JP4647388B2 - Laser processing method and apparatus - Google Patents

Laser processing method and apparatus Download PDF

Info

Publication number
JP4647388B2
JP4647388B2 JP2005141586A JP2005141586A JP4647388B2 JP 4647388 B2 JP4647388 B2 JP 4647388B2 JP 2005141586 A JP2005141586 A JP 2005141586A JP 2005141586 A JP2005141586 A JP 2005141586A JP 4647388 B2 JP4647388 B2 JP 4647388B2
Authority
JP
Japan
Prior art keywords
prism
laser beam
degrees
workpiece
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005141586A
Other languages
Japanese (ja)
Other versions
JP2006315053A (en
Inventor
直晃 福田
和良 國塩
茂昭 中山
太郎 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005141586A priority Critical patent/JP4647388B2/en
Publication of JP2006315053A publication Critical patent/JP2006315053A/en
Application granted granted Critical
Publication of JP4647388B2 publication Critical patent/JP4647388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、レーザビームを使用して被加工材に加工を施す方法及びその方法を実施する装置に関するものである。   The present invention relates to a method of processing a workpiece using a laser beam and an apparatus for performing the method.

近年、半導体薄膜、薄膜太陽電池、液晶パネル等への薄膜パターン形成や、有機EL(Electro Luminescence)ディスプレイや、透明複層薄膜構造製品等の薄膜除去に、レーザビームが利用されている。このレーザビームを使用した薄膜除去において、従来は、レーザビームを基板に対して垂直に入射させていた。   In recent years, laser beams have been used to form thin film patterns on semiconductor thin films, thin film solar cells, liquid crystal panels, etc., and to remove thin films such as organic EL (Electro Luminescence) displays and transparent multilayer thin film structure products. In removing a thin film using this laser beam, conventionally, the laser beam is incident perpendicularly to the substrate.

そして、その際、基板に熱影響を与えないように、(1)非常に短い焦点距離の集光光学系を使用したり、(2)短波長のレーザを使用したり、(3)短時間照射を利用する方法が実施されている。これら(1)〜(3)の方法では、基板の素材、色、層構造の状態により適正な薄膜除去条件が異なるので、薄膜を除去する基板状態を限定してその加工を行っていた。   At that time, in order not to have a thermal effect on the substrate, (1) using a condensing optical system with a very short focal length, (2) using a short wavelength laser, (3) short time A method using irradiation has been implemented. In these methods (1) to (3), the appropriate thin film removal conditions differ depending on the material, color, and layer structure of the substrate. Therefore, the processing is performed by limiting the substrate state from which the thin film is removed.

しかしながら、基板の薄膜除去に短焦点の集光光学系を用いる(1)の方法では、焦点深度が浅くなるので、レーザーヘッドと被加工物との位置決め精度が厳しくなり、高精度の加工機が必要となる。   However, with the method (1) using a short-focus condensing optical system for removing the thin film on the substrate, the depth of focus becomes shallow, so the positioning accuracy between the laser head and the workpiece becomes strict, and a high-precision processing machine is required. Necessary.

また、たとえばITO(インジウム錫オキサイド)層からなる薄膜の除去には、1064nmよりも短波長のレーザを使用することが有効である((2)の方法)と言われている。しかしながら、従来の垂直入射では、基板内にブラックマトリックス層が存在する場合には、このブラックマトリックス層に熱影響を与えてしまうことが、発明者らの実験で判明している。   For example, it is said that it is effective to use a laser having a wavelength shorter than 1064 nm (method (2)) for removing a thin film made of an ITO (indium tin oxide) layer. However, it has been found by the inventors' experiments that the conventional normal incidence causes a thermal effect on the black matrix layer when the black matrix layer is present in the substrate.

また、(3)の方法の実施には、フェムト秒レーザというものがある。このレーザを使用すると、前記ITO層のみを除去することが可能であるが、このフェムト秒レーザは非常に高価で、また、エネルギ変換効率が非常に低いので、研究段階の域を脱していない。   In addition, the implementation of the method (3) includes a femtosecond laser. Using this laser, it is possible to remove only the ITO layer, but this femtosecond laser is very expensive and its energy conversion efficiency is so low that it has not left the research stage.

加えて、これら(1)〜(3)の方法では、前記のように基板の素材、色、層構造の状態により適正な薄膜除去条件が異なるので、同一基板上で材質、色、層構造などの状態が変化すると、薄膜除去状態が変化したり、基板に熱影響を与えたりする。   In addition, in these methods (1) to (3), the appropriate thin film removal conditions differ depending on the material, color, and layer structure of the substrate as described above, so the material, color, layer structure, etc. on the same substrate. If the state changes, the thin film removal state changes or the substrate is thermally affected.

そこで、前述の問題を解決するために、レーザビームを基板表面に対して斜め方向から照射する薄膜除去技術が、特許文献1で提案された。この技術によれば、同一基板上で材質、色、層構造などの状態が変化する状態であっても、薄膜の除去状態を変化させず、しかも安価で汎用的なレーザ発振器を用いて、高い位置決め精度で薄膜を除去できる。
特開2004−42140号公報
Therefore, in order to solve the above-mentioned problem, Patent Document 1 proposes a thin film removal technique in which a laser beam is irradiated from an oblique direction with respect to the substrate surface. According to this technology, even if the state of the material, color, layer structure, and the like changes on the same substrate, the removal state of the thin film is not changed, and it is high using an inexpensive and general-purpose laser oscillator. The thin film can be removed with positioning accuracy.
JP 2004-42140 A

ところで、通常のレーザ加工では、レーザ発振器から出射されたレーザビームは、均一化光学系でエネルギ分布を均一となされた後に被加工物に垂直な方向から照射される。しかしながら、本来は垂直方向から照射する前記レーザビームを、特許文献1のように被加工物の表面に対して斜め方向から照射すると、被加工物表面から近い部分と遠い部分とでエネルギ分布に差が生じ、均一なエネルギ分布が得られないという問題があった。   By the way, in normal laser processing, the laser beam emitted from the laser oscillator is irradiated from a direction perpendicular to the workpiece after the energy distribution is made uniform by the homogenizing optical system. However, when the laser beam originally irradiated from the vertical direction is irradiated obliquely with respect to the surface of the workpiece as in Patent Document 1, there is a difference in energy distribution between a portion near and far from the workpiece surface. There was a problem that a uniform energy distribution could not be obtained.

本発明が解決しようとする問題点は、レーザビームを被加工物の表面に対して斜め方向から照射する従来の薄膜除去では、被加工物表面の照射面で、均一なエネルギ分布が得られないという点である。   The problem to be solved by the present invention is that the conventional thin film removal in which the laser beam is irradiated obliquely with respect to the surface of the workpiece cannot obtain a uniform energy distribution on the irradiation surface of the workpiece surface. That is the point.

本発明のレーザ加工方法は、
レーザビームを被加工物の表面に対して斜め方向から照射した場合であっても、被加工物表面の照射面で、均一なエネルギ分布が得られるようにするために、
レーザビームをトップハット形状のエネルギ分布に成形して、被加工物に対して斜め方向から照射することで加工する方法において、
前記レーザビームを、プリズムを通過するレーザビームの幅D(mm)の中心からの距離L(mm)と、プリズムの面角度θ(度)の関係が下記(1)式で表すことができる、面角度θ(度)を有する、照射位置によって焦点距離(mm)が異なるプリズムで構成したY方向の均一化光学系と、下記(2)式で表すことができる面角度θ(度)を有する、照射位置によって焦点距離f(mm)が異なるプリズムで構成したX方向の均一化光学系を介して被加工物に照射することを最も主要な特徴としている。
θ={1/(n−1)}tan −1 {D(i−k)/2m(f−Ltanα)}…(1)
θ={1/(n−1)}tan −1 {D/(2f+Dtanα)}…(2)
但し、n:プリズムの屈折率
m:プリズムの構成面数
i:プリズムの横断面中心からの面の順番
k:係数(前記構成面数が奇数の場合は1、偶数の場合は0)
α:レーザビームの被加工物への照射角度(度)
The laser processing method of the present invention comprises:
In order to obtain a uniform energy distribution on the irradiated surface of the workpiece surface even when the laser beam is irradiated from an oblique direction to the surface of the workpiece,
In a method of processing by forming a laser beam into a top hat energy distribution and irradiating the workpiece from an oblique direction,
The laser beam, the distance from the center of the width D of the laser beam passing through the prism (mm) L (mm), the relationship of the surface angle of the prism theta (degrees) can be expressed by the following equation (1), face angle theta having a (degrees), and the uniformization optical system in the Y direction which is configured with in the focal length f (mm) is different prism depending on the irradiation position, the following (2) the surface angle can be represented by formula theta ( The main feature is that the workpiece is irradiated through a uniformizing optical system in the X direction constituted by prisms having a focal length f (mm) depending on the irradiation position .
θ = {1 / (n−1)} tan −1 {D (i−k) / 2m (f−Ltanα)} (1)
θ = {1 / (n−1)} tan −1 {D / (2f + Dtanα)} (2)
Where n is the refractive index of the prism
m: Number of prism surfaces
i: Order of surfaces from the center of the cross section of the prism
k: coefficient (1 when the number of constituent surfaces is odd, 0 when the number is even)
α: Laser beam irradiation angle (degrees)

また、本発明のレーザ加工装置は、
前記本発明のレーザ加工方法を実施する装置であって、
被加工物に対して、レーザビームをトップハット形状のエネルギ分布に成形して斜め方向から照射することで加工する装置であって、
ーザ発振器と、
このレーザ発振器から出射されたレーザビームを入射され、被加工物に対して斜め方向から照射する、プリズムを通過するレーザビームの幅D(mm)の中心からの距離L(mm)と、前記プリズムの面角度θ(度)の関係が前記(1)式で表すことができる、面角度θ(度)を有する、照射位置によって焦点距離f(mm)が異なるプリズムで構成したY方向の均一化光学系と、前記(2)式で表すことができる面角度θ(度)を有する、照射位置によって焦点距離f(mm)が異なるプリズムで構成したX方向の均一化光学系を備えたことを最も主要な特徴としている。
The laser processing apparatus of the present invention is
An apparatus for carrying out the laser processing method of the present invention,
An apparatus for processing a workpiece by forming a laser beam into an energy distribution of a top hat shape and irradiating it from an oblique direction,
And Les over The oscillator,
A distance L (mm) from the center of the width D (mm) of the laser beam that enters the laser beam emitted from the laser oscillator and irradiates the workpiece from an oblique direction and passes through the prism , and the prism The relationship between the surface angle θ (degrees) of the lens can be expressed by the above equation (1), and the surface angle θ (degrees) is uniform, and the Y direction is made uniform by using prisms having different focal lengths f (mm) depending on the irradiation position . An X-direction uniformizing optical system comprising an optical system and a prism having a surface angle θ (degrees) that can be expressed by the expression (2) and having a focal length f (mm) that differs depending on the irradiation position is provided. The most important feature.

本発明では、レーザビームの照射位置により、均一化光学系の焦点距離を変更するので、被加工物に対して斜め方向から照射した場合であっても、被加工物表面の照射面で均一なエネルギ分布を得ることができる。   In the present invention, since the focal length of the homogenizing optical system is changed depending on the irradiation position of the laser beam, even when the workpiece is irradiated from an oblique direction, it is uniform on the irradiation surface of the workpiece surface. An energy distribution can be obtained.

以下、本発明を実施するための最良の形態を図1〜図を用いて詳細に説明する。
図1は本発明のレーザ加工装置の概略基本構成図、図2、図は1枚のプリズムでY方向、X方向の均一化光学系を構成する場合の、プリズムの面角度を求める際に必要なビーム照射角度などを示す図、図はプリズムの面角度を示した図、図5は本発明のレーザ加工装置において、レーザビーム断面のXY方向を成形する場合の例を説明する概略基本構成図である。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS.
FIG. 1 is a schematic basic configuration diagram of a laser processing apparatus according to the present invention. FIGS . 2 and 3 are diagrams for determining a prism surface angle when a single prism is used to form a uniform optical system in the Y and X directions. FIG. 4 is a diagram showing the required beam irradiation angle, FIG. 4 is a diagram showing the surface angle of the prism, and FIG. 5 is a schematic basic diagram for explaining an example of shaping the XY direction of the laser beam cross section in the laser processing apparatus of the present invention. It is a block diagram.

図1において、1はたとえばYAGレーザ発振器(以下、単にレーザ発振器という。)であり、このレーザ発振器1から出射されたガウシアン波形のレーザビーム2a((b)図参照)は、均一化光学系3により、(c)図に示すようなトップハット形状の波形に成形される。   In FIG. 1, reference numeral 1 denotes, for example, a YAG laser oscillator (hereinafter simply referred to as a laser oscillator). A laser beam 2 a having a Gaussian waveform emitted from the laser oscillator 1 (see FIG. 1B) is a uniformizing optical system 3. (C) is formed into a top-hat-shaped waveform as shown in FIG.

そして、トップハット形状の波形に成形されたレーザビーム2bは、たとえばマスク4で任意の形状となされた後、結像レンズ5を経て基板等の被加工物11に対して斜め方向から照射される。   Then, the laser beam 2b shaped into a top hat-shaped waveform is formed into an arbitrary shape by, for example, the mask 4, and then irradiated to the workpiece 11 such as a substrate from an oblique direction through the imaging lens 5. .

ところで、本発明では、前記均一化光学系3は、従来の均一化光学系と異なり、ガウシアン波形のレーザビーム2aをトップハット形状の波形に成形する際に、斜め方向から被加工物11に照射した場合でも、被加工物11の照射面で均一なエネルギ分布が得られるように、以下のように構成している。   By the way, in the present invention, unlike the conventional homogenizing optical system, the homogenizing optical system 3 irradiates the workpiece 11 from an oblique direction when forming a laser beam 2a having a Gaussian waveform into a top hat-shaped waveform. Even in this case, the following configuration is made so that a uniform energy distribution can be obtained on the irradiation surface of the workpiece 11.

及び図は、均一化光学系3として使用する、レーザビーム2aが入射される位置によって、焦点距離が異なるプリズム3bを示したもので、図はY方向(図1(a)の紙面前後方向)に、図はX方向(図1(a)の紙面上におけるレーザビーム2aの照射方向に対して直交する方向)に均一化するものである。 2 and 3 show the prism 3b used as the uniformizing optical system 3 and having a different focal length depending on the position where the laser beam 2a is incident. FIG. 2 shows the Y direction (FIG. 1A). 3 is uniform in the X direction (the direction perpendicular to the irradiation direction of the laser beam 2a on the paper surface of FIG. 1A ) in the longitudinal direction of the paper surface.

1枚のプリズム3bでY方向の均一化光学系3を構成する場合の、プリズム3bを通過するレーザビーム2aの幅D(mm)の中心からの距離L(mm)と、プリズム3bの面角度θ(度)の関係は、図に示すように、プリズム3bの焦点距離をf(mm)、屈折率をn、プリズム3bの構成面数をm、レーザビーム2bのマスク4への照射角度をα(度)、プリズム3bの横断面中心からの面の順番をi(図(e)(f)参照)、係数をk(前記構成面数が奇数の場合が1、偶数の場合が0)とした場合、
θ={1/(n−1)}tan−1{D(i−k)/2m(f−Ltanα)}
で表すことができる。
The distance L (mm) from the center of the width D (mm) of the laser beam 2a passing through the prism 3b and the surface angle of the prism 3b when the Y-direction uniformizing optical system 3 is constituted by one prism 3b. As shown in FIG. 2 , the relationship of θ (degrees) is such that the focal length of the prism 3b is f (mm), the refractive index is n, the number of constituent surfaces of the prism 3b is m, and the irradiation angle of the laser beam 2b to the mask 4 Α (degrees), the order of the surfaces from the center of the cross section of the prism 3b is i (see FIGS. 2 (e) and 2 (f)), and the coefficient is k (1 when the number of constituent surfaces is an odd number, 1 when the number is even) 0)
θ = {1 / (n−1)} tan −1 {D (i−k) / 2m (f−Ltanα)}
Can be expressed as

屈折率nを1.57、プリズム3bに入射する前のレーザビーム2aの幅Dを6mm、プリズム3bの構成面数を2、プリズム3bの焦点距離fを50mm、レーザビーム2bの前記照射角度αを45度とした場合に、前記関係式を用いて、プリズム3bに照射されるレーザビーム2aの幅中心(0mm)と、レーザビーム2aの上端(3mm)及び下端(−3mm)の位置での面角度を求めると、図(a)に示すように、それぞれ2.58度、2.51度、2.45度になる。 The refractive index n is 1.57, the width D of the laser beam 2a before entering the prism 3b is 6 mm, the number of constituent surfaces of the prism 3b is 2, the focal length f of the prism 3b is 50 mm, and the irradiation angle α of the laser beam 2b Is 45 degrees using the above relational expression, at the position of the width center (0 mm) of the laser beam 2a irradiated to the prism 3b and the upper end (3 mm) and lower end (-3 mm) of the laser beam 2a. When determining the surface angle, as shown in FIG. 4 (a), 2.58 degrees, respectively, 2.51 degrees, 2.45 degrees.

また、1枚のプリズム3bでX方向の均一化光学系3を構成する場合の、プリズム3bの面角度θ(度)は、図に示すように、プリズム3bの焦点距離をf(mm)、屈折率をn、プリズム3bに入射する前のレーザビーム2aの幅をD(mm)、レーザビーム2bのマスク4への照射角度をα(度)とした場合、
θ={1/(n−1)}tan−1{D/(2f+Dtanα)}
で表すことができる。
Further, in the case of constituting the homogenizing optical system 3 in the X direction with a single prism 3b, the surface angle of the prism 3b theta (degrees), as shown in FIG. 3, the focal length of the prism 3b f (mm) When the refractive index is n, the width of the laser beam 2a before entering the prism 3b is D (mm), and the irradiation angle of the laser beam 2b to the mask 4 is α (degrees),
θ = {1 / (n−1)} tan −1 {D / (2f + Dtanα)}
Can be expressed as

屈折率nを1.57、プリズム3bに入射する前のレーザビーム2aの幅Dを6mm、プリズム3bの焦点距離fを100mm、レーザビーム2bの前記照射角度αを45度とした場合に、前記式を用いて、プリズム3bの面角度を求めると、図(b)に示すように、2.45度になる。 When the refractive index n is 1.57, the width D of the laser beam 2a before entering the prism 3b is 6 mm, the focal length f of the prism 3b is 100 mm, and the irradiation angle α of the laser beam 2b is 45 degrees, using equation and determine the surface angle of the prism 3b, as shown in FIG. 4 (b), becomes 2.45 degrees.

均一化光学系3を、以上説明したように構成することで、被加工物11に対して斜め方向から照射した場合であっても、被加工物11表面の照射面で、Y方向又はX方向に均一なエネルギ分布が得られるようになる。   By configuring the homogenizing optical system 3 as described above, even if the workpiece 11 is irradiated from an oblique direction, the irradiation surface on the surface of the workpiece 11 is in the Y direction or the X direction. A uniform energy distribution can be obtained.

以上の例はレーザビームのY方向又はX方向の断面のみが、図1(c)に示すようなトップハット形状のエネルギ分布となっており、ライン状に加工する場合に適している。   In the above example, only the Y-direction or X-direction cross section of the laser beam has a top hat-shaped energy distribution as shown in FIG. 1C, which is suitable for processing in a line shape.

これに対して、X方向とこれに直交するY方向ともにトップハット形状のエネルギ分布とするには、例えば図5に示すように、Y方向には図に示したプリズム3bからなる均一化光学系3を、X方向には図に示したプリズム3bからなる均一化光学系3を配置すればよい。 In contrast, in the energy distribution of the top-hat shape in the Y direction both perpendicular to the X direction, as shown in FIG. 5 For example, uniform consisting prism 3b shown in FIG. 2 in the Y direction the optical system 3, the X direction may be arranged uniformizing optical system 3 comprising a prism 3b shown in FIG.

本発明は、前記の例に限るものではなく、各請求項に記載の技術的思想の範囲内において、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above examples, and it is needless to say that the embodiments may be appropriately changed within the scope of the technical idea described in each claim.

本発明は、薄膜除去だけでなく、被加工物に均一にレーザビームを照射する必要のある加工であれば、微細加工等、どのようなレーザ加工にも適用が可能である。   The present invention can be applied not only to removing a thin film but also to any laser processing such as fine processing as long as it is necessary to uniformly irradiate a workpiece with a laser beam.

(a)は本発明のレーザ加工装置の概略基本構成図、(b)は均一化光学系に入射前のレーザビームのエネルギ分布を示した図、(c)は均一化光学系から照射されるレーザビームのエネルギ分布を示した図である。(A) is a schematic basic configuration diagram of the laser processing apparatus of the present invention, (b) is a diagram showing energy distribution of a laser beam before being incident on the homogenizing optical system, and (c) is irradiated from the homogenizing optical system. It is the figure which showed energy distribution of the laser beam. 1枚のプリズムを用いてY方向の均一化光学系を構成する場合の、プリズムを通過するレーザビームの幅中心からの距離と、プリズムの面角度の関係式を求める際に必要なビーム照射角度などを示す図で、(a)は斜視図、(b)(c)は(a)を平面から見た図で面数が偶数と奇数の場合の図、(d)はプリズムの縦断面した位置の図、(e)(f)はプリズム3cの横断面中心からの面の順番を示した図である。Beam irradiation angle required to obtain the relational expression between the distance from the center of the width of the laser beam passing through the prism and the surface angle of the prism when a single prism is used to form a uniform optical system in the Y direction. (A) is a perspective view, (b) (c) is a diagram in which (a) is viewed from the top, and is a diagram when the number of surfaces is even and odd, and ( d) is a longitudinal section of the prism. FIGS. 5E and 5F are views showing the order of the surfaces from the center of the cross section of the prism 3c . 1枚のプリズムを用いて方向の均一化光学系を構成する場合の、プリズムの面角度を求める際に必要なビーム照射角度などを示す図で、(a)は斜視図、(b)はプリズムの縦断面した位置の図である。FIG. 6 is a diagram showing a beam irradiation angle and the like necessary for obtaining a prism surface angle when a uniform optical system in the X direction is configured using one prism, where (a) is a perspective view , and (b ) is a perspective view. It is a figure of the position which carried out the longitudinal section of the prism . (a)は図2に示したプリズムに照射されるレーザビームの幅中心と、上端及び下端の位置における面角度を示した図、(b)は図3に示したプリズムの面角度を示した図である。 (A) is the figure which showed the surface angle in the width center of the laser beam irradiated to the prism shown in FIG. 2, and the position of an upper end and a lower end, (b) showed the surface angle of the prism shown in FIG. FIG. 本発明のレーザ加工装置において、レーザビーム断面のXY方向すべてを成形する場合の例を説明する概略基本構成図である。 In the laser processing apparatus of this invention, it is a general | schematic basic block diagram explaining the example in the case of shape | molding all the XY directions of a laser beam cross section .

符号の説明Explanation of symbols

1 レーザ発振器
2a,2b レーザビーム
3 均一化光学
b プリズム
11 被加工物
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2a, 2b Laser beam 3 Uniformization optical system
3 b Prism 11 Workpiece

Claims (2)

レーザビームをトップハット形状のエネルギ分布に成形して、被加工物に対して斜め方向から照射することで加工する方法において、
前記レーザビームを、
プリズムを通過するレーザビームの幅D(mm)の中心からの距離L(mm)と、プリズムの面角度θ(度)の関係が下記(1)式で表すことができる、面角度θ(度)を有する、照射位置によって焦点距離(mm)が異なるプリズムで構成したY方向の均一化光学系と、下記(2)式で表すことができる面角度θ(度)を有する、照射位置によって焦点距離f(mm)が異なるプリズムで構成したX方向の均一化光学系を介して被加工物に照射することを特徴とするレーザ加工方法。
θ={1/(n−1)}tan −1 {D(i−k)/2m(f−Ltanα)}…(1)
θ={1/(n−1)}tan −1 {D/(2f+Dtanα)}…(2)
但し、n:プリズムの屈折率
m:プリズムの構成面数
i:プリズムの横断面中心からの面の順番
k:係数(前記構成面数が奇数の場合は1、偶数の場合は0)
α:レーザビームの被加工物への照射角度(度)
In a method of processing by forming a laser beam into a top hat energy distribution and irradiating the workpiece from an oblique direction,
The laser beam,
The distance from the center of the width D of the laser beam passing through the prism (mm) L (mm), the relationship of the surface angle of the prism theta (degrees) can be expressed by the following equation (1), the plane angle theta (degrees ) having, has a homogenizing optical system in the Y direction which is configured with in the focal length f (mm) is different prism depending on the irradiation position, the plane angle can be expressed by the following equation (2) θ (degrees), A laser processing method for irradiating a workpiece through a uniformizing optical system in the X direction constituted by prisms having different focal lengths f (mm) depending on irradiation positions .
θ = {1 / (n−1)} tan −1 {D (i−k) / 2m (f−Ltanα)} (1)
θ = {1 / (n−1)} tan −1 {D / (2f + Dtanα)} (2)
Where n is the refractive index of the prism
m: Number of prism surfaces
i: Order of surfaces from the center of the cross section of the prism
k: coefficient (1 when the number of constituent surfaces is odd, 0 when the number is even)
α: Laser beam irradiation angle (degrees)
被加工物に対して、レーザビームをトップハット形状のエネルギ分布に成形して斜め方向から照射することで加工する請求項1に記載の方法を実施する装置であって、
レーザ発振器と、
このレーザ発振器から出射されたレーザビームを入射され、被加工物に対して斜め方向から照射する、プリズムを通過するレーザビームの幅D(mm)の中心からの距離L(mm)と、前記プリズムの面角度θ(度)の関係が前記(1)式で表すことができる、面角度θ(度)を有する、照射位置によって焦点距離f(mm)が異なるプリズムで構成したY方向の均一化光学系と、前記(2)式で表すことができる面角度θ(度)を有する、照射位置によって焦点距離f(mm)が異なるプリズムで構成したX方向の均一化光学系を備えたことを特徴とするレーザ加工装置
The workpiece, a device for implementing the method according to claim 1 by molding the laser beam energy distribution of the top-hat shape is processed by irradiating the oblique Me direction,
A laser oscillator;
A distance L (mm) from the center of the width D (mm) of the laser beam that enters the laser beam emitted from the laser oscillator and irradiates the workpiece from an oblique direction and passes through the prism, and the prism The relationship between the surface angle θ (degrees) of the lens can be expressed by the above equation (1), and the surface angle θ (degrees) is uniform, and the Y direction is made uniform by using prisms having different focal lengths f (mm) depending on the irradiation position. An X-direction uniformizing optical system comprising an optical system and a prism having a surface angle θ (degrees) that can be expressed by the expression (2) and having a focal length f (mm) that differs depending on the irradiation position is provided. A featured laser processing apparatus .
JP2005141586A 2005-05-13 2005-05-13 Laser processing method and apparatus Expired - Fee Related JP4647388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141586A JP4647388B2 (en) 2005-05-13 2005-05-13 Laser processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141586A JP4647388B2 (en) 2005-05-13 2005-05-13 Laser processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2006315053A JP2006315053A (en) 2006-11-24
JP4647388B2 true JP4647388B2 (en) 2011-03-09

Family

ID=37536170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141586A Expired - Fee Related JP4647388B2 (en) 2005-05-13 2005-05-13 Laser processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4647388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860800A (en) * 2018-08-07 2020-03-06 大族激光科技产业集团股份有限公司 Laser cutting method and laser cutting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193110A (en) 2012-03-21 2013-09-30 Sumitomo Heavy Ind Ltd Laser processing apparatus and laser processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283085A (en) * 2001-12-19 2002-10-02 Mitsubishi Electric Corp Laser device
JP2004042140A (en) * 2002-07-12 2004-02-12 Hitachi Zosen Corp Process and device for removal of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283085A (en) * 2001-12-19 2002-10-02 Mitsubishi Electric Corp Laser device
JP2004042140A (en) * 2002-07-12 2004-02-12 Hitachi Zosen Corp Process and device for removal of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860800A (en) * 2018-08-07 2020-03-06 大族激光科技产业集团股份有限公司 Laser cutting method and laser cutting device

Also Published As

Publication number Publication date
JP2006315053A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP6602207B2 (en) Method for generating SiC wafer
TWI445586B (en) Laser processing method and cutting method,method of dividing a structured body with multiple substrates
TWI325505B (en) Apparatus for cutting substrate and method using the same
JP2022176239A (en) Segmentation method of composite material
CN103567630B (en) Laminated-substrate processing method and processing apparatus
KR101262173B1 (en) Conductive film patterning method, and fabricating method of flexible display device
KR101280001B1 (en) Laser processing apparatus and method thereof and debris collecting apparatus and method thereof
US9566663B2 (en) Laser processing method and land laser processed product
JP2007260773A (en) Substrate cutting method and substrate cutting apparatus using this method
US20060096962A1 (en) Method for cutting substrate using femtosecond laser
Tseng et al. Electrode patterning on PEDOT: PSS thin films by pulsed ultraviolet laser for touch panel screens
JP2007167875A (en) Method for inner scribing using laser beam
JP2010142862A (en) Method for producing nano-periodic structure on surface of dielectric material
JP2007021514A (en) Scribe forming method, and substrate with division projected line
TW201334904A (en) Splitting method of processed object and splitting method of substrate having optical element pattern
CN111014963A (en) Three-dimensional micromachining method for hard and brittle material
JP6050002B2 (en) Laser processing method
JP4647388B2 (en) Laser processing method and apparatus
TW202134702A (en) Method for dividing composite material
Niino et al. Surface microstructuring of silica glass by laser-induced backside wet etching with a DPSS UV laser
US20110080566A1 (en) Method for replicating production of 3d parallax barrier
JP2007014975A (en) Scribe forming method, and substrate with division projected line
JP2005210103A5 (en)
JP2014019610A (en) Laser processing method
TW201346340A (en) Method for manufacturing photoregulation panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees