JP4647293B2 - Fuel cell monitoring apparatus and monitoring method - Google Patents

Fuel cell monitoring apparatus and monitoring method Download PDF

Info

Publication number
JP4647293B2
JP4647293B2 JP2004342258A JP2004342258A JP4647293B2 JP 4647293 B2 JP4647293 B2 JP 4647293B2 JP 2004342258 A JP2004342258 A JP 2004342258A JP 2004342258 A JP2004342258 A JP 2004342258A JP 4647293 B2 JP4647293 B2 JP 4647293B2
Authority
JP
Japan
Prior art keywords
cell
cell group
fuel cell
voltage
detection value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004342258A
Other languages
Japanese (ja)
Other versions
JP2006156010A (en
Inventor
裕 浅野
敏明 有吉
宜一 野本
裕司 蓑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004342258A priority Critical patent/JP4647293B2/en
Publication of JP2006156010A publication Critical patent/JP2006156010A/en
Application granted granted Critical
Publication of JP4647293B2 publication Critical patent/JP4647293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、陽極と陰極とを有するセルが複数直列に接続された燃料電池の監視装置および監視方法に関する。   The present invention relates to a monitoring device and a monitoring method for a fuel cell in which a plurality of cells each having an anode and a cathode are connected in series.

近年、自動車の新たな動力源として燃料電池が注目されている。燃料電池は、例えば、複数のセルが積層されたスタック構造である。ここで、セルは、それぞれ、固体高分子電解質膜、および、この電解質膜の両側に配設されたアノード電極(陽極)およびカソード電極(陰極)を有する膜電極構造体(MEA)と、この膜電極構造体を挟持する一対のセパレータとを備える。   In recent years, fuel cells have attracted attention as a new power source for automobiles. The fuel cell has, for example, a stack structure in which a plurality of cells are stacked. Here, each of the cells includes a solid polymer electrolyte membrane, a membrane electrode structure (MEA) having an anode electrode (anode) and a cathode electrode (cathode) disposed on both sides of the electrolyte membrane, and the membrane. A pair of separators sandwiching the electrode structure.

この燃料電池のアノード電極にガス燃料(例えば、水素ガス)を供給し、カソード電極に酸化剤ガス(例えば、酸素を含む空気)を供給すると、電気化学反応により発電する。この発電時に生成されるのは、基本的に無害な水だけであるため、環境への影響や利用効率の観点から、燃料電池が注目されている。   When gas fuel (for example, hydrogen gas) is supplied to the anode electrode of this fuel cell and oxidant gas (for example, air containing oxygen) is supplied to the cathode electrode, power is generated by an electrochemical reaction. Since only harmless water is generated at the time of power generation, fuel cells are attracting attention from the viewpoint of environmental impact and utilization efficiency.

ところで、上述した燃料電池では、自動車を駆動するのに十分な電力を得るため、各セルの発電状況を監視することが重要である。そこで、以下のような燃料電池の性能監視方法が提案されている(特許文献1参照)。   By the way, in the fuel cell described above, it is important to monitor the power generation status of each cell in order to obtain sufficient power to drive the automobile. Therefore, the following fuel cell performance monitoring method has been proposed (see Patent Document 1).

この性能監視方法では、まず、複数の直列に接続された燃料電池を少なくとも2つの群に分割し、各群の電圧を測定した後、これら測定された電圧を正規化する。次に、これら正規化した値を所定の基準値と比較したり、あるいは、正規化した値同士を比較したりする。これにより、セル群毎に危険レベルを判断できる。
特表平5−502973号公報
In this performance monitoring method, first, a plurality of fuel cells connected in series are divided into at least two groups, the voltages of each group are measured, and then the measured voltages are normalized. Next, these normalized values are compared with a predetermined reference value, or the normalized values are compared with each other. Thereby, a danger level can be judged for every cell group.
Japanese National Patent Publication No. 5-502973

しかしながら、上述した性能監視方法では、セル群の電圧を正規化する際、計算上の誤差が生じるため、測定された電圧を正確に比較することは困難である、という問題がある。   However, the performance monitoring method described above has a problem that it is difficult to accurately compare the measured voltages because a calculation error occurs when normalizing the voltages of the cell groups.

したがって、本発明は、セル群の電圧を正確に比較できる燃料電池の監視装置および監視方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a fuel cell monitoring device and a monitoring method capable of accurately comparing the voltages of cell groups.

請求項1に係る燃料電池の監視装置(例えば、実施の形態における監視装置30)は、陽極(例えば、実施の形態におけるアノード電極)と陰極(例えば、実施の形態におけるカソード電極)とを有するセル(例えば、実施の形態におけるセル2)が複数直列に接続された燃料電池(例えば、実施の形態における燃料電池1)を監視する燃料電池の監視装置であって、前記セルのうち2つ以上を1つのセル群(例えば、実施の形態におけるセル群40a、40b)とし、これらセル群毎に電圧を検出する電圧検出手段(例えば、実施の形態における電圧検出部31)と、前記各セル群の検出値同士を比較して、前記セル群のうち電圧が低い方のセル群を特異セル群として特定する特定手段(例えば、実施の形態における比較部321)と、前記セル群の検出値および前記特異セル群の検出値を、前記セル群を構成するセルの数で除算することで正規化する正規化手段(例えば、実施の形態における正規化部322)と、を備えることを特徴とする。 A fuel cell monitoring apparatus according to claim 1 (for example, monitoring apparatus 30 in the embodiment) includes a cell having an anode (for example, an anode electrode in the embodiment) and a cathode (for example, a cathode electrode in the embodiment). A monitoring device for a fuel cell that monitors a plurality of fuel cells (for example, the fuel cell 1 in the embodiment) in which a plurality of cells (for example, the cells 2 in the embodiment) are connected in series, wherein two or more of the cells are One cell group (for example, cell groups 40a and 40b in the embodiment), voltage detection means (for example, voltage detection unit 31 in the embodiment) for detecting a voltage for each of these cell groups, and each of the cell groups by comparing the detected values with each other, wherein the specification means voltages of cell groups are identified as a specific cell group lower cell group (e.g., the comparison section 321 in the embodiment), before The detection value of the detection value and the specific cell group of the cell group, and normalization means for normalizing by dividing the number of cells constituting the cell group (e.g., the normalization unit 322 in the embodiment), the It is characterized by providing.

この発明によれば、まず、電圧検出手段において、セル群毎に電圧を検出する。次に、特定手段において、この検出されたセル群の検出値同士を比較して、電圧が特異な特異セル群を特定する。続いて、正規化手段で、セル群の検出値および特異セル群の検出値を正規化する。したがって、検出値同士を比較した後に、これら検出値を正規化したので、セル群の電圧を正確に比較できる。   According to the present invention, first, the voltage detection means detects the voltage for each cell group. Next, in the specifying means, the detected values of the detected cell groups are compared with each other, and a specific cell group with a specific voltage is specified. Subsequently, the detection value of the cell group and the detection value of the specific cell group are normalized by the normalizing means. Therefore, since the detection values are normalized after the detection values are compared, the voltages of the cell groups can be accurately compared.

請求項2に係る燃料電池の監視装置は、請求項1に記載の燃料電池の監視装置において、前記特定セル群が特定された後、前記検出値を正規化する前に、前記特異セル群の検出値と前記燃料電池の危険レベルに応じて前記セル群の電圧に対して設定された基準値とを比較して、前記燃料電池の危険レベルを判断する危険レベル判断手段(例えば、実施の形態における燃料電池制御部323)をさらに備えることを特徴とする。 The fuel cell monitoring device according to claim 2 is the fuel cell monitoring device according to claim 1, wherein after the specific cell group is specified and before the detected value is normalized, the specific cell group A danger level judgment means for judging the danger level of the fuel cell by comparing the detected value with a reference value set for the voltage of the cell group according to the danger level of the fuel cell (for example, an embodiment) And a fuel cell control unit 323).

従来の性能監視方法では、セル群の電圧を測定した後、正規化してから比較しているため、正規化の計算にかかる時間の分だけ、セル群の危険レベルを判断する処理が負担となる、という問題がある。しかしながら、この発明によれば、特異セル群の検出値を、正規化せずに基準値と比較して、危険レベルを判断したので、セル群の危険レベルを判断する処理を軽減できる。   In the conventional performance monitoring method, since the voltage of the cell group is measured and then compared after normalization, the processing for determining the risk level of the cell group is burdened by the time required for the calculation of normalization. There is a problem. However, according to the present invention, the detection value of the specific cell group is compared with the reference value without normalization, and the risk level is determined. Therefore, the process for determining the risk level of the cell group can be reduced.

請求項3に係る燃料電池の監視方法は、陽極と陰極とを有するセルが複数直列に接続された燃料電池の監視方法であって、前記セルのうち2つ以上を1つのセル群とし、これらセル群毎に電圧を検出する手順と、これらセル群の検出値同士を比較して、前記セル群のうち電圧が低い方のセル群を特異セル群として特定する手順と、前記セル群の検出値および前記特異セル群の検出値を、前記セル群を構成するセルの数で除算することで正規化する手順と、を備えることを特徴とする。この発明によれば、検出値同士を比較した後に、これら検出値を正規化したので、セル群の電圧を正確に比較できる。 The method for monitoring a fuel cell according to claim 3 is a method for monitoring a fuel cell in which a plurality of cells each having an anode and a cathode are connected in series, wherein two or more of the cells are defined as one cell group. A procedure for detecting a voltage for each cell group, a procedure for comparing the detection values of these cell groups, and specifying a cell group having a lower voltage among the cell groups as a specific cell group, and detection of the cell group And a procedure of normalizing the value and the detected value of the singular cell group by dividing the value by the number of cells constituting the cell group . According to this invention, since the detected values are normalized after comparing the detected values, the voltages of the cell groups can be compared accurately.

請求項4に係る燃料電池の監視方法は、請求項3に記載の燃料電池の監視方法において、前記特異セル群を特定した後、前記検出値を正規化する前に、前記特異セル群の検出値と前記燃料電池の危険レベルに応じて前記セル群の電圧に対して設定された基準値とを比較して、前記燃料電池の危険レベルを判断する手順をさらに備えることを特徴とする。この発明によれば、特異セル群の検出値と基準値とを、正規化せずに比較して、危険レベルを判断したので、セル群の危険レベルを判断する処理を軽減できる。 The method for monitoring a fuel cell according to claim 4 is the method for monitoring a fuel cell according to claim 3, wherein the specific cell group is detected after the specific cell group is specified and the detected value is normalized. The method further comprises a step of comparing the value and a reference value set for the voltage of the cell group according to the danger level of the fuel cell to determine the danger level of the fuel cell. According to the present invention, since the risk level is determined by comparing the detection value of the specific cell group and the reference value without normalization, the process of determining the risk level of the cell group can be reduced.

請求項1、請求項3に係る発明によれば、セル群の電圧を正確に比較できる。請求項2、請求項4に係る発明によれば、セル群の危険レベルを判断する処理を軽減できる。   According to the first and third aspects of the invention, the voltages of the cell groups can be accurately compared. According to the inventions according to claims 2 and 4, it is possible to reduce the process of determining the risk level of the cell group.

以下、本発明の一実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る監視装置30が適用された燃料電池の監視システム10のブロック図である。燃料電池の監視システム10は、燃料電池1と、この燃料電池1に水素や空気を供給する供給装置20と、この供給装置20を制御する監視装置30とを有する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a fuel cell monitoring system 10 to which a monitoring device 30 according to an embodiment of the present invention is applied. The fuel cell monitoring system 10 includes a fuel cell 1, a supply device 20 that supplies hydrogen and air to the fuel cell 1, and a monitoring device 30 that controls the supply device 20.

図2は、燃料電池1の概略断面図である。燃料電池1は、図2に示すように、セル2がn個(例えば220個)積層されたスタック構造である。各セル2は、膜電極構造体(MEA)3と、この膜電極構造体3を挟持する一対のセパレータ4、5とを備える。   FIG. 2 is a schematic sectional view of the fuel cell 1. As shown in FIG. 2, the fuel cell 1 has a stack structure in which n (for example, 220) cells 2 are stacked. Each cell 2 includes a membrane electrode structure (MEA) 3 and a pair of separators 4 and 5 that sandwich the membrane electrode structure 3.

上述のセル2は、図2に示すように、第1のセル2a、第2のセル2b、および第3のセル2cの3種類がある。具体的には、第1のセル2a(2)は、陽極としてのアノード電極(図示せず)側のセパレータ4に電圧測定用の端子6を有する。第2のセル2b(2)は、陰極としてのカソード電極(図示せず)側のセパレータ5に電圧測定用の端子7を有する。第3のセル2c(2)は、セパレータ4、5のいずれにも端子を有していない。   As shown in FIG. 2, the above-described cell 2 includes three types of a first cell 2 a, a second cell 2 b, and a third cell 2 c. Specifically, the first cell 2a (2) has a voltage measuring terminal 6 on the separator 4 on the anode electrode (not shown) side as an anode. The second cell 2b (2) has a voltage measurement terminal 7 on a separator 5 on the cathode electrode (not shown) side as a cathode. The third cell 2c (2) has no terminal in either of the separators 4 and 5.

燃料電池1の中央から+極側には、第1のセル2aおよび第3のセル2cが交互に積層され、中央から−極側には、第2のセル2bおよび第3のセル2cが交互に積層される。ここで、セル2のうち2つを1つのセル群とする。具体的には、中央から+極側に配置された第1のセル2aおよび第3のセル2cをセル群40aとし、中央から−極側に配置された第2のセル2bおよび第3のセル2cをセル群40bとする。   The first cell 2a and the third cell 2c are alternately stacked on the positive electrode side from the center of the fuel cell 1, and the second cell 2b and the third cell 2c are alternately stacked on the negative electrode side from the center. Is laminated. Here, two of the cells 2 are defined as one cell group. Specifically, the first cell 2a and the third cell 2c arranged on the positive electrode side from the center are defined as a cell group 40a, and the second cell 2b and the third cell arranged on the negative electrode side from the center Let 2c be the cell group 40b.

このとき、積層方向に隣り合うセル2a、2cおよびセル2b、2c同士の互いに対向する電極同士は同電位となっている。具体的には、例えば、+極側の端部に位置する第1のセル2aのカソード電極の電位は、これに隣り合う第3のセル2cのアノード電極の電位と同電位になっている。   At this time, the electrodes facing each other in the cells 2a and 2c and the cells 2b and 2c adjacent in the stacking direction have the same potential. Specifically, for example, the potential of the cathode electrode of the first cell 2a located at the end on the positive electrode side is the same as the potential of the anode electrode of the third cell 2c adjacent thereto.

図1に戻って、供給装置20は、セル2のカソード電極側に酸素を含む空気を供給するコンプレッサ21と、セル2のアノード電極側に水素ガスを供給する水素タンク22およびエゼクタ23とを含んで構成される。   Returning to FIG. 1, the supply device 20 includes a compressor 21 that supplies air containing oxygen to the cathode electrode side of the cell 2, a hydrogen tank 22 that supplies hydrogen gas to the anode electrode side of the cell 2, and an ejector 23. Consists of.

コンプレッサ21は、酸化剤ガス供給管24を介して、燃料電池1のセパレータ5に形成された酸化剤ガス通路(図示せず)に接続されている。また、燃料電池1の酸化剤ガス通路には、酸化剤ガス排出管25が接続され、この酸化剤ガス排出管25の先端には、燃料電池1のカソード電極側の内圧を調整する背圧弁26が設けられている。   The compressor 21 is connected to an oxidant gas passage (not shown) formed in the separator 5 of the fuel cell 1 via an oxidant gas supply pipe 24. An oxidant gas discharge pipe 25 is connected to the oxidant gas passage of the fuel cell 1, and a back pressure valve 26 that adjusts the internal pressure on the cathode electrode side of the fuel cell 1 is connected to the tip of the oxidant gas discharge pipe 25. Is provided.

水素タンク22は、燃料ガス供給管27を介して、燃料電池1のセパレータ4に形成された燃料ガス通路(図示せず)に接続されている。また、燃料電池1の燃料ガス通路には、燃料ガス排出管28が接続され、この燃料ガス排出管28は、先端に設けられたパージ弁29で閉鎖されている。エゼクタ23は、燃料ガス供給管27の途中に設けられ、燃料ガス排出管28に流れた水素ガスを燃料ガス供給管27に還流する。   The hydrogen tank 22 is connected to a fuel gas passage (not shown) formed in the separator 4 of the fuel cell 1 via a fuel gas supply pipe 27. Further, a fuel gas discharge pipe 28 is connected to the fuel gas passage of the fuel cell 1, and the fuel gas discharge pipe 28 is closed by a purge valve 29 provided at the tip. The ejector 23 is provided in the middle of the fuel gas supply pipe 27, and returns the hydrogen gas that has flowed to the fuel gas discharge pipe 28 to the fuel gas supply pipe 27.

図3は、監視装置30のブロック図である。監視装置30は、電圧検出手段としての電圧検出部31、演算部32、および記憶部33を有する。   FIG. 3 is a block diagram of the monitoring device 30. The monitoring device 30 includes a voltage detection unit 31, a calculation unit 32, and a storage unit 33 as voltage detection means.

電圧検出部31は、セル群40a、40b毎に電圧を検出する。具体的には、電圧検出部31は、複数のコネクタ8、9を備えており、コネクタ8は、第1のセル2aの端子6に接続され、コネクタ9は、第2のセル2bの端子7に接続される。燃料電池1の中央より+極側では、互いに隣り合う第1のセル2aのアノード電極の電位差を求めることにより、セル群40aの電圧を検出し、中央より−極側では、互いに隣り合う第2のセル2bのカソード電極の電位差を求めることにより、セル群40bの電圧を検出する。   The voltage detector 31 detects a voltage for each of the cell groups 40a and 40b. Specifically, the voltage detection unit 31 includes a plurality of connectors 8 and 9, and the connector 8 is connected to the terminal 6 of the first cell 2a, and the connector 9 is connected to the terminal 7 of the second cell 2b. Connected to. On the positive electrode side from the center of the fuel cell 1, the potential difference between the anode electrodes of the first cells 2a adjacent to each other is obtained to detect the voltage of the cell group 40a. The voltage of the cell group 40b is detected by obtaining the potential difference of the cathode electrode of the cell 2b.

演算部32は、セル群40a、40bの検出値同士を比較して、セル群40a、40bのうち検出値が特異な特異セル群を特定する特定手段としての比較部321と、セル群40a、40bの検出値および特異セル群の検出値を正規化する正規化手段としての正規化部322と、特異セル群の検出値と基準値とを比較して、燃料電池1の危険レベルを判断し、これら危険レベルに応じて、燃料電池1を制御する危険レベル判断手段としての燃料電池制御部323とを備える。   The calculation unit 32 compares the detection values of the cell groups 40a and 40b and compares the comparison unit 321 as a specifying unit for specifying a specific cell group having a specific detection value among the cell groups 40a and 40b, and the cell group 40a, The normalization unit 322 as normalizing means for normalizing the detection value of 40b and the detection value of the specific cell group, and the detection value of the specific cell group and the reference value are compared to determine the danger level of the fuel cell 1. A fuel cell control unit 323 is provided as a danger level determination means for controlling the fuel cell 1 in accordance with these danger levels.

比較部321は、電圧検出部31から検出値を受け取るたびに、受け取った検出値とVLOWとを比較して、低い方の値をVLOWとし、検出値とVHIGHとを比較して、高い方の値をVHIGHとする。また、この比較部321は、セル群40a、40bのうちVLOWが検出されたセル群を、特異セル群とし、さらに、最終的なVLOWをWORSTとし、最終的なVHIGHをBESTとする。   Each time the comparison unit 321 receives a detection value from the voltage detection unit 31, the comparison unit 321 compares the received detection value with VLOW, sets the lower value to VLOW, compares the detection value with VHIGH, Let the value be VHIGH. In addition, the comparison unit 321 sets a cell group in which VLOW is detected among the cell groups 40a and 40b as a specific cell group, further sets the final VLOW as WORST, and sets the final VHIGH as BEST.

正規化部322は、WORST、BESTに加え、全てのVLOW、および検出値を正規化する。すなわち、これらの値を、セル群40a、40bを構成するセル2の数で除算する。   The normalization unit 322 normalizes all VLOWs and detection values in addition to WORST and BEST. That is, these values are divided by the number of cells 2 constituting the cell groups 40a and 40b.

燃料電池制御部323では、VLOWを3種類の基準値と比較して、危険レベルを判断し、この危険レベルに応じて、VLOWが検出されたセル群40a、40bを制御する。具体的には、燃料電池制御部323は、コンプレッサ21、背圧弁26、およびパージ弁29を制御する。   The fuel cell control unit 323 compares the VLOW with three types of reference values to determine the danger level, and controls the cell groups 40a and 40b in which the VLOW is detected according to the danger level. Specifically, the fuel cell control unit 323 controls the compressor 21, the back pressure valve 26, and the purge valve 29.

ここで、危険レベルを判断するための3種類の基準値は、単一のセルの基準値を2倍して算出された値であり、第3の基準値、第2の基準値、第1の基準値の順に高くなる。また、電圧が第3の基準値未満である場合を、危険レベル3とし、第3の基準値以上第2の基準値未満である場合を、危険レベル2とする。電圧が第2の基準値以上第1の基準値未満である場合を、危険レベル1とし、第1の基準値以上である場合を、危険レベル0とする。つまり、危険レベルは、レベル0が最も低く、レベル3が最も高い。燃料電池制御部323では、これらの危険レベル0〜3に応じて、セル群40a、40bに対する制御内容が異なっている。   Here, the three types of reference values for determining the danger level are values calculated by doubling the reference value of a single cell, and are a third reference value, a second reference value, and a first reference value. In order of the reference value. Further, when the voltage is less than the third reference value, the danger level 3 is set, and when the voltage is greater than or equal to the third reference value and less than the second reference value, the danger level 2 is set. When the voltage is greater than or equal to the second reference value and less than the first reference value, the danger level is 1, and when the voltage is greater than or equal to the first reference value, the danger level is 0. That is, the danger level is the lowest at level 0 and the highest at level 3. In the fuel cell control unit 323, the control contents for the cell groups 40a and 40b differ according to these danger levels 0 to 3.

燃料電池の監視システム10の動作について説明する。燃料電池1においては、燃料ガス通路を通してアノード電極に燃料ガス(例えば、水素ガス)を供給し、酸化剤ガス通路を通してカソード電極に酸化剤ガス(例えば、酸素を含む空気)を供給する。すると、アノード電極の触媒層(図示せず)で水素がイオン化され、固体高分子電解質膜(図示せず)を介してカソード電極側に移動する。この間に生じた電子が外部回路に取り出され、直流の電気エネルギーとして利用される。この際、水素イオン、電子、および酸素が反応して水が生成される。   The operation of the fuel cell monitoring system 10 will be described. In the fuel cell 1, fuel gas (for example, hydrogen gas) is supplied to the anode electrode through the fuel gas passage, and oxidant gas (for example, air containing oxygen) is supplied to the cathode electrode through the oxidant gas passage. Then, hydrogen is ionized by the catalyst layer (not shown) of the anode electrode, and moves to the cathode electrode side through the solid polymer electrolyte membrane (not shown). Electrons generated during this time are taken out to an external circuit and used as direct current electric energy. At this time, hydrogen ions, electrons, and oxygen react to generate water.

次に、監視装置30の動作について、図4を参照しながら説明する。まず、電圧検出部31でセル群40a、40bの電圧を一端側から順に検出する。例えば、ここでは、+極側から検出する(ST1)。   Next, the operation of the monitoring device 30 will be described with reference to FIG. First, the voltage detection unit 31 detects the voltages of the cell groups 40a and 40b in order from one end side. For example, here, detection is performed from the + pole side (ST1).

次に、演算部32の比較部321で、電圧検出部31からの検出値を受け取り、この検出値とVLOWおよびVHIGHとを比較して、VLOWおよびVHIGHを算出する(ST2)。なお、最初は、VLOW、VHIGHが存在しないので、2つの検出値同士を比較して、低い方の値をVLOW、高い方の値をVHIGHとする。また、セル群40a、40bのうちこのVLOWが検出されたセル群を、特異セル群とする。   Next, the comparison unit 321 of the calculation unit 32 receives the detection value from the voltage detection unit 31, compares the detection value with VLOW and VHIGH, and calculates VLOW and VHIGH (ST2). Since VLOW and VHIGH do not exist at the beginning, the two detection values are compared, and the lower value is VLOW and the higher value is VHIGH. Moreover, the cell group in which this VLOW is detected among the cell groups 40a and 40b is defined as a specific cell group.

続いて、燃料電池制御部323でVLOWに基づいて燃料電池1の制御を行う(ST3)。以下、このST3における具体的な手順について、図5を参照しながら説明する。まず、VLOWが第3の基準値以上か否かを判定する(ST31)。VLOWが第3の基準値以上ではないと判定された場合には、VLOWが検出された特異セル群を、危険レベル3として制御を行う(ST32)。一方、VLOWが第3の基準値以上であると判定された場合には、ST33に移る。   Subsequently, the fuel cell control unit 323 controls the fuel cell 1 based on VLOW (ST3). Hereinafter, a specific procedure in ST3 will be described with reference to FIG. First, it is determined whether or not VLOW is greater than or equal to a third reference value (ST31). If it is determined that VLOW is not greater than or equal to the third reference value, the specific cell group in which VLOW is detected is controlled as the risk level 3 (ST32). On the other hand, if it is determined that VLOW is greater than or equal to the third reference value, the process proceeds to ST33.

ST33では、VLOWが第2の基準値以上か否かを判定する。VLOWが第2の基準値以上ではないと判定された場合には、VLOWが検出された特異セル群を、危険レベル2として制御を行う(ST34)。一方、VLOWが第2の基準値以上であると判定された場合には、ST35に進む。ST35では、VLOWが第1の基準値以上か否かを判定する。VLOWが第1の基準値以上ではないと判定された場合には、VLOWが検出された特異セル群を、危険レベル1として制御を行う(ST36)。一方、VLOWが第1の基準値以上であると判定された場合には、危険レベル0として制御を行う。   In ST33, it is determined whether or not VLOW is greater than or equal to the second reference value. If it is determined that VLOW is not equal to or greater than the second reference value, the specific cell group in which VLOW is detected is controlled as the risk level 2 (ST34). On the other hand, if it is determined that VLOW is greater than or equal to the second reference value, the process proceeds to ST35. In ST35, it is determined whether or not VLOW is equal to or greater than a first reference value. If it is determined that VLOW is not greater than or equal to the first reference value, control is performed with the specific cell group in which VLOW is detected as the risk level 1 (ST36). On the other hand, when it is determined that VLOW is equal to or higher than the first reference value, the control is performed with the danger level 0.

以上のST1〜ST3を繰り返す。これにより、燃料電池1の電圧を検出するたびにVLOWを算出し、このVLOWに基づいて燃料電池1を制御する。つまり、燃料電池1の一端側から他端側に至るまで、全てのセル群40a、40bの電圧を順次検出しながら、同時に、VLOWを次々と算出して、燃料電池1を制御する。   The above ST1 to ST3 are repeated. Thus, VLOW is calculated every time the voltage of the fuel cell 1 is detected, and the fuel cell 1 is controlled based on this VLOW. That is, from the one end side of the fuel cell 1 to the other end side, the voltage of all the cell groups 40a and 40b is sequentially detected, and at the same time, VLOW is calculated one after another to control the fuel cell 1.

次に、比較部321で、最終的なVLOWをWORSTとし、最終的なVHIGHをBESTとし(ST4)、正規化部322で、WORST、BEST、全てのVLOW、および検出値を正規化する(ST5)。そして、ST5において正規化した値を記憶部33に格納する(ST6)。   Next, the comparison unit 321 sets final VLOW to WORST and final VHIGH to BEST (ST4), and the normalization unit 322 normalizes WORST, BEST, all VLOWs, and detection values (ST5). ). Then, the value normalized in ST5 is stored in the storage unit 33 (ST6).

本実施形態によれば、以下のような効果がある。監視装置30に電圧検出部31、演算部32、および記憶部33を設けたので、この監視装置10は、以下のように動作する。まず、電圧検出部31において、セル群40a、40b毎に電圧を検出する。次に、比較部321において、この検出されたセル群40a、40bの検出値同士を比較して、電圧が特異な特異セル群を特定する。続いて、正規化部322で、セル群40a、40bの検出値および特異セル群の検出値を正規化する。したがって、検出値同士を比較した後に、これら検出値を正規化したので、セル群40a、40bの電圧を正確に比較できる。   According to this embodiment, there are the following effects. Since the monitoring device 30 includes the voltage detection unit 31, the calculation unit 32, and the storage unit 33, the monitoring device 10 operates as follows. First, the voltage detector 31 detects a voltage for each of the cell groups 40a and 40b. Next, the comparison unit 321 compares the detected values of the detected cell groups 40a and 40b to identify a specific cell group with a specific voltage. Subsequently, the normalization unit 322 normalizes the detection values of the cell groups 40a and 40b and the detection value of the specific cell group. Therefore, since the detected values are normalized after comparing the detected values, the voltages of the cell groups 40a and 40b can be accurately compared.

監視装置10に燃料電池制御部323を設けたので、特異セル群の検出値を正規化せずに第1〜第3の基準値と比較して、危険レベルを判断したので、セル群40a、40bの危険レベルを判断する処理を軽減できる。   Since the monitoring apparatus 10 is provided with the fuel cell control unit 323, the detection value of the specific cell group is not normalized and compared with the first to third reference values, and the risk level is determined. Therefore, the cell group 40a, It is possible to reduce the process of determining the risk level of 40b.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。例えば、本実施形態では、セル2のうち2つを1つのセル群40a、40bとしたが、これに限らず、3つ以上のセル2を1つのセル群としてもよい。   Note that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope in which the object of the present invention can be achieved are included in the present invention. For example, in the present embodiment, two of the cells 2 are set as one cell group 40a, 40b. However, the present invention is not limited to this, and three or more cells 2 may be set as one cell group.

本発明の一実施形態に係る監視装置が適用された燃料電池の監視システムのブロック図である。1 is a block diagram of a fuel cell monitoring system to which a monitoring device according to an embodiment of the present invention is applied. FIG. 前記実施形態に係る燃料電池の概略断面図である。It is a schematic sectional drawing of the fuel cell which concerns on the said embodiment. 前記実施形態に係る監視装置のブロック図である。It is a block diagram of the monitoring apparatus concerning the embodiment. 前記実施形態に係る監視装置のフローチャートである。It is a flowchart of the monitoring apparatus which concerns on the said embodiment. 前記実施形態に係る監視装置を構成する危険レベル判断手段のフローチャートである。It is a flowchart of the danger level judgment means which comprises the monitoring apparatus which concerns on the said embodiment.

符号の説明Explanation of symbols

1…燃料電池
2、2a、2b、2c… セル
40a、40b…セル群
30…監視装置
31…電圧検出部(電圧検出手段)
321…比較部(特定手段)
322…正規化部(正規化手段)
323…燃料電池制御部(危険レベル判断手段)
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2, 2a, 2b, 2c ... Cell 40a, 40b ... Cell group 30 ... Monitoring apparatus 31 ... Voltage detection part (voltage detection means)
321... Comparison unit (specifying means)
322 ... Normalization unit (normalization means)
323 ... Fuel cell control unit (danger level judgment means)

Claims (4)

陽極と陰極とを有するセルが複数直列に接続された燃料電池を監視する燃料電池の監視装置であって、
前記セルのうち2つ以上を1つのセル群とし、これらセル群毎に電圧を検出する電圧検出手段と、
前記各セル群の検出値同士を比較して、前記セル群のうち電圧が低い方のセル群を特異セル群として特定する特定手段と、
前記セル群の検出値および前記特異セル群の検出値を、前記セル群を構成するセルの数で除算することで正規化する正規化手段と、を備えることを特徴とする燃料電池の監視装置。
A fuel cell monitoring device for monitoring a fuel cell in which a plurality of cells each having an anode and a cathode are connected in series,
Two or more of the cells are defined as one cell group, and voltage detecting means for detecting a voltage for each of these cell groups;
A specifying unit which compares the detected values with each other of said groups each cell, identifying as a specific cell group the cell group of lower voltage of the cell group,
And a normalization unit that normalizes the detection value of the cell group and the detection value of the specific cell group by dividing the detection value of the cell group by the number of cells constituting the cell group. .
前記特定セル群が特定された後、前記検出値を正規化する前に、前記特異セル群の検出値と前記燃料電池の危険レベルに応じて前記セル群の電圧に対して設定された基準値とを比較して、前記燃料電池の危険レベルを判断する危険レベル判断手段をさらに備えることを特徴とする請求項1に記載の燃料電池の監視装置。 After the specific cell group is specified and before normalizing the detection value, the reference value set for the voltage of the cell group according to the detection value of the specific cell group and the danger level of the fuel cell The fuel cell monitoring device according to claim 1, further comprising: a danger level determination unit that determines a danger level of the fuel cell by comparing with the above. 陽極と陰極とを有するセルが複数直列に接続された燃料電池の監視方法であって、
前記セルのうち2つ以上を1つのセル群とし、これらセル群毎に電圧を検出する手順と、
これらセル群の検出値同士を比較して、前記セル群のうち電圧が低い方のセル群を特異セル群として特定する手順と、
前記セル群の検出値および前記特異セル群の検出値を、前記セル群を構成するセルの数で除算することで正規化する手順と、を備えることを特徴とする燃料電池の監視方法。
A method of monitoring a fuel cell in which a plurality of cells having an anode and a cathode are connected in series,
A procedure for detecting two or more of the cells as one cell group and detecting a voltage for each of these cell groups;
A step of comparing the detected values with each other of these cell groups, to identify as a specific cell group the cell group of lower voltage of the cell group,
And a procedure of normalizing the detection value of the cell group and the detection value of the specific cell group by dividing the detection value of the cell group by the number of cells constituting the cell group .
前記特異セル群を特定した後、前記検出値を正規化する前に、前記特異セル群の検出値と前記燃料電池の危険レベルに応じて前記セル群の電圧に対して設定された基準値とを比較して、前記燃料電池の危険レベルを判断する手順をさらに備えることを特徴とする請求項3に記載の燃料電池の監視方法。 After specifying the specific cell group and before normalizing the detection value, the detection value of the specific cell group and a reference value set for the voltage of the cell group according to the danger level of the fuel cell, The method for monitoring a fuel cell according to claim 3, further comprising a step of determining a danger level of the fuel cell by comparing the two.
JP2004342258A 2004-11-26 2004-11-26 Fuel cell monitoring apparatus and monitoring method Active JP4647293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342258A JP4647293B2 (en) 2004-11-26 2004-11-26 Fuel cell monitoring apparatus and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342258A JP4647293B2 (en) 2004-11-26 2004-11-26 Fuel cell monitoring apparatus and monitoring method

Publications (2)

Publication Number Publication Date
JP2006156010A JP2006156010A (en) 2006-06-15
JP4647293B2 true JP4647293B2 (en) 2011-03-09

Family

ID=36634053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342258A Active JP4647293B2 (en) 2004-11-26 2004-11-26 Fuel cell monitoring apparatus and monitoring method

Country Status (1)

Country Link
JP (1) JP4647293B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876735B1 (en) * 2016-04-12 2018-07-10 현대자동차주식회사 Control Method of Considering Fuel Cell Durability Condition and Fuel Cell System Using the Method
KR102018116B1 (en) * 2019-03-13 2019-09-04 주식회사 코텍에너지 Fuel cell emergency shutdown system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273702A (en) * 1997-11-20 1999-10-08 Siemens Ag Monitoring method and monitoring device for layered product of fuel cell
JP2002358993A (en) * 2001-05-31 2002-12-13 Mitsubishi Electric Corp Laminated fuel cell and measuring method of cell voltage
JP2004127915A (en) * 2002-07-30 2004-04-22 Denso Corp Fuel cell system
JP2004171993A (en) * 2002-11-21 2004-06-17 Ebara Ballard Corp Fuel cell power generation system and operation method of fuel cell power generation system
JP2004207029A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel battery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273702A (en) * 1997-11-20 1999-10-08 Siemens Ag Monitoring method and monitoring device for layered product of fuel cell
JP2002358993A (en) * 2001-05-31 2002-12-13 Mitsubishi Electric Corp Laminated fuel cell and measuring method of cell voltage
JP2004127915A (en) * 2002-07-30 2004-04-22 Denso Corp Fuel cell system
JP2004171993A (en) * 2002-11-21 2004-06-17 Ebara Ballard Corp Fuel cell power generation system and operation method of fuel cell power generation system
JP2004207029A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel battery system

Also Published As

Publication number Publication date
JP2006156010A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US9331347B2 (en) Fuel cell system and control method thereof
US9225028B2 (en) Fuel cell system
US8956775B2 (en) Fuel cell system and method of detecting abnormality of fuel cell system
JP5391226B2 (en) Fuel cell system and control method thereof
CA2740572C (en) Fuel cell system and fuel cell state detection method
WO2012056866A1 (en) Fuel cell system
US8241800B2 (en) Fuel cell system and fuel cell control method
KR101755923B1 (en) Method and system for diagnosing contamination of fuel cell stack
US10267862B2 (en) Fuel cell system with minimum cell voltage estimation
KR100862445B1 (en) Oxygen supply sytem in change of load for fuel cell vehicle
US7148654B2 (en) Method and apparatus for monitoring fuel cell voltages
JP4852854B2 (en) Fuel cell system
US11183699B2 (en) Fuel cell system and method of controlling fuel cell system
JPWO2008007690A1 (en) Fuel cell system
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
EP3121890A1 (en) Fuel cell system
JP4647293B2 (en) Fuel cell monitoring apparatus and monitoring method
JP2010073497A (en) Fuel cell system and operation method of fuel cell
JP5377845B2 (en) Fuel cell system and scavenging method thereof
JP5178305B2 (en) Fuel cell system and cell voltage control method for fuel cell system
JP5043559B2 (en) Fuel cell system
JP2008021611A (en) Voltage measuring system and method of fuel cell
JP2022069754A (en) Fuel cell system
JP2021182511A (en) Fuel cell system
JP2018073621A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250