JP4650808B2 - Apparatus and method for culturing filamentous microalgae - Google Patents

Apparatus and method for culturing filamentous microalgae Download PDF

Info

Publication number
JP4650808B2
JP4650808B2 JP2005045248A JP2005045248A JP4650808B2 JP 4650808 B2 JP4650808 B2 JP 4650808B2 JP 2005045248 A JP2005045248 A JP 2005045248A JP 2005045248 A JP2005045248 A JP 2005045248A JP 4650808 B2 JP4650808 B2 JP 4650808B2
Authority
JP
Japan
Prior art keywords
culture
microalgae
net structure
filamentous
filamentous microalgae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005045248A
Other languages
Japanese (ja)
Other versions
JP2006230211A (en
Inventor
啓介 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sohonsha Corp
Original Assignee
Nikken Sohonsha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sohonsha Corp filed Critical Nikken Sohonsha Corp
Priority to JP2005045248A priority Critical patent/JP4650808B2/en
Publication of JP2006230211A publication Critical patent/JP2006230211A/en
Application granted granted Critical
Publication of JP4650808B2 publication Critical patent/JP4650808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

この発明は、増殖効率が高く、生産性が非常に優れた糸状微細藻類の培養装置および培養方法に関するものである。   The present invention relates to an apparatus and a method for culturing filamentous microalgae having high growth efficiency and excellent productivity.

従来、図4に示したように、頂部にガス排出用開口部11を有する培養容器12の中に培養液13を入れ、この培養液13中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって培養容器12内で微細藻類を培養するようにしており、前記培養容器12を横置きされた内筒14と外筒15からなる二重円筒状に形成するとともに、少なくとも外筒15を可視光線を透過する透明材料で構成し、ガス吹込口16を培養容器12内下部に開口した微細藻類の培養装置、および前記ガス吹込口16から前記ガスを吹き込むことによって培養容器12内に培養液13の旋回流を形成するようにした微細藻類の培養方法が存在する(特許文献1)。   Conventionally, as shown in FIG. 4, a culture solution 13 is placed in a culture vessel 12 having a gas discharge opening 11 at the top, and visible light is emitted while blowing a gas containing carbon dioxide into the culture solution 13. The microalgae are cultivated in the culture vessel 12 by being incident, and the culture vessel 12 is formed into a double cylindrical shape composed of the horizontally placed inner cylinder 14 and outer cylinder 15, and at least the outer cylinder 15. Is made of a transparent material that transmits visible light, and a culture apparatus for microalgae in which the gas blowing port 16 is opened in the lower part of the culture vessel 12 and the gas is blown from the gas blowing port 16 to be cultured in the culture vessel 12. There is a culture method for microalgae that forms a swirling flow of the liquid 13 (Patent Document 1).

この微細藻類の培養装置および培養方法によれば、培養液の十分な攪拌を実現して高い生産性を得ることができるとともに、微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期にわたって高い培養効率を維持することができるとしている。   According to this microalgae culture apparatus and method, sufficient agitation of the culture solution can be achieved to obtain high productivity, and the microalgae can adhere to the culture vessel wall surface and precipitate on the bottom of the culture vessel. It is said that high culture efficiency can be maintained over a long period of time.

さらに、図5に示したように、微細藻類が生息する培養液21中に二酸化炭素を供給し、光を照射して微細藻類22を培養する微細藻類の培養装置において、培養液21中の微細藻濃度を測定する微細藻濃度計23と、光の照射量を測定する照射量計24と、培養液の液深を測定する液深計25とを具備する微細藻類の培養装置及び同装置を用いての微細藻類の培養方法が存在する(特許文献2)。   Furthermore, as shown in FIG. 5, in the microalgae culture apparatus that supplies carbon dioxide into the culture solution 21 in which microalgae inhabit and irradiates light to culture the microalgae 22, A microalgae culturing apparatus and apparatus comprising a microalga concentration meter 23 for measuring algae concentration, a irradiance meter 24 for measuring the amount of light irradiation, and a liquid depth meter 25 for measuring the depth of the culture solution There is a method for culturing microalgae used (Patent Document 2).

この微細藻類の培養装置および培養方法によれば、培養液の藻体限界濃度を検出し、これによって生産藻体の引抜きを行うので引抜き前の藻体がダメージを受けることなく、次の運転サイクルがスムーズに立ち上がるとしている。また、日照量、液深、藻体濃度を検出し、生産藻体の引抜きタイミングを適切に設定すること、及び引抜き量を培養液全量の1/4〜3/4量の範囲とすることにより安定した半連続運転が可能になるとしている。
再公表特許WO2002/099031号公報 特開平5−284959号公報
According to the apparatus and method for culturing microalgae, the algal body limit concentration of the culture solution is detected, and the production alga body is extracted thereby, so that the algal body before the extraction is not damaged and the next operation cycle is performed. Is going to stand up smoothly. Moreover, by detecting the amount of sunlight, the depth of the liquid, and the concentration of algal bodies, appropriately setting the extraction timing of the produced algal bodies, and setting the extraction amount to a range of 1/4 to 3/4 of the total amount of the culture solution. It is said that stable semi-continuous operation will be possible.
Republished patent WO2002 / 099031 JP-A-5-284959

しかしながら、前記特許文献1に記載された培養装置は、従来の培養装置を改造して作製することは困難であり、培養装置を新規に作製しなければならない。しかも、構造が複雑で、小規模の培養を行うには良いが、屋外培養の円形培養装置、レースウェイ培養装置のように数百トンの大量培養を行うには莫大な培養コストがかかる。さらに、培養装置のメンテナンス費用も屋外培養の円形培養装置、レースウェイ培養装置と比べると大幅にかかる。   However, it is difficult to modify the culture apparatus described in Patent Document 1 by modifying a conventional culture apparatus, and a culture apparatus must be newly produced. In addition, the structure is complex and good for small-scale culture, but enormous culture costs are required to perform large-scale culture of several hundred tons like a circular culture apparatus or a raceway culture apparatus for outdoor culture. Furthermore, the maintenance cost of the culture apparatus is significantly higher than the round culture apparatus and raceway culture apparatus for outdoor culture.

さらに、前記特許文献2に記載された培養装置は、従来の培養装置を改造すれば作製可能であり、微細藻類の増殖に伴う光不足を解決して、微生物の生産を効率良く行うものであるが、微細藻類の増殖に伴い培養液中の藻類の濃度がある規定値に達すると、培養液を引き抜くものとしているので、微細藻濃度を測定する濃度計や培養液の液深を測定する液深計などを具備する必要があり、前記特許文献1に記載された培養装置と同様に、これらの計器の設備費用やメンテナンス費用が大幅にかかる。   Furthermore, the culture apparatus described in Patent Document 2 can be produced by modifying a conventional culture apparatus, solves the light shortage associated with the growth of microalgae, and efficiently produces microorganisms. However, when the concentration of algae in the culture solution reaches a specified value as the microalgae grow, the culture solution is pulled out. Therefore, a concentration meter that measures the microalga concentration and a solution that measures the depth of the culture solution It is necessary to have a depth gauge, etc., and, like the culture apparatus described in Patent Document 1, the equipment cost and maintenance cost of these instruments are greatly increased.

そこで、この発明は、上記従来の問題点を解消することを目的としており、小量の培養を行うにも大量の培養を行うにも適しており、また設備費用やメンテナンス費用が余りかかることのない糸状微細藻類の培養装置および培養方法を提供することを目的としてなされたものである。   Therefore, the present invention aims to eliminate the above-mentioned conventional problems, and is suitable for performing a small amount of culture and a large amount of culture, and also requires extra equipment and maintenance costs. The object of the present invention is to provide a culture apparatus and method for cultivating no filamentous microalgae.

そのため、この発明の糸状微細藻類の培養装置は、培養槽内に、縦横3〜5mmの格子状の網目を有するネット構造体を設置したものとしている。 Therefore, the filamentous microalgae culturing apparatus of the present invention is configured such that a net structure having a lattice-like mesh of 3 to 5 mm in length and width is installed in the culture tank.

さらに、この発明の糸状微細藻類の培養方法は、培養槽内に設置した縦横3〜5mmの格子状の網目を有するネット構造体に糸状微細藻類を付着させることにより、その糸状微細藻類に充分な光の照射が確保されるようにしたものとしている。 Furthermore, the method for cultivating the filamentous microalgae of the present invention is sufficient for the filamentous microalgae by attaching the filamentous microalgae to a net structure having a lattice network of 3 to 5 mm in length and width installed in the culture tank. It is assumed that light irradiation is ensured.

そして、この発明の糸状微細藻類の培養装置において、前記ネット構造体は、平面状に形成したものとしたり、立体状に形成したものとすることができる。   And in the cultivation apparatus of the filamentous microalgae of this invention, the said net structure shall be formed in planar shape, or shall be formed in three-dimensional form.

この発明は、以上に述べたように構成されているので、増殖した糸状微細藻類がネット構造体に付着し、また従来では増殖に伴って不足する光の照射を培養槽底部まで十分に供給することができるので、従来に比べ増殖効率の高いものとなり、糸状微細藻類の生産性が非常に優れたものとなる。そして、この発明では、増殖した糸状微細藻類が培養槽の壁面に殆ど付着しないので、培養槽の壁面の洗浄を大幅に省くことができる。さらに、この発明は、培養装置の構造が非常に簡単であるので、小量の培養を行うにも大量の培養を行うにも適しており、また設備費用やメンテナンス費用が余りかかることのないものとなる。   Since the present invention is configured as described above, the proliferated filamentous microalgae adhere to the net structure, and conventionally, the irradiation of light that is deficient with the proliferation is sufficiently supplied to the bottom of the culture tank. Therefore, the growth efficiency is higher than the conventional one, and the productivity of the filamentous microalgae is extremely excellent. In this invention, since the grown filamentous microalgae hardly adhere to the wall surface of the culture tank, washing of the wall surface of the culture tank can be greatly omitted. Furthermore, since the structure of the culture apparatus is very simple, the present invention is suitable for performing a small amount of culture or a large amount of culture, and does not require much equipment and maintenance costs. It becomes.

以下、この発明の糸状微細藻類の培養装置および培養方法を実施するための最良の形態について、詳細に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the apparatus and method for culturing filamentous microalgae of the present invention will be described in detail below.

この発明の糸状微細藻類の培養装置は、微細藻類の培養に一般的に使用されている培養装置、例えば図1〜3に示したように、円形培養装置、レースウェイ培養装置の培養槽1内にネット構造体2を設置したものとしている。そのため、この発明では、糸状微細藻類の培養装置を新たに作製することなく、従来の培養装置をそのまま利用することができる。しかも、培養槽1内にネット構造体2を設置するだけであるので、非常に低コストで作製することができ、この培養装置を用いた培養方法は、糸状微細藻類の培養槽1の壁面への付着を抑え、培養槽1の壁面の洗浄を大幅に省くことができる。   The apparatus for culturing filamentous microalgae of the present invention is a culture apparatus generally used for culturing microalgae, for example, as shown in FIGS. 1 to 3, in a culture tank 1 of a circular culture apparatus or a raceway culture apparatus. It is assumed that the net structure 2 is installed. Therefore, in this invention, the conventional culture apparatus can be used as it is without newly producing a filamentous microalgae culture apparatus. Moreover, since only the net structure 2 is installed in the culture tank 1, it can be produced at a very low cost. The culture method using this culture apparatus is applied to the wall surface of the culture tank 1 for filamentous microalgae. Can be suppressed, and washing of the wall surface of the culture tank 1 can be largely omitted.

ネット構造体2は、ステンレスや鉄(表面が塗装や樹脂加工されたものが好ましい)などの金属製としたり、ビニールなどの合成樹脂製とすることができるが、材質は特に限定されることはない。ビニール製のものは安価で良いが、培養槽1内の水流、浮力等の影響を受けやすく、ネットが外れてしまい易いので、これらの対策を十分に考慮する必要がある。   The net structure 2 can be made of a metal such as stainless steel or iron (preferably one whose surface is painted or resin processed) or a synthetic resin such as vinyl, but the material is not particularly limited. Absent. A vinyl product may be inexpensive, but it is easily affected by the water flow and buoyancy in the culture tank 1 and the net is likely to come off. Therefore, it is necessary to fully consider these measures.

また、ネット構造体2は、全体を平面形状とした場合には、例えば長方形、正方形、丸形などとすることができ、全体を立体形状とした場合には、例えば円筒形、円錐形などとすることができ、その形状についても特に限定されることはないが、従来の培養装置の形状に合わせたものとするのが良い。   Further, the net structure 2 can be, for example, a rectangle, a square, or a circle when the whole is a planar shape, and can be, for example, a cylinder or a cone when the whole is a three-dimensional shape. The shape of the culturing apparatus is not particularly limited, but it is preferable to match the shape of the conventional culture apparatus.

さらに、ネット構造体2は、正方形、丸形、ひし形などの網目形状とすることができ、その形状については特に限定されることはないが、網目寸法については、培養槽1内の水流への影響、糸状微細藻類への光の照射の確保などの点を考慮する必要がある。ネット構造体2の網目形状が、例えば正方形の場合、網目寸法は約2〜20mm角が適当であり、約5〜10mm角が好ましい。何故ならば、網目寸法が約2mm角未満の場合、糸状微細藻類が網目すべてに付着してしまって隙間がなくなり、培養槽1内の水流の障害を引き起こし、糸状微細藻類の生産量が逆に低下してしまうからである。また、網目寸法が約20mm角を超える場合、培養槽1内の水流を妨げることはないが、網目に付着する糸状微細藻類の割合が少なくなってしまい、ネット構造体2を設置する効果が少ない。この場合、培養槽1内に設置するネット構造体2を大きいものとして、その表面積を広くすれば、培養槽1の壁面に糸状微細藻類が付着することがないが、ネット構造体2を大きいものとするのも設置の手間がかかったり、製造コストが高くつき好ましくない。   Furthermore, the net structure 2 can have a mesh shape such as a square, a round shape, and a rhombus, and the shape is not particularly limited, but the mesh size is not limited to the water flow in the culture tank 1. It is necessary to consider points such as the influence and securing of light irradiation to the filamentous microalgae. When the net shape of the net structure 2 is, for example, a square, the mesh size is suitably about 2 to 20 mm square, and preferably about 5 to 10 mm square. This is because when the mesh size is less than about 2 mm square, the filamentous microalgae adheres to all the meshes and there are no gaps, causing a disturbance in the water flow in the culture tank 1, and the production of filamentous microalgae is reversed. It is because it falls. Further, when the mesh size exceeds about 20 mm square, the water flow in the culture tank 1 is not hindered, but the ratio of the filamentous microalgae adhering to the mesh decreases, and the effect of installing the net structure 2 is small. . In this case, if the net structure 2 installed in the culture tank 1 is large and its surface area is widened, filamentous microalgae will not adhere to the wall surface of the culture tank 1, but the net structure 2 is large. This is not preferable because it takes time and effort to install, and the manufacturing cost is high.

そして、この発明の糸状微細藻類の培養方法は、培養槽1内に設置したネット構造体2に糸状微細藻類を付着させることにより、その糸状微細藻類に充分な光の照射が確保されるようにしたものとしている。   The method for culturing filamentous microalgae of the present invention is such that the filamentous microalgae are attached to the net structure 2 installed in the culture tank 1 so that sufficient irradiation of light is secured to the filamentous microalgae. It is assumed that

したがって、この発明の糸状微細藻類の培養方法では、培養槽1内で増殖した糸状微細藻類がネット構造体2に付着し、従来では糸状微細藻類の増殖に伴って不足する光の照射を培養槽1の底部まで十分に供給し、光の照射不足による糸状微細藻類の増殖の低下を抑えることができる。さらに、従来では培養した糸状微細藻類が培養槽1の壁面に付着していたが、そのほとんどがネット構造体2に付着することにより、培養槽1の壁面の洗浄の手間が大幅に省け、メンテナンス費用も余りかかることがない。そして、後に述べる実施例においては、従来の約1.3〜2.2倍の糸状微細藻類を生産できるものとなった。   Therefore, in the method for culturing filamentous microalgae of the present invention, the filamentous microalgae grown in the culture tank 1 adheres to the net structure 2, and conventionally the irradiation of light that is insufficient due to the growth of the filamentous microalgae is performed in the culture tank. It is possible to sufficiently supply to the bottom of 1 and suppress a decrease in the growth of filamentous microalgae due to insufficient light irradiation. Furthermore, conventionally, the cultured filamentous microalgae has adhered to the wall surface of the culture tank 1, but most of them adhere to the net structure 2. It doesn't cost too much. And in the Example described later, it became a thing which can produce the filamentous microalga about 1.3 to 2.2 times the conventional.

この発明の培養装置および培養方法に用いられる糸状微細藻類としては、すべての糸状微細藻類株とすることができる。藍藻類としては、例えば、ホモエオスリックス属(Homoeothrix) 、カロスリックス属(Calothrix) 、プレクトネマ属(Plectonema)、スキトネマ属(Scytonema) 、ミクロケト属(Microchaete) 、アフェニゾメノン属(Aphanizomenon) 、ノジュラリア属(Nodularia) 、アウロシラ属(Aulosira)、アナベナ属(Anabaena)、ネンジュモ属(Nostoc)、フォルミジウム属(Phormidium)、リングビア属(Lyngbya) 、シンプロカ属(Symploca)、ムラサキクダモ属(Porphyrosiphon)、ミクロコレウス属(Microcoleus) 、ハパロシフォン属(Hapalosiphon)に属するものなどが挙げられる。緑藻類としては、スポンジロシウム属(Spondylosium)、デスミジウム属(Desmidium) 、スフェロゾスマ属(Sphaerozosma)に属するものなどが挙げられる。   As the filamentous microalgae used in the culture apparatus and culture method of the present invention, all filamentous microalgae strains can be used. Examples of cyanobacteria include, for example, Homoeothrix, Calothrix, Plectonema, Scytonema, Microchaete, Aphanizomenon, Nodularia ), Aulosira, Anabaena, Nostoc, Formidium, Lyngbya, Symproca, Porphyrosiphon, Microcoleus And those belonging to the genus Hapalosiphon. Examples of the green algae include those belonging to the genus Spongylosium, the genus Desmidium, and the genus Sphaerozosma.

この発明の糸状微細藻類の培養装置および培養方法に用いられる培養槽としては、レースウェイ培養タンク、円形培養タンク、培養チューブなどが挙げられる。   Examples of the culture tank used in the apparatus and method for culturing the filamentous microalgae of the present invention include a raceway culture tank, a circular culture tank, and a culture tube.

以下、この発明の糸状微細藻類の培養装置および培養方法を実施例に基づいて、詳細に説明する。   Hereinafter, the apparatus and method for culturing filamentous microalgae of the present invention will be described in detail based on examples.

〔実施例1〕
直径2m、高さ1.5mの10トン容の円形ポリタンク内に、長方形(横1.2m、縦1m)のステンレス製のネット構造体(網目形状は縦横5mmの格子状)を設置し、この円形ポリタンクを培養槽として、藍藻類のフォルミジウム・ルリダム(Phormidium luridum)を培養した。培養液は、水1リットル当たり硝酸カルシウム四水和物50mg、硝酸カリウム0.1g、硝酸ナトリウム50mg、硫酸ナトリウム40mg、塩化マグネシウム六水和物50mg、β−グリセロりん酸二ナトリウム0.1g、エチレンジアミン四酢酸四ナトリウム四水和物5mg、塩化鉄六水和物0.5mg、塩化マンガン四水和物5mg、塩化亜鉛0.5mg、塩化コバルト六水和物5mgを含有するように調製した。光源は太陽光線を集めて光ファイバーでタンク内に引き込んだ。タンク底部からは0.5%の二酸化炭素を含む空気を50リットル/分の割合で吹き込んだ。
[Example 1]
A stainless steel net structure (mesh shape is 5 mm in length and width) is installed in a 10-ton circular plastic tank with a diameter of 2 m and a height of 1.5 m. The blue algae Phormidium luridum was cultured in a circular polytank. The culture solution was 50 mg calcium nitrate tetrahydrate, 0.1 g potassium nitrate, 50 mg sodium nitrate, 40 mg sodium sulfate, 50 mg magnesium chloride hexahydrate, 0.1 g disodium β-glycerophosphate, ethylenediamine tetrahydrate per liter of water. It was prepared to contain 5 mg of tetrasodium acetate tetrahydrate, 0.5 mg of iron chloride hexahydrate, 5 mg of manganese chloride tetrahydrate, 0.5 mg of zinc chloride, and 5 mg of cobalt chloride hexahydrate. The light source collected sunlight and pulled it into the tank using an optical fiber. Air containing 0.5% carbon dioxide was blown from the bottom of the tank at a rate of 50 liters / minute.

培養中は、増殖した糸状微細藻類がネット構造体に付着するため、円形ポリタンク内壁に付着する糸状微細藻類が少なく、培養槽壁の洗浄の手間が大幅に省くことができた。培養開始10日後、5トンの培養液とネット構造体に付着した糸状微細藻類であるフォルミジウム・ルリダムを遠心分離し、水分量約80%となるペーストを10kg得た。対照として、前記ネット構造体を設置しない他は同じ培養条件でフォルミジウム・ルリダムを培養したところ、水分量約80%となるペーストを4.5kg得た。よって、この発明の糸状微細藻類の培養方法では、従来の培養方法の約2.2倍のフォルミジウム・ルリダムのペーストを効率良く得ることができた。   During the cultivation, the grown filamentous microalgae adhered to the net structure, so that there were few filamentous microalgae adhering to the inner wall of the circular polytank, and the labor of washing the culture tank wall could be greatly reduced. Ten days after the start of culturing, 5 tons of culture broth and formidum microalgae adhering to the net structure were centrifuged to obtain 10 kg of paste having a water content of about 80%. As a control, when formidium ruridum was cultured under the same culture conditions except that the net structure was not installed, 4.5 kg of a paste having a water content of about 80% was obtained. Therefore, in the method for culturing filamentous microalgae of the present invention, it was possible to efficiently obtain a formidium and rulydum paste that was about 2.2 times the conventional culturing method.

〔実施例2〕
縦10m、横3mの2トン容の強化プラスチック製レースウェイ培養タンク内に、長円形(長径2m、短径0.5m)のステンレス製のネット構造体(網目形状は直径10mmの円形状)を設置し、このレースウェイ培養タンクを培養槽として、緑藻類のスポンジロシウム・プルケルム(Spondylosium pulchellum) を培養した。培養液は、水1リットル当たり硝酸ナトリウム0.25g、硫酸マグネシウム75mg、リン酸水素二カリウム75mg、リン酸二水素カリウム0.175g、塩化ナトリウム25mg、塩化カルシウム10mg、硫酸鉄溶液* 1ミリリットル、A5 溶液**1ミリリットルを含有するように調製した(硫酸鉄溶液* :濃硫酸2滴を加えた水0.5リットルに硫酸第一鉄1.0gを溶かした液、A5 溶液**:水1リットルにホウ酸2.86g、硫酸マンガン2.5g、硫酸亜鉛0.222g、硫酸銅79mg、モリブデン酸ナトリウム21mgを溶かした液)。光源は、太陽光を利用し、屋外培養とした。レースウェイ培養タンクの底部からは二酸化炭素を1リットル/分の割合で吹き込んだ。培養液はペダルで30回/分の割合で攪拌し、藻体濃度を均一になるようにした。
[Example 2]
A stainless steel net structure (mesh shape is a circular shape with a diameter of 10 mm) in an oval shape (2 m long and 0.5 m short) in a 2 ton reinforced plastic raceway culture tank 10 m long and 3 m wide. The raceway culture tank was used as a culture tank, and the green alga Spongylosium pulchellum was cultured. The culture solution is 0.25 g of sodium nitrate per liter of water, 75 mg of magnesium sulfate, 75 mg of dipotassium hydrogen phosphate, 0.175 g of potassium dihydrogen phosphate, 25 mg of sodium chloride, 10 mg of calcium chloride, 1 ml of iron sulfate solution * , A5 Solution ** prepared to contain 1 milliliter (iron sulfate solution * : a solution prepared by dissolving 1.0 g of ferrous sulfate in 0.5 liter of water to which 2 drops of concentrated sulfuric acid were added, A5 solution ** : water 1 A solution prepared by dissolving 2.86 g of boric acid, 2.5 g of manganese sulfate, 0.222 g of zinc sulfate, 79 mg of copper sulfate, and 21 mg of sodium molybdate in 1 liter). As the light source, sunlight was used for outdoor culture. Carbon dioxide was blown from the bottom of the raceway culture tank at a rate of 1 liter / min. The culture solution was stirred with a pedal at a rate of 30 times / minute so that the algal body concentration was uniform.

培養中は、増殖した糸状微細藻類がネット構造体に付着するため、レースウェイ培養タンク内壁に付着する糸状微細藻類が少なく、培養槽壁の洗浄の手間が大幅に省くことができた。培養開始14日後、2トンの培養液とネット構造体に付着した糸状微細藻類であるスポンジロシウム・プルケルムを遠心分離し、得られたペーストをスプレードライにより乾燥させ、3.4kgの粉末化したスポンジロシウム・プルケルムの乾燥パウダーを得た。対照として、前記ネット構造体を設置しない他は同じ培養条件でスポンジロシウム・プルケルムを培養したところ、2.7kgの粉末化したスポンジロシウム・プルケルムの乾燥パウダーを得た。よって、この発明の糸状微細藻類の培養方法では、従来の培養方法の約1.3倍のスポンジロシウム・プルケルムの乾燥パウダーを効率良く得ることができた。   During the cultivation, the grown filamentous microalgae adhere to the net structure, so that there are few filamentous microalgae adhering to the inner wall of the raceway culture tank, and the labor of washing the culture tank wall can be greatly reduced. 14 days after the start of the culture, 2 tons of the culture broth and the sponge microalga adhering to the net structure were centrifuged, and the resulting paste was dried by spray drying to form 3.4 kg of powder. A dried powder of sponge roseium and purkerum was obtained. As a control, sponge ross Prukerum was cultured under the same culturing conditions except that the net structure was not installed. As a result, 2.7 kg of powdered sponge rosium Prukerm dry powder was obtained. Therefore, in the method for culturing filamentous microalgae of the present invention, it was possible to efficiently obtain a dry powder of sponge rocium / purkerum approximately 1.3 times that of the conventional culturing method.

〔実施例3〕
直径8m、高さ1mの30トン容の強化アクリル製円形培養タンク内に、円筒形(直径3m、高さ1m)のステンレス製のネット構造体(網目形状は縦横5mmの格子状)を設置し、この円形培養タンクを培養槽として、藍藻類のフォルミジウム・ルリダム(Phormidium luridum)を培養した。培養液は、実施例1に準じて調製し、光源は太陽光線を利用し、屋外培養とした。円形培養タンク底部からは二酸化炭素を20リットル/分の割合で吹き込んだ。培養液は攪拌棒で攪拌し、藻体濃度を均一になるようにした。
Example 3
A cylindrical net structure (3m in diameter and 1m in height) made of stainless steel (mesh shape is 5mm in length and breadth) is placed in a 30-ton reinforced acrylic circular culture tank with a diameter of 8m and a height of 1m. The cyanobacteria Phormidium luridum was cultured using this circular culture tank as a culture tank. The culture solution was prepared according to Example 1, and the light source was an outdoor culture using sunlight. Carbon dioxide was blown from the bottom of the circular culture tank at a rate of 20 liters / minute. The culture solution was stirred with a stirring rod so that the algal cell concentration was uniform.

培養中は、増殖した糸状微細藻類がネット構造体に付着するため、円形培養タンク内壁に付着する糸状微細藻類が少なく、培養槽壁の洗浄の手間が大幅に省くことができた。培養開始12日後、30トンの培養液とネット構造体に付着した糸状微細藻類であるフォルミジウム・ルリダムを遠心分離し、水分量約80%となるペーストを48kg得た。対照として、前記ネット構造体を設置しない他は同じ培養条件でフォルミジウム・ルリダムを培養したところ、水分量約80%となるペーストを33kg得た。よって、この発明の糸状微細藻類の培養方法では、従来の培養方法の約1.5倍のフォルミジウム・ルリダムのペーストを効率良く得ることができた。   During cultivation, the grown filamentous microalgae adhere to the net structure, so that there are few filamentous microalgae adhering to the inner wall of the circular culture tank, and the labor of washing the culture tank wall can be greatly reduced. Twelve days after the start of the culture, 30 tons of the culture solution and formidium rulydum, a filamentous microalgae adhering to the net structure, were centrifuged to obtain 48 kg of paste with a water content of about 80%. As a control, formidium ruridum was cultured under the same culture conditions except that the net structure was not installed, and 33 kg of paste with a water content of about 80% was obtained. Therefore, in the method for culturing filamentous microalgae of the present invention, it was possible to efficiently obtain a formidium and rulydam paste approximately 1.5 times as much as the conventional culturing method.

〔実施例4〕
直径15m、高さ1mの500トン容のコンクリート製円形培養タンク内に、円筒形(直径10m、高さ1m)の鉄製のネット構造体(網目形状は縦横5mmの格子状)を設置し、この円形培養タンクを培養槽として、藍藻類のフォルミジウム・ルリダム(Phormidium luridum)を培養した。培養液は、実施例1に準じて調製し、光源は太陽光線を利用し、屋外培養とした。円形培養タンク底部からは二酸化炭素を60リットル/分の割合で吹き込んだ。培養液は攪拌棒で攪拌し、藻体濃度を均一になるようにした。
Example 4
In a 500 ton concrete round culture tank with a diameter of 15 m and a height of 1 m, a cylindrical iron net structure (10 m in diameter and 1 m in height) is installed (the mesh shape is a grid with a length and width of 5 mm). The cyanobacteria Phormidium luridum was cultured in a circular culture tank. The culture solution was prepared according to Example 1, and the light source was an outdoor culture using sunlight. Carbon dioxide was blown from the bottom of the circular culture tank at a rate of 60 liters / minute. The culture solution was stirred with a stirring rod so that the algal cell concentration was uniform.

培養中は、増殖した糸状微細藻類がネット構造体に付着するため、円形培養タンク内壁に付着する糸状微細藻類が少なく、培養槽壁の洗浄の手間が大幅に省くことができた。培養開始34日後、500トンの培養液とネット構造体に付着した糸状微細藻類であるフォルミジウム・ルリダムを遠心分離し、得られたペーストは凍結乾燥を行い127kgのフォルミジウム・ルリダムの乾燥パウダーを得た。対照として、前記ネット構造体を設置しない他は同じ培養条件でフォルミジウム・ルリダムを培養したところ、73kgのフォルミジウム・ルリダムの乾燥パウダーを得た。よって、この発明の糸状微細藻類の培養方法によって、従来の培養方法の約1.7倍のフォルミジウム・ルリダムの乾燥パウダーを効率良く得ることができた。   During cultivation, the grown filamentous microalgae adhere to the net structure, so that there are few filamentous microalgae adhering to the inner wall of the circular culture tank, and the labor of washing the culture tank wall can be greatly reduced. 34 days after the start of the culture, 500 tons of the culture solution and the formal microalgae attached to net structure were centrifuged, and the paste obtained was freeze-dried to obtain 127 kg of dry powder of formidium rulydum. . As a control, formidium ruridum was cultured under the same culture conditions except that the net structure was not installed, and 73 kg of dry powder of formidium rulidum was obtained. Therefore, by the method for culturing filamentous microalgae of the present invention, it was possible to efficiently obtain a dry powder of formidium ulridum approximately 1.7 times that of the conventional culturing method.

〔実施例5〕
直径1.1m、高さ0.8mの500リットル容の円形ポリタンク内に、円筒形(直径0.7m、高さ0.5m)のステンレス製のネット構造体(網目形状は縦横3mmの格子状)を設置し、この円形ポリタンクを培養槽として、藍藻類のノストック・コムネ(Nostoc commune)を培養した。培養液は、実施例1に準じて調製し、光源は500ワットの白熱灯を用い、屋外培養とした。円形ポリタンク底部からは1%二酸化炭素を含む空気を5リットル/分の割合で吹き込んだ。培養液は攪拌棒で攪拌し、藻体濃度を均一になるようにした。
Example 5
In a 500 liter circular plastic tank with a diameter of 1.1 m and a height of 0.8 m, a cylindrical net structure (diameter of 0.7 m and height of 0.5 m) (mesh shape is a 3 mm vertical and horizontal grid) ), And the cyanobacteria Nostoc commune was cultured using this circular plastic tank as a culture tank. The culture solution was prepared according to Example 1, and a 500 watt incandescent lamp was used as the light source for outdoor culture. Air containing 1% carbon dioxide was blown from the bottom of the circular plastic tank at a rate of 5 liters / minute. The culture solution was stirred with a stirring rod so that the algal cell concentration was uniform.

培養中は、増殖した糸状微細藻類がネット構造体に付着するため、円形ポリタンク内壁に付着する糸状微細藻類が少なく、培養槽壁の洗浄の手間が大幅に省くことができた。培養開始15日後、500リットルの培養液とネット構造体に付着した糸状微細藻類であるノストック・コムネを遠心分離し、水分量約80%となるペーストを1kg得た。対照として、前記ネット構造体を設置しない他は同じ培養条件でノストック・コムネを培養したところ、水分量約80%となるペーストを0.53kg得た。よって、この発明の糸状微細藻類の培養方法では、従来の培養方法の約1.9倍のノストック・コムネのペーストを効率良く得ることができた。   During the cultivation, the grown filamentous microalgae adhered to the net structure, so that there were few filamentous microalgae adhering to the inner wall of the circular polytank, and the labor of washing the culture tank wall could be greatly reduced. 15 days after the start of the culture, 500 liters of the culture solution and Nostock Comune, which is a filamentous microalgae adhering to the net structure, were centrifuged to obtain 1 kg of a paste having a water content of about 80%. As a control, when Nostock commune was cultured under the same culture conditions except that the net structure was not installed, 0.53 kg of paste having a water content of about 80% was obtained. Therefore, in the method for cultivating filamentous microalgae of the present invention, it was possible to efficiently obtain Nostock Comune paste that was approximately 1.9 times that of the conventional culture method.

この発明の糸状微細藻類の培養装置を構成する培養槽とネット構造体の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the culture tank and net structure which comprise the cultivation apparatus of the filamentous microalgae of this invention. この発明の糸状微細藻類の培養装置を構成する培養槽とネット構造体の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the culture tank and net structure which comprise the cultivation apparatus of the filamentous microalgae of this invention. この発明の糸状微細藻類の培養装置を構成する培養槽とネット構造体のさらに他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the culture tank and net structure which comprise the cultivation apparatus of the filamentous microalgae of this invention. 従来の微細藻類培養装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional micro algae culture apparatus. 従来の微細藻類培養装置の他の例を示す説明図である。It is explanatory drawing which shows the other example of the conventional micro algae culture apparatus.

符号の説明Explanation of symbols

1 培養槽
2 ネット構造体
1 Culture tank 2 Net structure

Claims (4)

培養槽(1)内に、縦横3〜5mmの格子状の網目を有するネット構造体(2)を設置したことを特徴とする糸状微細藻類の培養装置。 An apparatus for cultivating filamentous microalgae, characterized in that a net structure (2) having a lattice-like mesh of 3 to 5 mm in length and width is installed in the culture tank (1). 前記ネット構造体(2)が、平面状に形成したものであることを特徴とする請求項1記載の糸状微細藻類の培養装置。   The apparatus for culturing filamentous microalgae according to claim 1, wherein the net structure (2) is formed in a planar shape. 前記ネット構造体(2)が、立体状に形成したものであることを特徴とする請求項1記載の糸状微細藻類の培養装置。   The apparatus for culturing filamentous microalgae according to claim 1, wherein the net structure (2) is three-dimensionally formed. 培養槽(1)内に設置した縦横3〜5mmの格子状の網目を有するネット構造体(2)に糸状微細藻類を付着させることにより、その糸状微細藻類に充分な光の照射が確保されるようにしたことを特徴とする糸状微細藻類の培養方法。 By attaching the filamentous microalgae to the net structure (2) having a grid network of 3 to 5 mm in length and width installed in the culture tank (1), sufficient irradiation of light is ensured for the filamentous microalgae. A method for culturing filamentous microalgae, characterized in that
JP2005045248A 2005-02-22 2005-02-22 Apparatus and method for culturing filamentous microalgae Active JP4650808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045248A JP4650808B2 (en) 2005-02-22 2005-02-22 Apparatus and method for culturing filamentous microalgae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045248A JP4650808B2 (en) 2005-02-22 2005-02-22 Apparatus and method for culturing filamentous microalgae

Publications (2)

Publication Number Publication Date
JP2006230211A JP2006230211A (en) 2006-09-07
JP4650808B2 true JP4650808B2 (en) 2011-03-16

Family

ID=37038536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045248A Active JP4650808B2 (en) 2005-02-22 2005-02-22 Apparatus and method for culturing filamentous microalgae

Country Status (1)

Country Link
JP (1) JP4650808B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE519837T1 (en) * 2007-10-29 2011-08-15 Atomic Energy Council DEVICE AND METHOD FOR CULTIVATION OF ALGAE USING IONIZING RADIATION
MX2010007319A (en) * 2008-01-03 2010-10-26 Proterro Inc Transgenic photosynthetic microorganisms and photobioreactor.
DE102013208227A1 (en) * 2013-05-06 2014-11-06 Siemens Aktiengesellschaft Photobioreactor for immobilized microorganisms
JP2015057991A (en) * 2013-09-20 2015-03-30 富士フイルム株式会社 Method for liquid-surface floating culture of microalgae using structure with penetrated portion, and collection method
CN106906123A (en) * 2017-04-11 2017-06-30 国家开发投资公司 The culture apparatus of filamentous algae
CN111363683A (en) * 2019-04-17 2020-07-03 张兰英 Method and device for culturing edible tree fungi in indoor and outdoor artificial large-scale cultivation land

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564577A (en) * 1991-09-06 1993-03-19 Ebara Res Co Ltd Method and device for culturing photosynthetic microorganism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564577A (en) * 1991-09-06 1993-03-19 Ebara Res Co Ltd Method and device for culturing photosynthetic microorganism

Also Published As

Publication number Publication date
JP2006230211A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4650808B2 (en) Apparatus and method for culturing filamentous microalgae
Pulz Photobioreactors: production systems for phototrophic microorganisms
CN105316217B (en) Artificial light source both culturing microalgae equipment
CN105018539B (en) A method of culture schizochytrium limacinum high yield DHA
CN210193886U (en) High-efficient closed marine microalgae cultivates photobioreactor
CN105316235A (en) Freshwater eukaryoticmicroalgae culture method
CN103749366B (en) A kind of simple high yield and the cultivating system of ecological, environmental protective
CN102441325A (en) Method for reducing CO2 emission and producing microalgae lipid by using microalgae
CN101525574A (en) Device floating on water and used for breeding engineering facility and construction method
CN101265449A (en) Fast high-density culture method for algae cell
CN104017726A (en) Built-in light source bioreactor and microalgae culture method
CN207167454U (en) A kind of aquaculture pond
CN104152344A (en) Photobioreactor used for culturing benthic microalgae and culturing method thereof
EP2540814A1 (en) Photobioreactor for the continuous culture of microalgae and a modular system comprising said photobioreactors
RU2644653C1 (en) Planktonic strain of chlorella vulgaris meant for producing food biomass
CN107384832B (en) Method for culturing nitrogen-fixing blue algae in large quantity at low cost
CN203590795U (en) Kelp indoor culture device
CN105754862A (en) Method for cultivating microalgae by wastewater
CN209456160U (en) Drifting type Multifunctional ecological floating bed
CN208821508U (en) The culture of ornamental fish and air purifier
WO2016000192A1 (en) Bioreactor with built-in light source and microalgae culture method
CN204097489U (en) A kind of built-in light source bio-reactor and production cultivation equipment
CN109355195A (en) The method and both culturing microalgae system of cultivating microalgae in a kind of solarization salt pond
CN209260069U (en) A kind of both culturing microalgae system in sea cucumber/abalone culture region
CN103911289A (en) Enclosed micro algae culture method in intermittent ventilation mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Ref document number: 4650808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250