JP4645938B2 - Optical component and optical pickup device - Google Patents

Optical component and optical pickup device Download PDF

Info

Publication number
JP4645938B2
JP4645938B2 JP2004201625A JP2004201625A JP4645938B2 JP 4645938 B2 JP4645938 B2 JP 4645938B2 JP 2004201625 A JP2004201625 A JP 2004201625A JP 2004201625 A JP2004201625 A JP 2004201625A JP 4645938 B2 JP4645938 B2 JP 4645938B2
Authority
JP
Japan
Prior art keywords
optical
layers
optical component
light
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004201625A
Other languages
Japanese (ja)
Other versions
JP2005116147A (en
Inventor
達男 太田
則一 荒井
真一郎 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004201625A priority Critical patent/JP4645938B2/en
Publication of JP2005116147A publication Critical patent/JP2005116147A/en
Application granted granted Critical
Publication of JP4645938B2 publication Critical patent/JP4645938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Head (AREA)

Description

本発明は、光学部品及び光ピックアップ装置に関し、特に光学性能を向上させた光学部品及び光ピックアップ装置に関する。   The present invention relates to an optical component and an optical pickup device, and more particularly to an optical component and an optical pickup device with improved optical performance.

近年、短波長赤色半導体レーザの実用化に伴い、従来の光ディスク(光情報記録媒体ともいう)である、CD(コンパクトディスク)と同程度の大きさで大容量化させた高密度の光ディスクであるDVD(デジタルバーサタイルディスク)が開発・製品化されている。しかるに、CDもしくはDVDを専用として情報を記録/再生できるというだけでは、光ピックアップ装置の製品としての価値は十分なものとはいえないことから、より付加価値を高めるため、CD・DVDのいずれに対しても情報の記録/再生を行うことができる、いわゆる互換型光ピックアップ装置も開発されている。   In recent years, with the practical application of short-wavelength red semiconductor lasers, high-density optical disks with the same size and large capacity as conventional optical disks (also called optical information recording media), CDs (compact disks). DVD (Digital Versatile Disc) has been developed and commercialized. However, just because information can be recorded / reproduced exclusively for a CD or DVD, the value as a product of an optical pickup device cannot be said to be sufficient. On the other hand, so-called compatible optical pickup devices capable of recording / reproducing information have also been developed.

ところで、CDの仕様(光源波長、開口数、透明基板厚さ等)とDVDの仕様とは異なるため、単一の対物レンズを用いて、双方の光ディスクに対して適切に情報を記録及び/又は再生するためには、何らかの工夫が必要となる。これに対し、対物レンズの光学面に回折構造を設けることで、CD、DVDに適した収差特性を得ることが行われている。   By the way, since the specifications of the CD (light source wavelength, numerical aperture, transparent substrate thickness, etc.) are different from the specifications of the DVD, information is appropriately recorded and / or recorded on both optical disks using a single objective lens. In order to reproduce, some device is required. On the other hand, aberration characteristics suitable for CDs and DVDs are obtained by providing a diffractive structure on the optical surface of the objective lens.

一方、CD、DVDより一歩進んだ、より高密度な次世代の光ディスクも開発されている。このような次世代の光ディスクを媒体とした光情報記録再生装置(光ピックアップ装置ともいう)の集光光学系では、記録信号の高密度化を図るため、或いは高密度記録信号を再生するため、対物レンズを介して情報記録面上に集光するスポッ卜の径を小さくすることが要求される。そのためには、光源であるレーザの短波長化や対物レンズの高開口数(高NA)化が必要となる。短波長レーザ光源としてその実用化が期待されているのは、波長450nm以下の青紫色半導体レーザである。   On the other hand, higher-density next-generation optical discs that are one step ahead of CDs and DVDs have also been developed. In a condensing optical system of an optical information recording / reproducing apparatus (also referred to as an optical pickup apparatus) using such a next-generation optical disk as a medium, in order to increase the recording signal density or to reproduce the high-density recording signal, It is required to reduce the diameter of the spot condensed on the information recording surface via the objective lens. For this purpose, it is necessary to shorten the wavelength of the laser as the light source and to increase the numerical aperture (high NA) of the objective lens. A blue-violet semiconductor laser having a wavelength of 450 nm or less is expected to be put to practical use as a short wavelength laser light source.

このような波長450nm以下の青紫色半導体レーザを用いて、情報の記録/再生を行える高密度光ディスクシステムの研究・開発が急速に進んでいる。一例として、NA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク(以下、本明細書ではかかる光ディスクを「高密度DVD」と呼ぶ)では、DVD(NA0.6、光源波長650nm、記憶容量4、7GB)と同じ大きさである直径12cmの光ディスクに対して、1面あたり20〜30GBの情報の記録が可能である。かかる高密度DVDの情報記録面に対して適切な集光スポットを形成できるように、回折構造を設けた対物レンズも開発されている(特許文献1参照)。さらに前記2種類の波長に加えて波長740〜810nmの光束に対しても集光スポットを形成できる対物レンズも開発されている。   Research and development of a high-density optical disk system capable of recording / reproducing information using such a blue-violet semiconductor laser having a wavelength of 450 nm or less is rapidly progressing. As an example, in an optical disc for recording / reproducing information with specifications of NA 0.85 and light source wavelength 405 nm (hereinafter referred to as “high density DVD” in this specification), DVD (NA 0.6, light source wavelength 650 nm, Information of 20 to 30 GB per side can be recorded on an optical disk having a diameter of 12 cm, which is the same size as the storage capacity 4, 7 GB). An objective lens provided with a diffractive structure has also been developed so that an appropriate focused spot can be formed on the information recording surface of such a high-density DVD (see Patent Document 1). In addition to the two types of wavelengths, an objective lens capable of forming a condensing spot for a light beam having a wavelength of 740 to 810 nm has been developed.

ところで、光源から出射されるレーザ光を効率よく利用するために、光ピックアップ装置の光学部品には、透過率を高める工夫がなされている。例えば対物レンズ等の光学面には、反射防止膜が成膜され、光の干渉を利用して光学面から反射する光の量を抑制するようにしている(特許文献2参照)。
特開2002−236253号公報 特開2002−55207号公報
By the way, in order to efficiently use the laser light emitted from the light source, the optical component of the optical pickup device has been devised to increase the transmittance. For example, an antireflection film is formed on an optical surface such as an objective lens, and the amount of light reflected from the optical surface is suppressed by utilizing interference of light (see Patent Document 2).
JP 2002-236253 A JP 2002-55207 A

しかるに、上述したような互換型光ピックアップ装置に用いる対物レンズに反射防止膜を成膜する場合、それに入射する異なる波長の光束それぞれに対して、反射防止を実現しなくてはならない。ところが、反射防止を実現できる波長域を広くとるためには、一般的には反射防止膜の膜厚の増大を容認せざるをえないが、膜厚の増大により、上述した回折構造の形状(特に角部の形状)がダレた形に変化してしまい、それにより所望の回折特性が得られなくなる恐れがある。   However, when an antireflection film is formed on the objective lens used in the compatible optical pickup apparatus as described above, it is necessary to realize antireflection for each of the light beams having different wavelengths incident thereon. However, in order to widen the wavelength range where antireflection can be realized, it is generally necessary to allow an increase in the thickness of the antireflection film. However, as the film thickness increases, the shape of the above-described diffraction structure ( In particular, the shape of the corners) may change to a sag shape, so that desired diffraction characteristics may not be obtained.

又、450nm以下の短波長領域で回折効果を得ようとした場合、回折構造はより微細化するので、反射防止膜が回折構造の形状に与える影響はより増大し、従って高密度DVD用光ピックアップ装置に用いる対物レンズにおいては、要求される回折特性を特に得にくいという問題がある。   Further, when trying to obtain a diffraction effect in a short wavelength region of 450 nm or less, the diffraction structure becomes finer, so that the influence of the antireflection film on the shape of the diffraction structure is further increased. The objective lens used in the apparatus has a problem that it is difficult to obtain required diffraction characteristics.

更に、反射防止膜を成膜した光学部品には、光学面に付着した異物を拭うことによる反射防止膜の剥がれを抑制する、いわゆる拭き性も要求されるが、回折構造に膜厚の厚い反射防止膜を成膜すると拭き性が著しく低下するという問題がある。   In addition, optical components with an antireflection film are required to have a so-called wiping property that suppresses peeling of the antireflection film due to wiping off foreign matter adhering to the optical surface. When the prevention film is formed, there is a problem that the wiping property is remarkably lowered.

本発明は、これらの問題点に鑑みてなされたものであり、耐拭き性を確保しつつ、光透過率を高く維持できるにもかかわらず、例えば微細構造による本来の光学特性を発揮させることができる光学部品及び光ピックアップ装置を提供することを目的とする。   The present invention has been made in view of these problems. For example, although the light transmittance can be maintained high while ensuring wiping resistance, the original optical characteristics due to the fine structure can be exhibited. It is an object to provide an optical component and an optical pickup device that can be used.

請求項1に記載の光学部品は、390〜450nmの波長λ1の第1光束が通過し、且つ635〜670nmの波長λ2の第2光束と740〜810nmの波長λ3の第3光束の少なくとも1種類の光束が通過する光路内に配置される光ピックアップ装置用の光学部品であって、前記光学部品は、微細構造を形成した第1の光学面と、微細構造を形成しない第2の光学面とを有し、前記微細構造は、回折によって前記いずれかの通過光束に対して集光あるいは発散させる作用を有する回折構造であり、前記光学部品は、前記回折構造により回折された前記第1の光束及び、前記第2、第3の光束の少なくとも1種類の光束を、それぞれ対応する光情報記録媒体の情報記録面上に集光可能であり、前記第1の光学面における反射防止膜の膜層数を、前記第2の光学面における反射防止膜の膜総数より少なくし、前記第1の光学面における膜総数を、単層〜9層のいずれかとすることを特徴とするので、例えば回折構造などの微細構造を形成した前記第1の光学面では、反射防止膜の膜層数が比較的低いので、膜厚を比較的薄くできることから成膜後の微細構造の形状を維持しやすくなり、前記微細構造の光学特性の劣化を回避できると共に、拭き性も向上させることができる。一方、前記第2の光学面には微細構造を形成していないので、反射防止膜の膜厚を増大させても、光学特性の大きな劣化を招くことはなく、拭き性も低下しないので、反射防止膜の膜層数を増大させ、十分な反射防止機能を発揮できる。

The optical component according to claim 1 passes through a first light beam having a wavelength λ1 of 390 to 450 nm, and at least one kind of a second light beam having a wavelength λ2 of 635 to 670 nm and a third light beam having a wavelength λ3 of 740 to 810 nm. An optical component for an optical pickup device disposed in an optical path through which the luminous flux passes, wherein the optical component includes a first optical surface on which a fine structure is formed, and a second optical surface on which a fine structure is not formed. The fine structure is a diffractive structure that has a function of condensing or diverging any of the passing light fluxes by diffraction, and the optical component is the first light flux diffracted by the diffractive structure. In addition, at least one kind of the second and third light fluxes can be condensed on the information recording surface of the corresponding optical information recording medium, and the film layer of the antireflection film on the first optical surface. Number The second and less than film total number of the antireflection film on the optical surface, the membrane total number of the first optical surface, the is characterized in that either a single layer to 9 layers, for example, such as a diffraction structure fine In the first optical surface having the structure, since the number of antireflection films is relatively low, the film thickness can be made relatively thin, so that it is easy to maintain the shape of the microstructure after the film formation. It is possible to avoid the deterioration of the optical properties of the film and improve the wiping property. On the other hand, since no fine structure is formed on the second optical surface, even if the thickness of the antireflection film is increased, the optical characteristics are not greatly deteriorated, and the wiping property is not lowered. The number of anti-reflection films can be increased, and a sufficient anti-reflection function can be exhibited.

請求項に記載の光学部品は、請求項に記載の発明において、前記第2の光学面における反射防止膜を7層とすることを特徴とする。 The optical component according to claim 2 is characterized in that, in the invention according to claim 1 , the antireflection film on the second optical surface has seven layers.

請求項に記載の光学部品は、請求項に記載の発明において、前記第2の光学面における反射防止膜を8乃至10層のいずれかとすることを特徴とする。 An optical component according to a third aspect is characterized in that, in the invention according to the first aspect, the antireflection film on the second optical surface is any one of 8 to 10 layers.

請求項に記載の光学部品は、請求項1乃至のいずれかに記載の発明において、前記第1の光学面における反射防止膜を単層とすることを特徴とする。 According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the antireflection film on the first optical surface is a single layer.

請求項に記載の光学部品は、請求項1乃至のいずれかに記載の発明において、前記第1の光学面における反射防止膜を2層とすることを特徴とする。 According to a fifth aspect of the present invention, in the optical component according to any one of the first to third aspects, the antireflection film on the first optical surface is formed of two layers.

請求項に記載の光学部品は、請求項1乃至のいずれかに記載の発明において、前記第1の光学面における反射防止膜を3層とすることを特徴とする。 Optical component according to claim 6 is the invention according to any one of claims 1 to 3, characterized in that a three-layer antireflection film in the first optical surface.

請求項に記載の光学部品は、請求項1乃至のいずれかに記載の発明において、前記第1の光学面における反射防止膜を4乃至9層のいずれかとすることを特徴とする。 An optical component according to a seventh aspect is characterized in that, in the invention according to any one of the first to third aspects, the antireflection film on the first optical surface is any one of 4 to 9 layers.

請求項に記載の光学部品は、請求項1乃至3のいずれかに記載の発明において前記第1の光学面と前記第2の光学面のうち、前記第2の光学面にのみ反射防止膜を形成することを特徴とするので、反射防止膜を形成しても、前記第1の光学面の微細構造の形状を変化させることなく、その光学特性の劣化を回避できると共に、拭き性も向上させることができる。 An optical component according to an eighth aspect is the antireflection film according to any one of the first to third aspects, wherein only the second optical surface of the first optical surface and the second optical surface is an antireflection film. Therefore, even if an antireflection film is formed, deterioration of the optical properties can be avoided and the wiping property can be improved without changing the shape of the fine structure of the first optical surface. Can be made.

請求項に記載の光学部品は、請求項1乃至のいずれかに記載の発明において、前記光学部品は光ピックアップ装置用の対物レンズであることを特徴とするので、光ピックアップ装置の性能を向上させることができる。ただし、本発明の光学部品は対物レンズに限られず、カップリングレンズ、エキスパンダレンズ、平行平板等であっても良い。 According to a ninth aspect of the present invention, in the optical component according to any one of the first to eighth aspects, the optical component is an objective lens for an optical pickup device. Can be improved. However, the optical component of the present invention is not limited to the objective lens, and may be a coupling lens, an expander lens, a parallel plate, or the like.

なお、参考例の光学部品は、390〜450nm(より好ましくは400〜410nm)の波長λ1の第1光束が通過し、且つ635〜670nm(より好ましくは650〜670nm)の波長λ2の第2光束と740〜810nmの波長λ3の第3光束の少なくとも1種類の光束が通過する光路内に配置された光ピックアップ装置用の光学部品であって、複数の光学面を有し、一つの光学面に設けられる反射防止膜の膜数をm1、他の光学面に設けられる反射防止膜の膜数をm2としたときに、m1<m2であることを特徴とするので、例えば高密度DVDと、DVD及びCDのいずれか1種類以上の光ディスクとに対して互換可能に情報の記録及び/又は再生を行う光ピックアップ装置に用いるような光学部品において、一つの光学面に位相差付与構造を形成するような場合、その位相差付与機能を設けた光学面の反射防止膜数を少なく設定しておくことで、該光学面における光量損失を少なくしたり、拭き性を向上させることが可能となる。 In the optical component of the reference example , the first light flux with the wavelength λ1 of 390 to 450 nm (more preferably 400 to 410 nm) passes, and the second light flux with the wavelength λ2 of 635 to 670 nm (more preferably 650 to 670 nm). And an optical component for an optical pickup device arranged in an optical path through which at least one kind of a third light beam having a wavelength λ3 of 740 to 810 nm passes, and has a plurality of optical surfaces, When the number of antireflection films provided is m1 and the number of antireflection films provided on other optical surfaces is m2, m1 <m2, so that, for example, a high-density DVD and a DVD In an optical component used in an optical pickup device that records and / or reproduces information interchangeably with one or more types of optical discs and CDs, it is positioned on one optical surface. When forming a difference imparting structure, by setting the number of antireflection films on the optical surface provided with the phase difference imparting function to be small, the light amount loss on the optical surface is reduced or the wiping property is improved. It becomes possible.

互換可能に情報の記録及び/又は再生を行う光ピックアップ装置の例として、青紫色半導体レーザーを用いて保護層厚が0.6mmの高密度DVDに対して情報の記録及び/又は再生を行うと共に、赤色半導体レーザーを用いてDVD及び/又はCDに対して情報の記録及び/又は再生を行うことができる光ピックアップ装置、あるいは、青紫色半導体レーザーを用いて保護層厚が0.1mmの高密度DVDに対して情報の記録及び/又は再生を行うと共に、赤色半導体レーザーを用いてDVD及び/又はCDに対して情報の記録及び/又は再生を行うことができる光ピックアップ装置が知られているが、このような光ピックアップ装置において、前記光学部品として対物レンズを2枚にて構成する場合にも、本発明を適用することは可能である。すなわち、対物レンズ2枚玉の4面ある光学面のうち、位相差付与機能を有する面や凸のきつい面に設ける反射防止膜数(m1)を、それ以外の凸の緩い光学面の膜数(m2)より少なめに設定しておくと、反射防止膜数が多くなることによる弊害を抑制できる。   As an example of an optical pickup device that records and / or reproduces information in a compatible manner, information is recorded and / or reproduced on a high-density DVD having a protective layer thickness of 0.6 mm using a blue-violet semiconductor laser. , An optical pickup device capable of recording and / or reproducing information on a DVD and / or CD using a red semiconductor laser, or a high density of 0.1 mm protective layer thickness using a blue-violet semiconductor laser There is known an optical pickup device capable of recording and / or reproducing information on a DVD and recording and / or reproducing information on a DVD and / or CD using a red semiconductor laser. In such an optical pickup device, the present invention can also be applied to the case where the optical component is composed of two objective lenses. That. That is, among the four optical surfaces of the two objective lenses, the number of antireflection films (m1) provided on the surface having a phase difference imparting function or the convex hard surface is set to the number of the other convex loose optical surfaces. If the number is set smaller than (m2), it is possible to suppress the adverse effects caused by the increase in the number of antireflection films.

なお、他の参考例の光学部品は、上記参考例において、前記一つの光学面に位相差付与構造が形成されたことを特徴とする。ただし、前記一つの光学面は位相差付与構造を有した光学面に限らず、他の光学面より凸がきつい(面の曲率半径が小さい)光学面でもよい。 The optical component of another reference example is characterized in that, in the above reference example , a phase difference providing structure is formed on the one optical surface. However, the one optical surface is not limited to an optical surface having a phase difference imparting structure, and may be an optical surface that is more convex (having a smaller radius of curvature) than the other optical surfaces.

また、別の参考例の光学部品は、上記参考例において、前記第1光束が照射されたときの前記一つの光学面の有効径をφ1とし、前記第1光束が照射されたときの前記他の光学面の有効径をφ2としたときに、φ1>φ2であることを特徴とするので、例えば高密度DVDと、DVDとCDのいずれか1種類以上の光ディスクとに対して互換可能に情報の記録及び/又は再生を行う光ピックアップ装置に用いると、2種類以上の光ディスクに対して適切な情報の記録及び/又は再生を行うことができる。 An optical component of another reference example is the optical component in the reference example described above, in which the effective diameter of the one optical surface when the first light beam is irradiated is φ1, and the other when the first light beam is irradiated. When the effective diameter of the optical surface is φ2, φ1> φ2, so that information is compatible with, for example, a high-density DVD and one or more types of optical discs of DVD and CD. When used in an optical pickup device that records and / or reproduces, it is possible to record and / or reproduce appropriate information on two or more types of optical disks.

請求項10に記載の光ピックアップ装置は、光源と、前記光源からの光束を光情報記録媒体の情報記録面上に集光させる、請求項1乃至のいずれかに記載の光学部品を含む集光光学系と、を有することを特徴とする。 An optical pickup device according to a tenth aspect of the present invention includes a light source and a light collecting unit including the optical component according to any one of the first to ninth aspects, which collects a light beam from the light source on an information recording surface of an optical information recording medium. And an optical optical system.

本明細書中で用いる「微細構造」とは、例えば光学面に光路差を発生させる機能を有する構造(光路差付与構造ともいう)をいい、この光路差付与構造には、光路差を発生する段差形状や、位相差付与構造が含まれる。更に、本明細書中で用いる「位相差付与構造」とは、位相差付与機能を発揮できる構造をいい、位相差付与機能とは、入射光束に対して所定の位相差を付与することにより、この光束に対して特定の作用を与える機能を指すもの全てである。このような位相差付与構造の例としては、「回折構造」などがある。   The “fine structure” used in this specification refers to, for example, a structure having a function of generating an optical path difference on an optical surface (also referred to as an optical path difference providing structure), and this optical path difference providing structure generates an optical path difference. A step shape and a phase difference providing structure are included. Furthermore, the “phase difference providing structure” used in the present specification refers to a structure capable of exhibiting a phase difference providing function, and the phase difference providing function refers to providing a predetermined phase difference to an incident light beam, All of them refer to a function that gives a specific action to the luminous flux. Examples of such a phase difference providing structure include a “diffractive structure”.

「回折構造」とは、光学部品の表面に、レリーフを設けて、回折によって光束を集光あるいは発散させる作用を持たせた部分のことをいう。レリーフの形状としては、光学部品の表面に、光軸を中心とする略同心円状の輪帯として形成され、光軸を含む平面でその断面をみれば各輪帯は鋸歯のような形状や階段状の形状のものが知られているが、そのような形状を含むものであり、そのような形状を特に「回折輪帯」という。   The “diffractive structure” refers to a portion provided with a relief on the surface of an optical component so as to condense or diverge a light beam by diffraction. The shape of the relief is formed as a substantially concentric ring zone centered on the optical axis on the surface of the optical component, and each ring zone is shaped like a sawtooth or a staircase when the cross section is viewed in a plane including the optical axis. Although the shape of a shape is known, such a shape is included and such a shape is especially called a "diffraction ring zone."

本明細書中において、対物レンズとは、狭義には光ピックアップ装置に光情報記録媒体を装填した状態において、最も光情報記録媒体側の位置で、これと対向すべく配置される集光作用を有するレンズを指し、広義にはそのレンズと共に、アクチュエータによって少なくともその光軸方向に作動可能なレンズを指すものとする。   In this specification, the objective lens is, in a narrow sense, a light collecting action that is arranged to face the optical information recording medium at the position closest to the optical information recording medium when the optical information recording medium is loaded in the optical pickup device. In a broad sense, it refers to a lens that can be operated at least in the optical axis direction by an actuator.

本発明によれば、耐拭き性を確保しつつ、光透過率を高く維持できるにもかかわらず、例えば微細構造による本来の光学特性を発揮させることができる光学部品及び光ピックアップ装置を提供することができる。   According to the present invention, it is possible to provide an optical component and an optical pickup device capable of exhibiting original optical characteristics due to a fine structure, for example, while maintaining high light transmittance while ensuring wiping resistance. Can do.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
第1の実施の形態について説明する。図1は、第1の実施の形態にかかる光ピックアップ装置の概略構成図である。図1において、光源としての半導体レーザ1からの光束(波長390〜450nm)は、ビームスプリッタ2を通過し、光源側の面(第1の光学面)に回折構造を形成した対物レンズ4に入射し、対物レンズ4の回折構造を形成していない媒体側面(第2の光学面)から出射した光束は、高密度DVDである光情報記録媒体5の情報記録面に集光される。一方、光情報記録媒体5から反射した光は、対物レンズ4を通過し、ビームスプリッタ2により半導体レーザ1と異なる方向に反射され、非点収差発生レンズ6で非点収差を発生された後、光検出器7で受光されるようになっている。尚、図示していないが、対物レンズを一体で光軸方向に移動させるフォーカシング機構が設けられている(以下の第2の実施の形態においても同じ)。
(First embodiment)
A first embodiment will be described. FIG. 1 is a schematic configuration diagram of an optical pickup device according to the first embodiment. In FIG. 1, a light beam (wavelength 390 to 450 nm) from a semiconductor laser 1 as a light source passes through a beam splitter 2 and is incident on an objective lens 4 having a diffractive structure formed on a light source side surface (first optical surface). The light beam emitted from the side surface (second optical surface) of the objective lens 4 on which the diffractive structure is not formed is condensed on the information recording surface of the optical information recording medium 5 that is a high-density DVD. On the other hand, the light reflected from the optical information recording medium 5 passes through the objective lens 4, is reflected in a direction different from that of the semiconductor laser 1 by the beam splitter 2, and astigmatism is generated by the astigmatism generation lens 6. The light detector 7 receives light. Although not shown, a focusing mechanism for moving the objective lens integrally in the optical axis direction is provided (the same applies to the second embodiment below).

(第2の実施の形態)
第2の実施の形態について説明する。図2は、第2の実施の形態にかかる光ピックアップ装置の概略構成図である。図2において、第1光源としての第1半導体レーザ11Aからの光束(波長635nm〜670nm)は、ビームスプリッタ12A、12Bを通過し、光源側の面(第1の光学面)に回折構造を形成した対物レンズ14に入射し、対物レンズ14の回折構造を形成していない媒体側面(第2の光学面)から出射した光束は、第1の光情報記録媒体15A(ここではDVD)の情報記録面に集光される。一方、第1の光情報記録媒体15Aから反射した光は、対物レンズ14,ビームスプリッタ12Bを通過し、ビームスプリッタ12Aにより第1半導体レーザ11Aと異なる方向に反射され、光検出器17Aで受光されるようになっている。
(Second Embodiment)
A second embodiment will be described. FIG. 2 is a schematic configuration diagram of an optical pickup device according to the second embodiment. In FIG. 2, a light beam (wavelength 635 nm to 670 nm) from the first semiconductor laser 11A as the first light source passes through the beam splitters 12A and 12B, and forms a diffractive structure on the light source side surface (first optical surface). The light beam incident on the objective lens 14 and emitted from the side surface (second optical surface) of the objective lens 14 not forming the diffraction structure is recorded on the first optical information recording medium 15A (here, DVD). Focused on the surface. On the other hand, the light reflected from the first optical information recording medium 15A passes through the objective lens 14 and the beam splitter 12B, is reflected in a direction different from that of the first semiconductor laser 11A by the beam splitter 12A, and is received by the photodetector 17A. It has become so.

これに対し、図2において、第2光源としての第2半導体レーザ11Bからの光束(波長390nm〜450nm)は、ビームスプリッタ18を通過し、ビームスプリッタ12Bで反射され、光源側の面(第1の光学面)に回折構造を形成した対物レンズ14に入射し、対物レンズ14の回折構造を形成していない媒体側面(第2の光学面)から出射した光束は、第2の光情報記録媒体15B(ここではCD。但し、高密度DVDであることが好ましい)の情報記録面に集光される。一方、第2の光情報記録媒体15Bから反射した光は、対物レンズ14を通過し、ビームスプリッタ12B、18により反射され、光検出器17Bで受光されるようになっている。尚、半導体レーザ11A、11Bを同一基盤上に形成し1ユニット化することで、いわゆる2レーザ1パッケージの光源を得ることが出来る。同様に、前記2種類の波長に加えて光源波長740〜810nmの第3光源を設けることにより、波長が異なる3種類の光が対物レンズ14を通過する光ピックアップ装置構成もある。   On the other hand, in FIG. 2, a light beam (wavelength 390 nm to 450 nm) from the second semiconductor laser 11B as the second light source passes through the beam splitter 18, is reflected by the beam splitter 12B, and is a light source side surface (first surface). The light beam incident on the objective lens 14 having the diffractive structure formed on the optical surface thereof and emitted from the side surface (second optical surface) of the objective lens 14 on which the diffractive structure is not formed is the second optical information recording medium. It is condensed on the information recording surface of 15B (here, CD, but preferably a high-density DVD). On the other hand, the light reflected from the second optical information recording medium 15B passes through the objective lens 14, is reflected by the beam splitters 12B and 18, and is received by the photodetector 17B. Incidentally, by forming the semiconductor lasers 11A and 11B on the same substrate and forming them as one unit, a so-called two-laser one-package light source can be obtained. Similarly, there is an optical pickup apparatus configuration in which three types of light having different wavelengths pass through the objective lens 14 by providing a third light source having a light source wavelength of 740 to 810 nm in addition to the two types of wavelengths.

図3は、図1,2の1〜3種類のいずれかの組合せの光を用いる光ピックアップ装置に用いることができる対物レンズの一例の断面図であり、理解しやすいように回折構造Dは誇張して示している。図3において、対物レンズは第1の光学面S1にのみ、断面が鋸歯状である光軸を中心とした輪帯状の回折構造Dを有しており、従って第2の光学面S2においては回折構造は設けられていない。尚、第1の光学面を光源側とし、第2の光学面を媒体側としても良いことは言うまでもない。   FIG. 3 is a cross-sectional view of an example of an objective lens that can be used in an optical pickup device that uses any one of the combinations of light beams 1 to 3 in FIGS. 1 and 2, and the diffraction structure D is exaggerated for easy understanding. As shown. In FIG. 3, the objective lens has an annular diffractive structure D centered on the optical axis having a sawtooth cross section only on the first optical surface S1, and therefore the diffraction is performed on the second optical surface S2. No structure is provided. Needless to say, the first optical surface may be the light source side and the second optical surface may be the medium side.

回折構造Dの輪帯ピッチ(光軸直交方向の)pは、10〜100μmであり、回折構造Dの溝深さ(光軸方向段差)hは、数μmである。   The ring zone pitch (in the direction orthogonal to the optical axis) p of the diffractive structure D is 10 to 100 μm, and the groove depth (step in the optical axis direction) h of the diffractive structure D is several μm.

図4は、図2の2〜3種類のいずれかの組合せの光を用いる光ピックアップ装置に用いることができる対物レンズの一例の断面図である。本実施の形態では、対物レンズは2つの素子からなる。より具体的には、対物レンズは、光源側(図で左側)の板状素子Pと、光ディスク側(図で右側)のレンズLとから構成されている。板状素子Pの光源側の光学面S1には、その表面を輪帯状に光軸方向にシフトさせた位相差付与構造Mが形成されている。又、板状素子Pの光ディスク側の光学面S2には、光軸方向断面が鋸歯形状である回折構造の位相差付与構造Dが形成されている。レンズLの光源側の光学面S3及び光ディスク側の光学面S4は、非球面形状を有しており、位相差構造は設けられていない。各光学面における反射防止膜の膜数及び有効径は、以下の通りである。
(S1面膜数m1、S2面膜数m1、S3面膜数m2、S4面膜数m2)
=(7,5,7,7)又は(5,7,7,7)又は(7,7,5,7)又は(5,5,8,10)又は(7,7,10,9))又は(8,8,10,10)
第2半導体レーザ11Bからの光束通過時のS1面有効径(φ1):3.7mm
第2半導体レーザ11Bからの光束通過時のS2面有効径(φ1):3.7mm
第2半導体レーザ11Bからの光束通過時のS3面有効径(φ2):3.6mm
第2半導体レーザ11Bからの光束通過時のS4面有効径(φ2):2.3mm
尚、以上の値は例であり、これらに限られることはない。
Figure 4 is a cross-sectional view of one example of an objective lens which can be used in the optical pickup device Ru using light 2-3 kinds of any combination of FIG. In the present embodiment, the objective lens is composed of two elements. More specifically, the objective lens includes a plate-like element P on the light source side (left side in the figure) and a lens L on the optical disk side (right side in the figure). On the optical surface S1 on the light source side of the plate-like element P, a phase difference providing structure M is formed in which the surface is shifted in a ring shape in the optical axis direction. Further, on the optical surface S2 on the optical disk side of the plate element P, a phase difference providing structure D having a diffractive structure having a sawtooth cross section in the optical axis direction is formed. The optical surface S3 on the light source side and the optical surface S4 on the optical disk side of the lens L have an aspheric shape, and are not provided with a phase difference structure. The number and effective diameter of the antireflection film on each optical surface are as follows.
(S1 face film number m1, S2 face film number m1, S3 face film number m2, S4 face film number m2)
= (7,5,7,7) or (5,7,7,7) or (7,7,5,7) or (5,5,8,10) or (7,7,10,9) ) Or (8, 8, 10, 10)
S1 surface effective diameter (φ1) when the light beam from the second semiconductor laser 11B passes: 3.7 mm
S2 surface effective diameter (φ1) at the time of passing of the light beam from the second semiconductor laser 11B: 3.7 mm
S3 surface effective diameter (φ2) at the time of light flux from the second semiconductor laser 11B: 3.6 mm
S4 surface effective diameter (φ2) at the time of passing of the light beam from the second semiconductor laser 11B: 2.3 mm
In addition, the above value is an example and is not restricted to these.

(実施例)
図3の対物レンズに対して、反射率の異なる材料を積層することで反射防止膜の成膜を行った。表1に、透過光の波長が390〜450nmの場合と、635〜670nmの場合、及び透過光の波長が前記2波長に加えて740〜810nmの波長の光を含む場合について設計した単層から10層までの膜厚を示す。
(Example)
An antireflection film was formed by laminating materials having different reflectances on the objective lens shown in FIG. Table 1 shows the case where the wavelength of transmitted light is 390 to 450 nm, the case of 635 to 670 nm, and the case where the wavelength of transmitted light includes light of 740 to 810 nm in addition to the two wavelengths. Film thickness up to 10 layers is shown.

Figure 0004645938
成膜する材料としては、以下のものを用いた。
(1)低屈折率材料(L材):フッ化アルミニウム、フッ化マグネシウム、酸化シリコン:屈折率1.30〜1.50
(2)中屈折率材料(M材):酸化アルミニウム、酸化イットリウム、フッ化セリウム:屈折率1.55〜1.70
(3)高屈折率材料(H材):酸化ジルコニウム、酸化タンタル、酸化チタン、酸化ハウニウム:屈折率1.75〜2.50
以上の材料を単独で、もしくはそれを主成分とした混合材料として、対物レンズの光学面にコートした。光学部品である対物レンズを構成する材料(基材)は、アクリル樹脂、ポリカーボネート樹脂、より具体的な例として、ゼオネックス(日本ゼオン(株)製の商品名)等の透明なプラスチック樹脂又はガラス材であるが、プラスチック樹脂は、上記樹脂に限定されるものではなく、光学部品の素材に適する全ての樹脂を含む。又、基材と第1層目の層の間に下地層を設け、膜の耐久性を向上させる場合も有る。特に、図3のレンズ形状のS2面、図4の形状のS4面の様な光情報記録媒体に面して用いられるレンズ面は、レンズ面の高い耐拭性が望まれ、膜厚0.1μ〜10μの酸化シリコン層からなる下地層を設ける場合がある。
Figure 0004645938
As materials for film formation, the following were used.
(1) Low refractive index material (L material): Aluminum fluoride, magnesium fluoride, silicon oxide: Refractive index 1.30 to 1.50
(2) Medium refractive index material (M material): aluminum oxide, yttrium oxide, cerium fluoride: refractive index 1.55 to 1.70
(3) High refractive index material (H material): zirconium oxide, tantalum oxide, titanium oxide, haonium oxide: refractive index of 1.75 to 2.50
The above materials were coated on the optical surface of the objective lens alone or as a mixed material containing the above as a main component. The material (base material) constituting the objective lens which is an optical component is an acrylic resin, a polycarbonate resin, and more specifically, a transparent plastic resin or glass material such as ZEONEX (trade name of Nippon Zeon Co., Ltd.) However, the plastic resin is not limited to the above resin, and includes all resins suitable for the material of the optical component. In some cases, a base layer is provided between the base material and the first layer to improve the durability of the film. In particular, a lens surface used to face an optical information recording medium such as the lens-shaped S2 surface of FIG. 3 and the S4 surface of FIG. There is a case where a base layer made of a silicon oxide layer of 1 μm to 10 μm is provided.

コート方法は、真空蒸着方法、スパッタ方法、CVD方法、大気圧プラズマ法、塗布法、ミスト法などがあるが、本実施例では、真空蒸着方法を採用した。   Examples of the coating method include a vacuum deposition method, a sputtering method, a CVD method, an atmospheric pressure plasma method, a coating method, and a mist method. In this example, a vacuum deposition method was employed.

(実施例1)
405nmと650nmの2種類の光束が通過するゼオネックス樹脂からなる図3の形状の対物レンズにおいて、S1面は反射防止コートなし、S2面は表1の(10)に示す膜厚で7層の反射防止コートとした。S2面の各層の構成は、対物レンズの素材表面に最も近い層を1層目とし、最も遠い層を7層目とし、以下全て同様に層数を数えるものとする。表2に、S2面の7層の仕様を示す。
Example 1
In the objective lens having the shape shown in FIG. 3 made of ZEONEX resin through which two kinds of light beams of 405 nm and 650 nm pass, the S1 surface has no anti-reflection coating, and the S2 surface has seven film thicknesses as shown in Table 10 (10). It was a prevention coat. Regarding the configuration of each layer on the S2 surface, the layer closest to the material surface of the objective lens is the first layer, the farthest layer is the seventh layer, and the number of layers is all counted in the same manner. Table 2 shows the specifications of the seven layers on the S2 surface.

Figure 0004645938
(実施例2)
実施例1と同じ対物レンズにおいて、S1面は表1の(1)に示す膜厚で単層の反射防止コート、S2面は表1の(10)に示す膜厚で7層の反射防止コートとした。表3にS1面の単層の仕様を示し、表4にS2面の7層の仕様を示す。
Figure 0004645938
(Example 2)
In the same objective lens as in Example 1, the S1 surface has a thickness shown in (1) of Table 1 and a single-layer antireflection coat, and the S2 surface has a thickness shown in (10) of Table 1 and 7 layers of antireflection coating. It was. Table 3 shows the specifications for the single layer on the S1 surface, and Table 4 shows the specifications for the seven layers on the S2 surface.

Figure 0004645938
Figure 0004645938

Figure 0004645938
(実施例3)
実施例1と同じ対物レンズにおいて、S1面は表1の(2)に示す膜厚で2層の反射防止コート、S2面は表1の(10)に示す膜厚で7層の反射防止コートとした。表5にS1面の2層の仕様を示す。尚、S2面の7層の仕様は、表4に示すものと同じである。
Figure 0004645938
(Example 3)
In the same objective lens as in Example 1, the S1 surface has the thickness shown in (2) of Table 1 and has two layers of antireflection coating, and the S2 surface has the thickness shown in (1) of Table 1 and seven layers of antireflection coating. It was. Table 5 shows the specifications of the two layers on the S1 surface. Note that the specifications of the seven layers on the S2 surface are the same as those shown in Table 4.

Figure 0004645938
(実施例4)
実施例1と同じ対物レンズにおいて、S1面は表1の(4)に示す膜厚で3層の反射防止コート、S2面は表1の(7)に示す膜厚で5層の反射防止コートとした。表6にS1面の3層の仕様を示し、表7にS2面の5層の仕様を示す。
Figure 0004645938
Example 4
In the same objective lens as in Example 1, the S1 surface has a film thickness shown in Table 1 (4) and three layers of antireflection coating, and the S2 surface has a film thickness shown in Table 1 (7) and has 5 layers of antireflection coating. It was. Table 6 shows the specifications of the three layers on the surface S1, and Table 7 shows the specifications of the five layers on the surface S2.

Figure 0004645938
Figure 0004645938

Figure 0004645938
(実施例5)
実施例1と同じ対物レンズにおいて、S1面は表1の(5)に示す膜厚で4層の反射防止コート、S2面は表1の(8)に示す膜厚で5層の反射防止コートとした。表8にS1面の4層の仕様を示す。尚、S2面の5層の仕様は、表7に示すものと同じである。
Figure 0004645938
(Example 5)
In the same objective lens as in Example 1, the S1 surface has a film thickness shown in Table 1 (5) and four layers of antireflection coating, and the S2 surface has a film thickness shown in Table 1 (8) and has five layers of antireflection coating. It was. Table 8 shows the specifications of the four layers on the S1 surface. The specifications of the five layers on the S2 surface are the same as those shown in Table 7.

Figure 0004645938
(実施例6)
実施例1と同じ対物レンズにおいて、S1面は表1の(8)に示す膜厚で5層の反射防止コート、S2面は表1の(10)に示す膜厚で7層の反射防止コートとした。表9にS1面の5層の仕様を示す。尚、S2面の7層の仕様は、表4に示すものと同じである。
Figure 0004645938
(Example 6)
In the same objective lens as in Example 1, the S1 surface has a film thickness shown in (1) in Table 1 and a five-layer antireflection coating, and the S2 surface has a film thickness shown in (1) in Table 1 and a seven-layer antireflection coating. It was. Table 9 shows the specifications of the five layers on the S1 surface. Note that the specifications of the seven layers on the S2 surface are the same as those shown in Table 4.

Figure 0004645938
(実施例7)
実施例1と同じ対物レンズにおいて、S1面は表1の(9)に示す膜厚で6層の反射防止コート、S2面は表1の(10)に示す膜厚で7層の反射防止コートとした。表10にS1面の6層の仕様を示す。尚、S2面の7層の仕様は、表2に示すものと同じである。
Figure 0004645938
(Example 7)
In the same objective lens as in Example 1, the S1 surface has the thickness shown in (9) of Table 1 and has 6 layers of antireflection coating, and the S2 surface has the thickness shown in Table 1 (10) and has 7 layers of antireflection coating. It was. Table 10 shows the specifications of the six layers on the S1 surface. The specifications of the 7 layers on the S2 surface are the same as those shown in Table 2.

Figure 0004645938
Figure 0004645938

(実施例8)
405nmと650nmと780nmの3種類の波長の光束が通過するゼオネックス樹脂からなる図3の形状の対物レンズにおいて、S1面は表1の(11)に示す膜厚で7層の反射防止コート、S2面は表1の(14)に示す膜厚で10層の反射防止コートとした。表11にS1面の7層の仕様を示す。また表12にS2面の10層の仕様を示す。
(Example 8)
In the objective lens having the shape shown in FIG. 3 made of ZEONEX resin through which light beams having three wavelengths of 405 nm, 650 nm, and 780 nm pass, the S1 surface has a film thickness shown in (11) of Table 1, and has seven antireflection coatings. The surface was a 10-layer antireflection coating with the thickness shown in Table 14 (14). Table 11 shows the specifications of the seven layers on the S1 surface. Table 12 shows the specifications of 10 layers on the S2 surface.

Figure 0004645938
Figure 0004645938

Figure 0004645938
Figure 0004645938

また、S2面の10層の反射防止コートにおいて、基材と第1層の間に酸化シリコンからなる膜厚0.2μ〜2μの下地層を設ける場合もある。   In addition, in the 10-layer antireflection coating on the S2 surface, an underlayer having a film thickness of 0.2 μm to 2 μm made of silicon oxide may be provided between the base material and the first layer.

(実施例9)
405nmと650nmと780nmの3種類の波長の光束が通過するゼオネックス樹脂からなる図4の形状の対物レンズにおいて、S1面は表1の(11)に示す膜厚で7層の反射防止コート、S2面は表1の(11)に示す膜厚で7層の反射防止コート、S3面は表1の(14)に示す膜厚で10層の反射防止コート、S4面は表1の(14)に示す膜厚で10層の反射防止コートとした。表13にS1面及びS2面の7層の仕様を示す。尚、S3面、S4面の10層の仕様は、表12に示すものと同じである。
Example 9
In the objective lens having the shape shown in FIG. 4 made of ZEONEX resin through which light beams having three wavelengths of 405 nm, 650 nm, and 780 nm pass, the S1 surface has a film thickness shown in (11) of Table 1, and has seven antireflection coatings. The surface is 7 layers of anti-reflective coating with the thickness shown in (11) of Table 1, the S3 surface is 10 layers of anti-reflective coating with the thickness shown in (14) of Table 1, and the S4 surface is (14) of Table 1. A 10-layer antireflection coating having the thickness shown in FIG. Table 13 shows the specifications of the seven layers of the S1 surface and the S2 surface. The specifications of the 10 layers on the S3 and S4 surfaces are the same as those shown in Table 12.

Figure 0004645938
Figure 0004645938

また、S3面及びS4面の10層の反射防止コートにおいて、基材と第1層の間に酸化シリコンからなる膜厚0.2μ〜2μの下地層を設ける場合もある。   Further, in the 10-layer antireflection coating on the S3 surface and the S4 surface, an underlayer having a film thickness of 0.2 μm to 2 μm made of silicon oxide may be provided between the base material and the first layer.

(比較例1)
実施例1と同じ対物レンズにおいて、S1面は表2の仕様(実施例1)と同様な7層の反射防止コート、S2面は表4の仕様(実施例2)と同様な7層の反射防止コートとした。
(Comparative Example 1)
In the same objective lens as in Example 1, the S1 surface has seven layers of antireflection coating similar to the specification in Table 2 (Example 1), and the S2 surface has seven layers of reflection similar to the specification in Table 4 (Example 2). It was a prevention coat.

(比較例2)
実施例9と同じ対物レンズにおいて、S1面、S2面は表12の仕様(実施例9)と同様な10層の反射防止コート、S3面、S4面はは表11と同様な7層の反射防止コートとした。
(Comparative Example 2)
In the same objective lens as in Example 9, the S1 surface and S2 surface are 10 layers of antireflection coating similar to the specifications of Table 12 (Example 9), and the S3 surface and S4 surface are 7 layers of reflection similar to Table 11. It was a prevention coat.

上述した実施例1〜9と比較例1、2とについて、同条件で、回折構造の劣化度合いがわかる集光性、透過光量、及び耐拭き性(レンズのS1面にイソプロピルアルコールを含ませた綿棒を荷重10gで押しつけながら摺動させたときの膜の耐はがれ性)を評価した。評価結果を表14に示す。   With respect to Examples 1 to 9 and Comparative Examples 1 and 2 described above, under the same conditions, the light condensing property, the transmitted light amount, and the wiping resistance that show the degree of deterioration of the diffraction structure (isopropyl alcohol was included in the S1 surface of the lens). The peel resistance of the film when the cotton swab was slid while being pressed with a load of 10 g was evaluated. The evaluation results are shown in Table 14.

Figure 0004645938
表14に示すように、図3の形状のレンズにおいて、比較例1では集光性及び耐拭性が要求水準を満たせなかったのに対し、実施例1〜8では集光性、耐拭性及び透過光量のいずれもが要求水準を満たすことがわかった。又図4の形状のレンズにおいて、比較例2では集光性及び耐拭性が要求水準を満たせなかったのに対し、実施例9では集光性、耐拭性及び透過光量のいずれもが要求水準を満たすことがわかった。
Figure 0004645938
As shown in Table 14, in the lens having the shape shown in FIG. 3, the light collecting property and the wiping resistance in Comparative Example 1 did not satisfy the required levels, whereas in Examples 1 to 8, the light collecting property and the wiping resistance were obtained. It was found that both the transmitted light amount and the transmitted light amount satisfy the required level. Further, in the lens having the shape of FIG. 4, the light collecting property and the wiping resistance did not satisfy the required levels in the comparative example 2, whereas the light collecting property, the wiping resistance and the transmitted light amount were all required in the example 9. It was found to meet the standards.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。   The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate.

第1の実施の形態にかかる光ピックアップ装置の概略構成図である。It is a schematic block diagram of the optical pick-up apparatus concerning 1st Embodiment. 第2の実施の形態にかかる光ピックアップ装置の概略構成図である。It is a schematic block diagram of the optical pick-up apparatus concerning 2nd Embodiment. 対物レンズの断面図である。It is sectional drawing of an objective lens. 別な対物レンズの断面図である。It is sectional drawing of another objective lens.

符号の説明Explanation of symbols

1,11A、11 光源
2,12A、12B、18 ビームスプリッタ
4,14 対物レンズ
5,15A、15B 光情報記録媒体(光ディスク)
7,17A、17B 光検出器
1, 11A, 11 Light source 2, 12A, 12B, 18 Beam splitter 4, 14 Objective lens 5, 15A, 15B Optical information recording medium (optical disk)
7, 17A, 17B Photodetector

Claims (9)

390〜450nmの波長λ1の第1光束が通過し、且つ635〜670nmの波長λ2の第2光束と740〜810nmの波長λ3の第3光束の少なくとも1種類の光束が通過する光路内に配置される光ピックアップ装置用の光学部品であって、
前記光学部品は、微細構造を形成した第1の光学面と、微細構造を形成しない第2の光学面とを有し、
前記微細構造は、回折によって前記いずれかの通過光束に対して集光あるいは発散させる作用を有する回折構造であり、
前記光学部品は、前記回折構造により回折された前記第1の光束及び、前記第2、第3の光束の少なくとも1種類の光束を、それぞれ対応する光情報記録媒体の情報記録面上に集光可能であり、
前記第1の光学面における反射防止膜の膜層数を、前記第2の光学面における反射防止膜の膜総数より少なくし、前記第1の光学面における膜総数を、単層〜9層のいずれかとすることを特徴とする光学部品。
The first light beam having a wavelength λ1 of 390 to 450 nm passes, and is disposed in an optical path through which at least one light beam of the second light beam of wavelength λ2 of 635 to 670 nm and the third light beam of wavelength λ3 of 740 to 810 nm passes. An optical component for an optical pickup device,
The optical component has a first optical surface on which a fine structure is formed, and a second optical surface on which a fine structure is not formed,
The fine structure is a diffractive structure having a function of condensing or diverging any one of the passing light fluxes by diffraction,
The optical component condenses at least one of the first light beam and the second and third light beams diffracted by the diffraction structure on the information recording surface of the corresponding optical information recording medium. Is possible,
The number of antireflective films on the first optical surface is less than the total number of antireflective films on the second optical surface, and the total number of films on the first optical surface is a single layer to nine layers. Any one of the optical components.
前記第2の光学面における反射防止膜を7層とすることを特徴とする請求項1に記載の光学部品。 The optical component according to claim 1, wherein the antireflection film on the second optical surface has seven layers. 前記第2の光学面における反射防止膜を8乃至10層のいずれかとすることを特徴とする請求項1に記載の光学部品。 The optical component according to claim 1, wherein the antireflection film on the second optical surface is any one of 8 to 10 layers. 前記第1の光学面における反射防止膜を単層とすることを特徴とする請求項1乃至3のいずれかに記載の光学部品。 4. The optical component according to claim 1, wherein the antireflection film on the first optical surface is a single layer. 前記第1の光学面における反射防止膜を2層とすることを特徴とする請求項1乃至3に記載の光学部品。 The optical component according to claim 1, wherein the antireflection film on the first optical surface has two layers. 前記第1の光学面における反射防止膜を3層とすることを特徴とする請求項1乃至3に記載の光学部品。 The optical component according to claim 1, wherein the antireflection film on the first optical surface has three layers. 前記第1の光学面における反射防止膜を4乃至9層のいずれかとすることを特徴とする請求項1乃至3のいずれかに記載の光学部品。 The optical component according to any one of claims 1 to 3, wherein the antireflection film on the first optical surface is any one of 4 to 9 layers. 前記光学部品は、光ピックアップ装置用の対物レンズであることを特徴とする請求項1乃至のいずれかに記載の光学部品。 The optical component is an optical component according to any one of claims 1 to 7, characterized in that the objective lens for the optical pickup device. 光源と、
前記光源からの光束を光情報記録媒体の情報記録面上に集光させる、請求項1乃至のいずれかに記載の光学部品を含む集光光学系と、を有することを特徴とする光ピックアップ装置。
A light source;
An optical pickup comprising: a condensing optical system including the optical component according to any one of claims 1 to 8 , wherein the light flux from the light source is condensed on an information recording surface of an optical information recording medium. apparatus.
JP2004201625A 2003-07-10 2004-07-08 Optical component and optical pickup device Expired - Fee Related JP4645938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201625A JP4645938B2 (en) 2003-07-10 2004-07-08 Optical component and optical pickup device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003194744 2003-07-10
JP2003323955 2003-09-17
JP2004201625A JP4645938B2 (en) 2003-07-10 2004-07-08 Optical component and optical pickup device

Publications (2)

Publication Number Publication Date
JP2005116147A JP2005116147A (en) 2005-04-28
JP4645938B2 true JP4645938B2 (en) 2011-03-09

Family

ID=34556979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201625A Expired - Fee Related JP4645938B2 (en) 2003-07-10 2004-07-08 Optical component and optical pickup device

Country Status (1)

Country Link
JP (1) JP4645938B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041292A (en) * 2005-08-03 2007-02-15 Konica Minolta Opto Inc Optical element
JP4764137B2 (en) * 2005-11-01 2011-08-31 キヤノン株式会社 Anti-reflection coating
JP5056271B2 (en) * 2007-08-28 2012-10-24 コニカミノルタアドバンストレイヤー株式会社 Objective lens and optical pickup device
US8797834B2 (en) 2010-06-21 2014-08-05 Panasonic Corporation Objective lens, optical head, optical disk device, and information processing device
JP5496258B2 (en) * 2012-06-11 2014-05-21 キヤノン株式会社 Laminated diffractive optical element and optical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120641A (en) * 1985-11-20 1987-06-01 Mitsubishi Electric Corp Optical head device
JPH11295512A (en) * 1998-04-14 1999-10-29 Sankyo Seiki Mfg Co Ltd Transmission type diffraction element and optical pickup device
JP2000019304A (en) * 1998-06-26 2000-01-21 Konica Corp Optical parts
JP2001006204A (en) * 1999-06-22 2001-01-12 Sharp Corp Optical pickup device and optical recording medium
JP2001283459A (en) * 2000-01-26 2001-10-12 Konica Corp Optical pickup device and objective lens for optical pickup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120641A (en) * 1985-11-20 1987-06-01 Mitsubishi Electric Corp Optical head device
JPH11295512A (en) * 1998-04-14 1999-10-29 Sankyo Seiki Mfg Co Ltd Transmission type diffraction element and optical pickup device
JP2000019304A (en) * 1998-06-26 2000-01-21 Konica Corp Optical parts
JP2001006204A (en) * 1999-06-22 2001-01-12 Sharp Corp Optical pickup device and optical recording medium
JP2001283459A (en) * 2000-01-26 2001-10-12 Konica Corp Optical pickup device and objective lens for optical pickup device

Also Published As

Publication number Publication date
JP2005116147A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP5223236B2 (en) Objective lens and optical pickup device
JP2005031361A (en) Optical lens and information recording and reproducing apparatus
JP4645938B2 (en) Optical component and optical pickup device
WO2007142179A1 (en) Quarter-wave plate, and optical pickup device
KR100987660B1 (en) Dual stack optical data storage medium
JP2002184028A (en) Optical recording/pickup head for cd-r/dvd using hologram shape variable diaphragm
US20050018297A1 (en) Optical component and optical pickup apparatus
JP4172180B2 (en) Optical lens and optical information recording / reproducing apparatus
JP5056271B2 (en) Objective lens and optical pickup device
JP4463238B2 (en) Objective lens design method
JP2012119046A (en) Lens and optical information recording/reproducing device
JP2007073114A (en) Objective lens unit and its manufacturing method, and optical pickup unit
JP4524736B2 (en) Optical element and optical pickup device
WO2002027716A1 (en) Information recording medium and information recording/reproducing device
JP2008152069A (en) Antireflection film
JP2004039161A (en) Objective lens and optical head device
JP4743460B2 (en) Optical component and optical pickup device
JP4924319B2 (en) Aperture filter and optical pickup
JP2004301881A (en) Objective for optical recording medium and optical pickup device using the same
JP2009211787A (en) Objective lens
JP2009266290A (en) Objective lens and optical pickup device
JP2013065390A (en) Optical component for optical pick-up, and optical pick-up device
JP4924725B2 (en) Method for manufacturing aperture filter
JP2007242116A (en) Optical pickup
JP4348223B2 (en) Optical head and optical disk drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees