JP4649946B2 - Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating - Google Patents

Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating Download PDF

Info

Publication number
JP4649946B2
JP4649946B2 JP2004306359A JP2004306359A JP4649946B2 JP 4649946 B2 JP4649946 B2 JP 4649946B2 JP 2004306359 A JP2004306359 A JP 2004306359A JP 2004306359 A JP2004306359 A JP 2004306359A JP 4649946 B2 JP4649946 B2 JP 4649946B2
Authority
JP
Japan
Prior art keywords
broach
amorphous carbon
atomic
carbide
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004306359A
Other languages
Japanese (ja)
Other versions
JP2006116643A (en
Inventor
安彦 田代
智行 益野
幸生 青木
俊之 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004306359A priority Critical patent/JP4649946B2/en
Publication of JP2006116643A publication Critical patent/JP2006116643A/en
Application granted granted Critical
Publication of JP4649946B2 publication Critical patent/JP4649946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、特に各種のTi合金やAl合金、さらにCu合金などの工作物の引き抜き穴加工などで、炭化タングステン(以下、WCで示す)基超硬合金で構成されたブローチ本体(以下、超硬ブローチ本体という)の表面に、上部層として蒸着形成された潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製ブローチ(以下、被覆超硬ブローチという)に関するものである。   The present invention is particularly applicable to a broach body (hereinafter referred to as “super”) made of tungsten carbide (hereinafter referred to as WC) based cemented carbide, for example, for drawing holes in workpieces such as various Ti alloys, Al alloys, and Cu alloys. A surface-coated cemented carbide broach (hereinafter referred to as a coated carbide broach) that exhibits excellent wear resistance due to a lubricious amorphous carbon-based coating deposited as an upper layer on the surface of the hard broach body) Is.

一般に、図4に概略正面図で例示されるブローチと呼ばれる総形工具を用い、前記ブローチを各種のTi合金やAl合金、さらにCu合金などからなる工作物の下穴に挿入して下方向に引き抜くことにより断面形状の複雑な穴などを一度に仕上げるブローチ工法が知られている。
上記のブローチ工法は、図4に示される通りブローチの中央部に形成された、下方の荒刃から上方の仕上げ刃へ順次変化する切刃部が、ブローチの下方動作により工作物を少しづつ切削して所定寸法に仕上げるものである。
In general, a general tool called a broach illustrated in a schematic front view in FIG. 4 is used, and the broach is inserted into a prepared hole made of various Ti alloys, Al alloys, Cu alloys, etc. in a downward direction. A broaching method is known in which a complicated hole having a cross-sectional shape is finished at once by drawing.
In the above broaching method, as shown in FIG. 4, the cutting edge portion formed in the central portion of the broach, which sequentially changes from the lower rough edge to the upper finishing edge, cuts the workpiece little by little by the lower action of the broach. And finished to a predetermined dimension.

また、上記のブローチとして、超硬ブローチ本体の表面に、図3に概略説明図で示される通常のアークイオンプレーティング装置にて、カソード電極(蒸発源)としてTi−Al合金ターゲットを用い、窒素とArの混合ガスからなる反応雰囲気で成膜され、かつ、
組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.40〜0.60)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]からなると共に、1〜3μmの平均層厚を有する硬質被覆層、
を蒸着形成してなる被覆超硬ブローチが知られている。
特開2002−137118号公報
Further, as the above broach, a Ti—Al alloy target is used as a cathode electrode (evaporation source) on the surface of the carbide broach main body as a cathode electrode (evaporation source) in a normal arc ion plating apparatus shown in FIG. Formed in a reaction atmosphere composed of a mixed gas of Ar and Ar, and
Formula: (Ti 1-X Al X ) N ( provided that an atomic ratio, X is 0.40 to 0.60),
A hard coating layer composed of a composite nitride of Ti and Al satisfying the following [hereinafter referred to as (Ti, Al) N] and having an average layer thickness of 1 to 3 μm;
A coated carbide broach formed by vapor-depositing is known.
JP 2002-137118 A

近年のブローチ加工装置の高性能化および高出力化はめざましく、一方でブローチ加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、ブローチ加工は一段と高速化の傾向にあるが、上記の従来被覆超硬ブローチにおいては、これを高速加工条件で用いた場合、加工時に発生する高熱と潤滑性不足が原因で、摩耗が急速に進行するようになることから、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance and output of broaching machines have improved dramatically. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for broaching. Accordingly, broaching has a tendency to further increase in speed. However, in the above-mentioned conventional coated carbide broach, when it is used under high-speed machining conditions, wear proceeds rapidly due to high heat generated during machining and lack of lubricity. At present, the service life is reached in time.

そこで、本発明者等は、上述のような観点から、特に上記の従来被覆超硬ブローチに着目し、これの高速ブローチ加工での耐摩耗性向上を図るべく、研究を行った結果、
(1)(a)図2(a)および(b)にそれぞれ概略平面図および概略正面図で示される蒸着装置、すなわち装置中央部に設けた回転テーブルを挟んで、一方側にカソード電極(蒸発源)としてTiターゲットを設けたスパッタリング装置、他方側にカソード電極(蒸発源)としてWCターゲットを設けたスパッタリング装置を備え、かつ前記スパッタリング装置のそれぞれに、電磁コイルを設けてマグネトロンスパッタリング装置とし、さらに前記両マグネトロンスパッタリング装置から前記回転テーブルを中心にして90度ずれた位置に、カソード電極(蒸発源)としてTi−Al−Si合金ターゲットを設けたアークイオンプレーティング装置を配置した蒸着装置を用い、
(b)上記蒸着装置内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置にリング状に超硬ブローチ本体を装着し、前記回転テーブルを回転させると共に、蒸着形成される被膜の層厚均一化を図る目的で前記超硬ブローチ本体も自転させながら、まず、前記蒸着装置の対向配置の両マグネトロンスパッタリング装置の電磁コイルに印加して、前記超硬ブローチ本体の装着部における磁束密度を100〜300G(ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱温度を300〜500℃とした状態で、反応ガスとして窒素とArの混合ガスを導入し、前記超硬ブローチ本体にはバイアス電圧を印加して、前記Ti−Al−Si合金ターゲットのカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、もって前記超硬ブローチ本体の表面に、TiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]層を形成するに際して、カソード電極(蒸発源)であるTi−Al−Si合金ターゲットの組成を調整して、前記(Ti,Al,Si)N層が、
組成式:(Ti1−(X+Y)AlSi)N(ただし、原子比で、Xは0.40〜0.60、Yは0.05〜0.15)、
を満足する組成をもつものとすると、この結果形成された(Ti,Al,Si)N層は、Si成分の含有によって、上記の従来被覆超硬ブローチを構成する(Ti,Al)N層に比して一段とすぐれた耐熱性を具備するようになり、磁場成膜による超硬ブローチ本体表面に対する密着性向上効果と相俟って、高熱発生を伴なう高速ブローチ加工での耐摩耗性が著しく向上するようになること。
Therefore, the present inventors focused on the above-mentioned conventional coated carbide broach from the above viewpoint, and as a result of conducting research to improve wear resistance in this high-speed broaching process,
(1) (a) The vapor deposition apparatus shown in schematic plan view and schematic front view in FIGS. 2 (a) and 2 (b), that is, a cathode electrode (evaporation) on one side with a rotary table provided in the center of the apparatus being sandwiched A sputtering device provided with a Ti target as a source), a sputtering device provided with a WC target as a cathode electrode (evaporation source) on the other side, and an electromagnetic coil provided in each of the sputtering devices as a magnetron sputtering device, Using a vapor deposition apparatus in which an arc ion plating apparatus provided with a Ti-Al-Si alloy target as a cathode electrode (evaporation source) is disposed at a position shifted from the both magnetron sputtering apparatuses by 90 degrees around the rotary table,
(B) A carbide broach body is mounted in a ring shape on a rotary table in the vapor deposition apparatus at a predetermined distance in the radial direction from the central axis thereof, and the rotary table is rotated and vapor deposition is formed. While rotating the cemented carbide broach main body for the purpose of uniforming the layer thickness of the coating, first, it is applied to the electromagnetic coils of both magnetron sputtering devices arranged opposite to the vapor deposition device, in the mounting portion of the carbide broach main body. In addition to forming a magnetic field with a magnetic flux density of 100 to 300 G (Gauss) and introducing a mixed gas of nitrogen and Ar as a reaction gas in a state where the heating temperature in the vapor deposition apparatus is 300 to 500 ° C., the carbide A bias voltage is applied to the broach body to generate an arc discharge between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al—Si alloy target. Thus, when forming a Ti / Al / Si composite nitride [hereinafter referred to as (Ti, Al, Si) N] layer on the surface of the cemented carbide broach body, Ti which is a cathode electrode (evaporation source) -Adjusting the composition of the Al-Si alloy target, the (Ti, Al, Si) N layer is
Formula: (Ti 1- (X + Y ) Al X Si Y) N ( provided that an atomic ratio, X is 0.40 to 0.60, Y is 0.05 to 0.15),
As a result, the (Ti, Al, Si) N layer formed as a result of the Si component contains the (Ti, Al) N layer constituting the conventional coated carbide broach. Compared with the effect of improving the adhesion to the surface of the carbide broach body by magnetic field film formation, it has higher wear resistance in high-speed broaching with high heat generation. To be significantly improved.

(2)(a)ついで、同じく上記の図2の蒸着装置を用い、電磁コイルによる装置中央部の超硬ブローチ本体装着部における磁束密度を100〜300G(ガウス)、前記装置内の加熱温度を300〜500℃にそれぞれ維持した状態で、かつ装置内に反応ガスとして、例えばCなどの炭化水素と窒素とArを、望ましくはC流量:25〜100sccm、窒素流量:200〜300sccm、Ar流量:150〜250sccmの割合で導入して、反応雰囲気を、例えば1PaのCの分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、例えば出力:1〜3kW(周波数:40kHz)のスパッタ電力、同Tiターゲットには、例えば出力:3〜8kW(周波数:40kHz)のスパッタ電力を同時に印加した条件で、前記超硬ブローチ本体の表面に形成した硬質被覆層としての(Ti,Al,Si)N層の上に非晶質炭素系被膜を上部層として形成すると、この結果形成された非晶質炭素系被膜は、これの透過型電子顕微鏡による組織観察結果(倍率:250万倍)が図1(実施例の本発明被覆超硬ブローチ3の非晶質炭素系被膜を示す)に模式図で例示される通り、炭素系非晶質体の素地に、最大径で10nm(ナノメーター)以下の結晶質炭窒化チタン系化合物の微粒[以下、「結晶質Ti(C,N)系化合物微粒」で示す]が分散分布した組織をもつようになること。
(b)上記(a)の非晶質炭素系被膜を形成するに際して、蒸着装置内に導入される反応ガスとしての炭化水素と窒素とArのそれぞれの流量と、マグネトロンスパッタリング装置のWCターゲットとTiターゲットに印加されるスパッタ電力を調整して、前記非晶質炭素系被膜が、オージェ分光分析装置で測定して、
W:5〜20原子%、
Ti:0.5〜4原子%、
窒素:10〜30原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有するようにすると、この結果形成された非晶質炭素系被膜においては、素地を構成するW成分含有の炭素系非晶質体がすぐれた潤滑性とW成分による高強度を具備し、かつ前記炭素系非晶質体からなる素地における高硬度を有する結晶質Ti(C,N)系微粒の分散分布効果、および前記電磁コイルによる磁場成膜に際しての細粒化効果で、きわめて高い高温硬さを有するようになり、さらに前記下部層としての(Ti,Al,Si)N層との密着接合性にもすぐれていることから、この非晶質炭素系被膜(以下、潤滑性非晶質炭素系被膜という)を上部層として形成してなる被覆超硬ブローチは、高速ブローチ加工でも切刃部にチッピング(微少欠け)の発生なく、一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(1)および(2)に示される研究結果を得たのである。
(2) (a) Next, similarly using the vapor deposition apparatus of FIG. 2 above, the magnetic flux density in the carbide broach body mounting part of the central part of the apparatus by an electromagnetic coil is 100 to 300 G (Gauss), and the heating temperature in the apparatus is While maintaining at 300 to 500 ° C., and as a reaction gas in the apparatus, for example, hydrocarbon such as C 2 H 2 , nitrogen and Ar, desirably C 2 H 2 flow rate: 25 to 100 sccm, nitrogen flow rate: 200 ~300Sccm, Ar flow rate: introduced at a rate of 150~250Sccm, the reaction atmosphere, for example, with a mixed gas of 1Pa of C 2 decomposed gas of H 2 and nitrogen and Ar, a WC target of both magnetron sputtering apparatus For the cathode electrode (evaporation source), for example, sputtering power of output: 1 to 3 kW (frequency: 40 kHz), for the Ti target For example, an amorphous state is formed on the (Ti, Al, Si) N layer as a hard coating layer formed on the surface of the cemented carbide broach body under the condition that a sputtering power of 3 to 8 kW (frequency: 40 kHz) is simultaneously applied. When the carbonaceous coating film is formed as an upper layer, the resulting amorphous carbon coating film has a structure observation result (magnification: 2.5 million times) with a transmission electron microscope, as shown in FIG. As shown in the schematic diagram in Fig. 2 (Amorphous carbon-based coating of coated carbide broach 3), a crystalline titanium carbonitride system having a maximum diameter of 10 nm (nanometers) or less on the base of the carbon-based amorphous body Compound fine particles [hereinafter referred to as “crystalline Ti (C, N) -based compound fine particles]” have a dispersed distribution structure.
(B) When forming the amorphous carbon-based film of (a), the flow rates of hydrocarbon, nitrogen, and Ar as reaction gases introduced into the vapor deposition apparatus, the WC target of the magnetron sputtering apparatus, and Ti Adjusting the sputtering power applied to the target, the amorphous carbon-based film is measured with an Auger spectroscopic analyzer,
W: 5 to 20 atomic%,
Ti: 0.5-4 atomic%,
Nitrogen: 10-30 atomic%,
In the amorphous carbon-based film formed as a result, the W-containing carbon-based amorphous material constituting the substrate was excellent. Dispersion distribution effect of crystalline Ti (C, N) -based fine particles having high hardness on the substrate made of the carbon-based amorphous body and having high strength due to lubricity and W component, and magnetic field formation by the electromagnetic coil Because of the fine graining effect in the film, it has a very high high-temperature hardness, and also has excellent adhesion bonding with the (Ti, Al, Si) N layer as the lower layer. A coated carbide broach made of an amorphous carbon-based coating (hereinafter referred to as a lubricious amorphous carbon-based coating) as an upper layer has no chipping (slight chipping) at the cutting edge even at high-speed broaching. Excellent resistance It is like to exert over a long period of time 耗性.
The research results shown in (1) and (2) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬ブローチ本体の表面に、
(a)下部層として、アークイオンプレーティング装置にて、カソード電極(蒸発源)としてTi−Al−Si合金ターゲットを用い、窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、かつ、
組成式:(Ti1−(X+Y)AlSi)N(ただし、原子比で、Xは0.40〜0.60、Yは0.05〜0.15)、
を満足する(Ti,Al,Si)Nからなると共に、1〜3μmの平均層厚を有する硬質被覆層、
(b)上部層として、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜20原子%、
Ti:0.5〜4原子%、
窒素:10〜30原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質Ti(C,N)系化合物微粒が分散分布した組織を示し、かつ1〜3μmの平均層厚を有する潤滑性非晶質炭素系被膜、
を蒸着形成してなる、特に高速ブローチ加工で潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する被覆超硬ブローチに特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide broach main body,
(A) As a lower layer, using a Ti—Al—Si alloy target as a cathode electrode (evaporation source) in an arc ion plating apparatus, forming a film in a magnetic field in a reaction atmosphere composed of a mixed gas of nitrogen and Ar, and ,
Formula: (Ti 1- (X + Y ) Al X Si Y) N ( provided that an atomic ratio, X is 0.40 to 0.60, Y is 0.05 to 0.15),
A hard coating layer made of (Ti, Al, Si) N that satisfies the following conditions and having an average layer thickness of 1 to 3 μm;
(B) Using a magnetron sputtering apparatus as an upper layer, a WC target and a Ti target as cathode electrodes (evaporation sources), and film formation in a magnetic field in a reaction atmosphere consisting of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar Measured with an Auger spectrometer,
W: 5 to 20 atomic%,
Ti: 0.5-4 atomic%,
Nitrogen: 10-30 atomic%,
And the remainder of the composition is composed of carbon and inevitable impurities, and the crystalline Ti (C, N) compound fine particles are dispersed and distributed on the base of the carbon-based amorphous body by observation with a transmission electron microscope. A lubricious amorphous carbon-based coating exhibiting a texture and having an average layer thickness of 1 to 3 μm,
It is characterized by a coated carbide broach that exhibits excellent wear resistance, especially in a high-speed broaching process.

つぎに、この発明の被覆超硬ブローチにおいて、これを構成する硬質被覆層および潤滑性非晶質炭素系被膜を上記の通りに数値限定した理由を説明する。
(a)硬質被覆層の組成および平均層厚
硬質被覆層を構成する(Ti,Al,Si)NにおけるTi成分は高温強度を向上させ、同Al成分は高温硬さを向上させ,さらにSi成分は耐熱性を向上させる作用があり、したがってAlの含有割合を示すX値がTiとSiの合量に占める割合(原子比)で0.40未満では所望のすぐれた高温硬さを確保することができず、一方X値が同0.60を越えるとTi成分によってもたらされる高温強度が急激に低下するようになることから、X値を0.40〜0.60と定めた。
また、Siの含有割合を示すY値がTiとAlの合量に占める割合(原子比)で0.05未満では所望のすぐれた耐熱性を確保することができず、一方Y値が0.15を越えるとTi成分によってもたらされる高温強度が急激に低下するようになることから、Y値を0.05〜0.15と定めた。
さらに、上記の(Ti,Al,Si)N層は、上記の通りすぐれた高温硬さと高温強度、さらにすぐれた耐熱性を有するほか、超硬ブローチ本体と潤滑性非晶質炭素系被膜の間にあって、これら両者と強固に密着接合し、さらにこれの密着接合性は磁場中成膜によって一層向上したものになるが、その平均層厚が1μm未満では、所望のすぐれた耐摩耗性を確保することができず、一方その平均層厚が3μmを越えると、特に高速ブローチ加工でチッピング発生の原因となることから、その平均層厚を1〜3μmと定めた。
Next, in the coated carbide broach of the present invention, the reason why the hard coating layer and the lubricating amorphous carbon-based coating constituting the same are numerically limited as described above will be described.
(A) Composition and average layer thickness of hard coating layer Ti component in (Ti, Al, Si) N constituting the hard coating layer improves high temperature strength, Al component improves high temperature hardness, and Si component Has the effect of improving heat resistance. Therefore, if the X value indicating the Al content is less than 0.40 in terms of the total amount of Ti and Si (atomic ratio), the desired excellent high temperature hardness can be ensured. On the other hand, if the X value exceeds 0.60, the high-temperature strength caused by the Ti component suddenly decreases, so the X value was set to 0.40 to 0.60.
On the other hand, if the Y value indicating the Si content is less than 0.05 in terms of the total amount of Ti and Al (atomic ratio), the desired excellent heat resistance cannot be ensured, while the Y value is 0. If it exceeds 15, the high-temperature strength caused by the Ti component suddenly decreases, so the Y value was set to 0.05 to 0.15.
Furthermore, the above (Ti, Al, Si) N layer has excellent high temperature hardness and high temperature strength as described above, and excellent heat resistance, as well as between the cemented carbide broach body and the lubricating amorphous carbon coating. In addition, these two materials are firmly and closely bonded to each other, and the adhesion property thereof is further improved by film formation in a magnetic field. However, when the average layer thickness is less than 1 μm, the desired excellent wear resistance is ensured. On the other hand, if the average layer thickness exceeds 3 μm, chipping occurs particularly in high-speed broaching, so the average layer thickness was set to 1 to 3 μm.

(b)潤滑性非晶質炭素系被膜のW含有量
W成分は、上記の潤滑性非晶質炭素系被膜の素地を形成して、被膜の強度を向上させる作用があるが、その含有量が5原子%未満では所望の高強度を確保することができず、これが摩耗促進の原因となり、一方その含有量が20原子%を越えると潤滑性が急激に低下し、切刃部にチッピングが発生し易くなることから、その含有量を5〜20原子%と定めた。
(B) W content of lubricious amorphous carbon-based coating W component forms the base of the above-mentioned lubricous amorphous carbon-based coating and has the effect of improving the strength of the coating. If it is less than 5 atomic%, the desired high strength cannot be ensured, which causes wear promotion. On the other hand, if its content exceeds 20 atomic%, the lubricity is drastically reduced and chipping occurs at the cutting edge. Since it becomes easy to generate | occur | produce, the content was defined as 5-20 atomic%.

(c)潤滑性非晶質炭素系被膜のTiおよびN含有量
Ti成分とN成分、さらにC(炭素)成分は磁場成膜下で結合して、被膜中に最大径で10nm以下の結晶質Ti(C,N)系化合物微粒として存在し、被膜の硬さを著しく向上させ、耐摩耗性を向上させる作用があるが、その含有量がTi成分が0.5原子%未満、およびN成分が10原子%未満になると、被膜中にTi(C,N)系微粒として存在する割合が少なくなり過ぎて、所望の高硬度を確保することができず、一方その含有量がTi成分が4原子%、およびN成分が30原子%を越えると強度および潤滑性が急激に低下し、切刃部にチッピングが発生するようになることから、その含有量をそれぞれTi:0.5〜4原子%、N:10〜30原子%と定めた。
(C) Ti and N contents of lubricating amorphous carbon-based film Ti component, N component, and C (carbon) component are combined under magnetic film formation, and a crystalline material having a maximum diameter of 10 nm or less in the film It exists as Ti (C, N) -based compound fine particles and has the effect of remarkably improving the hardness of the coating and improving the wear resistance, but its content is less than 0.5 atomic percent of Ti component, and N component Is less than 10 atomic%, the proportion of Ti (C, N) -based fine particles present in the coating is too small, and the desired high hardness cannot be ensured. When the atomic% and N components exceed 30 atomic%, the strength and lubricity are drastically reduced and chipping occurs at the cutting edge. Therefore, the content of Ti: 0.5 to 4 atoms, respectively %, N: 10-30 atomic%.

(d)潤滑性非晶質炭素系被膜の平均層厚
その平均層厚が1μm未満では、所望の潤滑性および耐摩耗性効果を確保することができず、一方その平均層厚が3μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜3μmと定めた。
(D) Average layer thickness of lubricating amorphous carbon-based coating If the average layer thickness is less than 1 μm, the desired lubricity and wear resistance effect cannot be ensured, while the average layer thickness exceeds 3 μm. Then, since chipping is likely to occur in the cutting edge portion, the average layer thickness was determined to be 1 to 3 μm.

この発明の被覆超硬ブローチは、これを構成する硬質被覆層がすぐれた高温硬さと高温強度、さらにすぐれた耐熱性を有し、さらに潤滑性非晶質炭素系被膜の硬さが、これの炭素系非晶質体の素地に、磁場成膜により超微細となった状態で分散分布する硬質の結晶質Ti(C,N)系化合物微粒によって著しく向上したものになると共に、前記炭素系非晶質体の素地がすぐれた潤滑性を具備した状態でW成分の作用で高強度を具備するようになることから、特に各種のTi合金やAl合金、さらにCu合金などの工作物の高熱発生を伴なう高速ブローチ加工で、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。   The coated carbide broach of the present invention has a high temperature hardness and high temperature strength with a hard coating layer constituting the same, and excellent heat resistance. The carbon-based amorphous body is remarkably improved by the hard crystalline Ti (C, N) -based compound fine particles dispersed and distributed in the ultrafine state by magnetic field film formation, High heat generation of workpieces such as various Ti alloys, Al alloys, and Cu alloys in particular due to the fact that the substrate of the crystalline body has high strength due to the action of the W component in the state of excellent lubricity. With high-speed broaching that involves high-speed broaching, excellent wear resistance is exhibited over a long period of time without the occurrence of chipping.

つぎに、この発明の被覆超硬ブローチを実施例により具体的に説明する。   Next, the coated carbide broach of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.8〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で72時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径:50mm×長さ:1000mmの超硬ブローチ本体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部最大径:40mm×切刃部長さ:600mm×全長:800mmの寸法および図2に示される形状を有し、かつ前記切刃部における荒刃:25刃、仕上げ刃:25刃の超硬ブローチ本体A−1〜A−10を製造した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 0.8 to 3 μm are prepared. Blended into the composition shown in Table 1, added with wax, ball milled in acetone for 72 hours, dried under reduced pressure, pressed into various compacts of a predetermined shape at a pressure of 100 MPa. The powder is heated to a predetermined temperature within a range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a 6 Pa vacuum atmosphere, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round bar sintered body for forming a carbide broach main body having a diameter: 50 mm × length: 1000 mm is formed, and further, from the round bar sintered body, a cutting blade portion maximum diameter: 40 mm × by grinding. Cutting edge length: 600 mm x total length: 80 Carbide broach bodies A-1 to A-10 having a size of 0 mm and a shape shown in FIG. 2 and having rough blades at the cutting edge portion: 25 blades and finishing blades: 25 blades were produced.

(a)図2に示される蒸着装置、すなわち中央部の回転テーブルを挟んで、一方側にカソード電極(蒸発源)として、純度:99.9質量%のTiターゲットを設けたマグネトロンスパッタリング装置、他方側にカソード電極(蒸発源)として、純度:99.6質量%のWCターゲットを設けたマグネトロンスパッタリング装置を対向配置し、さらに、前記両マグネトロンスパッタリング装置から前記回転テーブルを中心にして90度ずれた位置に、カソード電極(蒸発源)として硬質被覆層の組成に対応した組成を有するTi−Al−Si合金ターゲットを設けたアークイオンプレーティング装置を配置した蒸着装置を用い、
(b)上記蒸着装置内の回転テーブル上に、上記の超硬ブローチ本体A−1〜A−10のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、中心軸から半径方向に所定距離離れた位置にリング状に装着し、
(c)まず、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する前記超硬ブローチ本体に−1000Vの直流バイアス電圧を印加し、かつアークイオンプレーティング装置のカソード電極のTi−Al−Si合金ターゲットとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬ブローチ本体表面を20分間ボンバード洗浄し、
(d)ついで、前記蒸着装置の対向配置の両マグネトロンスパッタリング装置の電磁コイルに、いずれも電圧:50V、電流:10Aの条件で印加して、前記超硬ブローチ本体の装着部における磁束密度を140G(ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱温度を400℃とした状態で、反応ガスとして窒素とArを、窒素流量:300sccm、Ar流量:200sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気とし、前記超硬ブローチ本体には−100Vの直流バイアス電圧を印加し、かつ前記Ti−Al合金ターゲットのカソード電極(蒸発源)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬ブローチ本体の表面に、表3,4に示される目標層厚および目標層厚の(Ti,Al,Si)N層からなる硬質被覆層を蒸着形成し、
(c)さらに、前記電磁コイルに印加する条件を、電圧:50〜100V、電流:10〜20Aの範囲内の所定の値として、上記超硬ブローチ本体の装着部における磁束密度を100〜300G(ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度は400℃、上記超硬ブローチ本体のバイアス電圧は−100Vとしたままで、前記蒸着装置内に反応ガスとして、C(炭化水素)と窒素とArを、C流量:25〜100sccm、窒素流量:200〜300sccm、Ar流量:150〜250sccmの範囲内の所定の流量で導入して、反応雰囲気を、1PaのCの分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、例えば出力:0.5〜3.5kW(周波数:40kHz)の範囲内の所定のスパッタ電力、同Tiターゲットには、出力:2.5〜8.5kW(周波数:40kHz)の範囲内の所定のスパッタ電力を同時に印加した条件で、同じく表2,3に示される目標組成および目標層厚の潤滑性非晶質炭素系被膜を、上記(Ti,Al,Si)N層からなる硬質被覆層の上に上部層として蒸着形成することにより、本発明被覆超硬ブローチ1〜10をそれぞれ製造した。
(A) The vapor deposition apparatus shown in FIG. 2, that is, a magnetron sputtering apparatus in which a Ti target having a purity of 99.9% by mass is provided as a cathode electrode (evaporation source) on one side across the rotary table in the center. As a cathode electrode (evaporation source) on the side, a magnetron sputtering apparatus provided with a WC target having a purity of 99.6% by mass was placed opposite to the cathode electrode, and the magnetron sputtering apparatus was shifted by 90 degrees about the rotary table. At the position, using a vapor deposition apparatus in which an arc ion plating apparatus provided with a Ti-Al-Si alloy target having a composition corresponding to the composition of the hard coating layer as a cathode electrode (evaporation source) is disposed,
(B) On the rotary table in the vapor deposition apparatus, each of the above carbide broach main bodies A-1 to A-10 is ultrasonically cleaned in acetone and dried in a radial direction from the central axis. Attach it like a ring at a distance,
(C) First, the inside of the apparatus is evacuated and maintained at a pressure of 0.01 Pa, and the interior of the apparatus is heated to 400 ° C. with a heater, and then rotated and rotated on the rotary table. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the Ti—Al—Si alloy target of the cathode electrode of the arc ion plating apparatus and the anode electrode to generate an arc discharge. Clean the broach body surface by bombarding for 20 minutes,
(D) Next, the magnetic flux density in the mounting portion of the carbide broach body is 140 G by applying the voltage to the electromagnetic coils of both magnetron sputtering devices opposed to the vapor deposition device under the conditions of voltage: 50 V and current: 10 A. In addition to forming a magnetic field (Gauss) and heating temperature in the vapor deposition apparatus at 400 ° C., nitrogen and Ar are introduced as reaction gases at a rate of nitrogen flow rate: 300 sccm, Ar flow rate: 200 sccm, A reaction atmosphere composed of a mixed gas of nitrogen and Ar of 1 Pa is applied, a DC bias voltage of −100 V is applied to the cemented carbide broach body, and a cathode electrode (evaporation source) of the Ti—Al alloy target and an anode electrode A current of 100 A is passed between them to generate an arc discharge, so that the surface shown in Tables 3 and 4 is formed on the surface of the carbide broach body. The layer thickness and the target layer thickness of (Ti, Al, Si) a hard coating layer consisting of N layers is vapor deposited,
(C) Furthermore, assuming that the conditions to be applied to the electromagnetic coil are predetermined values in the range of voltage: 50 to 100 V and current: 10 to 20 A, the magnetic flux density in the mounting portion of the carbide broach body is 100 to 300 G ( The heating temperature in the vapor deposition apparatus is 400 ° C., the bias voltage of the carbide broach body is −100 V, and C 2 H is used as a reactive gas in the vapor deposition apparatus. 2 (hydrocarbon), nitrogen, and Ar are introduced at a predetermined flow rate within a range of C 2 H 2 flow rate: 25-100 sccm, nitrogen flow rate: 200-300 sccm, Ar flow rate: 150-250 sccm, While using a 1 Pa C 2 H 2 decomposition gas and a mixed gas of nitrogen and Ar, the cathode electrode (evaporation source) of the WC target of both the magnetron sputtering devices Is, for example, output: 0.5 to 3.5 kW (frequency: 40 kHz) in a predetermined sputtering power, and the same Ti target has an output: 2.5 to 8.5 kW (frequency: 40 kHz). A hard coating composed of the above (Ti, Al, Si) N layer is coated with a lubricious amorphous carbon-based film having the target composition and target layer thickness shown in Tables 2 and 3 under the condition that a predetermined sputtering power is simultaneously applied. The coated carbide broaches 1 to 10 of the present invention were respectively produced by vapor deposition as an upper layer on the layer.

また、比較の目的で、上記の超硬ブローチ本体A−1〜A−10のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に概略説明図で示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として硬質被覆層の組成に対応した組成をもったTi−Al合金を装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記超硬ブローチ本体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬ブローチ本体表面をボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記超硬ブローチ本体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬ブローチ本体A−1〜A−10のそれぞれの表面に、表3に示される目標組成および目標層厚を有する(Ti,Al)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬ブローチ1〜10をそれぞれ製造した。   Further, for the purpose of comparison, each of the above-mentioned carbide broach main bodies A-1 to A-10 is ultrasonically cleaned in acetone and dried, and the ordinary arc ions shown in the schematic explanatory diagram of FIG. Insert the Ti-Al alloy having the composition corresponding to the composition of the hard coating layer as the cathode electrode (evaporation source), and first exhaust the inside of the apparatus to a vacuum of 0.5 Pa or less. While holding, the inside of the apparatus was heated to 400 ° C. with a heater, a DC bias voltage of −1000 V was applied to the cemented carbide broach body, and 100 A of the cathode electrode was placed between the Ti—Al alloy and the anode electrode. An electric current is passed to generate an arc discharge, so that the surface of the cemented carbide broach body is bombard washed, and then nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, The bias voltage applied to the cemented carbide broach body is lowered to -100V, and arc discharge is generated between the cathode electrode and the anode electrode, whereby each surface of the cemented carbide broach body A-1 to A-10. The conventional coated carbide broaches 1 to 10 were respectively produced by vapor-depositing a hard coating layer composed of a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 3.

つぎに、上記本発明被覆超硬ブローチ1〜10および従来被覆超硬ブローチ1〜10を用い、いずれも外径:80mm×中心部の貫通孔(中心孔)の穴径:40mm×全長:40mmの寸法をもった工作物について、
(a)工作物の材質:質量%で、Ti−5.96%Al−2.02%Sn−3.98%Zr−6.01%Moの組成を有するTi合金(AMS4981)、
引き抜き速度:25m/min.
加工数:3500個
の条件(引き抜き条件Aという)での工作物中心孔の高速穴加工(通常の引き抜き速度は15m/min.)、
(b)工作物の材質:質量%で、Al−1.61%Cu−2.55%Mg−5.52%Zn−0.25%Crの組成を有するAl合金(JIS・A7075)、
引き抜き速度:60m/min.
加工数:12000個、
の条件(引き抜き条件Bという)での工作物中心孔の高速穴加工(通常の引き抜き速度は40m/min.)、
を行い、加工後の荒刃および仕上げ刃における最大逃げ面摩耗幅を測定した。この測定結果を表2,3に示した。
Next, using the above-described coated carbide broaches 1 to 10 and the conventional coated carbide broaches 1 to 10, the outer diameter: 80 mm × the hole diameter of the central through hole (center hole): 40 mm × the total length: 40 mm For workpieces with dimensions of
(A) Workpiece material: Ti alloy having a composition of Ti-5.96% Al-2.02% Sn-3.98% Zr-6.01% Mo in mass% (AMS4981),
Drawing speed: 25 m / min.
Number of machining: High-speed drilling of the center hole of the workpiece under the condition of 3500 (drawing condition A) (normal drawing speed is 15 m / min.),
(B) Workpiece material: Al alloy having a composition of Al-1.61% Cu-2.55% Mg-5.52% Zn-0.25% Cr in mass% (JIS A7075),
Drawing speed: 60 m / min.
Number of processing: 12,000
High-speed drilling of the center hole of the workpiece under the conditions (drawing condition B) (normal drawing speed is 40 m / min.),
The maximum flank wear width on the rough and finished blades after processing was measured. The measurement results are shown in Tables 2 and 3.

Figure 0004649946
Figure 0004649946

Figure 0004649946
Figure 0004649946

Figure 0004649946
Figure 0004649946

この結果得られた本発明被覆超硬ブローチ1〜10の下部層である(Ti,Al,Si)N層および上部層である潤滑性非晶質炭素系被膜、さらに従来被覆超硬ブローチ1〜10の硬質被覆層である(Ti,Al)N層について、その組成をオージェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、いずれも目標組成および目標層厚と実質的に同じ組成および平均層厚(断面5箇所の平均値)を示し、また、本発明被覆超硬ブローチ1〜10の潤滑性非晶質炭素系被膜の組織を透過型電子顕微鏡を用いて観察(倍率:250万倍)したところ、炭素系非晶質体の素地に、最大径で10nm以下の結晶質Ti(C,N)系化合物微粒が分散分布した組織を示した。   As a result, the present invention coated carbide broach 1-10 lower layer (Ti, Al, Si) N layer and upper layer lubricating amorphous carbon-based coating, further conventional coated carbide broach 1- 10 As for the (Ti, Al) N layer, which is 10 hard coating layers, the composition was measured using an Auger spectroscopic analyzer, and the layer thickness was measured using a scanning electron microscope. Shows the same composition and average layer thickness (average value of 5 cross-sections), and observes the structure of the lubricating amorphous carbon-based coating of the coated carbide broach 1-10 of the present invention using a transmission electron microscope ( (Magnification: 2.5 million times) showed a structure in which crystalline Ti (C, N) compound fine particles having a maximum diameter of 10 nm or less were dispersed and distributed on a carbon-based amorphous body.

表2,3に示される結果から、すぐれた高温硬さと高温強度、さらにすぐれた耐熱性を有する(Ti,Al,Si)N層からなる硬質被覆層と、すぐれた潤滑性および高強度を有する炭素系非晶質体の素地に、高硬度を有する結晶質Ti(C,N)系化合物微粒が分散分布した組織を有する潤滑性非晶質炭素系被膜の作用で本発明被覆超硬ブローチ1〜10は、いずれもブローチ加工を、高速条件で行なった場合にも、すぐれた耐摩耗性を発揮するのに対して、潤滑性非晶質炭素系被膜の形成がなく、硬質被覆層が(Ti,Al)N層からなる従来被覆超硬ブローチ1〜10においては、高熱発生を伴なう高速ブローチ加工では、摩耗進行がきわめて速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬ブローチは、通常の条件でのブローチ加工は勿論のこと、特に各種の工作物のブローチ加工を、高速条件で行なった場合にも、すぐれた耐摩耗性を発揮するものであるから、ブローチ加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 2 and 3, the hard coating layer composed of a (Ti, Al, Si) N layer having excellent high temperature hardness and high temperature strength and excellent heat resistance, and excellent lubricity and high strength. The coated carbide broach 1 of the present invention by the action of a lubricious amorphous carbon-based coating having a structure in which crystalline Ti (C, N) -based compound particles having high hardness are dispersed and distributed on a carbon-based amorphous body. No. 10 to 10 show excellent wear resistance even when broaching is performed under high-speed conditions, whereas there is no formation of a lubricious amorphous carbon-based film, and a hard coating layer ( In the conventional coated carbide broachs 1 to 10 composed of a Ti, Al) N layer, it is clear that high-speed broaching with high heat generation causes very rapid wear and reaches the service life in a relatively short time. .
As described above, the coated carbide broach of the present invention has excellent wear resistance not only when broaching under normal conditions, but also when broaching various workpieces under high speed conditions. Therefore, it can fully satisfy the labor saving and energy saving of broaching, and further cost reduction.

本発明被覆超硬ブローチ3の潤滑性非晶質炭素系被膜を透過型電子顕微鏡を用いて組織観察した結果(倍率:250万倍)を示す模式図である。It is a schematic diagram which shows the result (magnification: 2.5 million times) which carried out the structure | tissue observation of the lubricous amorphous carbon type | system | group film of this invention coated carbide broach 3 using the transmission electron microscope. 本発明被覆超硬ブローチ1〜10の硬質被覆層である(Ti,Al,Si)N層および潤滑性非晶質炭素系被膜を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used for forming the (Ti, Al, Si) N layer which is the hard coating layer of the coated carbide broach 1-10 of the present invention and the lubricating amorphous carbon-based coating is shown, (a) is a schematic A top view and (b) are schematic front views. 従来被覆超硬ブローチ1〜10の硬質被覆層である(Ti,Al)N層を形成するのに用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used in forming the (Ti, Al) N layer which is a hard coating layer of the conventional coated carbide broaches 1-10. ブローチを例示する概略正面図である。It is a schematic front view which illustrates a broach.

Claims (1)

炭化タングステン基超硬合金で構成されたブローチ本体の表面に、
(a)下部層として、アークイオンプレーティング装置にて、カソード電極(蒸発源)としてTi−Al−Si合金ターゲットを用い、窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、かつ、
組成式:(Ti1−(X+Y)AlSi)N(ただし、原子比で、Xは0.40〜0.60、Yは0.05〜0.15)、
を満足するTiとAlとSiの複合窒化物からなると共に、1〜3μmの平均層厚を有する硬質被覆層、
(b)上部層として、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、炭化タングステンターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜20原子%、
Ti:0.5〜4原子%、
窒素:10〜30原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒が分散分布した組織を示し、かつ1〜3μmの平均層厚を有する潤滑性非晶質炭素系被膜、
を蒸着形成してなる、潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製ブローチ。
On the surface of the broach body made of tungsten carbide base cemented carbide,
(A) As a lower layer, using a Ti—Al—Si alloy target as a cathode electrode (evaporation source) in an arc ion plating apparatus, forming a film in a magnetic field in a reaction atmosphere composed of a mixed gas of nitrogen and Ar, and ,
Formula: (Ti 1- (X + Y ) Al X Si Y) N ( provided that an atomic ratio, X is 0.40 to 0.60, Y is 0.05 to 0.15),
A hard coating layer composed of a composite nitride of Ti, Al, and Si satisfying the above and having an average layer thickness of 1 to 3 μm,
(B) A magnetron sputtering apparatus is used as the upper layer, a tungsten carbide target and a Ti target are used as the cathode electrode (evaporation source), and a magnetic field is formed in a reaction atmosphere composed of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar. Measured with an Auger spectrometer,
W: 5 to 20 atomic%,
Ti: 0.5-4 atomic%,
Nitrogen: 10-30 atomic%,
And the balance is composed of carbon and inevitable impurities, and a structure in which fine particles of crystalline titanium carbonitride compound are dispersed and distributed on the base of the carbon-based amorphous body by observation with a transmission electron microscope. A lubricious amorphous carbon-based coating having an average layer thickness of 1 to 3 μm,
A surface-coated cemented carbide broach that exhibits excellent wear resistance with a lubricious amorphous carbon-based coating film.
JP2004306359A 2004-10-21 2004-10-21 Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating Expired - Fee Related JP4649946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306359A JP4649946B2 (en) 2004-10-21 2004-10-21 Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306359A JP4649946B2 (en) 2004-10-21 2004-10-21 Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating

Publications (2)

Publication Number Publication Date
JP2006116643A JP2006116643A (en) 2006-05-11
JP4649946B2 true JP4649946B2 (en) 2011-03-16

Family

ID=36535009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306359A Expired - Fee Related JP4649946B2 (en) 2004-10-21 2004-10-21 Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating

Country Status (1)

Country Link
JP (1) JP4649946B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672441B2 (en) * 2010-10-06 2015-02-18 三菱マテリアル株式会社 Surface coated broach with excellent wear resistance and finished surface accuracy
CN116288179A (en) * 2023-03-29 2023-06-23 纳狮新材料有限公司杭州分公司 TiSiBAgYN coating resistant to high-temperature lubrication

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205215A (en) * 1983-05-09 1984-11-20 Matsushita Refrig Co Carbide broach
JP2001225412A (en) * 2000-02-16 2001-08-21 Token Thermotec:Kk Protective film coated member
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2002206177A (en) * 2000-12-28 2002-07-26 Komatsu Ltd Sliding member having excellent sliding characteristic
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component
JP2003260603A (en) * 2002-03-06 2003-09-16 Mitsubishi Materials Corp Surface-covered cemented carbide cutting tool in which hard covered layer demonstrates excellent wear resistance in high-speed cutting
JP2004010923A (en) * 2002-06-04 2004-01-15 Toyota Motor Corp Sliding member and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205215A (en) * 1983-05-09 1984-11-20 Matsushita Refrig Co Carbide broach
JP2001225412A (en) * 2000-02-16 2001-08-21 Token Thermotec:Kk Protective film coated member
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2002206177A (en) * 2000-12-28 2002-07-26 Komatsu Ltd Sliding member having excellent sliding characteristic
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component
JP2003260603A (en) * 2002-03-06 2003-09-16 Mitsubishi Materials Corp Surface-covered cemented carbide cutting tool in which hard covered layer demonstrates excellent wear resistance in high-speed cutting
JP2004010923A (en) * 2002-06-04 2004-01-15 Toyota Motor Corp Sliding member and its production method

Also Published As

Publication number Publication date
JP2006116643A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4711177B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer
JP2010194628A (en) Wear-resistant tool member having superior lubricity
JP4645944B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4649946B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP4518253B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in diamond-like carbon-based coatings in high-speed cutting of non-ferrous materials
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4281666B2 (en) Surface coated cemented carbide mold with excellent wear resistance of lubricated amorphous carbon coating in high speed press forming of metal powder
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4530139B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4438546B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP6959577B2 (en) Surface coating cutting tool
JP4645943B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP2009072837A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed milling, and its manufacturing method
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4281670B2 (en) Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP4530142B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4530138B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees