JP4650390B2 - Diffraction grating manufacturing method - Google Patents

Diffraction grating manufacturing method Download PDF

Info

Publication number
JP4650390B2
JP4650390B2 JP2006290292A JP2006290292A JP4650390B2 JP 4650390 B2 JP4650390 B2 JP 4650390B2 JP 2006290292 A JP2006290292 A JP 2006290292A JP 2006290292 A JP2006290292 A JP 2006290292A JP 4650390 B2 JP4650390 B2 JP 4650390B2
Authority
JP
Japan
Prior art keywords
substrate
incident light
light
photosensitive layer
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006290292A
Other languages
Japanese (ja)
Other versions
JP2008107566A (en
JP2008107566A5 (en
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006290292A priority Critical patent/JP4650390B2/en
Publication of JP2008107566A publication Critical patent/JP2008107566A/en
Publication of JP2008107566A5 publication Critical patent/JP2008107566A5/ja
Application granted granted Critical
Publication of JP4650390B2 publication Critical patent/JP4650390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、ホログラフィック露光法により溝パターンを形成する際の迷光の影響を排除することにより、高精度の回折格子を製造する方法に関する。   The present invention relates to a method for manufacturing a high-precision diffraction grating by eliminating the influence of stray light when forming a groove pattern by a holographic exposure method.

回折格子を製造する方法の1つに、干渉縞を生成して露光することにより基板の表面に溝パターンを形成するホログラフィック露光法がある。図1を用いて、ホログラフィック露光法の原理を説明する。図1(a)はこの露光法を示す全体図であり、(b)は基板付近の拡大図である。   One method of manufacturing a diffraction grating is a holographic exposure method in which a groove pattern is formed on the surface of a substrate by generating and exposing interference fringes. The principle of the holographic exposure method will be described with reference to FIG. FIG. 1A is an overall view showing this exposure method, and FIG. 1B is an enlarged view of the vicinity of the substrate.

まず、基板11の上面に感光剤を塗布することにより感光層12を形成する。次に、コヒーレントな光13をビームスプリッタ14により同じ強度を持つ2本の光131及び132に分割し、これら2本の光131及び132が感光層12の表面で重なるようにその表面に照射する。これにより、光131と光132が干渉して感光層12の表面に干渉縞15が形成され、感光層12が干渉縞15内の光の強弱に応じて感光する。
このように感光層12を感光させた後に現像すると、感光層12には干渉縞15のパターンに応じて基板11が露出する部分と感光剤が残る部分がそれぞれ縞状に形成される。そして、イオンビーム法等を用いて、残された感光剤をマスクとして基板11の上面をエッチングすることにより、この基板11上面に縞状の凹凸パターン、即ち回折格子の溝が形成される。
First, the photosensitive layer 12 is formed by applying a photosensitive agent to the upper surface of the substrate 11. Next, the coherent light 13 is divided into two light beams 131 and 132 having the same intensity by the beam splitter 14, and the two light beams 131 and 132 are irradiated on the surface of the photosensitive layer 12 so as to overlap each other. . As a result, the light 131 and the light 132 interfere to form an interference fringe 15 on the surface of the photosensitive layer 12, and the photosensitive layer 12 is exposed according to the intensity of light in the interference fringe 15.
When the photosensitive layer 12 is developed after being exposed in this manner, a portion where the substrate 11 is exposed and a portion where the photosensitive agent remains are formed in a stripe shape in the photosensitive layer 12 according to the pattern of the interference fringes 15. Then, an ion beam method or the like is used to etch the upper surface of the substrate 11 using the remaining photosensitive agent as a mask, whereby a striped uneven pattern, that is, a diffraction grating groove is formed on the upper surface of the substrate 11.

この方法においては、感光層12に到達する光131及び132の一部は感光層12を通過して基板11内に入る(通過光161及び162)。そして、それら通過光161及び162のうちの一部は基板11の下面111により反射され(反射光171及び172)、再び感光層12に入射する。これら反射光171と反射光172が感光層12において干渉することにより、正規の干渉縞15にノイズとなる干渉縞が重畳されてしまう。このようなノイズ干渉縞を持つ回折格子を分光測定に用いると、回折格子パターンの乱れにより迷光が発生し、測定精度が低下する。   In this method, a part of the light 131 and 132 reaching the photosensitive layer 12 passes through the photosensitive layer 12 and enters the substrate 11 (passing light 161 and 162). A part of the transmitted light 161 and 162 is reflected by the lower surface 111 of the substrate 11 (reflected light 171 and 172) and is incident on the photosensitive layer 12 again. When the reflected light 171 and the reflected light 172 interfere with each other in the photosensitive layer 12, interference fringes that become noise are superimposed on the regular interference fringes 15. When a diffraction grating having such noise interference fringes is used for spectroscopic measurement, stray light is generated due to the disturbance of the diffraction grating pattern, and the measurement accuracy is lowered.

特許文献1には、図2(a)に示すように、ホログラフィック露光を実施する際に基板下面に黒色の塗料18を塗布しておくことが記載されている。これにより、通過光161、162を黒色塗料18で吸収することができ、感光層12に入射する反射光171、172を抑制することができる。また、この文献には、図2(b)に示すように、基板下面をすりガラス状にすることも記載されている。これにより、すりガラス状下面19において通過光161、162を散乱させることができ、反射光同士が干渉してノイズ干渉縞が形成されることを防ぐことができる。   Patent Document 1 describes that, as shown in FIG. 2A, a black paint 18 is applied to the lower surface of the substrate when performing holographic exposure. Thereby, the passing lights 161 and 162 can be absorbed by the black paint 18, and the reflected lights 171 and 172 incident on the photosensitive layer 12 can be suppressed. Further, this document also describes that the lower surface of the substrate is ground glass as shown in FIG. Thereby, it is possible to scatter the passing lights 161 and 162 on the ground glass-like lower surface 19, and to prevent the interference between the reflected lights and the formation of noise interference fringes.

しかし、黒色塗料を用いた場合には、黒色塗料が通過光を完全には吸収することはできないため、ノイズ干渉縞が形成されることを(黒色塗料がない場合よりも振幅が小さくなるものの)完全には防ぐことができない。また、基板下面をすりガラス状にした場合には、ノイズ干渉縞は形成されないが、散乱光が感光層全体にほぼ一様な強度で入射するため、本来の干渉縞のコントラストが低下するという問題が生じる。   However, when black paint is used, the black paint cannot completely absorb the passing light, so that noise interference fringes are formed (although the amplitude is smaller than the case without black paint). It cannot be completely prevented. Further, when the lower surface of the substrate is made of frosted glass, noise interference fringes are not formed, but the scattered light is incident on the entire photosensitive layer with a substantially uniform intensity, so that the contrast of the original interference fringes is lowered. Arise.

特開平07-098404号公報([0007]〜[0015], 図1)Japanese Unexamined Patent Publication No. 07-098404 ([0007] to [0015], FIG. 1)

本発明が解決しようとする課題は、ノイズ干渉縞の発生及び本来の干渉縞のコントラストの低下を防ぐことができる回折格子の製造方法を提供することである。   The problem to be solved by the present invention is to provide a method for manufacturing a diffraction grating capable of preventing the generation of noise interference fringes and a reduction in contrast of the original interference fringes.

上記課題を解決するために成された本発明に係る回折格子の製造方法は、所定のコヒーレント光が透過可能な基板の上面に形成した感光層の表面に、同一強度を有する2本のコヒーレント光を入射させて干渉縞を形成することにより前記感光層に溝パターンを作製する工程を有する回折格子製造方法であって、
前記基板の下面を光沢面とし、
前記溝パターン作製工程において、
2本のコヒーレント光の各々を前記感光層の手前で、前記感光層の表面に入射させるための表面入射光と基板の下面に入射させるための下面入射光に分割し、
前記基板内において前記2本の下面入射光の各々の強度と前記表面入射光のうち前記感光層及び前記基板内を通過して前記基板下面で反射する基板内下面反射光の強度が同じとなり、且つ両者の位相が反転することにより該下面入射光と該基板内下面反射光が干渉して消失するように、前記下面入射光又は/及び前記表面入射光の強度及び位相を調整する、
ことを特徴とする。
In order to solve the above problems, a method for manufacturing a diffraction grating according to the present invention includes two coherent light beams having the same intensity on the surface of a photosensitive layer formed on the upper surface of a substrate capable of transmitting predetermined coherent light. A diffraction grating manufacturing method including a step of forming a groove pattern in the photosensitive layer by forming an interference fringe by entering
The lower surface of the substrate is a glossy surface,
In the groove pattern manufacturing process,
Each of the two coherent lights is divided into front incident light for incidence on the surface of the photosensitive layer and lower incidence light for incidence on the lower surface of the substrate before the photosensitive layer,
Within the substrate, the intensity of each of the two lower surface incident light and the intensity of the inner surface lower surface reflected light that passes through the photosensitive layer and the substrate and reflects on the lower surface of the surface incident light are the same, And the intensity and phase of the lower surface incident light or / and the front surface incident light are adjusted so that the lower surface incident light and the lower surface reflected light in the substrate interfere and disappear by reversing the phases of both.
It is characterized by that.

本発明に係る露光装置は、所定のコヒーレント光が通過可能であって下面が光沢面である基板の上面に形成した感光層の表面に、同一強度を有する2本の前記コヒーレント光を入射させて干渉縞を形成することにより前記感光層に溝パターンを作製する露光装置において、
a) 2本のコヒーレント光の各々につき前記感光層の手前の光路上に設けられた、前記コヒーレント光を前記感光層の表面に入射させるための表面入射光と基板の下面に入射させるための下面入射光に分割するビームスプリッタと、
b) 前記2本の下面入射光の各々を前記基板の下面に入射させる下面入射光学系と、
c) 前記基板内において前記基板下面を通過する前記2本の下面入射光の各々の強度と前記表面入射光のうち前記感光層及び前記基板内を通過して前記基板下面で反射する基板内下面反射光の強度が同じになるように、前記下面入射光又は/及び前記表面入射光の強度を調整する強度調整手段と、
d) 前記基板内において前記2本の下面入射光と前記基板内下面反射光の位相が反転することにより該下面入射光と該基板内下面反射光が干渉して消失するように、前記下面入射光又は/及び前記表面入射光の位相を調整する位相調整手段と、
を備えることを特徴とする。
The exposure apparatus according to the present invention causes the two coherent lights having the same intensity to enter the surface of the photosensitive layer formed on the upper surface of the substrate through which predetermined coherent light can pass and the lower surface is a glossy surface. In an exposure apparatus for producing a groove pattern in the photosensitive layer by forming interference fringes,
a) Provided on the optical path in front of the photosensitive layer for each of the two coherent lights, the surface incident light for making the coherent light incident on the surface of the photosensitive layer and the lower surface for making it incident on the lower surface of the substrate A beam splitter that splits the incident light;
b) a bottom-surface incident optical system that causes each of the two bottom-surface incident light to enter the bottom surface of the substrate;
c) Intensity of each of the two lower surface incident lights passing through the lower surface of the substrate in the substrate and the inner lower surface of the surface incident light that passes through the photosensitive layer and the substrate and is reflected by the lower surface of the substrate. Intensity adjusting means for adjusting the intensity of the lower surface incident light or / and the surface incident light so that the intensity of the reflected light is the same;
d) The lower surface incident light is such that the lower surface incident light and the lower surface reflected light in the substrate interfere with each other and disappear by reversing the phases of the two lower surface incident light and the inner lower surface reflected light in the substrate. Phase adjusting means for adjusting the phase of the light or / and the surface incident light; and
It is characterized by providing.

本願では、各構成要素の位置関係を示すために便宜上、基板を基準として感光層側を「上」側と表現したが、これは単に一つの方向性を示すための便宜上の表記であって、本発明の回折格子製造方法の実施時の向きを何ら規定するものではない。   In the present application, for the sake of convenience, in order to show the positional relationship of each component, the photosensitive layer side is expressed as the “upper” side with reference to the substrate, but this is merely a convenience notation for showing one directionality, The direction at the time of implementation of the diffraction grating manufacturing method of the present invention is not specified at all.

本発明によれば、2本の表面入射光から生じる2本の基板内下面反射光の各々は、基板内において下面入射光と同じ強度及び反転した位相を有するため、両者が干渉して消失する。これにより、2本の基板内下面反射光同士が干渉してノイズ干渉縞が発生することを防ぐことができる。一方、本来の干渉縞は2本の表面入射光により、従来と同様に形成することができる。   According to the present invention, each of the two reflected light beams in the lower surface of the substrate generated from the two front surface incident lights has the same intensity and inverted phase as the lower surface incident light in the substrate. . As a result, it is possible to prevent noise interference fringes from occurring due to interference between the reflected light from the bottom surface of the two substrates. On the other hand, the original interference fringes can be formed in the same manner as in the past by using two front surface incident lights.

下面入射光又は/及び前記表面入射光の強度はND(neutral density)フィルタ等、光の強度制御に通常用いられているものを使用することにより調整することができる。また、下面入射光又は/及び前記表面入射光の位相は、2枚の楔形ガラス基板を相対させた、トータルの厚みが可変の素子等の位相可変素子を用いたり、光路長を変化させたりすることにより調整することができる。   The intensity of the lower surface incident light and / or the front surface incident light can be adjusted by using an ND (neutral density) filter or the like that is usually used for light intensity control. In addition, the phase of the lower surface incident light and / or the front surface incident light is obtained by using a phase variable element such as an element having a variable total thickness made by opposing two wedge-shaped glass substrates, or changing the optical path length. Can be adjusted.

基板下面で基板内下面反射光が散乱すると、前述のように散乱した光が感光層全体に入射して本来の干渉縞のコントラストが低下すると共に、基板内下面反射光と下面入射光を完全には干渉させて消失させることができなくなる。そのため、本発明では基板下面を光沢面とする。   When the reflected light on the bottom surface of the substrate is scattered on the bottom surface of the substrate, the scattered light enters the entire photosensitive layer as described above, and the contrast of the original interference fringes is lowered. Cannot be lost by interfering. Therefore, in the present invention, the lower surface of the substrate is a glossy surface.

本発明により、基板内において基板内下面反射光と下面入射光を互いに干渉させることにより打ち消すことができるため、従来生じていた2本の基板内下面反射光によるノイズ干渉縞の発生を防ぐことができる。また、本発明では基板下面を光沢面とするため、基板内下面反射光と下面入射光をより確実に消失させてノイズ干渉縞の発生を防ぐことができると共に、散乱した光が感光層全体に入射して本来の干渉縞のコントラストが低下することを防ぐことができる。   According to the present invention, since the lower surface reflected light and the lower surface incident light in the substrate can be canceled by interfering with each other in the substrate, it is possible to prevent generation of noise interference fringes due to two conventionally generated reflected light from the lower surface in the substrate. it can. Further, in the present invention, since the lower surface of the substrate is a glossy surface, the reflected light on the lower surface in the substrate and the incident light on the lower surface can be more reliably lost to prevent the generation of noise interference fringes, and the scattered light is spread over the entire photosensitive layer. It is possible to prevent the contrast of the original interference fringes from being lowered due to incidence.

本発明の方法で作製された回折格子を使用することにより、上述のような効果が得られるため、特にラマン分光等のように微弱な光を取り扱う測定分野において、より精密な測定が可能になる。   By using the diffraction grating produced by the method of the present invention, the above-described effects can be obtained, and therefore, more precise measurement is possible particularly in the measurement field that handles weak light such as Raman spectroscopy. .

本発明に係る回折格子製造方法の一実施形態を図3を用いて説明する。図3は本方法を実施するための露光装置20の概略構成図である。なお、図3中の太実線及び太破線はレーザ光の光路を示す。   An embodiment of a diffraction grating manufacturing method according to the present invention will be described with reference to FIG. FIG. 3 is a schematic block diagram of the exposure apparatus 20 for carrying out this method. Note that the thick solid line and the thick broken line in FIG. 3 indicate the optical path of the laser beam.

光源21から出力されるレーザ光は、まず第0ビームスプリッタ22により2等分される。第0ビームスプリッタ22により分割された2本のレーザ光は、第1ビームスプリッタ231及び第2ビームスプリッタ232により更に2等分される。ここでは、第1ビームスプリッタ231により分割されたレーザ光の一方を第1表面入射光281と呼び、他方を第1下面入射光291と呼ぶ。同様に、第2ビームスプリッタ232により分割されたレーザ光の一方を第2表面入射光282と呼び、他方を第2下面入射光292と呼ぶ。   The laser beam output from the light source 21 is first divided into two equal parts by the zeroth beam splitter 22. The two laser beams split by the zeroth beam splitter 22 are further divided into two equal parts by the first beam splitter 231 and the second beam splitter 232. Here, one of the laser beams divided by the first beam splitter 231 is referred to as first surface incident light 281 and the other is referred to as first lower surface incident light 291. Similarly, one of the laser beams divided by the second beam splitter 232 is referred to as second surface incident light 282 and the other is referred to as second lower surface incident light 292.

第1ビームスプリッタ231と第2ビームスプリッタ232は、第1表面入射光281と第2表面入射光282が基板11表面の感光層12において重なるように調節する。基板11は基板ホルダ27により保持する。基板ホルダ27には、例えば基板11の側面を左右から支えるクランプのように、基板11の上面及び下面への光の入射を遮らないものを用いる。   The first beam splitter 231 and the second beam splitter 232 adjust so that the first surface incident light 281 and the second surface incident light 282 overlap in the photosensitive layer 12 on the surface of the substrate 11. The substrate 11 is held by the substrate holder 27. As the substrate holder 27, for example, a clamp that supports the side surface of the substrate 11 from the left and right and that does not block the incidence of light on the upper and lower surfaces of the substrate 11 is used.

第1下面入射光291は反射鏡261及び262を用いて、第2下面入射光292は反射鏡263及び264を用いて、それぞれ基板11の下面に入射するように光路を調整する。第1下面入射光291の光路上に第1NDフィルタ241を設け、基板11内での第1下面入射光291が第1基板内下面反射光311の強度と同じになるように、第1下面入射光291の強度を調節する。また、第1下面入射光291の光路上に第1位相可変素子251を設け、基板11内での第1下面入射光291と第1基板内下面反射光311が反転するように調整する。同様に、第2下面入射光292の光路上に、基板11内での第2下面入射光292と第2基板内下面反射光312を同じ強度にするための第2NDフィルタ242及び両者の位相を反転させるための第2位相可変素子252を設ける。   The first lower surface incident light 291 uses the reflecting mirrors 261 and 262, and the second lower surface incident light 292 uses the reflecting mirrors 263 and 264 to adjust the optical path so as to enter the lower surface of the substrate 11, respectively. A first ND filter 241 is provided on the optical path of the first lower surface incident light 291 so that the first lower surface incident light 291 in the substrate 11 has the same intensity as the first substrate lower surface reflected light 311. The intensity of the light 291 is adjusted. Further, the first phase variable element 251 is provided on the optical path of the first lower surface incident light 291, and the first lower surface incident light 291 and the first lower surface reflected light 311 in the substrate 11 are adjusted so as to be inverted. Similarly, on the optical path of the second lower surface incident light 292, the second ND filter 242 for making the second lower surface incident light 292 and the second inner surface lower surface reflected light 312 in the substrate 11 have the same intensity and the phase of both are set. A second phase variable element 252 for inversion is provided.

この露光装置20を用いて回折格子を製造する方法を、図4を用いて説明する。まず、基板11の上面に、光源21が発するレーザ光に感光する材料から成る感光層12を形成する(図4(a))。次に、基板11を基板ホルダ27に固定して光源21からレーザ光を出力する。これにより、第1表面入射光281及び第2表面入射光282が感光層12の表面に入射し、両者が干渉して干渉縞15が形成され(図4(b))、その干渉縞15に対応したパターン34が感光層12に形成される。   A method of manufacturing a diffraction grating using the exposure apparatus 20 will be described with reference to FIG. First, a photosensitive layer 12 made of a material sensitive to laser light emitted from the light source 21 is formed on the upper surface of the substrate 11 (FIG. 4A). Next, the substrate 11 is fixed to the substrate holder 27 and laser light is output from the light source 21. As a result, the first surface incident light 281 and the second surface incident light 282 are incident on the surface of the photosensitive layer 12, and both interfere to form an interference fringe 15 (FIG. 4B). A corresponding pattern 34 is formed on the photosensitive layer 12.

その際、第1表面入射光281の一部は感光層12及び基板11の上面を通過して基板11内に進入し、更にその通過光の一部が基板11の下面で反射される(第1基板内下面反射光311)。一方、基板11の下面には第1下面入射光291が入射し、その一部は基板11内を通過する。上述のように第1NDフィルタ241及び第1位相可変素子251により第1下面入射光291の強度及び位相が調整されることにより、これら基板11内での第1下面入射光291Aと第1基板内下面反射光311は干渉により消失する。同様に、第2表面入射光282のうち基板11内に進入して基板11下面で反射される第2基板内下面反射光312と基板11内での第2下面入射光292Aが干渉により消失する。これにより、第1基板内下面反射光311と第2基板内下面反射光312が干渉してノイズ干渉縞が生じることを防ぐことができる。   At this time, a part of the first front surface incident light 281 passes through the upper surface of the photosensitive layer 12 and the substrate 11 and enters the substrate 11, and a part of the transmitted light is reflected by the lower surface of the substrate 11 (first 1 substrate inner bottom surface reflected light 311). On the other hand, the first lower surface incident light 291 enters the lower surface of the substrate 11, and part of the light passes through the substrate 11. As described above, the intensity and phase of the first lower surface incident light 291 are adjusted by the first ND filter 241 and the first phase variable element 251, so that the first lower surface incident light 291 </ b> A in the substrate 11 and the first substrate inside The lower surface reflected light 311 disappears due to interference. Similarly, the second lower surface incident light 312 that enters the substrate 11 and is reflected by the lower surface of the substrate 11 out of the second surface incident light 282 and the second lower surface incident light 292A in the substrate 11 disappear due to interference. . Thereby, it is possible to prevent noise interference fringes from occurring due to interference between the first substrate inner lower surface reflected light 311 and the second substrate inner lower surface reflected light 312.

このように感光層12にパターン34を形成した後、従来の回折格子製造方法と同様に、反応性イオンビームエッチング等の方法を用いてパターン34の上から基板11の表面をエッチングし(図4(c))、その後パターン34を除去することにより、基板11の表面に格子溝が形成された回折格子30を得ることができる(図4(d))。また、こうして得られた回折格子30をマスタとして、まずガラス基板361の表面に塗布した樹脂351にマスタを押し当てそのまま加熱硬化させることによりマスタのネガ型を転写し(ネガマスタ37、図4(e))、次にマスタ30とネガマスタ37を分離した後、同様に別のガラス基板362に塗布した樹脂352にネガマスタ37の型を転写させる(図4(f))ことにより、レプリカの回折格子38を得ることができる(図4(g))。   After the pattern 34 is formed on the photosensitive layer 12 in this way, the surface of the substrate 11 is etched from above the pattern 34 using a method such as reactive ion beam etching as in the conventional diffraction grating manufacturing method (FIG. 4). (c)) After that, by removing the pattern 34, the diffraction grating 30 in which the grating grooves are formed on the surface of the substrate 11 can be obtained (FIG. 4 (d)). Further, using the diffraction grating 30 thus obtained as a master, the master is first pressed against the resin 351 applied to the surface of the glass substrate 361 and directly cured by heating to transfer the negative type of the master (negative master 37, FIG. 4 (e )) Next, after the master 30 and the negative master 37 are separated, the mold of the negative master 37 is transferred to the resin 352 similarly applied to another glass substrate 362 (FIG. 4 (f)), whereby a replica diffraction grating 38 is obtained. Can be obtained (FIG. 4 (g)).

次に、本実施形態の回折格子製造方法における第1下面入射光291及び第2下面入射光292の強度の調整方法について説明する。ここでは第1下面入射光291を例にして説明するが、第2下面入射光292についても同様に調整することができる。
まず、第1表面入射光281及び第1下面入射光291がs偏光である場合について説明する。
基板11の屈折率をn、基板11の上面への入射角をθ、基板11上面での屈折角をχとする(図5)と、真空中から基板11上面に入射する第1表面入射光281の透過係数ts1n及び反射係数rs1nは、屈折角χ及び入射角θを用いて
ts1n=2 cosθ/(cosθ+n cosχ) …(1)
rs1n=(cosθ-n cosχ)/(cosθ+n cosχ) …(2)
と表される。
そして、屈折角χで屈折して基板11内に進入した光は基板11の下面に入射角χで入射し、その一部は屈折角θで基板11下面から真空中へ透過すると共に、残りは反射角χで反射する。その際の基板11下面でのs偏光の透過係数tsn1及び反射係数rsn1は、
tsn1=2n cosχ/(n cosχ+cosθ) …(3)
rsn1=(n cosχ-cosθ)/(n cosχ+cosθ) …(4)
と表される。
基板11下面における第1基板内下面反射光311の強度は、第1表面入射光281の(ts1n×rsn1)倍となる。
一方、基板11下面から基板11内に進入した第1下面入射光291Aの強度は、基板11内への進入前の強度のts1n倍になる。
従って、基板11内への進入前の第1下面入射光291のs偏光の強度を第1表面入射光281のs偏光の
(ts1n×rsn1)/ts1n倍
=rsn1 倍
=(n cosχ-cosθ)/(n cosχ+cosθ) 倍 …(5)
となるように第1NDフィルタ241を調整することにより、基板11内での第1下面入射光291Aと第1基板内下面反射光311の強度を一致させることができる。
Next, a method for adjusting the intensity of the first lower surface incident light 291 and the second lower surface incident light 292 in the diffraction grating manufacturing method of the present embodiment will be described. Here, the first lower surface incident light 291 will be described as an example, but the second lower surface incident light 292 can be similarly adjusted.
First, a case where the first front surface incident light 281 and the first lower surface incident light 291 are s-polarized light will be described.
When the refractive index of the substrate 11 is n, the incident angle on the upper surface of the substrate 11 is θ, and the refractive angle on the upper surface of the substrate 11 is χ (FIG. 5), the first surface incident light incident on the upper surface of the substrate 11 from a vacuum. The transmission coefficient ts1n and the reflection coefficient rs1n of 281 are obtained using the refraction angle χ and the incident angle θ.
ts1n = 2 cosθ / (cosθ + n cosχ) (1)
rs1n = (cosθ-n cosχ) / (cosθ + n cosχ) (2)
It is expressed.
The light refracted at the refraction angle χ and entering the substrate 11 is incident on the lower surface of the substrate 11 at the incident angle χ. A part of the light is transmitted from the lower surface of the substrate 11 to the vacuum at the refraction angle θ, and the rest Reflects at a reflection angle χ. In this case, the transmission coefficient tsn1 and reflection coefficient rsn1 of s-polarized light on the lower surface of the substrate 11 are
tsn1 = 2n cosχ / (n cosχ + cosθ)… (3)
rsn1 = (n cosχ-cosθ) / (n cosχ + cosθ) (4)
It is expressed.
The intensity of the first substrate inner lower surface reflected light 311 on the lower surface of the substrate 11 is (ts1n × rsn1) times the first front surface incident light 281.
On the other hand, the intensity of the first lower surface incident light 291A entering the substrate 11 from the lower surface of the substrate 11 is ts1n times the intensity before entering the substrate 11.
Therefore, the intensity of the s-polarized light of the first lower surface incident light 291 before entering the substrate 11 is changed to that of the s-polarized light of the first surface incident light 281.
(ts1n × rsn1) / ts1n times
= rsn1 times
= (n cosχ-cosθ) / (n cosχ + cosθ) times (5)
By adjusting the first ND filter 241 so as to satisfy the above, the intensities of the first lower surface incident light 291A and the first lower surface reflected light 311 in the substrate 11 can be matched.

第1表面入射光281及び第1下面入射光291がp偏光である場合にも同様に強度を計算することができる。即ち、真空中から基板11上面に入射するp偏光の透過係数tp1n及び反射係数rp1nは、
tp1n=2 cosθ/(n cosθ+cosχ) …(6)
rp1n=(n cosθ-cosχ)/(n cosθ+cosχ) …(7)
と表され、基板11上面から基板11内に透過した光の基板11下面での透過係数tpn1及び反射係数rpn1は、
tpn1=2n cosχ/(cosχ+n cosθ) …(8)
rpn1=(cosχ-n cosθ)/(cosχ+n cosθ) …(9)
と表される。一方、基板11内での第1下面入射光291Aの強度は基板11内への進入前のtp1n倍になる。従って、基板11内での第1下面入射光291Aと第1基板内下面反射光311の強度を一致させるためには、基板11への入射前の第1下面入射光291のp偏光の強度を第1表面入射光281のp偏光の
(tp1n×rpn1)/tp1n 倍
=rpn1 倍
=(cosχ-n cosθ)/(cosχ+n cosθ) 倍 …(10)
となるように第1NDフィルタ241を調整すればよい。
The intensity can be similarly calculated when the first front surface incident light 281 and the first lower surface incident light 291 are p-polarized light. That is, the transmission coefficient tp1n and the reflection coefficient rp1n of p-polarized light incident on the upper surface of the substrate 11 from the vacuum are:
tp1n = 2 cosθ / (n cosθ + cosχ) (6)
rp1n = (n cosθ-cosχ) / (n cosθ + cosχ) (7)
The transmission coefficient tpn1 and reflection coefficient rpn1 on the lower surface of the substrate 11 of light transmitted from the upper surface of the substrate 11 into the substrate 11 are
tpn1 = 2n cosχ / (cosχ + n cosθ)… (8)
rpn1 = (cosχ-n cosθ) / (cosχ + n cosθ)… (9)
It is expressed. On the other hand, the intensity of the first lower surface incident light 291A in the substrate 11 is tp1n times before entering the substrate 11. Therefore, in order to match the intensities of the first lower surface incident light 291A and the first lower surface reflected light 311 in the substrate 11, the intensity of the p-polarized light of the first lower surface incident light 291 before being incident on the substrate 11 is set. P-polarized light of the first surface incident light 281
(tp1n × rpn1) / tp1n times
= rpn1 times
= (cosχ-n cosθ) / (cosχ + n cosθ) times (10)
The first ND filter 241 may be adjusted so that

なお、ここで示した計算では感光層12における光の反射や吸収を無視した。そのため、実際には、基板11内での第1下面入射光291Aと第1基板内下面反射光311、及び基板11内での第2下面入射光292Aと第2基板内下面反射光312を完全に打ち消すためには、予備実験を行うことにより、第1下面入射光291及び第2下面入射光292の強度を上述の計算により求めた値から微修正すればよい。   In the calculation shown here, light reflection and absorption in the photosensitive layer 12 were ignored. Therefore, actually, the first lower surface incident light 291A and the first lower surface reflected light 311 in the substrate 11 and the second lower surface incident light 292A and the second lower surface reflected light 312 in the substrate 11 are completely transmitted. In order to cancel, the preliminary experiments are performed to finely correct the intensities of the first lower surface incident light 291 and the second lower surface incident light 292 from the values obtained by the above calculation.

本発明に係る回折格子製造方法及び露光装置は上述の例には限られない。
上述の露光装置20では第1ビームスプリッタ231と反射鏡261の間に第1NDフィルタ241を配置し、反射鏡262と基板11の下面の間に第1位相可変素子251を配置した例を示したが、これら第1ビームスプリッタ231及び第1位相可変素子251は第1ビームスプリッタ231と基板11の下面の間のいずれの位置に配置されていてもよい。第2ビームスプリッタ232及び第2位相可変素子252も同様である。
The diffraction grating manufacturing method and the exposure apparatus according to the present invention are not limited to the above examples.
In the exposure apparatus 20 described above, an example is shown in which the first ND filter 241 is disposed between the first beam splitter 231 and the reflecting mirror 261, and the first phase variable element 251 is disposed between the reflecting mirror 262 and the lower surface of the substrate 11. However, the first beam splitter 231 and the first phase variable element 251 may be disposed at any position between the first beam splitter 231 and the lower surface of the substrate 11. The same applies to the second beam splitter 232 and the second phase variable element 252.

また、第1下面入射光291及び第2下面入射光292の位相は、位相可変素子を用いる代わりに、以下の方法により調整することができる。図6に示した露光装置40は、前述の露光装置20と同様に、下面入射光を基板11の下面に入射させるために第1下面入射光291の光路上に反射鏡261及び262を、第2下面入射光292の光路上に反射鏡263及び264を、それぞれ備える。そして、これらの反射鏡を移動させて第1下面入射光291及び第2下面入射光292の光路長を変化させることにより、基板11内に入射する第1下面入射光291及び第2下面入射光292の位相を調整することができる。このように、露光装置40では位相可変素子を設けることなく、第1表面入射光281及び第2表面入射光282が基板11の下面で反射された光と第1下面入射光291及び第2下面入射光292が逆位相になるように調整することができる。この位相可変手段を除いて、露光装置40は露光装置20と同じ構成を有する。また、露光装置40の動作は位相の調整方法を除いて露光装置20と同様である。   Moreover, the phase of the 1st lower surface incident light 291 and the 2nd lower surface incident light 292 can be adjusted with the following method instead of using a phase variable element. The exposure apparatus 40 shown in FIG. 6 is similar to the exposure apparatus 20 described above, and includes reflecting mirrors 261 and 262 on the optical path of the first lower surface incident light 291 in order to make the lower surface incident light incident on the lower surface of the substrate 11. Reflective mirrors 263 and 264 are provided on the optical path of the second lower surface incident light 292, respectively. Then, by moving these reflecting mirrors and changing the optical path lengths of the first lower surface incident light 291 and the second lower surface incident light 292, the first lower surface incident light 291 and the second lower surface incident light that enter the substrate 11. The phase of 292 can be adjusted. As described above, in the exposure apparatus 40, the first surface incident light 281 and the second surface incident light 282 are reflected by the lower surface of the substrate 11 and the first lower surface incident light 291 and the second lower surface without providing a phase variable element. The incident light 292 can be adjusted to have an opposite phase. Except for this phase varying means, the exposure apparatus 40 has the same configuration as the exposure apparatus 20. The operation of the exposure apparatus 40 is the same as that of the exposure apparatus 20 except for the phase adjustment method.

上述の露光装置20及び40では第1(第2)ビームスプリッタ231(232)によりレーザ光を第1(第2)表面入射光281(282)と第1(第2)下面入射光291(292)が同じ強度になるように2等分しているが、この分割時の強度比を変えることにより第1(第2)下面入射光291(292)の強度を調整するようにしてもよい。   In the above exposure apparatuses 20 and 40, the first (second) beam splitter 231 (232) converts the laser light into first (second) surface incident light 281 (282) and first (second) lower surface incident light 291 (292). However, the intensity of the first (second) lower surface incident light 291 (292) may be adjusted by changing the intensity ratio at the time of division.

ここまでは第1(第2)下面入射光291(292)の強度及び位相を調整する例を示したが、第1(第2)下面入射光291(292)の代わりに、又は第1(第2)下面入射光291(292)と共に、第1(第2)表面入射光281(282)の強度及び位相を調整するようにしてもよい。例えば、第1(第2)ビームスプリッタ231(232)と感光層12の間にある第1(第2)下面入射光291(292)の光路上にNDフィルタや位相可変素子を設けたり、第1(第2)ビームスプリッタ231(232)と感光層12の距離を変化させたりすることにより、第1(第2)表面入射光281(282)の強度及び位相を調整することができる。   Up to this point, an example of adjusting the intensity and phase of the first (second) lower surface incident light 291 (292) has been shown, but instead of the first (second) lower surface incident light 291 (292) or the first (second) The intensity and phase of the first (second) front surface incident light 281 (282) may be adjusted together with the second lower surface incident light 291 (292). For example, an ND filter or a phase variable element may be provided on the optical path of the first (second) bottom surface incident light 291 (292) between the first (second) beam splitter 231 (232) and the photosensitive layer 12, By changing the distance between the 1 (second) beam splitter 231 (232) and the photosensitive layer 12, the intensity and phase of the first (second) surface incident light 281 (282) can be adjusted.

ホログラフィック露光法の原理を説明するための図。The figure for demonstrating the principle of a holographic exposure method. ノイズ干渉縞の形成を防ぐための従来の方法を示す縦断面図。The longitudinal cross-sectional view which shows the conventional method for preventing formation of a noise interference fringe. 本発明に係る回折格子製造方法を実施するための装置の一形態を示す概略構成図。The schematic block diagram which shows one form of the apparatus for enforcing the diffraction grating manufacturing method which concerns on this invention. 本発明に係る回折格子製造方法の工程を示す縦断面図。The longitudinal cross-sectional view which shows the process of the diffraction grating manufacturing method which concerns on this invention. 基板11の上面及び下面における入射角及び屈折角を説明するための縦断面図。FIG. 4 is a longitudinal sectional view for explaining an incident angle and a refraction angle on an upper surface and a lower surface of a substrate 11. 本発明に係る回折格子製造方法を実施するための装置の他の一形態を示す概略構成図。The schematic block diagram which shows another form of the apparatus for enforcing the diffraction grating manufacturing method which concerns on this invention.

符号の説明Explanation of symbols

11…基板
111…基板下面
12…感光層
13…光
131、132…分割された光
14…ビームスプリッタ
15…干渉縞
161…通過光
171…反射光
18…黒色塗料
19…すりガラス状下面
20、40…露光装置
21…光源
22…第0ビームスプリッタ
231…第1ビームスプリッタ
232…第2ビームスプリッタ
241…第1NDフィルタ
242…第2NDフィルタ
251…第1位相可変素子
252…第2位相可変素子
261、262、263、264…反射鏡
27…基板ホルダ
281…第1表面入射光
282…第2表面入射光
291…第1下面入射光
292…第2下面入射光
291A…基板11内に入射した第1下面入射光
292A…基板11内に入射した第2下面入射光
30…回折格子
311…第1基板内下面反射光
312…第2基板内下面反射光
34…感光層12に形成されたパターン
351、352…樹脂
361、362…ガラス基板
37…ネガマスタ
38…レプリカの回折格子
DESCRIPTION OF SYMBOLS 11 ... Substrate 111 ... Substrate lower surface 12 ... Photosensitive layer 13 ... Light 131, 132 ... Divided light 14 ... Beam splitter 15 ... Interference fringe 161 ... Passing light 171 ... Reflected light 18 ... Black paint 19 ... Ground glass-like lower surface 20, 40 ... exposure device 21 ... light source 22 ... 0th beam splitter 231 ... first beam splitter 232 ... second beam splitter 241 ... first ND filter 242 ... second ND filter 251 ... first phase variable element 252 ... second phase variable element 261, 262, 263, 264 ... Reflector 27 ... Substrate holder 281 ... First surface incident light 282 ... Second surface incident light 291 ... First lower surface incident light 292 ... Second lower surface incident light 291A ... First incident on substrate 11 Lower surface incident light 292A ... Second lower surface incident light 30 incident on the substrate 11 ... Diffraction grating 311 ... Lower surface reflected light 312 in the first substrate ... Lower in the second substrate Surface reflected light 34 ... patterns 351 and 352 formed on the photosensitive layer 12 ... resin 361 and 362 ... glass substrate 37 ... negative master 38 ... replica diffraction grating

Claims (2)

所定のコヒーレント光が透過可能な基板の上面に形成した感光層の表面に、同一強度を有する2本のコヒーレント光を入射させて干渉縞を形成することにより前記感光層に溝パターンを作製する工程を有する回折格子製造方法であって、
前記基板の下面を光沢面とし、
前記溝パターン作製工程において、
2本のコヒーレント光の各々を前記感光層の手前で、前記感光層の表面に入射させるための表面入射光と基板の下面に入射させるための下面入射光に分割し、
前記基板内において前記2本の下面入射光の各々の強度と前記表面入射光のうち前記感光層及び前記基板内を通過して前記基板下面で反射する基板内下面反射光の強度が同じとなり、且つ両者の位相が反転することにより該下面入射光と該基板内下面反射光が干渉して消失するように、前記下面入射光又は/及び前記表面入射光の強度及び位相を調整する、
ことを特徴とする回折格子製造方法。
A step of forming a groove pattern in the photosensitive layer by making two coherent lights having the same intensity incident on the surface of the photosensitive layer formed on the upper surface of the substrate capable of transmitting predetermined coherent light to form interference fringes. A diffraction grating manufacturing method comprising:
The lower surface of the substrate is a glossy surface,
In the groove pattern manufacturing process,
Each of the two coherent lights is divided into front incident light for incidence on the surface of the photosensitive layer and lower incidence light for incidence on the lower surface of the substrate before the photosensitive layer,
Within the substrate, the intensity of each of the two lower surface incident light and the intensity of the inner surface lower surface reflected light that passes through the photosensitive layer and the substrate and reflects on the lower surface of the surface incident light are the same, And the intensity and phase of the lower surface incident light or / and the front surface incident light are adjusted so that the lower surface incident light and the lower surface reflected light in the substrate interfere and disappear by reversing the phases of both.
A diffraction grating manufacturing method characterized by the above.
所定のコヒーレント光が通過可能であって下面が光沢面である基板の上面に形成した感光層の表面に、同一強度を有する2本の前記コヒーレント光を入射させて干渉縞を形成することにより前記感光層に溝パターンを作製する露光装置において、
a) 2本のコヒーレント光の各々につき前記感光層の手前の光路上に設けられた、前記コヒーレント光を前記感光層の表面に入射させるための表面入射光と基板の下面に入射させるための下面入射光に分割するビームスプリッタと、
b) 前記2本の下面入射光の各々を前記基板の下面に入射させる下面入射光学系と、
c) 前記基板内において前記基板下面を通過する前記2本の下面入射光の各々の強度と前記表面入射光のうち前記感光層及び前記基板内を通過して前記基板下面で反射する基板内下面反射光の強度が同じになるように、前記下面入射光又は/及び前記表面入射光の強度を調整する強度調整手段と、
d) 前記基板内において前記2本の下面入射光と前記基板内下面反射光の位相が反転することにより該下面入射光と該基板内下面反射光が干渉して消失するように、前記下面入射光又は/及び前記表面入射光の位相を調整する位相調整手段と、
を備えることを特徴とする露光装置。
The interference fringes are formed by causing the two coherent lights having the same intensity to enter the surface of the photosensitive layer formed on the upper surface of the substrate through which predetermined coherent light can pass and the lower surface is a glossy surface. In an exposure apparatus for producing a groove pattern in a photosensitive layer,
a) Provided on the optical path in front of the photosensitive layer for each of the two coherent lights, the surface incident light for making the coherent light incident on the surface of the photosensitive layer and the lower surface for making it incident on the lower surface of the substrate A beam splitter that splits the incident light;
b) a bottom-surface incident optical system that causes each of the two bottom-surface incident light to enter the bottom surface of the substrate;
c) Intensity of each of the two lower surface incident lights passing through the lower surface of the substrate in the substrate and the inner lower surface of the surface incident light that passes through the photosensitive layer and the substrate and is reflected by the lower surface of the substrate. Intensity adjusting means for adjusting the intensity of the lower surface incident light or / and the surface incident light so that the intensity of the reflected light is the same;
d) The lower surface incident light is such that the lower surface incident light and the lower surface reflected light in the substrate interfere with each other and disappear by reversing the phases of the two lower surface incident light and the inner lower surface reflected light in the substrate. Phase adjusting means for adjusting the phase of the light or / and the surface incident light; and
An exposure apparatus comprising:
JP2006290292A 2006-10-25 2006-10-25 Diffraction grating manufacturing method Expired - Fee Related JP4650390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290292A JP4650390B2 (en) 2006-10-25 2006-10-25 Diffraction grating manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290292A JP4650390B2 (en) 2006-10-25 2006-10-25 Diffraction grating manufacturing method

Publications (3)

Publication Number Publication Date
JP2008107566A JP2008107566A (en) 2008-05-08
JP2008107566A5 JP2008107566A5 (en) 2009-02-26
JP4650390B2 true JP4650390B2 (en) 2011-03-16

Family

ID=39440964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290292A Expired - Fee Related JP4650390B2 (en) 2006-10-25 2006-10-25 Diffraction grating manufacturing method

Country Status (1)

Country Link
JP (1) JP4650390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698835A (en) * 2013-12-17 2014-04-02 中国科学院长春光学精密机械与物理研究所 Holographic grating exposure method adopting heterodyne interference fringe locking control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224094A (en) * 1986-03-26 1987-10-02 Hitachi Ltd Formation of diffraction grating and apparatus therefor
JPS62297722A (en) * 1986-06-16 1987-12-24 Nec Corp Manufacture of diffraction grating
JPH05502109A (en) * 1989-07-18 1993-04-15 マサチューセッツ・インステチュート・オブ・テクノロジー Improvements in holographic lithography
JPH0798404A (en) * 1993-08-02 1995-04-11 Matsushita Electric Ind Co Ltd Production of diffraction grating
JPH07234310A (en) * 1994-02-22 1995-09-05 Matsushita Electric Ind Co Ltd Production of diffraction grating and production of optical wavelength conversion element
JP2002107543A (en) * 2000-10-03 2002-04-10 Toppan Printing Co Ltd Hologram reflector and liquid crystal display using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224094A (en) * 1986-03-26 1987-10-02 Hitachi Ltd Formation of diffraction grating and apparatus therefor
JPS62297722A (en) * 1986-06-16 1987-12-24 Nec Corp Manufacture of diffraction grating
JPH05502109A (en) * 1989-07-18 1993-04-15 マサチューセッツ・インステチュート・オブ・テクノロジー Improvements in holographic lithography
JPH0798404A (en) * 1993-08-02 1995-04-11 Matsushita Electric Ind Co Ltd Production of diffraction grating
JPH07234310A (en) * 1994-02-22 1995-09-05 Matsushita Electric Ind Co Ltd Production of diffraction grating and production of optical wavelength conversion element
JP2002107543A (en) * 2000-10-03 2002-04-10 Toppan Printing Co Ltd Hologram reflector and liquid crystal display using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698835A (en) * 2013-12-17 2014-04-02 中国科学院长春光学精密机械与物理研究所 Holographic grating exposure method adopting heterodyne interference fringe locking control
CN103698835B (en) * 2013-12-17 2015-10-28 中国科学院长春光学精密机械与物理研究所 Adopt the holographic grating exposure method that heterodyne system locking of interference fringe controls

Also Published As

Publication number Publication date
JP2008107566A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
KR101664207B1 (en) Method, phase grating and device for analyzing a wave surface of a light beam
US20010053023A1 (en) Wire grid type polarizer and method of manufacturing the same
JP2005014059A (en) Ultrashort pulsed laser beam machining process and device, and structure
US8221963B2 (en) Method for producing fine structure
JP2010169722A (en) Method of manufacturing optical element, and optical element
US10712670B1 (en) Variable neutral density filter for multi-beam interference lithography exposure
KR20010080342A (en) Wavelength tuning of photo-induced gratings
JP5224027B2 (en) Diffraction grating fabrication method using phase mask for diffraction grating fabrication
JPH05210006A (en) Method and apparatus for generating multiple light beam of multiple wave- length interferometer
JP2009175707A5 (en)
JP4650390B2 (en) Diffraction grating manufacturing method
CN101295553A (en) X ray holography diffraction grating beam divider
US6633385B2 (en) System and method for recording interference fringes in a photosensitive medium
JP4848837B2 (en) Comb-shaped electrode exposure method and exposure apparatus
JP5170401B2 (en) Diffraction grating phase mask
KR20020049493A (en) Method and device to fabricate holographic gratings with large area uniformity
JP2007263711A (en) Multiplexing interference type optical device including planar diffraction grating, and optical encoder
JP2015055683A (en) Method of manufacturing diffraction grating
JP2007258473A (en) Exposure method, manufacturing method of interdigital electrode, and exposure apparatus
US5372900A (en) Method of reproducing reflecting type hologram and apparatus therefor
US6963432B2 (en) Fabrication of true apodized fiber Bragg grating using a new two-beam interferometer with polarization control
US10914944B1 (en) Anti-refraction cancelling prism for multi-beam interference lithography exposure
JPH11295541A (en) Manufacture of waveguide type diffraction grating and waveguide type diffraction grating manufacturing device
Ivanov Near-field effects in fabrication of fiber Bragg gratings using phase masks
JPH0385578A (en) Hologram recorder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R151 Written notification of patent or utility model registration

Ref document number: 4650390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees