JP4652247B2 - Steel protection method - Google Patents

Steel protection method Download PDF

Info

Publication number
JP4652247B2
JP4652247B2 JP2006041760A JP2006041760A JP4652247B2 JP 4652247 B2 JP4652247 B2 JP 4652247B2 JP 2006041760 A JP2006041760 A JP 2006041760A JP 2006041760 A JP2006041760 A JP 2006041760A JP 4652247 B2 JP4652247 B2 JP 4652247B2
Authority
JP
Japan
Prior art keywords
silver
steel
steel material
water
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006041760A
Other languages
Japanese (ja)
Other versions
JP2007217770A (en
Inventor
宏行 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006041760A priority Critical patent/JP4652247B2/en
Publication of JP2007217770A publication Critical patent/JP2007217770A/en
Application granted granted Critical
Publication of JP4652247B2 publication Critical patent/JP4652247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、外部に露出する鋼材の保護方法の技術分野に属するものである。 The present invention belongs to the technical field of protecting method of steel material you exposed.

こんにち、海岸に近いところや地下水面、海面より低い位置にトンネルやボックスカルバート等の各種構造物を築造することが頻繁に行われ、このような構造物に鋼材がそのまま外部に露出する状態で設けられることがある。そしてこのような鋼材のなかには、例えば地下水に海水を含有する漏水が継続的に付着するものがあり、このような場合、鋼材は、漏水含有物である海水が付着することにより、さらに詳しくは、海水中の塩分の付着により劣化(腐食)していくことになる。そして塩分が鋼材に付着した場合における腐食の電気化学的な仕組みは次のものと考えられる。まず鋼材が腐食するには、付着溶液中に酸化剤である溶存酸素の存在が前提で、該存在する溶存酸素により水が付着している部分の鋼材の表面に電気的な偏りが生じ、付着している水によって電子が輸送され、これにより鉄イオン(鉄(II)イオン(Fe2+)、鉄(III)イオン(Fe3+))が鋼材表面に生成する。ここで付着水に塩分が含まれると、塩分中の塩化物イオンがが前記生成した鉄イオンに配位して鉄のクロロコンプレックスを生成することになって水に溶けにくい鉄の水酸化物の生成を妨害する。鉄のクロロコンプレックスは水に溶け易く、かつ、水に安定的に存在することから、前記生成した鉄のクロロコンプレックスは付着水に溶け出していくことになり、この結果、鋼材は、鉄の水酸化物により表面被覆がなされて保護されるようなことがなく、常に新鮮な腐食表面が腐食環境中に暴露され続けることになる。そして通常の環境下では付着水中には溶存酸素が十分に存在していることから、結果的に、塩分を含有する水に曝露され続ける鋼材は、前記生成した鉄のクロロコンプレックスが継続的(連続的)に漏水に溶け出すことになって痩せ細り状態で腐食し、劣化が進行していくことになる。
そこで鋼材の表面処理について、例えば鍍金による金属被覆や防錆塗料の被覆が従来から知られている(非特許文献1)。
「金属表面工学」、昭和37年4月27日、日刊工業新聞社、初版発行
Today, various structures such as tunnels and box culverts are frequently built near the coast, underground water surface, and below the sea level, and steel is exposed to such structures as they are. May be provided. And in such steel materials, for example, there are those in which water leaking containing seawater continuously adheres to groundwater, and in such a case, steel materials adhere to the seawater, which is a water leakage containing material, in more detail, Deterioration (corrosion) due to adhesion of salt in seawater. And the electrochemical mechanism of corrosion when salinity adheres to steel is considered as follows. First, in order for steel materials to corrode, it is premised on the presence of dissolved oxygen, which is an oxidizing agent, in the adhesion solution. Electrons are transported by the flowing water, and iron ions (iron (II) ions (Fe 2+ ), iron (III) ions (Fe 3+ )) are generated on the steel surface. Here, if the adhering water contains salt, the chloride ions in the salinity coordinate with the generated iron ions to form an iron chlorocomplex, which makes the iron hydroxide difficult to dissolve in water. Interfere with production. Since the iron chlorocomplex is easily soluble in water and stably present in water, the iron chlorocomplex produced above will be dissolved in the adhering water. The surface coating is not protected by oxides, and fresh corroded surfaces will always be exposed to the corrosive environment. And under normal circumstances, there is sufficient dissolved oxygen in the adhering water. As a result, steel products that continue to be exposed to salt-containing water have a continuous (continuous) chlorocomplex of the iron produced. Will be dissolved in the leaked water and corroded in a thin and thin state, and the deterioration will proceed.
Therefore, as for the surface treatment of steel materials, for example, metal coating by plating and coating of rust preventive paint are conventionally known (Non-patent Document 1).
"Metal Surface Engineering", April 27, 1957, Nikkan Kogyo Shimbun, first edition issued

ところが、前記金属を被覆した場合、該被覆には鍍金や溶射等の面倒、かつ、煩雑な処理が必要になるだけでなく、該被覆した金属が塩化物イオンと反応して溶解してしまうため、長時間の保護効果を期待できないという問題がある。また塗料を塗膜した場合、鋼材が、擦過、振動、あるいは打撃等の負荷が働くものである場合、塗料が早期のうちに剥離したり破損してしまうことになって、鋼材の有効な保護手段にはなり得ないという問題があり、これらに本発明の解決すべき課題がある。   However, when the metal is coated, the coating requires not only troublesome and complicated treatment such as plating and thermal spraying, but also the coated metal reacts with chloride ions and dissolves. There is a problem that a long-term protective effect cannot be expected. In addition, when the paint is coated, if the steel material is subject to a load such as abrasion, vibration, or impact, the paint will be peeled off or damaged at an early stage, thereby effectively protecting the steel material. There is a problem that it cannot be used as a means, and there are problems to be solved by the present invention.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、鋼材表面を銀鏡反応により銀で被覆して耐塩化物イオン処理を施したことを特徴とする鋼材の保護方法である。 The present invention, which was created for the purpose of solving these problems in view of the such circumstances above, a first aspect of the invention, salt hydride ion to coat the steel material surface with silver by silver mirror reaction A steel material protecting method characterized in that a treatment is performed.

請求項1の発明とすることにより、高い耐塩化物イオンの効果が、鍍金等の面倒な処理をすることなく簡単に得られることになる。 By setting it as invention of Claim 1, the effect of a high chloride-resistant ion is easily acquired, without performing troublesome processes, such as plating.

本発明は、塩化銀は、その溶解度が30mg/dm(ミリグラム デシメートルのマイナス3乗)と難溶性であり、しかも銀は、鉄(鋼)よりもイオン化傾向が小さいため、例えば硝酸銀水溶液として銀イオンを鋼材表面に塗布しておくと酸化還元による銀鏡反応が容易に促進して銀が鋼材表面に鏡状に析出し、これによって鋼材表面が銀で被覆されることになる。そして該鋼材表面を被覆する銀が、海水含有水に接触すると前記難溶の塩化銀となって鋼材表面を覆う状態となり、これによって鋼材の塩化物イオンとの直接的な接触を回避して鋼材の保護がなされ鋼材劣化を防止できることになる。 In the present invention, silver chloride has a solubility of 30 mg / dm 3 (minus the third power of milligram decimeter) and is hardly soluble, and silver has a lower ionization tendency than iron (steel). When silver ions are applied to the surface of the steel material, the silver mirror reaction by oxidation and reduction is easily promoted, and silver is deposited in a mirror shape on the surface of the steel material, whereby the surface of the steel material is coated with silver. When the silver covering the surface of the steel material comes into contact with seawater-containing water, it becomes the hardly soluble silver chloride so as to cover the surface of the steel material, thereby avoiding direct contact with the steel chloride ions. Thus, steel material deterioration can be prevented.

鋼材表面への銀の被覆作業は、鋼材を現場施工する前に施しても良いが、施工後に施しても良く、また被覆している銀の消費状態をみて再塗布することもできる。銀イオンを得るための銀塩としては、水溶性である硝酸銀が入手しやすく一般的である。そしてこのような銀塩の鋼材表面への付着は、刷毛による塗布、スプレーによる噴霧が例示される。また銀塩は、水溶液として用いることが簡便であるが、エタノールやグリセリン等の極性溶媒に溶解させたものを用いることができ、さらにはポリビニルアルコールのような極性ポリマーに溶解させたものを用いることもできる。   The coating of silver on the steel material surface may be performed before the steel material is applied on-site, or may be performed after the application, or may be reapplied in view of the consumption state of the coated silver. As a silver salt for obtaining silver ions, water-soluble silver nitrate is generally easily available. Such adhesion of the silver salt to the steel material surface is exemplified by application with a brush or spraying with a spray. The silver salt is easy to use as an aqueous solution, but it can be dissolved in a polar solvent such as ethanol or glycerin, and further used in a polar polymer such as polyvinyl alcohol. You can also.

<実験例1>
100mlの水に硝酸銀50gを溶解させて硝酸銀水溶液を作成する。該作成した硝酸銀水溶液を、縦、横および高さが10mm、10mmおよび2mmの鋼板の1表面のみに刷毛を用いて塗布して放置しておくと、鋼板表面に銀鏡が生じた。このように表面に銀鏡が生じた鋼板を飽和食塩水に30分間浸漬した。銀鏡が生じている表面は銀色になっていたが、裏面は赤錆が発生した状態になっていた。表面の銀色部分の一部を軽く擦って除去すると、再び銀鏡が露出し、銀皮膜による保護状態であることが確認された。
<Experimental example 1>
An aqueous silver nitrate solution is prepared by dissolving 50 g of silver nitrate in 100 ml of water. When the prepared silver nitrate aqueous solution was applied to only one surface of steel plates having lengths, widths and heights of 10 mm, 10 mm, and 2 mm using a brush and left to stand, a silver mirror was formed on the steel plate surface. Thus, the steel plate with the silver mirror formed on the surface was immersed in saturated saline for 30 minutes. The surface on which the silver mirror occurred was silver, but the back surface was red rusted. When a part of the silver portion on the surface was removed by light rubbing, the silver mirror was exposed again, and it was confirmed that the surface was protected by the silver film.

<実験例2>
次に、0.4重量%の食塩水と、該食塩水を10倍および1000倍に希釈したものとの3種類の食塩水を用意した。そしてこれらの食塩水に、縦、横および高さが何れも10mmの鋼材について、前記実験例1で作成したと同じ濃度の硝酸銀水溶液に1昼夜(24時間)浸漬して全面に銀鏡を施した試料(以下「銀鏡処理試料」という)と、銀鏡処理をしていない試料(以下「無処理試料」という)とをそれぞれ浸漬して重量の減少割合について経時的な観察をした。その結果を図1の表図に示す。これによると、銀鏡処理試料は、何れの濃度の食塩水に浸漬したものについて、60日を経過しても重量の減少は何れも認められなかった(重量減少が何れの濃度の食塩水に浸漬しても認められなかったので、図面では一つの線で纏めて記載した)が、無処理試料は何れの濃度の食塩水に浸漬したものについて重量減少が認められ、本発明の鋼材を銀鏡処理して銀で被覆したものは、その耐塩化物イオン特性が優れていて、塩化物イオンを含有する水に触れて痩せ細ってしまうことを防止できることが確認された。
<Experimental example 2>
Next, three types of saline solutions of 0.4 wt% saline solution and those obtained by diluting the saline solution 10 times and 1000 times were prepared. And in these salt solution, about 10 mm in length, breadth, and height, all were immersed in the silver nitrate aqueous solution of the same density | concentration as produced in the said Experimental example 1 day and night (24 hours), and the silver mirror was given to the whole surface. A sample (hereinafter referred to as “silver mirror treated sample”) and a sample not subjected to silver mirror treatment (hereinafter referred to as “non-treated sample”) were dipped, and the weight reduction rate was observed over time. The result is shown in the table of FIG. According to this, the silver mirror treated sample was immersed in any concentration of saline solution, and no decrease in weight was observed even after 60 days (the weight decrease was immersed in any concentration of saline solution). However, since it was not recognized, it was described as a single line in the drawing), but the untreated sample was found to be reduced in weight when immersed in saline solution of any concentration, and the steel material of the present invention was treated with a silver mirror. Thus, it was confirmed that the silver-coated material has excellent chloride ion resistance and can prevent thinning due to contact with water containing chloride ions.

鋼材を食塩水に浸漬したときの重量減少割合を示す表図である。It is a table | surface figure which shows the weight reduction | decrease rate when a steel material is immersed in salt solution.

Claims (1)

鋼材表面を銀鏡反応により銀で被覆して耐塩化物イオン処理を施したことを特徴とする鋼材の保護方法。 A method for protecting a steel material, characterized in that the surface of the steel material is coated with silver by a silver mirror reaction and subjected to chloride ion treatment.
JP2006041760A 2006-02-20 2006-02-20 Steel protection method Expired - Fee Related JP4652247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041760A JP4652247B2 (en) 2006-02-20 2006-02-20 Steel protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041760A JP4652247B2 (en) 2006-02-20 2006-02-20 Steel protection method

Publications (2)

Publication Number Publication Date
JP2007217770A JP2007217770A (en) 2007-08-30
JP4652247B2 true JP4652247B2 (en) 2011-03-16

Family

ID=38495366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041760A Expired - Fee Related JP4652247B2 (en) 2006-02-20 2006-02-20 Steel protection method

Country Status (1)

Country Link
JP (1) JP4652247B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193259A (en) * 1983-04-18 1984-11-01 Zojirushi Vacuum Bottle Co Preparation of vacuum double container made of stainless steel
JPH10504886A (en) * 1994-09-01 1998-05-12 ペルソン,ラルス Heat exchanger and method of manufacturing the same
JPH11335858A (en) * 1998-05-27 1999-12-07 Yuji Shikamata Formation of silver plating surface and solution used therefor
JP2001011584A (en) * 1999-04-30 2001-01-16 Kawasaki Steel Corp Stainless steel excellent in antibacterial property and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193259A (en) * 1983-04-18 1984-11-01 Zojirushi Vacuum Bottle Co Preparation of vacuum double container made of stainless steel
JPH10504886A (en) * 1994-09-01 1998-05-12 ペルソン,ラルス Heat exchanger and method of manufacturing the same
JPH11335858A (en) * 1998-05-27 1999-12-07 Yuji Shikamata Formation of silver plating surface and solution used therefor
JP2001011584A (en) * 1999-04-30 2001-01-16 Kawasaki Steel Corp Stainless steel excellent in antibacterial property and its production

Also Published As

Publication number Publication date
JP2007217770A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
Trabanelli Corrosion inhibitors
Decroly et al. Study of the deposition of cerium oxide by conversion on to aluminium alloys
Forsyth et al. Effectiveness of rare-earth metal compounds as corrosion inhibitors for steel
CN103233260B (en) One prepares the anti-fouling ceramic membrane electrolyte of titanium alloy surface and differential arc oxidation method
JP5681332B2 (en) Paint and coated steel
Balan et al. Modified silane films for corrosion protection of mild steel
Treu et al. Characterization of localized surface states of Al 7075-T6 during deposition of cerium-based conversion coatings
JP5641000B2 (en) Surface-treated steel with excellent corrosion resistance
US5435941A (en) Tobacco extract composition and method
AU649246B2 (en) Method and apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish water and/or fresh water
GB2593660A (en) Metallic coated substrates
JP5481705B2 (en) Non-chromic acid anticorrosive for steel materials and method for anticorrosion treatment of steel materials using the anticorrosive agent
JP4652247B2 (en) Steel protection method
Xu et al. Electrochemical studies of polyaspartic acid and sodium tungstate as corrosion inhibitors for brass and Cu30Ni alloy in simulated cooled water solutions
JP4577238B2 (en) Resin-coated steel with excellent long-term durability in concentrated chloride environments and its manufacturing method
Manfredi et al. Selection of copper base alloys for use in polluted seawater
EP2711444A1 (en) Alkaline aqueous solution for improving corrosion resistance of a Cr(III) conversion coating and method for producing such coating and its use
Devanny et al. Corrosion resistance of epoxy primer, polyurethane, and silyl acrylate anti-fouling on carbon steel
JP5180644B2 (en) Nickel elution prevention method for copper alloy wetted parts
CN104085146A (en) Method for employing copper-steel composite board to prevent adhesion corrosion of marine organisms and preparation method for copper-steel composite board
RU2043256C1 (en) Method of protection of submersible object surface against fouling
Loperena et al. Cerium oxides for corrosion protection of AZ91D Mg alloy
JP2013166993A (en) Surface-treated steel material having excellent corrosion resistance and method for producing the same
Gali Corrosion studies of various salt solutions on metals and alloys
Achary et al. Surface modification of zinc with an oxime for corrosion protection in chloride medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees