JP4647865B2 - Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof - Google Patents

Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof Download PDF

Info

Publication number
JP4647865B2
JP4647865B2 JP2001302346A JP2001302346A JP4647865B2 JP 4647865 B2 JP4647865 B2 JP 4647865B2 JP 2001302346 A JP2001302346 A JP 2001302346A JP 2001302346 A JP2001302346 A JP 2001302346A JP 4647865 B2 JP4647865 B2 JP 4647865B2
Authority
JP
Japan
Prior art keywords
sensitive adhesive
conductive pressure
weight
heat conductive
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001302346A
Other languages
Japanese (ja)
Other versions
JP2003105299A (en
Inventor
勝也 戸川
賢一 東
俊司 俵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001302346A priority Critical patent/JP4647865B2/en
Publication of JP2003105299A publication Critical patent/JP2003105299A/en
Application granted granted Critical
Publication of JP4647865B2 publication Critical patent/JP4647865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた熱伝導効率(熱抵抗)及び柔軟で形状追従性を有する熱伝導性感圧接着剤、及び熱伝導性感圧接着シートさらにそれを用いた積層体に関する。
【0002】
【従来の技術】
従来より、電気・電子部品等の発熱体と放熱体との間に介在させ、電気・電子部品から発生する熱を放散させる目的で、熱伝導性感圧接着剤を用いた接着シート(以下、熱伝導性感圧接着シートという)が使用されている。しかしながら、電気・電子部品に限らず、前記接着シートが使用される発熱体と放熱体との表面は平滑でないことが多く、この場合、発熱体や放熱体と熱伝導性感圧接着シートとの間の接触面積が減少するので、発熱体から放熱体への熱伝導効率が減少、すなわち熱抵抗が増加し、本来の放熱効果が発揮できないことがあった。このような熱抵抗は、発熱体と放熱体との間の熱移動特性の測定により得られ、熱抵抗が小さいほど、発熱体から放熱体への熱移動に優れ、高い放熱効果が得られるのである。そのため上記接着シートは、発熱体及び放熱体の表面に接着シートが密着し接触面積を大きくすることによって放熱効果を上げることが可能となる。このため、熱伝導性感圧接着シートには、柔軟性や形状追従性が必要とされていた。
【0003】
従来、このような柔軟性を備えた熱伝導性感圧接着シートとして、炭化珪素、窒化珪素、窒化アルミニウム等の熱伝導性微粒子をシリコーンゴムやシリコンオイル等の樹脂材料に充填した熱伝導性樹脂組成物(例えば、特開平9−302231号公報)や、アクリル系重合体に熱伝導性微粒子をランダムに分散させた熱伝導性感圧接着シート(例えば、特開平6−88061号公報)が知られている。
【0004】
しかしながら、このような熱伝導性微粒子を樹脂に充填する場合、高い熱伝導性を得るために微粒子の充填量を高くすると、樹脂が急激に固くなり、柔軟性が維持できないという問題があった。
また、発熱体と放熱体との密着性を向上させるために、融点を有するワックスのような樹脂に熱伝導微粒子を添加したものが開示されている(米国特許5950066号、米国特許6197859号)。これらは、発熱体の熱によって溶融し、放熱体との密着性を向上して高い放熱効果を得るものである。しかしながら、これらは、オレフィン系のワックスを大量に添加しているために、接着力が極めて低く、放熱体に対する貼付性が極めて悪いため、場合によっては貼付した際に気泡が入り、熱抵抗に悪影響を及ぼすことがある。また、接着性を向上するために、これらにアクリル粘着剤等を積層すると、粘着性は向上するものの熱伝導性能が大幅に悪化する。このため、優れた熱抵抗と接着性とを両立する熱伝導性感圧接着シートが求められていた。
【0005】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、熱伝導性能に優れ、さらに柔軟で形状追従性を有し、良好な接着性を有する熱伝導性感圧接着剤、熱伝導性感圧接着シート及びそれを用いた積層体を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の本発明は、(a)炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルを含有する共重合体50〜97重量部、(b)前記共重合体(a)と非相溶かつ融点が40〜80℃である化合物3〜50重量部、及び(c)熱伝導性微粒子10〜500重量部からなる熱伝導性感圧接着剤を提供する。
また、請求項2記載の本発明は、(a)炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルを含有する共重合体の重量平均分子量が、3万〜30万である請求項1記載の熱伝導性感圧接着剤を提供する。
また、請求項3記載の本発明は、(b)前記共重合体(a)と非相溶かつ融点が40〜80℃である化合物が、高級脂肪族系アルコール、高級脂肪酸、フタル酸、及びこれらのエステルからなる群より選ばれた少なくとも一つである請求項1又は2記載の熱伝導性感圧接着剤を提供する。
また、請求項4記載の本発明は、さらに(d)粘着付与樹脂3〜50重量部を含有する請求項1〜3いずれか一項に記載の熱伝導性感圧接着剤を提供する。
また、請求項5記載の本発明は、40℃と80℃における貯蔵弾性率の比(40℃貯蔵弾性率/80℃貯蔵弾性率)が100以上である請求項1〜3いずれか一項に記載の熱伝導性感圧接着剤を提供する。
また、請求項6記載の本発明は、請求項1〜5いずれか一項に記載の熱伝導性感圧接着剤からなり、厚みが10〜200μmである熱伝導性感圧接着シートを提供する。
また、請求項7記載の本発明は、請求項6記載の熱伝導性感圧接着シートの両側に、2枚の剥離力の異なる離型処理されたフィルムが積層されてなる熱伝導性感圧接着シート積層体を提供する。
【0007】
以下に本発明を詳述する。
本発明における(a)炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルを含有する共重合体(以下、共重合体(a)と記す場合がある)とは、炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルからなる重合性単量体を主成分として、これと後述する重合性単量体とを混合し、重合することによって得られる共重合体をさす。
【0008】
上記炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルとしては、特に限定されず、例えば、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸sec−ブチル、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸n−オクチル、アクリル酸イソオクチル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、アクリル酸イソミリスチル、アクリル酸ノニル、アクリル酸イソノニル、アクリル酸イソステアリル、アクリル酸ステアリル等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。
【0009】
上記共重合体(a)に用いられる他の重合性単量体成分としては、上記アクリル酸アルキルエステルと共重合可能な重合性単量体であれば特に限定されることなく用いられる。
【0010】
このような重合性単量体としては、例えば、極性を有する重合性単量体(以下、極性モノマー)が挙げられる。
上記極性モノマーとしては、特に限定されず、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸等のカルボキシル基含有モノマー又はその無水物、(メタ)アクリルニトリル、N−ビニルピロリドン、N−ビニルカプロラクタム、アクリロイルモルホリン、(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピルアクリルアミド等の窒素含有モノマー;2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチルアクリレート、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート、カプロラクトン変成(メタ)アクリレート等の水酸基含有モノマー;N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルカルボン酸アミド等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。
【0011】
上記極性モノマーの含有量は、上記アクリル酸アルキルエステル100重量部に対して、20重量部以下であることが好ましい。20重量部を超えると、得られた熱伝導性感圧接着剤の柔軟性が損なわれることがある。より好ましくは、10重量部以下である。
【0012】
また、共重合体(a)に用いられるさらに他の重合性単量体成分としては、特に限定されず、例えば、酢酸ビニル、プロピオン酸ビニル、スチレン、イソボロニル(メタ)アクリレート、末端に重合性不飽和二重結合を有するオレフィン系重合体等が挙げられる。これらの共重合可能なモノマーは、必要に応じて適宜添加される。
【0013】
上記共重合体(a)は、重量平均分子量が、3万〜30万であることが好ましい。3万未満であると、重合体の凝集力が小さくなりすぎてシート状に成形した場合に取り扱いにくくなることがある。また、30万を超えると、得られた熱伝導性感圧接着シートとしたときの柔軟性が損なわれることがある。
【0014】
上記共重合体(a)の合成方法は、特に限定されず、例えば、炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルと上記共重合性単量体との混合物を、溶液重合法、乳化重合法、懸濁重合法、塊状重合法等で重合させることにより得られる。
その際、例えば熱重合開始剤や光重合開始剤、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等、それらと還元剤を併用したレドックス系開始剤等の重合触媒が適宜用いられる。
【0015】
上記熱重合開始剤としては、例えば、過酸化ベンゾイル、t−ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシピバレエート、(3,5,5−トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド等の有機過酸化物;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(2,4―ジメチルバレロニトリル)、ジメチル−2,2’−アゾビス(2−メチルプロピオネート)、4,4’−アゾビス(4−シアノバレック酸)、2,2’−アゾビス(2−ヒドロキシメチルプロピオニトリル)、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等のアゾ系化合物等が挙げられる。
【0016】
上記光重合開始剤としては、例えば、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン[ダロキュアー2959、メルク社製];α−ヒドロキシ−α,α’−ジメチル−アセトフェノン[ダロキュアー1173、メルク社製];メトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン[イルガキュア651、チバガイギー社製]、2−ヒドロキシ−2−シクロヘキシルアセトフェノン「イルガキュア184、チバガイギー社製」等のアセトフェノン系;ベンジルジメチルケタール等のケタール系;その他、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナート等が挙げられる。
【0017】
上記共重合体(a)は、必要に応じて耐熱性やクリープ特性を向上させるために、外部架橋剤や内部架橋剤等の架橋剤を添加して、適宜架橋処理を施してもよい。ここでいう外部架橋剤とは、線状高分子化合物を互いに化学結合させ3次元構造をとらせるために一般に使用される架橋剤である。また、内部架橋剤とは、多官能の重合性単量体であって、一般の架橋剤を使用せずとも3次元構造を形成しうる化合物を言う。
上記外部架橋剤としては、例えば、トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネート、ジフェニルメタントリイソシアネート等の多官能イソシアネート系架橋剤;ポリエチレングリコールジグリシジルエーテル、ジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等のエポキシ系架橋剤;メラミン樹脂系架橋剤、アジリジン系架橋剤、金属塩系架橋剤、金属キレート系架橋剤、アミノ樹脂系架橋剤、過酸化物系架橋剤等が挙げられる。
【0018】
上記内部架橋剤としては、例えば、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリン(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等の多官能モノマーが挙げられる。これらは、共重合体(a)の重合時に添加され、重合と同時に内部架橋させる。
【0019】
上記外部架橋剤あるいは内部架橋剤の添加量は、共重合体(a)100重量部に対して5重量部以下であることが好ましい。5重量部を超えると、得られた熱伝導性感圧接着剤の柔軟性が損なわれることがある。より好ましくは、3重量部以下である。
また、上記内部架橋剤あるいは外部架橋剤は、単独で用いられてもよく、2種以上が併用されても良い。
【0020】
本発明における熱伝導性感圧接着剤には、樹脂の柔軟性を向上させる目的で(b)上記共重合体(a)と非相溶かつ融点が40〜80℃である化合物(以下、化合物(b)と記する場合がある)が含有される。非相溶かつ融点が40〜80℃である化合物を添加することにより、その温度領域で樹脂の柔軟性を大幅に向上できる。非相溶であればこの化合物は、40〜80℃の範囲で溶融し、樹脂全体を大幅に軟化させることができる。
ここで言う非相溶とは、化合物(b)と共重合体(a)とが、完全には相溶しないということであり、部分的には相溶していてもかまわない。しかしながら、分子レベルまで完全に相溶すると、その過疎化効果により共重合体(a)が必要以上に軟化してしまい取り扱い難くなることがある。
相溶・非相溶を見わける簡単な手段としては、例えば、透明な樹脂の場合は化合物(b)を添加した際に白濁すると非相溶と判断できる、また、不透明な樹脂の場合は電子顕微鏡等の手段を使って観察することができる。
【0021】
上記化合物(b)の融点は、40℃〜80℃であり、好ましくは、45℃〜75℃である。融点が、40℃未満では、輸送・保管中に軟化・流動してシート形状が崩れることがある。また、80℃より高いと、接着シートの軟化温度が高くなりすぎるため、発熱体となるICチップ等の発熱量によっては十分に軟化せず熱伝導性能を発揮できないことがある。
【0022】
上記化合物(b)としては、特に限定されず、例えば、高級脂肪族系アルコール、高級脂肪酸、フタル酸、及びこれらのエステル等が挙げられる。
上記高級脂肪族系アルコールとしては、例えば、ペンタデカノール、ヘキサデカノール、オクタデカノール、及びこれらのエステル等が挙げられる。上記高級脂肪酸としては、例えば、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、及びこれらのエステル等が挙げられる。上記フタル酸エステルとしては、例えば、ジシクロヘキシルフタレート等が挙げられる。上記化合物(b)は単独で用いられてもよく、2種以上が併用されてもよい。
【0023】
上記化合物(b)の含有量は、共重合体(a)50〜97重量部に対して、3〜50重量部である。3重量部未満であると、ICチップ等に使用した場合、これらの放熱では軟化流動せず、熱伝導性能が十分に発揮されない。また、50重量部を越えると凝集力が低下し、シート状に成形した際の取り扱いに支障をきたすためである。より好ましくは、共重合体(a)60〜97重量部に対して、3〜40重量部である。
【0024】
本発明の熱伝導性感圧接着剤には、熱伝導性を高める目的で熱伝導性微粒子が添加される。
上記熱伝導性微粒子(c)としては、特に限定されず、例えば、窒化ホウ素、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウム、等からなる熱伝導性微粒子等が挙げられる。中でも、窒化ホウ素、炭化珪素、窒化珪素、窒化アルミニウムは熱伝導率が高く、少ない充填量で高い熱伝導性が得られ、柔軟性を確保しやすい点で好ましく用いられる。さらに、窒化ホウ素は形状が鱗片形状又は扁平形状であるため単位重量当たりの表面積が大きく、樹脂に充填する場合に粒子同士が接触しやすく、熱の通り道となるパスを形成しやすいため、少ない充填量で高い熱伝導性が得られ、かつ、柔軟性を確保しやすい。
【0025】
上記熱伝導性微粒子(c)の純度は、高い熱伝導性能を維持するために、95重量%以上であることが好ましい。95重量%未満であると、熱伝導性が低下し、それを補うために更に添加量を増やさなければならず、柔軟性が損なわれることがある。より好ましくは、97重量%以上である。
【0026】
上記熱伝導性微粒子(c)の粒径は、平均粒径が100μm以下であることが好ましい。100μmを超えると、得られる熱伝導性感圧接着シートの表面の平滑性が低くなり、発熱体や放熱体に充分密着できず、優れた熱抵抗性能を得にくくなる。より好ましくは、0.5〜50μmである。
【0027】
上記熱伝導性微粒子(c)の含有量は、共重合体(a)50〜97重量部と化合物(b)3〜50重量部とに対して、10〜500重量部である。含有量が、10重量部未満であると、柔軟性は向上するが十分な熱伝導性能が得られない。また、500重量部を超えると、シート状に成形したときの強度が大きく低下するため形状保持性が損なわれる。好ましくは、15〜400重量部である。
【0028】
本発明の熱伝導性感圧接着剤は、更に、接着性を向上するために粘着付与樹脂(d)を含有してもよい。上記粘着付与樹脂を含有することによって、接着性、特に金属への接着性を向上させることができ、取り扱い性を更に向上させることができる。
上記粘着付与樹脂(d)としては、例えば、αピネン重合体、βピネン重合体、ジペンテン重合体、テルペン−フェノール、αピネン−フェノール共重合体等のポリテルペン樹脂;エスコレツ(エッソ化学社製)、タッキロール(住友化学社製)、タックエース(三井化学社製)等に代表されるC5系石油樹脂;ペトロジン(三井化学社製)、ハイレジン(東邦化学社製)、アルコン(荒川化学社製)等に代表されるC9系石油樹脂;ロジン、変性ロジン、重合ロジン、ロジンエステル、部分水添ロジン、完全水添ロジン等のロジン系樹脂;DCPD系石油樹脂、スチレン系樹脂、アルキルフェノール系樹脂、ポリブテン、ポリイソブチレン等が挙げられる。また、これらを酸変成した粘着付与樹脂は、特に金属との接着性を向上させることができる。これらは単独で用いられてもよく、2種以上が併用されてもよい。
【0029】
上記粘着付与樹脂(d)の含有量は、共重合体(a)と化合物(b)との和100重量部に対して、3〜50重量部であることが好ましい。3重量部未満であると、接着性にほとんど効果がなく、50重量部を超えると、樹脂の柔軟性が損なわれ、さらに流動性や優れた熱抵抗性能が十分得られないことがある。より好ましくは、5〜40重量部である。
【0030】
本発明の熱伝導性感圧接着剤は、40℃と80℃における貯蔵弾性率の比(40℃貯蔵弾性率/80℃貯蔵弾性率)が100以上であることが好ましい。熱伝導感圧接着剤を放熱体と発熱体の間に挿入するとき、温度は通常40℃以下程度であり、このとき放熱体と発熱体の固定に通常圧力をかけるが、そのときにICなどの保護のためにもある程度の弾性率を有していることが好ましい。また、発熱体が動作している、通常ICの動作温度では軟化してその界面を充満する必要がある。40℃付近での弾性率は取り扱いの面では103Pa以上が必要である。
貯蔵弾性率の比が、100より小さいと40℃から80℃の間での樹脂の柔軟化度が不十分であり、優れた熱抵抗性能を発揮することができない。
また、上記熱伝導性感圧接着剤は、上記にあげた理由により、40℃における貯蔵弾性率が103〜107Pa、80℃における貯蔵弾性率が100〜105Paであることが好ましい。
【0031】
本発明の熱伝導性感圧接着剤は、熱伝導性を大きく阻害されない限りにおいて、フィラー、増粘剤、顔料等の他の添加剤を含有してもよい。
【0032】
本発明における熱伝導性感圧接着シートとは、上記熱伝導性感圧接着剤をシート状に成形してなる熱伝導性感圧接着シートである。ここでいうシートとは、テープ、フィルム等も含む。
上記熱伝導性感圧接着シートの製造方法は、特に限定されず、例えば、溶剤キャスティング法、ホットメルト塗工法等が挙げられる。上記溶液キャスティング法は、例えば、上記共重合体(a)溶液に、化合物(b)熱伝導性微粒子(c)及び必要に応じて粘着付与樹脂(d)を混合し、これを用いて剥離ライナー等の支持体面上を被覆し、硬化させることにより得られる。
【0033】
上記熱伝導性感圧接着シートの厚みは、10〜200μmであることが好ましい。200μmを超えると熱抵抗性能が低下するばかりかコスト的にも不利なことがあり、10μm未満であると、充分な密着性が得られず、高い熱伝導性を得ることが困難となることがある。さらに好ましくは、30〜150μmである。
【0034】
本発明における熱伝導性感圧接着シート積層体は、上記熱伝導性感圧接着シートの両側に、2枚の剥離力の異なる離型処理されたフィルムが積層されてなるものであることが好ましい。このような積層体にすることにより、取り扱い性が良くなる。離型力が同じであると、片側の離型フィルムをはがすときに浮きが生じたりするために剥離力の異なる離型フィルムを用いる。
上記熱伝導性感圧接着シート積層体の製造方法としては、特に限定されず、例えば、離形処理されたフィルム1)に熱伝導性感圧接着剤からなる接着剤層を設け、さらにその上に離形処理されたフィルム1)と剥離力の異なる離形処理されたフィルム2)とを積層する方法が挙げられる。
【0035】
本発明の熱伝導性感圧接着剤、熱伝導性感圧接着シート及びその積層体は、発熱体と放熱体との間に介在させて用いられることが好ましい。
【0036】
(作用)
本発明の熱伝導性感圧接着剤は、共重合体(a)、融点40〜80℃かつ共重合体(a)に非相溶な化合物(b)、及び熱伝導性微粒子(c)からなり、ICなどの発熱体と放熱体の間に挿入して用いるとき、良好な接着性を示し、かつ発熱によってこの熱伝導性感圧接着剤は軟化し、形状追従性がさらに向上し、発熱体と放熱体の間を隙間なく埋めることができるため、極めて優れた熱伝導性(熱抵抗)を示す。さらに、シート化することによって非常に取り扱いが容易となり、従来のシリコングリースと比較して作業性が大幅によくなる。
【0037】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0038】
(実施例1)
冷却管、温度計、撹拌器を備えたセパラブルフラスコに、2−エチルヘキシルアクリレート(三菱化学社製)99.5重量部、2−ヒドロキシエチルメタクリレート(大阪有機工業社製)0.5重量部、n−ドデカンチオール0.2重量部を酢酸エチル90重量部とともに仕込み、窒素ガス雰囲気下、還流するまで昇温して20分間保持した後、過酸化ベンゾイル0.2重量部を酢酸エチル5重量部に溶解した溶液を滴下し、4時間反応した。この後更に、過酸化ベンゾイル0.1重量部を酢酸エチル5重量部に溶解した溶液を滴下し、更に3時間反応した。その後、トルエン50重量部を撹拌混合し、粘度500cpsの共重合体溶液を得た。得られた共重合体の重量平均分子量(Mw)をゲルパーミエーションクロマトグラフ(GPC)を使ってスチレン換算で測定したところ、15万であった。得られた共重合体溶液の固形分換算で97重量部に対し、1−ペンタデカノール(和光純薬社製;融点45℃)3重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)30重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。
次いで、離型処理した50μm厚のポリエチレンテレフタレート(PET)フィルム上に上記熱伝導性感圧接着剤溶液を塗工乾燥後の厚みが100μmになるように塗工した後、80℃に調整した乾燥機で10分間乾燥し、熱伝導性感圧接着シートを得た。
【0039】
(実施例2)
実施例1で得られた分子量15万の共重合体溶液を固形分換算で90重量部に対し、1−ヘキサデカノール(和光純薬社製;融点51℃)10重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)100重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0040】
(実施例3)
アクリル酸n−オクチル(三菱化学社製)99.6重量部、2−ヒドロキシエチルアクリレート(大阪有機工業社製)0.4重量部、n−ドデカンチオール0.1重量部を酢酸エチル90重量部とともに仕込んだこと以外は、実施例1と同様にして熱伝導性感圧接着シートを得た。得られた共重合体のMwは27万であった。
得られた共重合体溶液の固形分換算で75重量部に対し、ミリスチン酸(和光純薬社製;融点54℃)25重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)200重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0041】
(実施例4)
実施例3で得られた分子量27万の共重合体溶液を固形分換算で60重量部に対し、パルミチン酸(和光純薬社製;融点61℃)40重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)500重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0042】
(実施例5)
実施例1で得られた分子量15万の共重合体溶液を固形分換算で90重量部に対し、ジシクロヘキシルフタレート(和光純薬社製;)10重量部、窒化アルミニウム(商品名「グレードF」、トクヤマ社製;粒子径0.6μm、純度99.0%、)100重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0043】
(実施例6)
実施例1で得られた分子量15万の共重合体溶液を固形分換算で80重量部に対し、1−ヘキサデカノール(和光純薬社製)20重量部、窒化アルミニウム(商品名「グレードF」、トクヤマ社製;粒子径0.6μm、純度99.0%、)100重量部、及び粘着性付与樹脂としてロジンエステル(商品名「スーパーエステルA−75」;荒川化学社製)5重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0044】
(実施例7)
実施例3で得られた分子量27万の共重合体溶液を固形分換算で70重量部に対し、1−ヘキサデカノール(和光純薬社製)30重量部、窒化アルミニウム(商品名「グレードF」、トクヤマ社製;粒子径0.6μm、純度99.0%、)100重量部、及び粘着性付与樹脂としてロジンエステル(商品名「スーパーエステルA−75」;荒川化学社製)40重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0045】
(比較例1)
実施例1で得られた分子量15万の共重合体溶液を固形分換算で90重量部に対し、トリデシルアルコール(和光純薬社製)10重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)30重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0046】
(比較例2)
実施例1で得られた分子量15万の共重合体溶液を固形分換算で90重量部に対し、ステアリン酸アミド(和光純薬社製)10重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)10重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0047】
(比較例3)
実施例3で得られた分子量27万の共重合体溶液を固形分換算で40重量部に対し、1−ヘキサデカノール(和光純薬社製)60重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)30重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0048】
(比較例4)
実施例1で得られた分子量15万の共重合体溶液を固形分換算で99重量部に対し、1−ヘキサデカノール(和光純薬社製)1重量部、窒化ホウ素(商品名「グレードHGP」、電気化学工業社製;鱗片形状、粒子径5μm、純度99%、)30重量部を均一になるまで混合し、熱伝導性感圧接着剤溶液を得た。以下、実施例1と同様にして熱伝導性感圧接着シートを得た。
【0049】
<評価方法>
各実施例及び比較例で得られた熱伝導性感圧接着剤及び熱伝導性感圧接着シートについて、以下の評価を行った。
1)熱抵抗評価
得られた熱伝導性感圧接着シートの熱伝導性能を評価するために、前記シートの熱抵抗値を、図1に示す測定1装置により測定した。この測定は、アルミニウム製の冷却器1の上に、熱伝導性感圧接着シート2を積層し、更にその上に熱源となるIC3(韓国製:7805 UC8847、電力量3.5W)を積層した。この状態で、ボルト4により、締め付けトルク1N・mで締め付け、ICに電源を入れて5分後のT1部分とT2部分との温度を測定した。なお、冷却器1は、内部に恒温水槽5から23℃の水を循環供給されるようになっている。下記式(1)を用いて熱抵抗を算出した。
熱抵抗(℃/W)=(T1−T2)/(ICへの供給電力量)・・(1)
2)接着力評価(90度引き剥がし法)
JIS Z 0237に準拠して試験を行った。2.0×30×100のアルミ製試験板に実施例及び比較例で得られた熱伝導性接着シートを貼付し、2000gのローラで圧着した後、反対面の離型処理されたポリエチレンテレフタレートフィルムを剥離した。さらにその上にコロナ処理されたポリエチレンテレフタレートフィルムを貼付し、剥離試験用のつかみ部とした。以後JIS Z 0237 90度引き剥がし法に準拠して試験を行った。
3)アルミ板への貼付性評価
上記の粘着力試験と同様のアルミ板を用いて実施例及び比較例で得られた熱伝導性接着シート貼付し、手で軽く押さえつけて貼付し、反対側の離型フィルムを剥がした。
評価基準は、以下2段階で評価した。
○(良好):アルミ板に対してきわめて容易に貼付できた。
×(不良):アルミ板に接着しない、もしくは離形紙を剥離するときに浮きが生じる、または凝集破壊した。
4)貯蔵弾性率比の評価
得られた熱伝導性感圧接着シートを積層し、約0.8mmの厚みの評価用シートを作製し、40℃及び80℃における貯蔵弾性率を、動的粘弾性測定装置(レオメトリックス社製、RDA−2、周波数0.1Hz)で測定し、下記式(2)を用いて、貯蔵弾性率比を算出した。
貯蔵弾性率比=(40℃における貯蔵弾性率)/(80℃における貯蔵弾性率)・・(2)
尚、比較例1は、評価用シートが軟化しすぎて、離型紙から剥がれず、凝集破壊したため熱抵抗評価、粘着力評価ができなかった。また、比較例3は、接着シートに粘着性、凝集力がなく貼付できなかったため測定できなかった。
【0050】
【表1】

Figure 0004647865
【0051】
【発明の効果】
本発明は、上述の構成よりなるので、電気・電子部品等の発熱体の放熱用途等に使用した際に、熱伝導性能に優れ、さらに柔軟で形状追従性及び良好な接着性を有し、作業性の良い熱伝導性感圧接着剤及び熱伝導性感圧接着シートを提供することができる。
【図面の簡単な説明】
【図1】熱抵抗を測定するための測定装置を示す図である。
【符号の説明】
1 冷却器
2 熱伝導性感圧接着シート
3 IC
4 ボルト
5 恒温水槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat conductive pressure-sensitive adhesive having excellent heat conduction efficiency (heat resistance) and flexibility and shape conformability, a heat conductive pressure-sensitive adhesive sheet, and a laminate using the heat conductive pressure-sensitive adhesive sheet.
[0002]
[Prior art]
Conventionally, an adhesive sheet (hereinafter referred to as a heat-sensitive adhesive) using a heat-conductive pressure-sensitive adhesive is used to dissipate heat generated from electric / electronic parts by interposing between a heat-generating body such as electric / electronic parts and a radiator. Conductive pressure sensitive adhesive sheet) is used. However, the surface of the heat generating body and the heat radiating body in which the adhesive sheet is used is not always smooth, not limited to electric / electronic components, and in this case, between the heat generating body or the heat radiating body and the heat conductive pressure sensitive adhesive sheet. Therefore, the heat conduction efficiency from the heating element to the heat radiating body decreases, that is, the thermal resistance increases, and the original heat radiating effect may not be exhibited. Such thermal resistance is obtained by measuring the heat transfer characteristics between the heating element and the radiator, and the smaller the thermal resistance, the better the heat transfer from the heating element to the radiator and the higher the heat dissipation effect. is there. Therefore, the adhesive sheet can increase the heat dissipation effect by increasing the contact area by adhering the adhesive sheet to the surfaces of the heating element and the radiator. For this reason, the heat conductive pressure-sensitive adhesive sheet is required to have flexibility and shape followability.
[0003]
Conventionally, as a heat conductive pressure-sensitive adhesive sheet having such flexibility, a heat conductive resin composition in which heat conductive fine particles such as silicon carbide, silicon nitride, and aluminum nitride are filled in a resin material such as silicone rubber and silicon oil. Products (for example, JP-A-9-302231) and heat-conductive pressure-sensitive adhesive sheets (for example, JP-A-6-88061) in which heat-conductive fine particles are randomly dispersed in an acrylic polymer are known. Yes.
[0004]
However, when such a thermally conductive fine particle is filled in a resin, if the filling amount of the fine particle is increased in order to obtain high thermal conductivity, there is a problem that the resin becomes hard rapidly and the flexibility cannot be maintained.
In addition, in order to improve the adhesion between the heat generating element and the heat radiating element, a resin such as wax having a melting point to which heat conductive fine particles are added is disclosed (US Pat. No. 5950066, US Pat. No. 6,1978,859). These melt | dissolve with the heat | fever of a heat generating body, the adhesiveness with a heat radiator is improved, and the high heat dissipation effect is acquired. However, since these olefin waxes are added in large quantities, their adhesion is extremely low and the sticking property to the radiator is very poor. May affect. Moreover, when an acrylic pressure-sensitive adhesive or the like is laminated on these in order to improve the adhesiveness, the thermal conductivity is greatly deteriorated although the adhesiveness is improved. For this reason, the heat conductive pressure-sensitive adhesive sheet which balances the outstanding heat resistance and adhesiveness was calculated | required.
[0005]
[Problems to be solved by the invention]
In view of the above situation, the present invention is a heat conductive pressure-sensitive adhesive, a heat conductive pressure-sensitive adhesive sheet, and a laminate using the heat conductive pressure-sensitive adhesive having excellent heat conduction performance, flexibility, shape followability, and good adhesion. The purpose is to provide a body.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 is: (a) a copolymer containing 50 to 97 parts by weight of an acrylic acid alkyl ester having an alkyl group having 2 to 18 carbon atoms, (b) Provided is a thermally conductive pressure-sensitive adhesive comprising 3 to 50 parts by weight of a compound incompatible with the copolymer (a) and having a melting point of 40 to 80 ° C., and (c) 10 to 500 parts by weight of thermally conductive fine particles. To do.
Further, in the present invention according to claim 2, the weight average molecular weight of the copolymer containing (a) an acrylic acid alkyl ester having an alkyl group having 2 to 18 carbon atoms is 30,000 to 300,000. A heat conductive pressure sensitive adhesive according to claim 1 is provided.
Further, in the present invention according to claim 3, (b) the compound incompatible with the copolymer (a) and having a melting point of 40 to 80 ° C. is a higher aliphatic alcohol, a higher fatty acid, phthalic acid, and The thermally conductive pressure-sensitive adhesive according to claim 1 or 2, which is at least one selected from the group consisting of these esters.
Moreover, this invention of Claim 4 provides the heat conductive pressure sensitive adhesive as described in any one of Claims 1-3 containing 3-50 weight part of (d) tackifying resin further.
Further, in the present invention according to claim 5, the ratio of the storage elastic modulus at 40 ° C. and 80 ° C. (40 ° C. storage elastic modulus / 80 ° C. storage elastic modulus) is 100 or more. The described thermally conductive pressure sensitive adhesive is provided.
Moreover, this invention of Claim 6 consists of the heat conductive pressure sensitive adhesive as described in any one of Claims 1-5, and provides the heat conductive pressure sensitive adhesive sheet whose thickness is 10-200 micrometers.
Moreover, this invention of Claim 7 is a heat conductive pressure-sensitive adhesive sheet formed by laminating | stacking the film by which the release processing from which two peeling force differs differs on both sides of the heat conductive pressure-sensitive adhesive sheet of Claim 6. A laminate is provided.
[0007]
The present invention is described in detail below.
In the present invention, (a) a copolymer containing an alkyl acrylate ester having an alkyl group having 2 to 18 carbon atoms (hereinafter sometimes referred to as copolymer (a)) is 2 to 2 carbon atoms. This refers to a copolymer obtained by mixing and polymerizing a polymerizable monomer comprising an acrylic acid alkyl ester having 18 alkyl groups as a main component and a polymerizable monomer described later.
[0008]
The alkyl acrylate ester having an alkyl group having 2 to 18 carbon atoms is not particularly limited. For example, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, acrylic acid sec-butyl, t-butyl acrylate, cyclohexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isomyristyl acrylate, nonyl acrylate, isononyl acrylate, isoacrylate Examples include stearyl and stearyl acrylate. These may be used independently and 2 or more types may be used together.
[0009]
The other polymerizable monomer component used in the copolymer (a) is not particularly limited as long as it is a polymerizable monomer copolymerizable with the alkyl acrylate.
[0010]
Examples of such polymerizable monomers include polar polymerizable monomers (hereinafter, polar monomers).
The polar monomer is not particularly limited, and examples thereof include carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, fumaric acid and itaconic acid or anhydrides thereof, (meth) acrylonitrile, N-vinylpyrrolidone, N -Nitrogen-containing monomers such as vinylcaprolactam, acryloylmorpholine, (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropylacrylamide; 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl Hydroxyl-containing monomers such as acrylate, polyoxyethylene (meth) acrylate, polyoxypropylene (meth) acrylate, and caprolactone modified (meth) acrylate; N-vinylformamide, N-vinyl N- vinylcarboxamides such as acetamide can be mentioned. These may be used independently and 2 or more types may be used together.
[0011]
The content of the polar monomer is preferably 20 parts by weight or less with respect to 100 parts by weight of the alkyl acrylate ester. If it exceeds 20 parts by weight, the flexibility of the obtained heat conductive pressure-sensitive adhesive may be impaired. More preferably, it is 10 parts by weight or less.
[0012]
Further, the other polymerizable monomer component used in the copolymer (a) is not particularly limited, and examples thereof include vinyl acetate, vinyl propionate, styrene, isobornyl (meth) acrylate, and a polymerizable non-polymerizable at the terminal. Examples thereof include olefin polymers having a saturated double bond. These copolymerizable monomers are appropriately added as necessary.
[0013]
The copolymer (a) preferably has a weight average molecular weight of 30,000 to 300,000. If it is less than 30,000, the cohesive force of the polymer becomes too small and it may be difficult to handle when it is formed into a sheet. Moreover, when it exceeds 300,000, the flexibility when it is set as the obtained heat conductive pressure-sensitive-adhesive sheet may be impaired.
[0014]
The method for synthesizing the copolymer (a) is not particularly limited. For example, a solution polymerization method may be used in which a mixture of an acrylic acid alkyl ester having an alkyl group having 2 to 18 carbon atoms and the copolymerizable monomer is used. It can be obtained by polymerizing by an emulsion polymerization method, suspension polymerization method, bulk polymerization method or the like.
At that time, for example, a polymerization catalyst such as a thermal polymerization initiator, a photopolymerization initiator, potassium persulfate, ammonium persulfate, hydrogen peroxide, or the like, and a redox initiator using a reducing agent in combination with them is appropriately used.
[0015]
Examples of the thermal polymerization initiator include benzoyl peroxide, t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxycarbonate, di (2-ethoxyethyl) peroxy. Organic peroxides such as dicarbonate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2 , 4-dimethylvaleronitrile), dimethyl-2,2′-azobis (2-methylpropiyl) Nate), 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-hydroxymethylpropionitrile), 2,2′-azobis [2- (2-imidazolin-2-yl) An azo compound such as propane].
[0016]
Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocur 2959, manufactured by Merck Ltd.]; α-hydroxy-α, α′-dimethyl-acetophenone. [Darocur 1173, manufactured by Merck & Co., Inc.]; acetophenones such as methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone [Irgacure 651, manufactured by Ciba Geigy], 2-hydroxy-2-cyclohexylacetophenone “Irgacure 184, manufactured by Ciba Geigy” Systems: Ketal systems such as benzyl dimethyl ketal; other examples include halogenated ketones, acyl phosphinoxides, acyl phosphonates, and the like.
[0017]
The copolymer (a) may be appropriately subjected to a crosslinking treatment by adding a crosslinking agent such as an external crosslinking agent or an internal crosslinking agent in order to improve heat resistance and creep properties as necessary. The external cross-linking agent here is a cross-linking agent generally used for chemically bonding linear polymer compounds to each other to form a three-dimensional structure. The internal cross-linking agent refers to a compound that is a polyfunctional polymerizable monomer and can form a three-dimensional structure without using a general cross-linking agent.
Examples of the external crosslinking agent include polyfunctional isocyanate-based crosslinking agents such as tolylene diisocyanate, trimethylolpropane tolylene diisocyanate, and diphenylmethane triisocyanate; polyethylene glycol diglycidyl ether, diglycidyl ether, trimethylolpropane triglycidyl ether, and the like. Epoxy crosslinking agents; melamine resin crosslinking agents, aziridine crosslinking agents, metal salt crosslinking agents, metal chelate crosslinking agents, amino resin crosslinking agents, peroxide crosslinking agents and the like.
[0018]
Examples of the internal crosslinking agent include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and (poly) ethylene glycol. Di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, glycerin (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylol Polyfunctional monomers such as propanetrimethacrylate, allyl (meth) acrylate, vinyl (meth) acrylate, divinylbenzene, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate It is below. These are added during the polymerization of the copolymer (a), and are internally crosslinked simultaneously with the polymerization.
[0019]
The amount of the external crosslinking agent or internal crosslinking agent added is preferably 5 parts by weight or less with respect to 100 parts by weight of the copolymer (a). If it exceeds 5 parts by weight, the flexibility of the obtained heat conductive pressure-sensitive adhesive may be impaired. More preferably, it is 3 parts by weight or less.
Moreover, the said internal crosslinking agent or external crosslinking agent may be used independently, and 2 or more types may be used together.
[0020]
In the heat conductive pressure sensitive adhesive in the present invention, for the purpose of improving the flexibility of the resin, (b) a compound that is incompatible with the copolymer (a) and has a melting point of 40 to 80 ° C. b)) may be contained. By adding a compound that is incompatible and has a melting point of 40 to 80 ° C., the flexibility of the resin can be greatly improved in that temperature range. If incompatible, this compound melts in the range of 40 to 80 ° C., and the entire resin can be greatly softened.
The term “incompatible” as used herein means that the compound (b) and the copolymer (a) are not completely compatible, and may be partially compatible. However, when it is completely compatible up to the molecular level, the copolymer (a) may be softened more than necessary due to its depopulating effect, making it difficult to handle.
As a simple means of distinguishing compatibility / incompatibility, for example, in the case of a transparent resin, it can be judged that it is incompatible if it becomes cloudy when the compound (b) is added. It can be observed using means such as a microscope.
[0021]
The melting point of the compound (b) is 40 ° C to 80 ° C, preferably 45 ° C to 75 ° C. If the melting point is less than 40 ° C., the sheet shape may collapse due to softening and flow during transportation and storage. On the other hand, when the temperature is higher than 80 ° C., the softening temperature of the adhesive sheet becomes too high, and depending on the amount of heat generated from the IC chip or the like serving as a heating element, the heat conduction performance may not be exhibited without being sufficiently softened.
[0022]
The compound (b) is not particularly limited, and examples thereof include higher aliphatic alcohols, higher fatty acids, phthalic acid, and esters thereof.
Examples of the higher aliphatic alcohol include pentadecanol, hexadecanol, octadecanol, and esters thereof. Examples of the higher fatty acid include tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, and esters thereof. Examples of the phthalic acid ester include dicyclohexyl phthalate. The said compound (b) may be used independently and 2 or more types may be used together.
[0023]
Content of the said compound (b) is 3-50 weight part with respect to 50-97 weight part of copolymers (a). When it is less than 3 parts by weight, when used for an IC chip or the like, the heat dissipation does not soften and flow, and the heat conduction performance is not sufficiently exhibited. On the other hand, when the amount exceeds 50 parts by weight, the cohesive force is lowered, and the handling at the time of forming into a sheet is hindered. More preferably, it is 3 to 40 parts by weight with respect to 60 to 97 parts by weight of the copolymer (a).
[0024]
Thermally conductive fine particles are added to the thermally conductive pressure-sensitive adhesive of the present invention for the purpose of enhancing thermal conductivity.
The heat conductive fine particles (c) are not particularly limited, and examples thereof include heat conductive fine particles composed of boron nitride, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and the like. Among these, boron nitride, silicon carbide, silicon nitride, and aluminum nitride are preferably used because they have high thermal conductivity, high thermal conductivity can be obtained with a small filling amount, and flexibility can be easily secured. Furthermore, since boron nitride has a scaly or flat shape, the surface area per unit weight is large, and when filling the resin, particles easily come into contact with each other and form a path for heat to pass, so there is little filling. High thermal conductivity can be obtained in an amount, and flexibility can be easily secured.
[0025]
The purity of the heat conductive fine particles (c) is preferably 95% by weight or more in order to maintain high heat conductive performance. If it is less than 95% by weight, the thermal conductivity is lowered, and in order to compensate for this, the amount of addition must be increased, and flexibility may be impaired. More preferably, it is 97% by weight or more.
[0026]
The heat conductive fine particles (c) preferably have an average particle size of 100 μm or less. If it exceeds 100 μm, the smoothness of the surface of the obtained heat conductive pressure-sensitive adhesive sheet will be low, it will not be able to sufficiently adhere to the heating element and the heat dissipation element, and it will be difficult to obtain excellent thermal resistance performance. More preferably, it is 0.5-50 micrometers.
[0027]
Content of the said heat conductive microparticles | fine-particles (c) is 10-500 weight part with respect to copolymer (a) 50-97 weight part and compound (b) 3-50 weight part. When the content is less than 10 parts by weight, flexibility is improved, but sufficient heat conduction performance cannot be obtained. On the other hand, when the amount exceeds 500 parts by weight, the shape retainability is impaired because the strength when formed into a sheet is greatly reduced. Preferably, it is 15 to 400 parts by weight.
[0028]
The heat conductive pressure-sensitive adhesive of the present invention may further contain a tackifier resin (d) in order to improve adhesiveness. By containing the tackifying resin, it is possible to improve the adhesion, particularly the adhesion to metal, and further improve the handleability.
Examples of the tackifying resin (d) include polyterpene resins such as α-pinene polymer, β-pinene polymer, dipentene polymer, terpene-phenol, α-pinene-phenol copolymer; Escores (manufactured by Esso Chemical Co., Ltd.), C5 petroleum resin represented by Tacquiroll (Sumitomo Chemical Co., Ltd.), Tac Ace (Mitsui Chemical Co., Ltd.), etc .; Petrogin (Mitsui Chemical Co., Ltd.), High Resin (Toho Chemical Co., Ltd.), Alcon (Arakawa Chemical Co., Ltd.), etc. Rosin resins such as rosin, modified rosin, polymerized rosin, rosin ester, partially hydrogenated rosin, fully hydrogenated rosin; DCPD petroleum resin, styrene resin, alkylphenol resin, polybutene, Examples thereof include polyisobutylene. Moreover, the tackifier resin which acid-modified these can improve especially adhesiveness with a metal. These may be used independently and 2 or more types may be used together.
[0029]
The content of the tackifying resin (d) is preferably 3 to 50 parts by weight with respect to 100 parts by weight of the sum of the copolymer (a) and the compound (b). If it is less than 3 parts by weight, there is almost no effect on adhesiveness, and if it exceeds 50 parts by weight, the flexibility of the resin is impaired, and furthermore, fluidity and excellent heat resistance performance may not be obtained sufficiently. More preferably, it is 5 to 40 parts by weight.
[0030]
The heat conductive pressure-sensitive adhesive of the present invention preferably has a storage elastic modulus ratio at 40 ° C. and 80 ° C. (40 ° C. storage elastic modulus / 80 ° C. storage elastic modulus) of 100 or more. When the heat conductive pressure sensitive adhesive is inserted between the radiator and the heating element, the temperature is usually about 40 ° C. or less, and at this time, normal pressure is applied to the fixing of the radiator and the heating element. It is preferable to have a certain degree of elastic modulus for protection. Also, it is necessary to soften and fill the interface at the operating temperature of the normal IC where the heating element is operating. The elastic modulus around 40 ° C is 10 in terms of handling. Three Pa or higher is required.
If the storage modulus ratio is smaller than 100, the degree of softening of the resin between 40 ° C. and 80 ° C. is insufficient, and excellent thermal resistance performance cannot be exhibited.
The heat conductive pressure-sensitive adhesive has a storage elastic modulus at 40 ° C. of 10 for the reasons mentioned above. Three -10 7 Pa, storage elastic modulus at 80 ° C. is 10 0 -10 Five Pa is preferred.
[0031]
The heat conductive pressure-sensitive adhesive of the present invention may contain other additives such as fillers, thickeners, and pigments as long as the heat conductivity is not greatly impaired.
[0032]
The heat conductive pressure sensitive adhesive sheet in the present invention is a heat conductive pressure sensitive adhesive sheet formed by molding the above heat conductive pressure sensitive adhesive into a sheet. The sheet here includes a tape, a film and the like.
The manufacturing method of the said heat conductive pressure-sensitive adhesive sheet is not specifically limited, For example, the solvent casting method, the hot-melt coating method, etc. are mentioned. In the solution casting method, for example, the copolymer (a) solution is mixed with the compound (b) thermally conductive fine particles (c) and, if necessary, a tackifier resin (d), and this is used as a release liner. It is obtained by coating on the support surface such as, and curing.
[0033]
The thickness of the heat conductive pressure sensitive adhesive sheet is preferably 10 to 200 μm. If it exceeds 200 μm, not only the thermal resistance performance is deteriorated but also there is a disadvantage in cost. If it is less than 10 μm, sufficient adhesion cannot be obtained, and it is difficult to obtain high thermal conductivity. is there. More preferably, it is 30-150 micrometers.
[0034]
The heat conductive pressure-sensitive adhesive sheet laminate in the present invention is preferably formed by laminating two films having different release forces on both sides of the heat conductive pressure-sensitive adhesive sheet. By using such a laminate, the handleability is improved. If the release force is the same, a release film having a different release force is used because floating occurs when the release film on one side is peeled off.
The method for producing the heat conductive pressure-sensitive adhesive sheet laminate is not particularly limited. For example, an adhesive layer made of a heat conductive pressure-sensitive adhesive is provided on the release-treated film 1), and the release layer is further formed thereon. Examples include a method of laminating the film 1) that has been subjected to the shape treatment and the film 2) that has been subjected to the release treatment having different peeling forces.
[0035]
It is preferable that the heat conductive pressure-sensitive adhesive, the heat conductive pressure-sensitive adhesive sheet and the laminate thereof of the present invention are used by being interposed between a heating element and a heat radiator.
[0036]
(Function)
The heat conductive pressure sensitive adhesive of the present invention comprises a copolymer (a), a compound (b) having a melting point of 40 to 80 ° C. and incompatible with the copolymer (a), and heat conductive fine particles (c). When used by inserting between a heat generator such as an IC and a heat radiator, the heat conductive pressure sensitive adhesive is softened by heat generation, and the shape followability is further improved. Since the space between the radiators can be filled without any gaps, extremely excellent thermal conductivity (thermal resistance) is exhibited. Furthermore, the use of a sheet makes it very easy to handle, and the workability is greatly improved as compared with conventional silicon grease.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0038]
Example 1
In a separable flask equipped with a condenser, a thermometer, and a stirrer, 99.5 parts by weight of 2-ethylhexyl acrylate (manufactured by Mitsubishi Chemical Corporation), 0.5 part by weight of 2-hydroxyethyl methacrylate (manufactured by Osaka Organic Industry Co., Ltd.), After charging 0.2 parts by weight of n-dodecanethiol with 90 parts by weight of ethyl acetate, the temperature was raised to reflux in a nitrogen gas atmosphere and maintained for 20 minutes, and then 0.2 parts by weight of benzoyl peroxide was added to 5 parts by weight of ethyl acetate. The solution dissolved in was dropped and reacted for 4 hours. Thereafter, a solution prepared by dissolving 0.1 part by weight of benzoyl peroxide in 5 parts by weight of ethyl acetate was added dropwise and reacted for another 3 hours. Thereafter, 50 parts by weight of toluene was stirred and mixed to obtain a copolymer solution having a viscosity of 500 cps. It was 150,000 when the weight average molecular weight (Mw) of the obtained copolymer was measured in terms of styrene using a gel permeation chromatograph (GPC). 3 parts by weight of 1-pentadecanol (manufactured by Wako Pure Chemical Industries, Ltd .; melting point 45 ° C.), boron nitride (trade name “Grade HGP”, electrochemical, with respect to 97 parts by weight in terms of solid content of the obtained copolymer solution Kogyo Co., Ltd .; scale shape, particle diameter 5 μm, purity 99%,) 30 parts by weight were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution.
Next, the heat-conductive pressure-sensitive adhesive solution was applied on a 50 μm-thick polyethylene terephthalate (PET) film subjected to mold release treatment so that the thickness after coating and drying was 100 μm, and then a dryer adjusted to 80 ° C. And dried for 10 minutes to obtain a heat conductive pressure-sensitive adhesive sheet.
[0039]
(Example 2)
10 parts by weight of 1-hexadecanol (manufactured by Wako Pure Chemical Industries, Ltd .; melting point 51 ° C.), boron nitride (commercial product) with respect to 90 parts by weight in terms of solid content of the copolymer solution having a molecular weight of 150,000 obtained in Example 1 The name “Grade HGP”, manufactured by Denki Kagaku Kogyo Co., Ltd .; scale part, particle diameter 5 μm, purity 99%,) 100 parts by weight were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0040]
(Example 3)
99.6 parts by weight of n-octyl acrylate (manufactured by Mitsubishi Chemical Corporation), 0.4 part by weight of 2-hydroxyethyl acrylate (manufactured by Osaka Organic Industry Co., Ltd.), 0.1 part by weight of n-dodecanethiol 90 parts by weight of ethyl acetate A heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1 except that it was charged together. Mw of the obtained copolymer was 270,000.
25 parts by weight of myristic acid (Wako Pure Chemical Industries, Ltd .; melting point 54 ° C.), boron nitride (trade name “Grade HGP”, manufactured by Denki Kagaku Kogyo Co., Ltd.) with respect to 75 parts by weight in terms of solid content of the obtained copolymer solution Scale shape, particle diameter 5 μm, purity 99%), and 200 parts by weight were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0041]
Example 4
The copolymer solution having a molecular weight of 270,000 obtained in Example 3 is 40 parts by weight of palmitic acid (manufactured by Wako Pure Chemical Industries, Ltd .; melting point 61 ° C.), boron nitride (trade name “grade”) with respect to 60 parts by weight in terms of solid content. HGP ”, manufactured by Denki Kagaku Kogyo; scale shape, particle diameter 5 μm, purity 99%,) 500 parts by weight were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0042]
(Example 5)
10 parts by weight of dicyclohexylphthalate (manufactured by Wako Pure Chemical Industries, Ltd.), aluminum nitride (trade name “Grade F”, 100 parts by weight of Tokuyama Corporation; particle size 0.6 μm, purity 99.0%) were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0043]
(Example 6)
The copolymer solution having a molecular weight of 150,000 obtained in Example 1 is 20 parts by weight of 1-hexadecanol (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum nitride (trade name “Grade F” based on 80 parts by weight in terms of solid content. ”, Manufactured by Tokuyama Corporation; particle size 0.6 μm, purity 99.0%, 100 parts by weight, and rosin ester (trade name“ Superester A-75 ”; manufactured by Arakawa Chemical Co., Ltd.) 5 parts by weight as a tackifier resin Were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0044]
(Example 7)
The copolymer solution having a molecular weight of 270,000 obtained in Example 3 is 30 parts by weight of 1-hexadecanol (manufactured by Wako Pure Chemical Industries, Ltd.) and aluminum nitride (trade name “Grade F” based on 70 parts by weight in terms of solid content. ”, Manufactured by Tokuyama Corporation; particle size 0.6 μm, purity 99.0%, 100 parts by weight, and rosin ester (trade name“ Superester A-75 ”, manufactured by Arakawa Chemical Co., Ltd.) 40 parts by weight as a tackifier resin Were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0045]
(Comparative Example 1)
The copolymer solution having a molecular weight of 150,000 obtained in Example 1 is 90 parts by weight in terms of solid content, 10 parts by weight of tridecyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.), boron nitride (trade name “Grade HGP”, 30 parts by weight of Denki Kagaku Kogyo Kogyo; scale shape, particle size 5 μm, purity 99%) were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0046]
(Comparative Example 2)
The copolymer solution having a molecular weight of 150,000 obtained in Example 1 is 90 parts by weight in terms of solid content, 10 parts by weight of stearamide (manufactured by Wako Pure Chemical Industries, Ltd.), boron nitride (trade name “Grade HGP”, Manufactured by Denki Kagaku Kogyo; scale shape, particle diameter 5 μm, purity 99%) was mixed until 10 parts by weight until uniform to obtain a heat conductive pressure-sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0047]
(Comparative Example 3)
The copolymer solution having a molecular weight of 270,000 obtained in Example 3 is 40 parts by weight in terms of solid content, 60 parts by weight of 1-hexadecanol (manufactured by Wako Pure Chemical Industries), boron nitride (trade name “Grade HGP” ”, Manufactured by Denki Kagaku Kogyo; scale shape, particle size 5 μm, purity 99%,) 30 parts by weight were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0048]
(Comparative Example 4)
1 part by weight of 1-hexadecanol (manufactured by Wako Pure Chemical Industries, Ltd.), boron nitride (trade name “Grade HGP”) with respect to 99 parts by weight in terms of solid content of the copolymer solution having a molecular weight of 150,000 obtained in Example 1 ”, Manufactured by Denki Kagaku Kogyo; scale shape, particle size 5 μm, purity 99%,) 30 parts by weight were mixed until uniform to obtain a heat conductive pressure sensitive adhesive solution. Thereafter, a heat conductive pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1.
[0049]
<Evaluation method>
The following evaluation was performed about the heat conductive pressure sensitive adhesive and heat conductive pressure sensitive adhesive sheet which were obtained by each Example and the comparative example.
1) Thermal resistance evaluation
In order to evaluate the heat conduction performance of the obtained heat conductive pressure-sensitive adhesive sheet, the thermal resistance value of the sheet was measured by the measurement 1 apparatus shown in FIG. In this measurement, the heat conductive pressure-sensitive adhesive sheet 2 was laminated on the aluminum cooler 1, and further the IC3 (Korea: 7805 UC8847, electric power 3.5W) serving as a heat source was laminated thereon. In this state, the bolt 4 was tightened with a tightening torque of 1 N · m, and the temperature of the T1 portion and the T2 portion was measured 5 minutes after turning on the IC. The cooler 1 is configured to be circulated and supplied with water at 23 ° C. from the constant temperature water tank 5. The thermal resistance was calculated using the following formula (1).
Thermal resistance (° C / W) = (T1-T2) / (Amount of power supplied to IC) (1)
2) Adhesive strength evaluation (90-degree peeling method)
The test was conducted according to JIS Z 0237. A polyethylene terephthalate film which was subjected to release treatment on the opposite surface after affixing the heat conductive adhesive sheets obtained in Examples and Comparative Examples to a 2.0 × 30 × 100 aluminum test plate and pressing with a 2000 g roller. Was peeled off. Further, a corona-treated polyethylene terephthalate film was stuck thereon to form a grip portion for a peel test. Thereafter, a test was performed in accordance with JIS Z 0237 90-degree peeling method.
3) Evaluation of adhesiveness to aluminum plate
Using the same aluminum plate as in the above adhesive strength test, the heat conductive adhesive sheets obtained in Examples and Comparative Examples were affixed, lightly pressed by hand and affixed, and the release film on the opposite side was peeled off.
Evaluation criteria were evaluated in the following two stages.
○ (Good): It was very easy to apply to the aluminum plate.
X (defect): It did not adhere to the aluminum plate, or floating occurred when peeling the release paper, or cohesive failure occurred.
4) Evaluation of storage modulus ratio
The obtained heat conductive pressure-sensitive adhesive sheet was laminated to prepare a sheet for evaluation having a thickness of about 0.8 mm, and the storage elastic modulus at 40 ° C. and 80 ° C. was measured using a dynamic viscoelasticity measuring device (manufactured by Rheometrics, RDA-2, frequency 0.1 Hz), and the storage modulus ratio was calculated using the following formula (2).
Storage elastic modulus ratio = (Storage elastic modulus at 40 ° C.) / (Storage elastic modulus at 80 ° C.) (2)
In Comparative Example 1, the evaluation sheet was so soft that it was not peeled off from the release paper and cohesive fractured, so that the thermal resistance evaluation and adhesive strength evaluation could not be performed. Further, Comparative Example 3 could not be measured because the adhesive sheet was not sticky and cohesive and could not be applied.
[0050]
[Table 1]
Figure 0004647865
[0051]
【The invention's effect】
Since the present invention is composed of the above-described configuration, when used for heat dissipation of a heating element such as an electric / electronic component, etc., it has excellent heat conduction performance, is flexible, has shape followability, and good adhesion, A heat conductive pressure-sensitive adhesive and a heat conductive pressure-sensitive adhesive sheet having good workability can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a measuring apparatus for measuring thermal resistance.
[Explanation of symbols]
1 Cooler
2 Thermally conductive pressure sensitive adhesive sheet
3 IC
4 bolts
5 constant temperature water tank

Claims (7)

(a)炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルを含有する共重合体50〜97重量部、(b)前記共重合体(a)と非相溶かつ融点が40〜80℃である化合物3〜50重量部、及び(c)熱伝導性微粒子10〜500重量部からなることを特徴とする熱伝導性感圧接着剤。(A) 50 to 97 parts by weight of a copolymer containing an alkyl acrylate ester having an alkyl group having 2 to 18 carbon atoms, (b) incompatible with the copolymer (a) and a melting point of 40 to 80 A heat conductive pressure-sensitive adhesive comprising 3 to 50 parts by weight of a compound having a temperature of 10 ° C. and (c) 10 to 500 parts by weight of heat conductive fine particles. (a)炭素数が2〜18のアルキル基を有するアクリル酸アルキルエステルを含有する共重合体の重量平均分子量が、3万〜30万であることを特徴とする請求項1記載の熱伝導性感圧接着剤。(A) The weight average molecular weight of the copolymer containing an alkyl acrylate ester having an alkyl group having 2 to 18 carbon atoms is 30,000 to 300,000, and the thermal conductivity feeling according to claim 1 Pressure adhesive. (b)前記共重合体(a)と非相溶かつ融点が40〜80℃である化合物が、高級脂肪族系アルコール、高級脂肪酸、フタル酸、及びこれらのエステルからなる群より選ばれた少なくとも一つであることを特徴とする請求項1又は2記載の熱伝導性感圧接着剤。(B) at least selected from the group consisting of higher aliphatic alcohols, higher fatty acids, phthalic acids, and esters thereof, wherein the compound that is incompatible with the copolymer (a) and has a melting point of 40 to 80 ° C. The heat conductive pressure-sensitive adhesive according to claim 1, wherein the heat conductive pressure-sensitive adhesive is one. さらに(d)粘着付与樹脂3〜50重量部を含有することを特徴とする請求項1〜3いずれか一項に記載の熱伝導性感圧接着剤。Furthermore, (d) 3-50 weight part of tackifying resin is contained, The heat conductive pressure-sensitive adhesive as described in any one of Claims 1-3 characterized by the above-mentioned. 40℃と80℃における貯蔵弾性率の比(40℃貯蔵弾性率/80℃貯蔵弾性率)が100以上であることを特徴とする請求項1〜4いずれか一項に記載の熱伝導性感圧接着剤。The ratio of the storage elastic modulus at 40 ° C and 80 ° C (40 ° C storage elastic modulus / 80 ° C storage elastic modulus) is 100 or more, The heat conductive pressure sensitive property according to any one of claims 1 to 4 adhesive. 請求項1〜5いずれか一項に記載の熱伝導性感圧接着剤からなり、厚みが10〜200μmであることを特徴とする熱伝導性感圧接着シート。A heat-conductive pressure-sensitive adhesive sheet comprising the heat-conductive pressure-sensitive adhesive according to claim 1 and having a thickness of 10 to 200 μm. 請求項6記載の熱伝導性感圧接着シートの両側に、2枚の剥離力の異なる離型処理されたフィルムが積層されてなることを特徴とする熱伝導性感圧接着シート積層体。A heat conductive pressure-sensitive adhesive sheet laminate, wherein two heat-release pressure-sensitive adhesive sheets according to claim 6 are laminated with a release film having different peeling forces.
JP2001302346A 2001-09-28 2001-09-28 Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof Expired - Fee Related JP4647865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302346A JP4647865B2 (en) 2001-09-28 2001-09-28 Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302346A JP4647865B2 (en) 2001-09-28 2001-09-28 Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof

Publications (2)

Publication Number Publication Date
JP2003105299A JP2003105299A (en) 2003-04-09
JP4647865B2 true JP4647865B2 (en) 2011-03-09

Family

ID=19122606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302346A Expired - Fee Related JP4647865B2 (en) 2001-09-28 2001-09-28 Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof

Country Status (1)

Country Link
JP (1) JP4647865B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889190B2 (en) * 2003-04-16 2012-03-07 スリーエム イノベイティブ プロパティズ カンパニー Acrylic heat conductive composition and heat conductive sheet
TW200427806A (en) * 2003-05-22 2004-12-16 Zeon Corp Heat-conductive pressure sensitive adhesive composition, heat-conductive sheet-form shaped article, and process for producing the shaped article
JP2005105028A (en) * 2003-09-29 2005-04-21 Nippon Zeon Co Ltd Heat conductive pressure-sensitive adhesive composition, heat conductive sheet-like molded product and method for producing the same
TWI302561B (en) * 2004-01-28 2008-11-01 Lg Chemical Ltd Releasable adhesive composition
JP4829482B2 (en) * 2004-05-11 2011-12-07 ニッタ株式会社 Thermally conductive composition and thermal conductive sheet
JP2006241333A (en) * 2005-03-04 2006-09-14 Nitta Ind Corp Heat conductive composition and heat conductive sheet
JP2008024814A (en) * 2006-07-20 2008-02-07 Kyoei Denki Kk Film to be inserted between laminating adhesive sheets and adhesive sheet-film composite material produced by using the same
JP5665268B2 (en) * 2008-11-21 2015-02-04 旭化成イーマテリアルズ株式会社 Heat conduction sheet
JP4848434B2 (en) * 2009-01-30 2011-12-28 日東電工株式会社 Thermally conductive adhesive composition and thermal conductive adhesive sheet
JP5717353B2 (en) * 2010-04-02 2015-05-13 ソマール株式会社 Thermally conductive adhesive sheet
JP2011241329A (en) * 2010-05-19 2011-12-01 Nitto Denko Corp Heat-conductive self-adhesive sheet
US20130041093A1 (en) * 2010-05-19 2013-02-14 Nitto Denko Corporation Thermally conductive adhesive sheet
JP2011241328A (en) * 2010-05-19 2011-12-01 Nitto Denko Corp Heat-conductive self-adhesive sheet
US8529729B2 (en) * 2010-06-07 2013-09-10 Lam Research Corporation Plasma processing chamber component having adaptive thermal conductor
WO2014007208A1 (en) * 2012-07-04 2014-01-09 ポリマテック・ジャパン株式会社 Heat-conductive adhesive sheet
JP5999769B2 (en) * 2013-01-07 2016-09-28 大王製紙株式会社 Thermally conductive adhesive composition and thermally conductive adhesive sheet
CN112961611B (en) * 2020-12-23 2023-02-03 烟台德邦科技股份有限公司 Acrylate structural adhesive with high thermal conductivity, high reliability and rapid curing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243679A (en) * 1990-02-19 1991-10-30 Sekisui Chem Co Ltd Acrylic adhesive composition and adhesive tape, lavel, sheet
JPH04293983A (en) * 1991-03-25 1992-10-19 Kanzaki Paper Mfg Co Ltd Double-side self-adhesive sheet having no base material
JPH05311130A (en) * 1992-05-13 1993-11-22 Nitto Denko Corp Tape for setting electronic components side by side
JPH07331205A (en) * 1994-06-01 1995-12-19 Soken Kagaku Kk Pressure-sensitive adhesive composition for liquid crystal element and liquid crystal element
JPH08157797A (en) * 1994-12-01 1996-06-18 Mitsubishi Chem Corp Pressure-sensitive adhesive composition
JPH10130611A (en) * 1996-10-30 1998-05-19 Nippon Synthetic Chem Ind Co Ltd:The Self-adhesive composition
JPH10298505A (en) * 1997-04-24 1998-11-10 Oji Paper Co Ltd Printing of heat-sensitive tacky sheet
JPH10316953A (en) * 1997-05-16 1998-12-02 Nitto Denko Corp Releasable thermally conductive pressuer-sensitive adhesive and adhesive sheet prepared therefrom
JPH11269438A (en) * 1998-03-25 1999-10-05 Dainippon Ink & Chem Inc Heat-conductive flame-retardant pressure-sensitive adhesive and pressure-sensitive adhesive tape
JP2000328017A (en) * 1999-05-18 2000-11-28 Sekisui Chem Co Ltd Re-peelable adhesive tape
JP2001131503A (en) * 1999-11-04 2001-05-15 Oji Paper Co Ltd Pressure-sensitive adhesive sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243679A (en) * 1990-02-19 1991-10-30 Sekisui Chem Co Ltd Acrylic adhesive composition and adhesive tape, lavel, sheet
JPH04293983A (en) * 1991-03-25 1992-10-19 Kanzaki Paper Mfg Co Ltd Double-side self-adhesive sheet having no base material
JPH05311130A (en) * 1992-05-13 1993-11-22 Nitto Denko Corp Tape for setting electronic components side by side
JPH07331205A (en) * 1994-06-01 1995-12-19 Soken Kagaku Kk Pressure-sensitive adhesive composition for liquid crystal element and liquid crystal element
JPH08157797A (en) * 1994-12-01 1996-06-18 Mitsubishi Chem Corp Pressure-sensitive adhesive composition
JPH10130611A (en) * 1996-10-30 1998-05-19 Nippon Synthetic Chem Ind Co Ltd:The Self-adhesive composition
JPH10298505A (en) * 1997-04-24 1998-11-10 Oji Paper Co Ltd Printing of heat-sensitive tacky sheet
JPH10316953A (en) * 1997-05-16 1998-12-02 Nitto Denko Corp Releasable thermally conductive pressuer-sensitive adhesive and adhesive sheet prepared therefrom
JPH11269438A (en) * 1998-03-25 1999-10-05 Dainippon Ink & Chem Inc Heat-conductive flame-retardant pressure-sensitive adhesive and pressure-sensitive adhesive tape
JP2000328017A (en) * 1999-05-18 2000-11-28 Sekisui Chem Co Ltd Re-peelable adhesive tape
JP2001131503A (en) * 1999-11-04 2001-05-15 Oji Paper Co Ltd Pressure-sensitive adhesive sheet

Also Published As

Publication number Publication date
JP2003105299A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP4647865B2 (en) Thermally conductive pressure sensitive adhesive, thermally conductive pressure sensitive adhesive sheet and laminate thereof
US6228965B1 (en) Thermally conductive pressure-sensitive adhesive and adhesive sheet containing the same
JP5066293B1 (en) Double-sided adhesive sheet
JP5651344B2 (en) Thermally conductive double-sided adhesive sheet
JP4848434B2 (en) Thermally conductive adhesive composition and thermal conductive adhesive sheet
CA2273890C (en) Thermally conductive pressure-sensitive adhesive, adhesive sheet containing the same, and method for fixing electronic part to heat-radiating member with the same
JP5800363B2 (en) Adhesive and adhesive sheet
WO2011145523A1 (en) Thermally conductive adhesive sheet
JP2002194306A (en) Heat-conductive sheet
JP7317577B2 (en) Adhesive heat dissipation sheet
JP2013133464A (en) Pressure-sensitive adhesive sheet for glass plate
TW201144403A (en) Method for manufacturing adhesive sheet having heat conductivity
JP2001279196A (en) Substrate-free, thermally conductive pressure-sensitive adhesive tape or sheet and method for manufacturing the same
JP4829482B2 (en) Thermally conductive composition and thermal conductive sheet
JP3810515B2 (en) Peelable thermally conductive pressure sensitive adhesive and its adhesive sheets
JP2003049144A (en) Heat-conductive pressure-sensitive adhesive and heat- conductive pressure-sensitive adhesive sheet
JP2017197689A (en) Pressure sensitive adhesive sheet
JP6241643B2 (en) Adhesive sheet and electronic device
JP2011241328A (en) Heat-conductive self-adhesive sheet
JP3797628B2 (en) Pressure sensitive adhesive and adhesive sheet thereof
JP2011241329A (en) Heat-conductive self-adhesive sheet
JP2002241725A (en) Water dispersion type adhesive composition and adhesive sheets
JP2003152147A (en) Heat conductive composite, heat conductive pressure sensitive adhesive sheet as well as jointing structure of heat generating body and heat dissipation body
JP2002194232A (en) Thermally conductive material
JP4729266B2 (en) Thermally conductive composition and thermal conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4647865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees