JP4647512B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4647512B2
JP4647512B2 JP2006035027A JP2006035027A JP4647512B2 JP 4647512 B2 JP4647512 B2 JP 4647512B2 JP 2006035027 A JP2006035027 A JP 2006035027A JP 2006035027 A JP2006035027 A JP 2006035027A JP 4647512 B2 JP4647512 B2 JP 4647512B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
flow path
section
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006035027A
Other languages
Japanese (ja)
Other versions
JP2007212108A (en
Inventor
竜児 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006035027A priority Critical patent/JP4647512B2/en
Publication of JP2007212108A publication Critical patent/JP2007212108A/en
Application granted granted Critical
Publication of JP4647512B2 publication Critical patent/JP4647512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は空気調和機に係り、特に暖房運転および冷房運転時に適するように冷媒の流路構成を改良したフィンチューブ型熱交換器を備えた空気調和機に関する。   The present invention relates to an air conditioner, and more particularly, to an air conditioner including a finned tube heat exchanger having an improved refrigerant flow path configuration suitable for heating operation and cooling operation.

従来、暖房および冷房時共に、熱交換器は同一冷媒流路であり、従来は蒸発と凝縮過程の性能のバランスを考慮して流路の数を選定していた。   Conventionally, the heat exchanger has the same refrigerant flow path for both heating and cooling. Conventionally, the number of flow paths has been selected in consideration of the balance between the performance of the evaporation and condensation processes.

しかし、蒸発過程では冷媒圧力損失が大きいために多流路化、凝縮過程では冷媒圧力損失が小さいために単流路化することが知られているが、このような方法では、蒸発及び凝縮過程の両方において、最適な流路に設定することはできなかった(特許文献1)。   However, since the refrigerant pressure loss is large in the evaporation process, it is known to use multiple channels, and in the condensation process, it is known to use a single channel because the refrigerant pressure loss is small. In both cases, the optimum flow path could not be set (Patent Document 1).

また、各能力のクラス別で冷媒流量が異なるため、蒸発過程の圧力損失の兼合いから流路数を統一ができなかった。さらに、弁の切換えにより、冷房と暖房で熱交換器の冷媒流路を変えることも知られているが、多数の弁が必要であったり、複雑な構造が必要であり、十分に満足できるものではなかった(特許文献2)。
特開平10−281574号公報 特開2002−228273号公報
In addition, the flow rate of refrigerant varies depending on the class of each capacity, so the number of flow paths could not be unified due to the pressure loss in the evaporation process. Furthermore, it is also known to change the refrigerant flow path of the heat exchanger by cooling and heating by switching the valve, but many valves are required and a complicated structure is required, which is fully satisfactory It was not (Patent Document 2).
Japanese Patent Laid-Open No. 10-281574 JP 2002-228273 A

本発明は上述した事情を考慮してなされたもので、熱交換器に暖房運転および冷房運転時に最適になる冷媒の流路を設け、暖房運転および冷房運転時の性能を向上させた空気調和機を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an air conditioner in which a heat exchanger is provided with a refrigerant flow path that is optimal during heating operation and cooling operation, and has improved performance during heating operation and cooling operation. The purpose is to provide.

上述した目的を達成するため、本発明に係る空気調和機は、圧縮機、四方弁、室外熱交換器、膨張装置及び室内熱交換器を有し、前記四方弁を切換えることにより冷媒の流れ方向を変更して冷房運転と暖房運転とを切換える空気調和機において、前記室内熱交換器及び室外熱交換器の少なくとも一方は、蒸発器として作用するときの冷媒流路入口側に並列に設置された第1及び第2の熱交換器部と、前記第1及び第2の熱交換器部の下流側に設けられた第3の熱交換器部と、前記第2の熱交換器部と第3の熱交換器部間に設けられ、蒸発器として作用するときに前記第2の熱交換器部と第3の熱交換器部とを連通し、凝縮器として作用するときに前記第2の熱交換器部と第3の熱交換器部との連通を遮断する弁手段とを備え、前記第1の熱交換器部の冷媒流路数を第3の熱交換器部の冷媒流路数よりも少なくしたことを特徴とする。   In order to achieve the above-described object, an air conditioner according to the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger, and the refrigerant flow direction is switched by switching the four-way valve. In the air conditioner that switches between the cooling operation and the heating operation by changing the at least one of the indoor heat exchanger and the outdoor heat exchanger is installed in parallel on the refrigerant channel inlet side when acting as an evaporator 1st and 2nd heat exchanger part, 3rd heat exchanger part provided in the downstream of said 1st and 2nd heat exchanger part, said 2nd heat exchanger part, and 3rd The second heat exchanger unit communicates with the third heat exchanger unit when acting as an evaporator, and the second heat when acting as a condenser. Valve means for blocking communication between the exchanger section and the third heat exchanger section, and the first heat exchange Characterized in that the refrigerant channel number of the vessel portion was less than refrigerant passage number of the third heat exchanger unit.

本発明に係る空気調和機によれば、暖房運転および冷房運転時の性能を向上させた空気調和機を提供することができる。   The air conditioner according to the present invention can provide an air conditioner with improved performance during heating operation and cooling operation.

本発明の一実施形態に係る空気調和機について添付図面を参照して説明する。   An air conditioner according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の一実施形態に係る空気調和機に用いられる冷凍サイクル図である。   FIG. 1 is a refrigeration cycle diagram used in an air conditioner according to an embodiment of the present invention.

図1に示すように、本発明に係る空気調和機は、冷凍サイクル1を備え、この冷凍サイクル1は、圧縮機2、四方切換弁4、室外熱交換器5、膨張装置としての電子式自動膨張弁6、室内熱交換器7が冷媒配管8を介してヒートポンプ式の冷凍サイクルを構成するよう連通されている。   As shown in FIG. 1, the air conditioner according to the present invention includes a refrigeration cycle 1, which includes a compressor 2, a four-way switching valve 4, an outdoor heat exchanger 5, and an electronic automatic as an expansion device. The expansion valve 6 and the indoor heat exchanger 7 are communicated with each other via a refrigerant pipe 8 so as to constitute a heat pump refrigeration cycle.

室外熱交換器5は、暖房運転時には蒸発器として、冷房運転時には凝縮器として機能し、蒸発器として機能するときの冷媒の入口側になる一側に並列に設置された第1の室外熱交換器部5aおよび第2の室外熱交換器部5bと、この第1および第2の室外熱交換器部5a、5bを通過した冷媒が合流する合流部p5の下流に設けた第3の室外熱交換器部5cとから構成される。また、第2の室外熱交換器部5bと合流部p5間に開閉弁5vを設け、室外熱交換器5が蒸発器として機能するときに開放し、凝縮器として機能するときに閉じるように設定し、蒸発過程と凝縮過程で室外熱交換器5の冷媒流路が異なるよう構成する。   The outdoor heat exchanger 5 functions as an evaporator during the heating operation, functions as a condenser during the cooling operation, and is a first outdoor heat exchange installed in parallel on one side that becomes the refrigerant inlet side when functioning as the evaporator. The third outdoor heat provided downstream of the junction p5 where the refrigerant that has passed through the first and second outdoor heat exchangers 5a and 5b merges with the vessel 5a and the second outdoor heat exchanger 5b. And an exchange unit 5c. In addition, an on-off valve 5v is provided between the second outdoor heat exchanger section 5b and the merging section p5, and is set to open when the outdoor heat exchanger 5 functions as an evaporator and to close when functioning as a condenser. The refrigerant flow path of the outdoor heat exchanger 5 is different between the evaporation process and the condensation process.

一方、室内熱交換器7は、暖房運転時には凝縮器として、冷房運転時には蒸発器として機能し、蒸発器として機能するときの冷媒の入口側になる一側に並列に設置された第1の室内熱交換器部7aおよび第2の室内熱交換器部7bと、この第1および第2の室外熱交換器部7a、7bを通過した冷媒が合流する合流部p7の下流に設けた第3の室内熱交換器部7cとから構成される。また、第2の室内熱交換器部7bと合流部p7間に開閉弁7vを設け、室内熱交換器7が蒸発器として機能するときに開放し、凝縮器として機能するときに閉じるように設定し、蒸発過程と凝縮過程で室内熱交換器7の冷媒流路が異なるよう構成する。なお、開閉弁5v、7vは逆止弁であるのが好ましい。これにより、開閉弁のコストを低減できる。   On the other hand, the indoor heat exchanger 7 functions as a condenser during the heating operation, functions as an evaporator during the cooling operation, and is installed in parallel on one side that becomes the refrigerant inlet side when functioning as the evaporator. The heat exchanger section 7a and the second indoor heat exchanger section 7b, and a third section provided downstream of the merge section p7 where the refrigerant that has passed through the first and second outdoor heat exchanger sections 7a and 7b merges. It is comprised from the indoor heat exchanger part 7c. Further, an on-off valve 7v is provided between the second indoor heat exchanger section 7b and the junction section p7, and is set to open when the indoor heat exchanger 7 functions as an evaporator and to close when functioning as a condenser. The refrigerant flow path of the indoor heat exchanger 7 is configured to be different between the evaporation process and the condensation process. The on-off valves 5v and 7v are preferably check valves. Thereby, the cost of the on-off valve can be reduced.

図2に示すように、室外熱交換器5を具体的に説明すると、室外熱交換器5は同一形状の伝熱フィン5fを所定ピッチの間隔を設けて積層し、伝熱フィン5fに同一長さと直径を有する複数のパイプ5p1、5p2、5p3を伝熱的に貫通し、第1の室外熱交換器部5a、第2の室外熱交換器部5bおよび第3の室外熱交換器部5cを構成するように接続する。   As shown in FIG. 2, the outdoor heat exchanger 5 will be described in detail. The outdoor heat exchanger 5 is formed by laminating heat transfer fins 5f having the same shape with a predetermined pitch interval, and having the same length on the heat transfer fins 5f. And a plurality of pipes 5p1, 5p2, and 5p3 having a diameter, and the first outdoor heat exchanger section 5a, the second outdoor heat exchanger section 5b, and the third outdoor heat exchanger section 5c. Connect to configure.

図3に示すように、例えば、第1の室外熱交換器部5aは、冷媒流路数が2個すなわち2個の流路を有し、1流路当り2本のパイプ5p1からなり、総数4本のパイプで構成され、第2の室外熱交換器部5bは、2流路を有し、1流路当り6本と8本のパイプ5p2からなり、総数14本のパイプで構成され、第3の室外熱交換器部5c(図2中上下に分割)は、4流路を有し、1流路当り6本のパイプ5p3からなり、総数24本のパイプで構成される。   As shown in FIG. 3, for example, the first outdoor heat exchanger section 5a has two refrigerant channels, that is, two channels, and includes two pipes 5p1 per channel. Consists of four pipes, the second outdoor heat exchanger section 5b has two flow paths, is composed of 6 pipes and 8 pipes 5p2 per flow path, is composed of a total of 14 pipes, The third outdoor heat exchanger section 5c (divided vertically in FIG. 2) has four flow paths, is composed of six pipes 5p3 per flow path, and is composed of a total of 24 pipes.

図4に示すように、室内熱交換器7を具体的に説明すると、室内熱交換器7は第1乃至第3の室内熱交換器部7a、7b、7cから形成されている。第1及び第2の室内熱交換器部7a、7bのフィン7f1は一体に形成され、第3の室内熱交換器部7cのフィン7f2、7f3は、別体に形成されている。図5に示すように、例えば、第1の室内熱交換器部7aは、1流路を有し、総数12本のパイプ7p1で構成され、第2の室内熱交換器部7bは、3流路を有し、1流路当り2本のパイプ7p2からなり、総数6本のパイプで構成され、第3の室内熱交換器部7c(図4中上下に分割)は、4流路を有し、1流路当り6本のパイプ7p3からなり、総数24本のパイプで構成される。   As shown in FIG. 4, the indoor heat exchanger 7 will be described in detail. The indoor heat exchanger 7 is formed of first to third indoor heat exchanger portions 7a, 7b, and 7c. The fins 7f1 of the first and second indoor heat exchanger units 7a and 7b are integrally formed, and the fins 7f2 and 7f3 of the third indoor heat exchanger unit 7c are formed separately. As shown in FIG. 5, for example, the first indoor heat exchanger section 7a has one flow path and is configured by a total of twelve pipes 7p1, and the second indoor heat exchanger section 7b has three flows. It consists of two pipes 7p2 per flow path and is composed of a total of six pipes. The third indoor heat exchanger section 7c (divided vertically in FIG. 4) has four flow paths. And it consists of six pipes 7p3 per one flow path, and is composed of a total of 24 pipes.

第1の室外熱交換器部5aは冷媒流路数(2)が、第3の室外熱交換器部5cの冷媒流路数(4)よりも少なく、また、第1の室内熱交換器部7aは冷媒流路数(1)が、第3の室内熱交換器部7cの冷媒流路数(4)よりも少なく設定される。これにより、凝縮時冷媒の液割合が多い部分(パイプ内圧力損失の小さい部分)の流速を増大させることが可能となり、熱交換効率が向上する。   The first outdoor heat exchanger section 5a has a refrigerant flow path number (2) smaller than the refrigerant flow path number (4) of the third outdoor heat exchanger section 5c, and the first indoor heat exchanger section. 7a is set so that the number of refrigerant channels (1) is smaller than the number of refrigerant channels (4) of the third indoor heat exchanger section 7c. Thereby, it becomes possible to increase the flow velocity of the portion where the liquid ratio of the refrigerant during condensation is large (the portion where the pressure loss in the pipe is small), and the heat exchange efficiency is improved.

第1の室外熱交換器部5aは1流路当り6本と8本のパイプ、第2の室外熱交換器部5bは1流路当り2本のパイプからなっており、従って、第2の室外熱交換器部5bの1冷媒流路の流路長さより長くなり、さらに、第1の室外熱交換器部5aは総パイプ数が14本、第2の室外熱交換器部5bは総パイプ数が4本であり、従って、第1の室内熱交換器部5aの総冷媒流路容積は、第2の室外熱交換器部5bの2倍以上に設定される。   The first outdoor heat exchanger section 5a is composed of 6 and 8 pipes per flow path, and the second outdoor heat exchanger section 5b is composed of 2 pipes per flow path. It is longer than the length of one refrigerant flow path of the outdoor heat exchanger section 5b. Furthermore, the first outdoor heat exchanger section 5a has a total number of 14 pipes, and the second outdoor heat exchanger section 5b has a total pipe number. Therefore, the total refrigerant flow volume of the first indoor heat exchanger section 5a is set to be twice or more that of the second outdoor heat exchanger section 5b.

また、第1の室内熱交換器部7aは1流路当り12本のパイプ、第2の室内熱交換器部7bは1流路当り2本のパイプからなっており、従って、第2の室内熱交換器部7bの1冷媒流路の流路長さより長くなり、さらに、第1の室内熱交換器部7aは総パイプ数が12本、第2の室内熱交換器部7bは総パイプ数が6本であり、従って、第1の室内熱交換器部7aの総冷媒流路容積は、第2の室内熱交換器部7bの2倍以上に設定される。   The first indoor heat exchanger section 7a is composed of 12 pipes per flow path, and the second indoor heat exchanger section 7b is composed of 2 pipes per flow path. It becomes longer than the flow path length of one refrigerant flow path of the heat exchanger section 7b. Furthermore, the first indoor heat exchanger section 7a has 12 total pipes, and the second indoor heat exchanger section 7b has a total number of pipes. Therefore, the total refrigerant flow volume of the first indoor heat exchanger section 7a is set to be twice or more that of the second indoor heat exchanger section 7b.

これにより、凝縮機能時、第2の室外熱交換器部5b、第2の室内熱交換器部7bの不使用によるパイプ本数のロス分を低減でき、性能を向上させることができる。   Thereby, at the time of a condensation function, the loss of the number of pipes by the non-use of the 2nd outdoor heat exchanger part 5b and the 2nd indoor heat exchanger part 7b can be reduced, and performance can be improved.

なお、上記第1の室外熱交換器部は、単流路化するのが好ましいが、必ずしも単流路に限定されるものではなく、例えば2流路以上であってもよい。   The first outdoor heat exchanger section is preferably a single flow path, but is not necessarily limited to a single flow path, and may be, for example, two or more flow paths.

次に本発明に係る空気調和機に用いられる冷凍サイクルの動作を説明する。   Next, the operation of the refrigeration cycle used in the air conditioner according to the present invention will be described.

はじめに、暖房運転時について説明する。   First, the heating operation will be described.

図6に示すように、室内熱交換器7は凝縮器として機能し、開閉弁7vは閉成される。この開閉弁7vの閉成により、図5に示すように、流路数1を有する第1の室内熱交換器部7aのみに冷媒が流れ、室内熱交換器7の下流側において単流路が形成される。   As shown in FIG. 6, the indoor heat exchanger 7 functions as a condenser, and the on-off valve 7v is closed. By closing the on-off valve 7v, as shown in FIG. 5, the refrigerant flows only in the first indoor heat exchanger section 7a having the number of flow paths 1, and a single flow path is formed downstream of the indoor heat exchanger 7. It is formed.

一方、図7に示すように、室外熱交換器5は蒸発器として機能し、開閉弁5vは開放される。この開閉弁7vの開放により、図3に示すように、並列に配置され、流路数2を有する第1の室外熱交換器部5aと流路数2を有する第2の室外熱交換器部5bで4流路の熱交換器部が形成されて、流路数4の第3の室外熱交換器部5cと同一流路数になり、多流路が形成される。   On the other hand, as shown in FIG. 7, the outdoor heat exchanger 5 functions as an evaporator, and the on-off valve 5v is opened. By opening the on-off valve 7v, as shown in FIG. 3, a first outdoor heat exchanger section 5a having two flow paths and a second outdoor heat exchanger section having two flow paths are arranged in parallel. A heat exchanger section with four flow paths is formed at 5b, and the number of flow paths is the same as that of the third outdoor heat exchanger section 5c with four flow paths, and a multi-flow path is formed.

図6に示す状態にある室内熱交換器部7に、図1に示す圧縮機2で圧縮され高温高圧になった冷媒が、四方切換弁4を介して流入する。   The refrigerant, which has been compressed by the compressor 2 shown in FIG. 1 and has become high temperature and pressure, flows into the indoor heat exchanger section 7 in the state shown in FIG. 6 through the four-way switching valve 4.

室内熱交換器7に流入した冷媒は、凝縮過程に適する単流路化が形成された第1の室内熱交換器部7aにおいて、冷媒の流速が増大し、効率よく熱交換されて、液冷媒となって電子式自動膨張弁6に流れる。この電子式自動膨張弁6に流入した液冷媒は、減圧されて室外熱交換器5に流入する。   The refrigerant flowing into the indoor heat exchanger 7 increases the flow rate of the refrigerant and efficiently exchanges heat in the first indoor heat exchanger section 7a formed with a single flow path suitable for the condensation process. And flows to the electronic automatic expansion valve 6. The liquid refrigerant flowing into the electronic automatic expansion valve 6 is decompressed and flows into the outdoor heat exchanger 5.

図7に示す状態にある室外熱交換器5に流入した冷媒は、蒸発過程に適する多流路化が形成された室外熱交換器5により、冷媒圧力損失が抑制されて効率よく熱交換され、ガス冷媒となって、四方切換弁4を介して圧縮機2に戻る。   The refrigerant that has flowed into the outdoor heat exchanger 5 in the state shown in FIG. 7 is efficiently heat-exchanged with the refrigerant pressure loss suppressed by the outdoor heat exchanger 5 in which a multi-flow path suitable for the evaporation process is formed, It becomes a gas refrigerant and returns to the compressor 2 through the four-way switching valve 4.

次に、冷房運転時について説明する。   Next, the cooling operation will be described.

図8に示すように、室内熱交換器7は蒸発器として機能し、開閉弁7vは開放される。この開閉弁7vの開成により、図3に示すように、並列に配置され、流路数1を有する第1の室内熱交換器部7aと流路数3を有する第2の室内熱交換器部7bで4流路の熱交換器部が形成されて、流路数4の第3の室内熱交換器部7cと同一流路数になり、多流路が形成される。   As shown in FIG. 8, the indoor heat exchanger 7 functions as an evaporator, and the on-off valve 7v is opened. By opening this on-off valve 7v, as shown in FIG. 3, a first indoor heat exchanger section 7a having a flow path number of 1 and a second indoor heat exchanger section having a flow path number of 3 are arranged in parallel. 7b forms a four-channel heat exchanger section, which has the same number of channels as the third indoor heat exchanger section 7c having four channels, thereby forming a multi-channel.

一方、図9に示すように、室外熱交換器5は凝縮器として機能し、開閉弁5vは閉成される。この開閉弁5vの閉成により、図3に示すように、流路数2を有する第1の室外熱交換器部5aのみ開成され、小流路が形成される。凝縮過程では伝熱性能に有効な冷媒流路のパイプ本数が減少するが、冷媒流路数の減少に伴う冷媒質量速度の増加によりこれをカバーできる。また、部品も開閉弁および合流部の追加でよいため部品コストを低減できる。   On the other hand, as shown in FIG. 9, the outdoor heat exchanger 5 functions as a condenser, and the on-off valve 5v is closed. By closing the on-off valve 5v, as shown in FIG. 3, only the first outdoor heat exchanger section 5a having two flow paths is opened, and a small flow path is formed. In the condensation process, the number of pipes of the refrigerant channels effective for heat transfer performance decreases, but this can be covered by an increase in the refrigerant mass velocity accompanying the decrease in the number of refrigerant channels. In addition, the cost of parts can be reduced because the parts can be added with an on-off valve and a junction.

図9に示す状態にある室外熱交換器5に、図1に示すように、圧縮機2で圧縮され高温高圧になった冷媒が、四方切換弁4を介して流入する。   As shown in FIG. 1, the refrigerant that has been compressed by the compressor 2 to become a high temperature and high pressure flows into the outdoor heat exchanger 5 in the state shown in FIG. 9 through the four-way switching valve 4.

室外熱交換器5に流入した冷媒は、図9に示すように、凝縮過程に適する単流路化に近い2流路化された第1の室外熱交換器部5aにおいて、冷媒の流速が増大し、効率よく熱交換されて、液冷媒となって電子式自動膨張弁6に流れる。この電子式自動膨張弁6に流入した液冷媒は、減圧されて室内熱交換器7に流入する。   As shown in FIG. 9, the refrigerant flowing into the outdoor heat exchanger 5 has an increased flow rate of the refrigerant in the first outdoor heat exchanger section 5a having two flow paths close to the single flow path suitable for the condensation process. Then, the heat is efficiently exchanged to become a liquid refrigerant and flow to the electronic automatic expansion valve 6. The liquid refrigerant flowing into the electronic automatic expansion valve 6 is decompressed and flows into the indoor heat exchanger 7.

図8に示す状態にある室内熱交換器7に流入した冷媒は、蒸発過程に適する4流路の多流路が形成された室内熱交換器7により、冷媒圧力損失が抑制されて効率よく熱交換され、ガス冷媒となって、四方切換弁4を介して圧縮機2に戻る。   The refrigerant that has flowed into the indoor heat exchanger 7 in the state shown in FIG. 8 is efficiently heated with the refrigerant pressure loss suppressed by the indoor heat exchanger 7 in which a multi-channel of four channels suitable for the evaporation process is formed. The gas refrigerant is exchanged and returns to the compressor 2 through the four-way switching valve 4.

上記冷凍サイクルを備えた本実施形態に係る空気調和機によれば、蒸発過程と凝縮過程で室外熱交換器、室内熱交換器の冷媒流路が異なるようにして、蒸発過程では多流路化により冷媒圧力損失が減少し、凝縮過程では小流路化により冷媒流速を増大することが可能となり、高効率化が実現する。   According to the air conditioner according to the present embodiment including the refrigeration cycle, the refrigerant flow paths of the outdoor heat exchanger and the indoor heat exchanger are different in the evaporation process and the condensation process, and the number of flow paths is increased in the evaporation process. As a result, the refrigerant pressure loss is reduced, and in the condensation process, it is possible to increase the refrigerant flow rate by reducing the flow path, thereby realizing high efficiency.

また、本発明に係る空気調和機に用いられる冷凍サイクルの他の実施形態について説明する。   Moreover, other embodiment of the refrigerating cycle used for the air conditioner which concerns on this invention is described.

図10及び図11に示すように、他の実施形態の冷凍サイクル11の室内熱交換器7は合流部p7に絞り機構12を設ける。冷房及び暖房運転時は、絞り機構12を全開にし、電子式自動膨張弁6で冷媒を絞り、除湿運転時は、電子式自動膨張弁6で冷媒を全開にし、絞り機構12で絞り、第1の室内熱交換器部7aと第2の室内熱交換器部7bで凝縮(空気加熱)し、第3の室内熱交換器部7cで蒸発(空気冷却)させて、再熱除湿機能を備えた高効率の冷凍サイクルが実現する。また、絞り機構12を合流部p7に設けることにより、合流部の部品を少なくできる。   As shown in FIG.10 and FIG.11, the indoor heat exchanger 7 of the refrigerating cycle 11 of other embodiment provides the throttle mechanism 12 in the junction part p7. During the cooling and heating operation, the throttle mechanism 12 is fully opened, the refrigerant is throttled by the electronic automatic expansion valve 6, and during the dehumidifying operation, the refrigerant is fully opened by the electronic automatic expansion valve 6, and the throttle mechanism 12 is throttled. The indoor heat exchanger section 7a and the second indoor heat exchanger section 7b are condensed (air heated) and evaporated (air cooled) in the third indoor heat exchanger section 7c, thereby having a reheat dehumidifying function. A highly efficient refrigeration cycle is realized. In addition, by providing the throttle mechanism 12 at the junction p7, the number of components at the junction can be reduced.

なお、上記各実施形態では、室外熱交換器及び室内熱交換器の両方に冷媒の流路構成を改良した熱交換器を採用した例で説明したが、室外熱交換器あるいは室内熱交換器の一方のみに採用するようにしてもよい。   In each of the above-described embodiments, an example in which a heat exchanger having an improved refrigerant flow path configuration is used for both the outdoor heat exchanger and the indoor heat exchanger has been described. However, the outdoor heat exchanger or the indoor heat exchanger You may make it employ | adopt only to one side.

本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの概念図。The conceptual diagram of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室外熱交換器の概念図。The conceptual diagram of the outdoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室外熱交換器の流路数とパイプ数の説明図。Explanatory drawing of the number of flow paths and the number of pipes of the outdoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室内熱交換器の概念図。The conceptual diagram of the indoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室内熱交換器の流路数とパイプ数の説明図。Explanatory drawing of the number of flow paths and the number of pipes of the indoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室内熱交換器の凝縮過程時の概念図。The conceptual diagram at the time of the condensation process of the indoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室外熱交換器の蒸発過程時の概念図。The conceptual diagram at the time of the evaporation process of the outdoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室内熱交換器の蒸発過程時の概念図。The conceptual diagram at the time of the evaporation process of the indoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空気調和機に用いられる冷凍サイクルの室外熱交換器の凝縮過程時の概念図。The conceptual diagram at the time of the condensation process of the outdoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る空気調和機に用いられる冷凍サイクルの概念図。The conceptual diagram of the refrigerating cycle used for the air conditioner which concerns on other embodiment of this invention. 本発明の他の実施形態に係る空気調和機に用いられる冷凍サイクルの室内熱交換器の概念図。The conceptual diagram of the indoor heat exchanger of the refrigerating cycle used for the air conditioner which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1…冷凍サイクル、2…圧縮機、4…四方切換弁、5…室外熱交換器、5a…室外熱交換器部、5b…室外熱交換器部、p5…合流部、5p1、5p2、5p3…パイプ、5v…開閉弁、6…電子式自動膨張弁、7…室内熱交換器、7a…第1の室内熱交換器部、7b…第2の室内熱交換器部、p7…合流部、7v…開閉弁、7f1、7f2、7f3…フィン、7p1、7p2、7p3…パイプ、8…冷媒配管。   DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle, 2 ... Compressor, 4 ... Four way switching valve, 5 ... Outdoor heat exchanger, 5a ... Outdoor heat exchanger part, 5b ... Outdoor heat exchanger part, p5 ... Merging part, 5p1, 5p2, 5p3 ... Pipe, 5v ... Open / close valve, 6 ... Electronic automatic expansion valve, 7 ... Indoor heat exchanger, 7a ... First indoor heat exchanger section, 7b ... Second indoor heat exchanger section, p7 ... Junction section, 7v ... open / close valves, 7f1, 7f2, 7f3 ... fins, 7p1, 7p2, 7p3 ... pipes, 8 ... refrigerant pipes.

Claims (3)

圧縮機、四方弁、室外熱交換器、膨張装置及び室内熱交換器を有し、前記四方弁を切換えることにより冷媒の流れ方向を変更して冷房運転と暖房運転とを切換える空気調和機において、
前記室内熱交換器及び室外熱交換器の少なくとも一方は、蒸発器として作用するときの冷媒流路入口側に並列に設置された第1及び第2の熱交換器部と、
前記第1及び第2の熱交換器部の下流側に設けられた第3の熱交換器部と、
前記第2の熱交換器部と第3の熱交換器部間に設けられ、蒸発器として作用するときに前記第2の熱交換器部と第3の熱交換器部とを連通し、凝縮器として作用するときに前記第2の熱交換器部と第3の熱交換器部との連通を遮断する弁手段と
を備え、
前記第1の熱交換器部の冷媒流路数を第3の熱交換器部の冷媒流路数よりも少なくしたことを特徴とする空気調和機。
In an air conditioner having a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger, changing the flow direction of the refrigerant by switching the four-way valve, and switching between a cooling operation and a heating operation.
At least one of the indoor heat exchanger and the outdoor heat exchanger includes first and second heat exchanger units installed in parallel on the refrigerant flow path inlet side when acting as an evaporator,
A third heat exchanger section provided downstream of the first and second heat exchanger sections;
It is provided between the second heat exchanger part and the third heat exchanger part, and communicates with the second heat exchanger part and the third heat exchanger part when acting as an evaporator to condense Valve means for blocking communication between the second heat exchanger part and the third heat exchanger part when acting as a heat exchanger;
An air conditioner characterized in that the number of refrigerant channels in the first heat exchanger section is smaller than the number of refrigerant channels in the third heat exchanger section.
前記第1の熱交換器部における1冷媒流路の流路長さを、第2の熱交換器部における1冷媒流路の流路長さより長くすると共に、前記第1の熱交換器部の総冷媒流路容積が、前記第2の熱交換器部の総冷媒流路容積の2倍以上になることを特徴とする請求項1記載の空気調和機。 The flow path length of one refrigerant flow path in the first heat exchanger section is longer than the flow path length of one refrigerant flow path in the second heat exchanger section, and the first heat exchanger section 2. The air conditioner according to claim 1, wherein the total refrigerant flow volume is at least twice the total refrigerant flow volume of the second heat exchanger section. 前記室内熱交換器が第1ないし第3の熱交換器及び弁手段を備えるとともに、前記第1及び第2の熱交換器部と第3の熱交換器間に合流部を設け、この合流部に絞り手段を設けたことを特徴とする請求項1記載の空気調和機。 The indoor heat exchanger includes first to third heat exchangers and valve means, and a confluence portion is provided between the first and second heat exchanger portions and the third heat exchanger, and this confluence portion 2. The air conditioner according to claim 1, further comprising a throttle means.
JP2006035027A 2006-02-13 2006-02-13 Air conditioner Expired - Fee Related JP4647512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035027A JP4647512B2 (en) 2006-02-13 2006-02-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035027A JP4647512B2 (en) 2006-02-13 2006-02-13 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007212108A JP2007212108A (en) 2007-08-23
JP4647512B2 true JP4647512B2 (en) 2011-03-09

Family

ID=38490717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035027A Expired - Fee Related JP4647512B2 (en) 2006-02-13 2006-02-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP4647512B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387411B2 (en) 2007-11-30 2013-03-05 Daikin Industries, Ltd. Refrigeration apparatus
JP6420166B2 (en) * 2015-02-09 2018-11-07 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN114151940A (en) * 2020-09-08 2022-03-08 广东美的制冷设备有限公司 Air conditioner, control method and device thereof and readable storage medium
WO2023148854A1 (en) * 2022-02-02 2023-08-10 三菱電機株式会社 Heat-exchange-type ventilation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266426A (en) * 1999-03-15 2000-09-29 Daikin Ind Ltd Heat exchanger and cooling system
JP2001349569A (en) * 2000-06-02 2001-12-21 Mitsubishi Heavy Ind Ltd Air conditioner
JP2002206890A (en) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp Heat exchanger, and freezing air-conditioning cycle device using it
JP2002243296A (en) * 2001-02-20 2002-08-28 Fujitsu General Ltd Air conditioner
JP2003148830A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119060U (en) * 1975-03-24 1976-09-27

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266426A (en) * 1999-03-15 2000-09-29 Daikin Ind Ltd Heat exchanger and cooling system
JP2001349569A (en) * 2000-06-02 2001-12-21 Mitsubishi Heavy Ind Ltd Air conditioner
JP2002206890A (en) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp Heat exchanger, and freezing air-conditioning cycle device using it
JP2002243296A (en) * 2001-02-20 2002-08-28 Fujitsu General Ltd Air conditioner
JP2003148830A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2007212108A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP5071597B2 (en) Heat exchanger and air conditioner
JP2012163328A5 (en)
JPWO2018047331A1 (en) Air conditioner
CN107532867A (en) Cascade type collector, heat exchanger and conditioner
WO2015111220A1 (en) Heat exchanger and air conditioning device
JP5772787B2 (en) Air heat exchanger
JP4845987B2 (en) Air conditioning system
JP4647512B2 (en) Air conditioner
KR101288745B1 (en) Air conditioner
EP3182038B1 (en) Outdoor unit of multi-split air conditioner and multi-split air conditioner having same
JP4041067B2 (en) Air conditioner with air conditioning function
JP2007278676A (en) Heat exchanger
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP2005515395A5 (en)
JP2014137177A (en) Heat exchanger and refrigerator
JP2005127529A (en) Heat exchanger
JP6671380B2 (en) Heat exchanger
JP6952797B2 (en) Heat exchanger and refrigeration cycle equipment
JP3177302U (en) Air conditioning unit
WO2022085113A1 (en) Distributor, heat exchanger, and air conditioning device
JP4266601B2 (en) Air conditioner
CN210486156U (en) Heat exchange system
JP2875565B2 (en) Heat exchange equipment
JP2010190541A (en) Air conditioning device
JP2012037099A (en) Indoor unit of air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees