustrating a method for manufacturing the optical waveguide device 10 according to the present embodiment. First, a substrate 100 made of quartz glass is prepared, and a Ge-added quartz glass film 110 having a predetermined thickness to serve as a core is deposited on the substrate 100 by a method such as plasma CVD, FHD, or sputtering ((a) in the figure). ). In the first photolithography and reactive ion etching, this Ge-added quartz glass film 110 is processed so as to have a predetermined width and a predetermined height, thereby forming cores of the first optical waveguide 111 and the second optical waveguide 112, respectively. (Drawing (b)). Further, an over clad 130 having a predetermined thickness is deposited by plasma CVD or FHD (FIG. 4C). Further, a groove 131A having a predetermined width, a predetermined length, and a predetermined depth is formed on a partial section of the second optical waveguide 112 by the second photolithography and reactive ion etching (FIG. 4D). The groove 131A is filled with a resin monomer (liquid) and cured by ultraviolet irradiation to obtain a resin clad 131 (FIG. 4E).

次に、本実施形態に係る温度計測装置1および光導波路型デバイス10の具体的構成および動作の一例について説明する。基板100およびオーバークラッド130それぞれは石英ガラスからなる。第1光導波路111および第2光導波路112それぞれのコアは、Geが添加された石英ガラスからなる。第2光導波路112の一部区間112Bのオーバークラッド131は樹脂からなる。   Next, an example of a specific configuration and operation of the temperature measurement apparatus 1 and the optical waveguide device 10 according to the present embodiment will be described. Each of the substrate 100 and the overclad 130 is made of quartz glass. The cores of the first optical waveguide 111 and the second optical waveguide 112 are made of quartz glass to which Ge is added. The overclad 131 in the partial section 112B of the second optical waveguide 112 is made of resin.

純石英ガラスの屈折率は1.444である。Ge添加石英ガラスコアの屈折率は1.447である。オーバークラッド131の樹脂の屈折率は1.45である。なお、これらの屈折率は、何れも、温度25℃で波長1.55μmにおける値である。Ge添加石英ガラスおよび石英ガラスそれぞれの屈折率の温度依存性は8×10−6 /℃である。オーバークラッド131の樹脂の屈折率の温度依存性は−0.0002/℃である。 The refractive index of pure quartz glass is 1.444. The refractive index of the Ge-added quartz glass core is 1.447. The refractive index of the resin of the over clad 131 is 1.45. These refractive indexes are all values at a temperature of 25 ° C. and a wavelength of 1.55 μm. The temperature dependence of the refractive index of each of the Ge-added quartz glass and quartz glass is 8 × 10 −6 / ° C. The temperature dependency of the refractive index of the resin of the over clad 131 is −0.0002 / ° C.

光導波路111,112それぞれのコアの断面形状は、7.5μm×7.5μmの正方形である。光導波路111,112それぞれの曲線部分の最小曲率半径は2.5mmである。光カプラ121,122ぞれぞれの波長1.55μmにおける分岐比は1:1である。第1光カプラ121と第2光カプラ122との間における第1光導波路111および第2光導波路112それぞれの直線部分の長さは5mmである。第2光導波路112の一部区間112Bの長さは0.5mmまたは5mmである。   The cross-sectional shape of the core of each of the optical waveguides 111 and 112 is a square of 7.5 μm × 7.5 μm. The minimum curvature radius of the curved portion of each of the optical waveguides 111 and 112 is 2.5 mm. Each of the optical couplers 121 and 122 has a branching ratio of 1: 1 at a wavelength of 1.55 μm. The lengths of the straight portions of the first optical waveguide 111 and the second optical waveguide 112 between the first optical coupler 121 and the second optical coupler 122 are 5 mm. The length of the partial section 112B of the second optical waveguide 112 is 0.5 mm or 5 mm.

このように構成される光導波路型デバイス10を用いて、図1に示されるような温度計測装置1を構成する。光源部20は、波長1.55μmのレーザ光を出力する半導体レーザ素子を含む。また、検出部30は受光素子としてフォトダイオードを含む。   A temperature measuring apparatus 1 as shown in FIG. 1 is configured using the optical waveguide device 10 configured as described above. The light source unit 20 includes a semiconductor laser element that outputs laser light having a wavelength of 1.55 μm. The detection unit 30 includes a photodiode as a light receiving element.

光源部20から出力された波長1.55μmのレーザ光は、光ファイバ51により導かれて光導波路型デバイス10の第1光導波路111の入射端に入射する。光導波路型デバイス10の第1光導波路111の入射端に入射した光は、マッハツェンダ干渉計を経て、第1光導波路111の出射端および第2光導波路112の出射端それぞれから出力される。第1光導波路111の出射端から出力された光は、光ファイバ61により導かれて、検出部30によりパワーが検出される。第2光導波路112の出射端から出力された光は、光ファイバ62により導かれて、検出部30によりパワーが検出される。   The laser light having a wavelength of 1.55 μm output from the light source unit 20 is guided by the optical fiber 51 and enters the incident end of the first optical waveguide 111 of the optical waveguide device 10. Light incident on the incident end of the first optical waveguide 111 of the optical waveguide device 10 is output from the exit end of the first optical waveguide 111 and the exit end of the second optical waveguide 112 through a Mach-Zehnder interferometer. The light output from the emission end of the first optical waveguide 111 is guided by the optical fiber 61 and the power is detected by the detection unit 30. The light output from the emission end of the second optical waveguide 112 is guided by the optical fiber 62 and the power is detected by the detection unit 30.

そして、解析部40により、第1光導波路111の入射端に入射された光のパワーP1,in、第1光導波路111の出射端から出射された光のパワーP1,out、および、第2光導波路112の出射端から出射された光のパワーP2,outに基づいて、第1光導波路111の入射端から第1光導波路111の出射端までの光の透過損失α、および、第1光導波路111の入射端から第2光導波路112の出射端までの光の透過損失α、が求められ、さらに、これら透過損失α,αに基づいて光導波路型デバイス10の温度が求められる。 Then, the analysis unit 40 causes the power P1 , in of the light incident on the incident end of the first optical waveguide 111, the power P1 , out of the light emitted from the output end of the first optical waveguide 111, and the first A transmission loss α 1 of light from the incident end of the first optical waveguide 111 to the emission end of the first optical waveguide 111 based on the power P 2, out of the light emitted from the emission end of the two optical waveguides 112, and A transmission loss α 2 of light from the incident end of the first optical waveguide 111 to the output end of the second optical waveguide 112 is obtained, and the temperature of the optical waveguide device 10 is further calculated based on these transmission losses α 1 and α 2. Is required.

図5は、本実施形態に係る光導波路型デバイス10における透過損失α,αそれぞれの温度依存性を示すグラフである。ここでは、第2光導波路112の一部区間112Bの長さは0.5mmである。なお、この関係は、あらかじめ温度のわかった炉などを用いて測定しておく。温度を測定したい場所に光導波路型デバイス10を設置して温度計測を行う。この場所の温度が50℃〜80℃の範囲にあることは、他の簡易な温度計によってわかっている。例えば、透過損失αが8.82dBであって透過損失αが0.72dBであるとき、温度が66.5℃であることがわかる。 FIG. 5 is a graph showing the temperature dependence of the transmission losses α 1 and α 2 in the optical waveguide device 10 according to the present embodiment. Here, the length of the partial section 112B of the second optical waveguide 112 is 0.5 mm. This relationship is measured in advance using a furnace whose temperature is known. The optical waveguide device 10 is installed at a place where the temperature is to be measured, and the temperature is measured. It is known by other simple thermometers that the temperature of this place is in the range of 50 ° C. to 80 ° C. For example, when the transmission loss α 1 is 8.82 dB and the transmission loss α 2 is 0.72 dB, it can be seen that the temperature is 66.5 ° C.

図6は、本実施形態に係る光導波路型デバイス10における透過損失α,αそれぞれの温度依存性を示すグラフである。ここでは、第2光導波路112の一部区間112Bの長さは5mmである。なお、この関係も、あらかじめ温度のわかった炉などを用いて測定しておく。温度を測定したい場所に光導波路型デバイス10を設置して温度計測を行う。この場所の温度が50℃〜80℃の範囲にあることは、他の簡易な温度計によってわかっている。例えば、透過損失αが2.86dBであって透過損失αが3.35dBであるとき、温度が59.9℃であることがわかる。 FIG. 6 is a graph showing the temperature dependence of the transmission losses α 1 and α 2 in the optical waveguide device 10 according to the present embodiment. Here, the length of the partial section 112B of the second optical waveguide 112 is 5 mm. This relationship is also measured in advance using a furnace whose temperature is known. The optical waveguide device 10 is installed at a place where the temperature is to be measured, and the temperature is measured. It is known by other simple thermometers that the temperature of this place is in the range of 50 ° C. to 80 ° C. For example, when the transmission loss α 1 is 2.86 dB and the transmission loss α 2 is 3.35 dB, it can be seen that the temperature is 59.9 ° C.

光ファイバ51,61,62に、局所的な曲げなどによって過剰な損失が加わったとき、前述のごとく、出力光パワーP1,out,P2,outともに略同じだけの損失が加わり、図5の二つ透過損失α,αの曲線が上側に同じ損失量だけシフトする。しかし、透過損失α,αの曲線の傾きや損失差は変化しない。二つの透過損失α,αを測定しているので、このシフトは容易に補正することができる。 When excessive loss is applied to the optical fibers 51, 61, and 62 due to local bending or the like, as described above, almost the same loss is applied to the output optical powers P 1, out , P 2, out , as shown in FIG. The two transmission losses α 1 and α 1 are shifted upward by the same amount of loss. However, the slope of the transmission loss α 1 , α 1 curve and the loss difference do not change. Since the two transmission losses α 1 and α 1 are measured, this shift can be easily corrected.

本実施形態に係る温度計測装置1の構成図である。It is a lineblock diagram of temperature measuring device 1 concerning this embodiment. 本実施形態に係る光導波路型デバイス10の平面図である。1 is a plan view of an optical waveguide device 10 according to the present embodiment. 本実施形態に係る光導波路型デバイス10における各所の光導波路の断面図である。It is sectional drawing of the optical waveguide of each place in the optical waveguide device 10 which concerns on this embodiment. 本実施形態に係る光導波路型デバイス10の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the optical waveguide device 10 which concerns on this embodiment. 本実施形態に係る光導波路型デバイス10における透過損失α,αそれぞれの温度依存性を示すグラフである。It is a graph which shows the temperature dependence of each of transmission loss (alpha) 1 , (alpha) 2 in the optical waveguide device 10 which concerns on this embodiment. 本実施形態に係る光導波路型デバイス10における透過損失α,αそれぞれの温度依存性を示すグラフである。It is a graph which shows the temperature dependence of each of transmission loss (alpha) 1 , (alpha) 2 in the optical waveguide device 10 which concerns on this embodiment.

符号の説明Explanation of symbols

1…温度計測装置、10…光導波路型デバイス、20…光源部、30…検出部、40…解析部、51…入射用光ファイバ、61,62…出射用光ファイバ、100…基板、111…第1光導波路、112…第2光導波路、121…第1光カプラ、122…第2光カプラ、130…オーバークラッド。
DESCRIPTION OF SYMBOLS 1 ... Temperature measuring device, 10 ... Optical waveguide type device, 20 ... Light source part, 30 ... Detection part, 40 ... Analysis part, 51 ... Optical fiber for incidence, 61, 62 ... Optical fiber for output, 100 ... Substrate, 111 ... 1st optical waveguide, 112 ... 2nd optical waveguide, 121 ... 1st optical coupler, 122 ... 2nd optical coupler, 130 ... Over clad.

Claims (5)

基板上に第1光導波路および第2光導波路が形成され、前記第1光導波路と前記第2光導波路とが第1光カプラおよび第2光カプラそれぞれにおいて光結合されて1個のマッハツェンダ干渉計を構成し、前記第1光カプラと前記第2光カプラとの間において前記第2光導波路の一部区間のクラッドの屈折率の温度依存性が他の光導波路部分と異なり、前記第2光導波路の前記一部区間のクラッドが樹脂からなり、前記第1光導波路のコアおよびクラッド、前記第2光導波路のコア、ならびに、前記第2光導波路の前記一部区間以外のクラッドが石英ガラスを主成分とする光導波路型デバイスと、
単色のレーザ光を出力する光源部と、
前記光源部から出力された光を前記光導波路型デバイスの前記第1光導波路および前記第2光導波路の何れか一方の一端に入射させる入射光学系と、
前記光導波路型デバイスの前記第1光導波路および前記第2光導波路それぞれの他端から出射される光のパワーを検出する検出部と、
前記光導波路型デバイスの前記第1光導波路および前記第2光導波路それぞれの他端から前記検出部へ光を導く出射光学系と、
前記検出部による検出結果に基づいて前記光導波路型デバイスの温度を求める解析部と、
を備え、
前記光導波路デバイスが、前記第2光導波路の前記一部区間の長さが所定の温度範囲において、前記一端から前記第1光導波路の前記他端までの光の透過損失α および前記一端から前記第2光導波路の前記他端までの光の透過損失α のうち一方が単調に増加し他方が単調に減少するように設定されており、
前記解析部が、前記検出部による検出結果に基づいて前記透過損失α ,α を求め、この求めた透過損失α ,α に基づいて前記光導波路型デバイスの温度を求める、
ことを特徴とする温度計測装置。
A first optical waveguide and a second optical waveguide are formed on a substrate, and the first optical waveguide and the second optical waveguide are optically coupled in the first optical coupler and the second optical coupler, respectively, so that one Mach-Zehnder interferometer is formed. And the temperature dependence of the refractive index of the cladding in a partial section of the second optical waveguide between the first optical coupler and the second optical coupler differs from the other optical waveguide portions, and the second optical The cladding of the partial section of the waveguide is made of resin, and the core and cladding of the first optical waveguide, the core of the second optical waveguide, and the cladding other than the partial section of the second optical waveguide are made of quartz glass. An optical waveguide device as a main component;
A light source unit that outputs monochromatic laser light;
An incident optical system that makes light output from the light source unit incident on one end of either the first optical waveguide or the second optical waveguide of the optical waveguide device;
A detector for detecting the power of light emitted from the other end of each of the first optical waveguide and the second optical waveguide of the optical waveguide device;
An emission optical system for guiding light from the other end of each of the first optical waveguide and the second optical waveguide of the optical waveguide device to the detection unit;
An analysis unit for obtaining a temperature of the optical waveguide device based on a detection result by the detection unit;
Bei to give a,
In the optical waveguide device, the length of the partial section of the second optical waveguide is within a predetermined temperature range, and light transmission loss α 1 from the one end to the other end of the first optical waveguide One of the light transmission losses α 2 to the other end of the second optical waveguide is set so as to increase monotonously and the other decreases monotonously.
The analysis unit obtains the transmission losses α 1 and α 2 based on the detection result by the detection unit , and obtains the temperature of the optical waveguide device based on the obtained transmission losses α 1 and α 2 .
A temperature measuring device characterized by that.
前記光源部が半導体レーザ素子を含むことを特徴とする請求項1記載の温度計測装置。   The temperature measuring apparatus according to claim 1, wherein the light source unit includes a semiconductor laser element. 前記入射光学系および前記出射光学系それぞれが、前記光導波路型デバイスに対して光を入出射する光ファイバを含む、ことを特徴とする請求項1または2記載の温度計測装置。   The temperature measuring apparatus according to claim 1, wherein each of the incident optical system and the output optical system includes an optical fiber that inputs and outputs light to and from the optical waveguide device. 基板上に第1光導波路および第2光導波路が形成され、前記第1光導波路と前記第2光導波路とが第1光カプラおよび第2光カプラそれぞれにおいて光結合されて1個のマッハツェンダ干渉計を構成し、前記第1光カプラと前記第2光カプラとの間において前記第2光導波路の一部区間のクラッドの屈折率の温度依存性が他の光導波路部分と異なり、前記第2光導波路の前記一部区間のクラッドが樹脂からなり、前記第1光導波路のコアおよびクラッド、前記第2光導波路のコア、ならびに、前記第2光導波路の前記一部区間以外のクラッドが石英ガラスを主成分とする光導波路型デバイスを用い、
前記第1光導波路および前記第2光導波路の何れか一方の一端に単色のレーザ光を入射させて、前記マッハツェンダ干渉計を経て前記第1光導波路の他端から出射する光のパワーPを検出するとともに、前記マッハツェンダ干渉計を経て前記第2光導波路の他端から出射する光のパワーPを検出し、
前記光導波路デバイスにおいて、前記第2光導波路の前記一部区間の長さが所定の温度範囲において、前記一端から前記第1光導波路の前記他端までの光の透過損失α および前記一端から前記第2光導波路の前記他端までの光の透過損失α のうち一方が単調に増加し他方が単調に減少するように設定しておき、
あらかじめ前記第1光導波路の光透過損失および前記第2光導波路の光透過損失と温度との関係を取得しておき、2つの光パワーP,Pに基づいて前記透過損失α ,α を求め、この求めた透過損失α ,α に基づいて温度を計測する、
ことを特徴とする温度計測方法。
A first optical waveguide and a second optical waveguide are formed on a substrate, and the first optical waveguide and the second optical waveguide are optically coupled in the first optical coupler and the second optical coupler, respectively, so that one Mach-Zehnder interferometer is formed. And the temperature dependence of the refractive index of the cladding in a partial section of the second optical waveguide between the first optical coupler and the second optical coupler differs from the other optical waveguide portions, and the second optical The cladding of the partial section of the waveguide is made of resin, and the core and cladding of the first optical waveguide, the core of the second optical waveguide, and the cladding other than the partial section of the second optical waveguide are made of quartz glass. Using an optical waveguide device as the main component,
A monochromatic laser beam is incident on one end of one of the first optical waveguide and the second optical waveguide, and a power P 1 of light emitted from the other end of the first optical waveguide via the Mach-Zehnder interferometer is obtained. and detects detects the power P 2 of the light emitted from the other end of said second optical waveguide via said Mach-Zehnder interferometer,
In the optical waveguide device, in the length predetermined temperature range of a partial section of the second optical waveguide, from the transmission loss alpha 1 and the one end of the light to the other end of the first optical waveguide from said one end One of the light transmission losses α 2 to the other end of the second optical waveguide is set so that one increases monotonously and the other monotonously decreases.
The relationship between the light transmission loss of the first optical waveguide and the light transmission loss of the second optical waveguide and the temperature is acquired in advance, and the transmission losses α 1 and α are based on the two optical powers P 1 and P 2. 2 and the temperature is measured based on the obtained transmission losses α 1 and α 2 .
A temperature measurement method characterized by that.
光ファイバを用いて前記光導波路型デバイスに対して光を入出射することを特徴とする請求項4記載の温度計測方法。
5. The temperature measuring method according to claim 4, wherein light is incident on and emitted from the optical waveguide device using an optical fiber.
JP2005360721A 2005-12-14 2005-12-14 Optical waveguide device, temperature measuring device, and temperature measuring method Expired - Fee Related JP4654901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360721A JP4654901B2 (en) 2005-12-14 2005-12-14 Optical waveguide device, temperature measuring device, and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360721A JP4654901B2 (en) 2005-12-14 2005-12-14 Optical waveguide device, temperature measuring device, and temperature measuring method

Publications (2)

Publication Number Publication Date
JP2007163886A JP2007163886A (en) 2007-06-28
JP4654901B2 true JP4654901B2 (en) 2011-03-23

Family

ID=38246829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360721A Expired - Fee Related JP4654901B2 (en) 2005-12-14 2005-12-14 Optical waveguide device, temperature measuring device, and temperature measuring method

Country Status (1)

Country Link
JP (1) JP4654901B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049479A1 (en) 2009-06-08 2010-12-09 Sms Siemag Ag Integration of an optical waveguide of a measuring sensor into a component
CN105424219B (en) * 2015-12-08 2018-09-07 北京无线电计量测试研究所 A kind of optical taper sensor and preparation method thereof based on Mach-Zehnder interferometers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171629A (en) * 1988-12-23 1990-07-03 Matsushita Electric Works Ltd Light waveguide type temperature sensor
JPH08334639A (en) * 1995-06-07 1996-12-17 Hitachi Cable Ltd Mach-zehnder optical circuit
JPH0961609A (en) * 1995-08-25 1997-03-07 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide type wavelength filter
JPH10227930A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Temperature-independent optical waveguide and its manufacture
JP2000066252A (en) * 1998-08-13 2000-03-03 Lucent Technol Inc Polymer and method material for optical switching and modulation
WO2001027689A1 (en) * 1999-10-15 2001-04-19 Hitachi, Ltd. Optically functional element and production method and application therefor
JP2004333158A (en) * 2003-04-30 2004-11-25 Alps Electric Co Ltd Mach-zehnder interferometer type temperature sensor
JP2005525594A (en) * 2002-05-13 2005-08-25 ティーム、フォトニクス Integrated optical element including optical cladding and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171629A (en) * 1988-12-23 1990-07-03 Matsushita Electric Works Ltd Light waveguide type temperature sensor
JPH08334639A (en) * 1995-06-07 1996-12-17 Hitachi Cable Ltd Mach-zehnder optical circuit
JPH0961609A (en) * 1995-08-25 1997-03-07 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide type wavelength filter
JPH10227930A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Temperature-independent optical waveguide and its manufacture
JP2000066252A (en) * 1998-08-13 2000-03-03 Lucent Technol Inc Polymer and method material for optical switching and modulation
WO2001027689A1 (en) * 1999-10-15 2001-04-19 Hitachi, Ltd. Optically functional element and production method and application therefor
JP2005525594A (en) * 2002-05-13 2005-08-25 ティーム、フォトニクス Integrated optical element including optical cladding and method of manufacturing the same
JP2004333158A (en) * 2003-04-30 2004-11-25 Alps Electric Co Ltd Mach-zehnder interferometer type temperature sensor

Also Published As

Publication number Publication date
JP2007163886A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
Adar et al. Broad-band array multiplexers made with silica waveguides on silicon
US7116870B2 (en) Broadband fiber optic tap
US11346770B2 (en) Optical fiber sensor for salinity and temperature measurement
US8538207B2 (en) Method of fabricating waveguide devices which use evanescent coupling between waveguides and grooves
US20090041415A1 (en) Double-core optical fiber
CN113544480A (en) Light source device for light measurement, spectroscopic measurement device, and spectroscopic measurement method
Bhandari et al. Compact and broadband edge coupler based on multi-stage silicon nitride tapers
JP4770449B2 (en) Optical waveguide device, temperature measuring device, and temperature measuring method
Saha et al. Highly sensitive refractive index sensor based on mode transition in a dual resonance long period grating inscribed ridge waveguide
JP4654901B2 (en) Optical waveguide device, temperature measuring device, and temperature measuring method
WO2012118021A1 (en) Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
CN108279079B (en) Point type temperature sensing device based on radial large dislocation structure coating polydimethylsiloxane of coreless optical fiber
JPWO2005071451A1 (en) Optical device and photonic crystal slab manufacturing method
KR100989670B1 (en) asymmetric optical fiber coupler
JP2006029995A (en) Optical method and instrument for measuring physical quantity
WO2020083999A1 (en) Multimode polymer optical fiber grating
KR100717421B1 (en) Variable Optical Attenuators Incorporating Large Core Polymer Waveguides
Rasras et al. Lab-on-Chip Silicon Photonic Sensor
WO2024009457A1 (en) Optical waveguide device and method for manufacturing same
Hatta Singlemode-multimode-singlemode optical fibre structures for optical sensing
Jacobsen et al. Carbon-coated optical fiber performance in hydrogen
JPH0792350A (en) Spacing amount measuring device
KR100855827B1 (en) All-fiber interferometer and method of manufacturing the same
JP2004361200A (en) Method for evaluating property distribution of single mode optical fiber, and its apparatus
JP4808546B2 (en) Optical fiber sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees