JP4650231B2 - Pump suction pipe swirl flow measuring device - Google Patents

Pump suction pipe swirl flow measuring device Download PDF

Info

Publication number
JP4650231B2
JP4650231B2 JP2005338006A JP2005338006A JP4650231B2 JP 4650231 B2 JP4650231 B2 JP 4650231B2 JP 2005338006 A JP2005338006 A JP 2005338006A JP 2005338006 A JP2005338006 A JP 2005338006A JP 4650231 B2 JP4650231 B2 JP 4650231B2
Authority
JP
Japan
Prior art keywords
suction pipe
signal
rotating shaft
rotation
swirling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005338006A
Other languages
Japanese (ja)
Other versions
JP2007147286A (en
Inventor
優治 永井
裕一 屋代
一郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2005338006A priority Critical patent/JP4650231B2/en
Publication of JP2007147286A publication Critical patent/JP2007147286A/en
Application granted granted Critical
Publication of JP4650231B2 publication Critical patent/JP4650231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

本発明は、特にポンプ吸込水槽の模型試験時に、吸込管内を流れる水のスワール強さとスワール方向を自動計測する試験装置としてのポンプ吸込管旋回流測定装置に関するものである。
The present invention relates to a pump suction pipe swirl flow measuring device as a test device for automatically measuring the swirl strength and swirl direction of water flowing in a suction pipe, particularly during a model test of a pump suction water tank.

現在、ポンプ吸込水槽試験方法としては、国内では日本機械学会基準の「ポンプの吸込水槽の模型試験法」(JSME S 004-1984)が一般によく知られている。但し、本基準は2005年に廃止されたため、ターボ機械協会によって、同協会の基準「ポンプ吸込水槽の模型試験方法」(TSJ S 002:2005)が作成された。いずれの基準においても、ポンプ吸込水槽試験方法に関する基本的な考え方を示されたものである。試験方法の主な内容は、空気吸込渦と水中渦を目視観察することが規定されており、これまで多くのユーザによって実施されているところである。   Currently, as a pump suction tank test method, the “Mechanical Test Method for Pump Suction Tank” (JSME S 004-1984), which is a standard of the Japan Society of Mechanical Engineers, is well known in Japan. However, because this standard was abolished in 2005, the turbomachinery association created its standard “Model test method for pump suction tanks” (TSJ S 002: 2005). In any standard, the basic idea about the pump suction water tank test method is shown. The main content of the test method is that visual observation of the air suction vortex and the underwater vortex is prescribed and has been carried out by many users so far.

一方、海外の代表的なポンプ吸込水槽試験方法の基準であるANSI/HI基準「Pump Intake Design」(ANSI/HI 9.8-1998)の中に、「9.8.5 Model tests of intake structures」がある。本基準の主な試験方法の内容は、(1)表面渦と水中渦の目視観察、(2)吸込管内の流速分布の計測、(3)吸込管内の旋回量の計測が記載されている。(1)については、水の中に染料等を入れて、染色された渦を目視観察することが記載されている。(2)については、吸込管内に設置したピトー管か、または同等の計測器等により、管内流れの流速分布を測定することが記載されている。(3)については図5に示すように、吸込管内に4枚の板羽根を取り付けて、その回転数や回転方向を測定し、旋回量(旋回角度θ)を算出するように記載されている。   On the other hand, there is “9.8.5 Model tests of intake structures” in the ANSI / HI standard “Pump Intake Design” (ANSI / HI 9.8-1998), which is the standard for the typical pump suction water tank test methods overseas. The main test methods of this standard include (1) visual observation of surface vortices and underwater vortices, (2) measurement of flow velocity distribution in the suction pipe, and (3) measurement of swirling amount in the suction pipe. Regarding (1), it is described that a dye or the like is put in water and the dyed vortex is visually observed. Regarding (2), it is described that the flow velocity distribution of the flow in the pipe is measured by a Pitot pipe installed in the suction pipe or an equivalent measuring instrument. As for (3), as shown in FIG. 5, four plate blades are attached in the suction pipe, the number of rotations and the direction of rotation are measured, and the turning amount (turning angle θ) is calculated. .

海外の旋回量及び旋回方向を計測している文献によると、羽根のいずれか一枚を他の羽根と異なる色にする方法等により、吸込管内の旋回量及び旋回方向を人間の目視観察により計測が実施されている。   According to the literature measuring the swirling amount and swirling direction overseas, the swirling amount and swirling direction in the suction pipe are measured by visual observation of humans by using a method in which any one of the blades has a different color from the other blades. Has been implemented.

「ポンプの吸込水槽の模型試験法」(JSME S 004-1984)"Model test method for pump suction tank" (JSME S 004-1984) 「ポンプ吸込水槽の模型試験方法」(TSJ S 002:2005)"Model test method for pump suction tank" (TSJ S 002: 2005) 「Pump Intake Design」(ANSI/HI 9.8-1998)"Pump Intake Design" (ANSI / HI 9.8-1998)

ANSI/HI基準「Pump Intake Design」(ANSI/HI 9.8-1998)の「9.8.5 Instrumentation and measuring techniques」において、ポンプ吸込水槽内の吸込管内は、通常は旋回流れの強さやその方向が、非定常的に変動すると記載されている。さらに同基準では、こうした旋回流れの計測にあたって、少なくとも10分以上の長時間に渡り、一定の時間間隔(例として10〜30秒毎)で、吸込管内に取り付けた羽根車の回転数と回転方向を計測することが記載されている。   In the ANSI / HI standard “Pump Intake Design” (ANSI / HI 9.8-1998) “9.8.5 Instrumentation and measuring techniques”, the strength and direction of the swirling flow are usually It is described that it fluctuates constantly. Furthermore, according to the same standard, in the measurement of the swirling flow, the rotation speed and direction of rotation of the impeller mounted in the suction pipe at a constant time interval (for example, every 10 to 30 seconds) for at least 10 minutes or more. Is described.

従来では図6に示すような装置により、1枚の羽根に目印を付ける方法や、羽根のいずれか一枚を他の羽根と異なる色にする方法等により、吸込管内の旋回量及び旋回方向を人間の目視観察により計測されている。従って、羽根車の回転数や回転方向が変動を繰り返す状況下において、長時間に渡り人間の目視観察により計測を実施する場合、人間の労力を必要とすることや、人間の主観が入り、計測誤差等を招くことが懸念され、測定信頼性の確保が困難であった。そのため、検出方法を自動化することにより、高信頼性な測定方法が必要である。   Conventionally, the swirling amount and swirling direction in the suction pipe are adjusted by a method of marking one blade with a device as shown in FIG. 6 or a method of making any one of the blades a different color from the other blades. It is measured by human visual observation. Therefore, when measurement is performed by visual observation of humans over a long period of time under conditions where the rotation speed and rotation direction of the impeller are repeatedly fluctuating, human labor is required and human subjectivity is included. There was a concern about incurring errors and the like, and it was difficult to ensure measurement reliability. Therefore, a highly reliable measurement method is required by automating the detection method.

本発明は上記問題を解決するために提案されたものであり、吸込管内の旋回流の旋回量及び旋回方向を自動で検出することが可能な旋回流測定装置を提供することを目的とする。   The present invention has been proposed to solve the above problem, and an object of the present invention is to provide a swirling flow measurement device capable of automatically detecting the swirling amount and swirling direction of the swirling flow in the suction pipe.

本発明は上記課題を解決するためのものであり、請求項1によるポンプ吸込管旋回流測定装置は、ポンプ吸込水槽の模型試験時に、吸込管内を流れる水の旋回流の旋回量と旋回方向を測定する装置であって、吸込管と、回転軸と、前記吸込管内の上記旋回流を受けて回転するように、吸込管の中心軸に平行に設置された前記回転軸に複数枚の板羽根を取り付けた羽根車と、前記回転軸の軸心を通り軸心と直行するように穿孔した孔と、回転軸を保持するための支柱と、前記回転軸を回転自在に支持する軸受と、支柱内部に設けられた信号発信部及び受信部と、前記支柱内部に設置し前記信号発信部及び前記受信部からの信号を導く信号ケーブルと、前記信号発信部及び前記受信部からの信号を発信及び受信可能であり、かつ回転方向を自動的に判定することができる信号検出機器を備えることを特徴とする。
The present invention is for solving the above-mentioned problems, and the pump suction pipe swirl flow measuring device according to claim 1 is configured to determine the swirl amount and swirl direction of the swirl flow of water flowing in the suction pipe during the model test of the pump suction water tank. An apparatus for measuring , wherein a plurality of plate blades are disposed on the rotation shaft that is installed in parallel to the central axis of the suction pipe so as to rotate by receiving the swirling flow in the suction pipe , the rotation shaft, and the suction pipe. An impeller to which the rotary shaft is attached, a hole drilled so as to pass through the axis of the rotary shaft and perpendicular to the axis, a support for holding the rotary shaft, a bearing for rotatably supporting the rotary shaft, and a post A signal transmission unit and reception unit provided inside, a signal cable that is installed inside the column and guides signals from the signal transmission unit and the reception unit, and transmits signals from the signal transmission unit and the reception unit It is capable of receiving, and the direction of rotation automatically Characterized in that it comprises a signal detection device capable of determining.

また、前記回転軸を保持するための支柱が4本で、前記支柱は前記信号発信部を支柱内部に設けた支柱1本と前記受信部を支柱内部に設けた支柱1本の2本ずつが1組となり、前記2本の支柱は回転軸に対して180度対向する位置に1本ずつ配置するよう一直線上に位置し、かつ、この前記2組の直線のなす角度が直交しない位置関係に設置し、それにより前記2組のそれぞれの組から出力される信号に、前記回転軸の回転方向による位相差の違いを生じさせることにより回転方向を判定することを特徴とする。
さらに、前記のポンプ吸込管旋回流測定装置において、前記羽根車に流れが流入する上流側には支柱が存在しない空間が設けてあり、かつ、前記支柱は、前記羽根車から流れが流出する側である下流側に設けてあることを特徴とする。
Further, in struts present 4 for holding the rotary shaft, wherein the strut by two 1-post of which is provided with the receiving unit and one strut provided with the signal generation unit to the inner strut therein struts one set becomes, the two struts located on a straight line to place one by one in a position facing 180 degrees with respect to the rotation axis, and the positional relationship where the angle between the said two pairs of straight lines not perpendicular The rotation direction is determined by causing a difference in phase difference depending on the rotation direction of the rotation shaft in the signals output from the two sets .
Furthermore, in the pump suction pipe swirl flow measuring device, a space where no column is present is provided on the upstream side where the flow flows into the impeller, and the column is a side where the flow flows out from the impeller. It is provided in the downstream which is.

本発明により、ポンプ吸込水槽の模型試験において、吸込管内の旋回流の旋回量及び旋回方向の自動計測が可能となる。   According to the present invention, in the model test of the pump suction water tank, the swirl amount and swirl direction of the swirling flow in the suction pipe can be automatically measured.

図1は、本発明によるポンプ吸込管旋回流測定装置の実施の一形態を示し、(a)は縦断面図、(b)は支柱部の横断面図である。このポンプ吸込管旋回流測定装置は吸込水槽試験装置において、吸込管内の旋回流Sの旋回量及び旋回方向を測定するための装置である。しかし、用途はこれに限られるものではない。図1において、円筒状の吸込管1があり、上流側(図1下側)より旋回流Sが流れ込む。回転軸2は吸込管1の中心線を軸心線とし、支柱4により回転自由に保持されている。回転軸の上流側には羽根車3が備えられており、吸込管内の旋回方向の成分のみを受けて回転するよう、吸込管1の中心線に平行な板羽根である。羽根車3は4枚羽根で、それぞれ羽根間角度は90度の等間隔である。
1A and 1B show an embodiment of a pump suction pipe swirl flow measuring device according to the present invention, in which FIG. 1A is a longitudinal sectional view and FIG. 1B is a transverse sectional view of a support column. This pump suction pipe swirl flow measuring device is a device for measuring the swirl amount and swirl direction of the swirl flow S in the suction pipe in the suction water tank test apparatus. However, the application is not limited to this. In FIG. 1, there is a cylindrical suction pipe 1, and a swirling flow S flows from the upstream side (lower side in FIG. 1). The rotating shaft 2 is held freely by a support column 4 with the center line of the suction pipe 1 as an axis. An impeller 3 is provided on the upstream side of the rotation shaft, and is a plate blade parallel to the center line of the suction pipe 1 so as to rotate by receiving only the component in the swirl direction in the suction pipe. The impeller 3 has four blades, and the interblade angles are equally spaced by 90 degrees.

図2は、図1(b)の詳細図を示す。回転軸2の下流側には計4本の支柱4が設けられている。なお、4本の支柱(4a、4b、4c、4d)の位置関係は、4aと4b、4cと4dの2本ずつが1組となり、吸込管内の中心線を挟んで180度対向する位置に1本ずつ配置するよう一直線上に位置し、かつ、この2組の直線がなす角度αが直交しない(α≠90度)位置関係とする。支柱4部分において、回転軸2は軸受け5により支えられている。   FIG. 2 shows a detailed view of FIG. A total of four columns 4 are provided on the downstream side of the rotating shaft 2. Note that the four struts (4a, 4b, 4c, 4d) are in a position where each pair of 4a, 4b, 4c, and 4d forms a pair and is 180 degrees across the center line in the suction pipe. Positions are arranged on a straight line so that they are arranged one by one, and the angle α formed by the two sets of straight lines is not orthogonal (α ≠ 90 degrees). The rotary shaft 2 is supported by bearings 5 in the column 4 portion.

支柱4のそれぞれの内部には、信号の伝達可能なケーブル6と、信号発信部及び信号受信部7が挿入されており、支柱4aと4bの内部にはそれぞれ、ケーブル6aに接続された信号発信部7aと、ケーブル6bに接続された信号受信部7bが挿入されており、同様にして支柱4cと4dの内部には、ケーブル6cに接続された信号発信部7cと、ケーブル6dに接続された信号受信部7dが挿入されている。それぞれのケーブル6は、オシロスコープ等のような、信号を発信及び受信可能な信号検出機器8に接続されている。   A cable 6 capable of transmitting a signal, a signal transmission unit, and a signal reception unit 7 are inserted in each of the columns 4, and each of the columns 4 a and 4 b has a signal transmission connected to the cable 6 a. 7a and a signal receiving unit 7b connected to the cable 6b are inserted. Similarly, inside the support columns 4c and 4d, a signal transmitting unit 7c connected to the cable 6c and a cable 6d are connected. A signal receiver 7d is inserted. Each cable 6 is connected to a signal detection device 8 capable of transmitting and receiving signals, such as an oscilloscope.

回転軸2が支柱4で支持されている位置には、回転軸2の軸心を通る孔2aが一箇所設けられている。回転軸2が回転する際に、信号発信部7aより信号が発信され、孔2aを通り、信号受信部7bで受信される電気信号をX、信号発信部7cより信号が発信され、孔2aを通り、信号受信部7dで受信される電気信号をYとする。電気信号X、Yを連続的に信号検出機器8で検出すると、横軸が時間tであるパルス波形となる。図3に検出されるパルス波形例を示す。回転軸2が1回転する際に、電気信号は2パルス検出する構造となっている。ここで、図2において反時計回りを正回転、時計回りを逆回転とする。正回転の場合、電気信号Xが検出された後に、角度+α分だけ回転し、電気信号Yが検出される。逆回転の場合、電気信号Yが検出された後に、角度−α分だけ回転し、電気信号Xが検出される。このように、回転軸2が回転する際に、電気信号X、電気信号Yのパルス信号により旋回量を計測可能であり、また、パルス位相差αの相違から、回転方向を自動判定することが可能である。   At a position where the rotating shaft 2 is supported by the support column 4, one hole 2 a passing through the axis of the rotating shaft 2 is provided. When the rotating shaft 2 rotates, a signal is transmitted from the signal transmission unit 7a, the electric signal received by the signal reception unit 7b through the hole 2a is X, and the signal is transmitted from the signal transmission unit 7c, and the hole 2a is transmitted. As described above, the electric signal received by the signal receiving unit 7d is Y. When the electric signals X and Y are continuously detected by the signal detection device 8, a pulse waveform having a horizontal axis at time t is obtained. FIG. 3 shows an example of a pulse waveform detected. When the rotary shaft 2 makes one revolution, the electric signal is structured to detect two pulses. Here, in FIG. 2, the counterclockwise rotation is the forward rotation, and the clockwise rotation is the reverse rotation. In the case of normal rotation, after the electric signal X is detected, the electric signal Y is detected by rotating by an angle + α. In the case of reverse rotation, after the electric signal Y is detected, the electric signal X is detected by rotating by the angle −α. Thus, when the rotating shaft 2 rotates, the turning amount can be measured by the pulse signals of the electric signal X and the electric signal Y, and the rotation direction can be automatically determined from the difference in the pulse phase difference α. Is possible.

ここで、前記羽根車3の羽根枚数は4枚に限らない。   Here, the number of blades of the impeller 3 is not limited to four.

前記支柱4は、図2に示す(4a、4b、4c、4d)の関係を保つ支柱を含めば、4本以上で設置しても良い。また、図4に示すように、別の支柱9を含む支柱を数箇所に設置しても良く、その場合、支柱本数はそれぞれの箇所の支柱本数同士が最大公約数を持たない本数とする。   If the support | pillar 4 which maintains the relationship of (4a, 4b, 4c, 4d) shown in FIG. Moreover, as shown in FIG. 4, you may install the support | pillar containing another support | pillar 9 in several places, and let the number of support | pillars be the number that the number of support | pillars of each place does not have the greatest common divisor.

前記信号発信手段としては光、電気、磁気、レーザー等を用いることが可能である。   As the signal transmitting means, light, electricity, magnetism, laser, or the like can be used.

(a)はポンプ吸込管旋回流測定装置の縦断面図、(b)は支柱部の横断面図。(A) is a longitudinal cross-sectional view of a pump suction pipe swirl flow measuring device, and (b) is a cross-sectional view of a column part. 図1(b)の詳細図。Detail view of FIG. 検出されるパルス波形例。Examples of detected pulse waveforms. 複数の支柱設置箇所を持つポンプ吸込管旋回流測定装置の縦断面図。The longitudinal cross-sectional view of the pump suction pipe swirl flow measuring apparatus with a some support | pillar installation location. ANSI/HI基準における吸込管内旋回量計測方法を説明する図。The figure explaining the suction pipe turning amount measuring method in ANSI / HI standard. 従来のポンプ吸込管旋回流測定装置図例。An example of a conventional pump suction pipe swirl flow measuring device.

符号の説明Explanation of symbols

1…吸込管、2…回転軸、3…羽根車、4…支柱、5…軸受け、6…ケーブル、7…信号発信部及び信号受信部、8…信号検出機器、S…旋回流。
DESCRIPTION OF SYMBOLS 1 ... Suction pipe, 2 ... Rotating shaft, 3 ... Impeller, 4 ... Support | pillar, 5 ... Bearing, 6 ... Cable, 7 ... Signal transmission part and signal receiving part, 8 ... Signal detection apparatus, S ... Swirling flow.

Claims (3)

ポンプ吸込水槽の模型試験時に、吸込管内を流れる水の旋回流の旋回量と旋回方向を測定する装置であって、吸込管と、回転軸と、前記吸込管内の上記旋回流を受けて回転するように、吸込管の中心軸に平行に設置された前記回転軸に複数枚の板羽根を取り付けた羽根車と、前記回転軸の軸心を通り軸心と直行するように穿孔した孔と、回転軸を保持するための支柱と、前記回転軸を回転自在に支持する軸受と、支柱内部に設けられた信号発信部及び受信部と、前記支柱内部に設置し前記信号発信部及び前記受信部からの信号を導く信号ケーブルと、前記信号発信部及び前記受信部からの信号を発信及び受信可能であり、かつ回転方向を自動的に判定することができる信号検出機器を備えることを特徴とする
ポンプ吸込管旋回流測定装置。
A device for measuring the swirling amount and swirling direction of the swirling flow of water flowing in the suction pipe during a model test of the pump sucking water tank, which rotates by receiving the swirling flow in the suction pipe , the rotating shaft, and the suction pipe. As described above, an impeller in which a plurality of plate blades are attached to the rotating shaft installed in parallel to the central axis of the suction pipe, and a hole drilled so as to pass through the axis of the rotating shaft and to be perpendicular to the axis. A support for holding the rotating shaft, a bearing for rotatably supporting the rotating shaft, a signal transmitting unit and a receiving unit provided in the supporting column, and the signal transmitting unit and the receiving unit installed inside the supporting column A signal cable for guiding a signal from a signal cable, and a signal detection device capable of transmitting and receiving signals from the signal transmission unit and the reception unit and capable of automatically determining a rotation direction.
Pump suction pipe swirl flow measuring device.
前記回転軸を保持するための支柱が4本で、前記支柱は前記信号発信部を支柱内部に設けた支柱1本と前記受信部を支柱内部に設けた支柱1本の2本ずつが1組となり、前記2本の支柱は回転軸に対して180度対向する位置に1本ずつ配置するよう一直線上に位置し、かつ、この前記2組の直線のなす角度が直交しない位置関係に設置し、それにより前記2組のそれぞれの組から出力される信号に、前記回転軸の回転方向による位相差の違いを生じさせることにより回転方向を判定することを特徴とする請求項1に記載のポンプ吸込管旋回流測定装置。 The strut for holding the rotary shaft in four, the strut is the signaling section a two by two is set one strut provided with one and the receiving uprights provided inside strut inner strut next, the two struts located on a straight line to place one by one in a position facing 180 degrees with respect to the rotation axis, and placed in a positional relationship where the angle between the said two pairs of straight lines not perpendicular 2. The pump according to claim 1, wherein the direction of rotation is determined by causing a difference in phase difference depending on the direction of rotation of the rotating shaft in a signal output from each of the two sets. Suction pipe swirl flow measuring device. 請求項1あるいは2において、前記羽根車に流れが流入する上流側には支柱が存在しない空間が設けてあり、かつ、前記支柱は、前記羽根車から流れが流出する側である下流側に設けてあることを特徴とするポンプ吸込管旋回流測定装置。3. The space according to claim 1 or 2, wherein a space where no column is present is provided on the upstream side where the flow flows into the impeller, and the column is provided on the downstream side where the flow flows out from the impeller. A pump suction pipe swirl flow measuring device characterized by that.
JP2005338006A 2005-11-24 2005-11-24 Pump suction pipe swirl flow measuring device Expired - Fee Related JP4650231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338006A JP4650231B2 (en) 2005-11-24 2005-11-24 Pump suction pipe swirl flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338006A JP4650231B2 (en) 2005-11-24 2005-11-24 Pump suction pipe swirl flow measuring device

Publications (2)

Publication Number Publication Date
JP2007147286A JP2007147286A (en) 2007-06-14
JP4650231B2 true JP4650231B2 (en) 2011-03-16

Family

ID=38208876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338006A Expired - Fee Related JP4650231B2 (en) 2005-11-24 2005-11-24 Pump suction pipe swirl flow measuring device

Country Status (1)

Country Link
JP (1) JP4650231B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030208B2 (en) * 2007-01-19 2012-09-19 株式会社日立プラントテクノロジー Suction pipe flow velocity measuring device in pump suction water tank model test
JP4946884B2 (en) * 2008-01-17 2012-06-06 富士通株式会社 Tornado detector
CN112730885B (en) * 2020-12-22 2022-07-08 连云港腾越电子科技有限公司 Equipment for detecting working condition of water pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127262A (en) * 1976-04-16 1977-10-25 Ouyou Chishitsu Chiyousa Jimus Apparatus for measuring very slow speed of flow in hole
JPS54108671A (en) * 1978-02-14 1979-08-25 Iseki Agricult Mach Sensor for tachometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127262A (en) * 1976-04-16 1977-10-25 Ouyou Chishitsu Chiyousa Jimus Apparatus for measuring very slow speed of flow in hole
JPS54108671A (en) * 1978-02-14 1979-08-25 Iseki Agricult Mach Sensor for tachometer

Also Published As

Publication number Publication date
JP2007147286A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US5297421A (en) Leak detection system for gas, steam or the like that involves multi-point sampling
JP4650231B2 (en) Pump suction pipe swirl flow measuring device
Bayati et al. Wind tunnel wake measurements of floating offshore wind turbines
US20140123751A1 (en) Apparatus and method for measuring velocity and void fraction in gas-liquid two-phase flows
KR20160032585A (en) Hybrid anemoscope and anemometer
WO2009001310A1 (en) Method and apparatus for determining the angular position of the rotor on a wind turbine
DE59203460D1 (en) FLOWMETER.
US6439062B2 (en) Flow anomaly detector
CN105157884B (en) Ultrasonic calorimeter
CN203981160U (en) Pipeline inner circle sectional area measurement mechanism
Felli et al. Propeller wake analysis in nonuniform inflow by LDV phase sampling techniques
JP2018155157A (en) Vertical shaft pump
CN205898021U (en) Curved underwater installation measuring device of submarine pipeline inflation
CN110486296B (en) Device and method for testing rectification effect of guide vane body of axial flow pump
US3213682A (en) Fluid turbulence detector
JP4632145B2 (en) Turbine flow meter rectifier
Mallipudi et al. Use of a four hole cobra pressure probe to determine the unsteady wake characteristics of rotating objects
JP2010203865A (en) Ultrasonic type method and device for measuring flow rate
CN206177888U (en) Pipeline impulse eddy current testing coil fixing device
JP5015622B2 (en) Flow rate measurement method
JP3813358B2 (en) Reactor coolant flow measurement device
Lewis et al. Field measurements of mean velocity characteristics of a large-diameter swirling jet
CN219244703U (en) Novel flowmeter
CN112146714B (en) Precise gas flowmeter
CN211783717U (en) Detachable shore tide gauge fixing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees