JP4644692B2 - Method for manufacturing interelectrode connector - Google Patents

Method for manufacturing interelectrode connector Download PDF

Info

Publication number
JP4644692B2
JP4644692B2 JP2007112840A JP2007112840A JP4644692B2 JP 4644692 B2 JP4644692 B2 JP 4644692B2 JP 2007112840 A JP2007112840 A JP 2007112840A JP 2007112840 A JP2007112840 A JP 2007112840A JP 4644692 B2 JP4644692 B2 JP 4644692B2
Authority
JP
Japan
Prior art keywords
curing component
temperature side
resin
adhesive
side curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007112840A
Other languages
Japanese (ja)
Other versions
JP2007262412A (en
Inventor
幸男 山田
雅男 斉藤
修 高松
朋之 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2007112840A priority Critical patent/JP4644692B2/en
Publication of JP2007262412A publication Critical patent/JP2007262412A/en
Application granted granted Critical
Publication of JP4644692B2 publication Critical patent/JP4644692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、例えば、基板同士を固定するとともに電極同士を電気的に接続するための接着技術に関する。   The present invention relates to, for example, an adhesion technique for fixing substrates and electrically connecting electrodes.

従来より、例えば配線基板の電極とICチップの電極とを電気的に接続した状態で固定する手段として、例えば、絶縁性接着剤に導電粒子を分散させた異方性導電ペースト又はこれをフィルム状にした異方導電性接着フィルム、また、導電粒子を含まない絶縁性接着剤等の接合材料が用いられている。   Conventionally, for example, as a means for fixing an electrode of a wiring board and an electrode of an IC chip in an electrically connected state, for example, an anisotropic conductive paste in which conductive particles are dispersed in an insulating adhesive or a film form thereof An anisotropic conductive adhesive film and a bonding material such as an insulating adhesive that does not contain conductive particles are used.

このような接着剤を用いて基板にICチップを実装する場合には、まず、基板及びICチップの電極間に接合材料を挟んだ状態でこれらをプレスしながら熱を加えることにより樹脂成分を硬化させ、又は樹脂の種類によっては紫外線を照射することにより接着剤の樹脂成分を硬化させる。
この接着剤の硬化によりICチップが基板に固定されるとともに、電極間の接続が行われる。
When mounting an IC chip on a substrate using such an adhesive, first the resin component is cured by applying heat while pressing the bonding material between the substrate and the IC chip electrodes. Depending on the type of resin, the resin component of the adhesive is cured by irradiating with ultraviolet rays.
By curing the adhesive, the IC chip is fixed to the substrate and the electrodes are connected.

従来、例えばマルチチップモジュールのように基板に複数のベアチップ(ICチップ)を実装する場合には、ICチップを実装する度に検査する必要があるため、上述したような工程を、接着剤を半ば硬化させてICチップを基板に仮に接続する仮接続工程と、その半硬化状態の接着剤を最終段階まで硬化させてICチップを基板に本接続する本接続工程との2段階に分けている。   Conventionally, when a plurality of bare chips (IC chips) are mounted on a substrate like a multi-chip module, for example, it is necessary to inspect each time an IC chip is mounted. There are two stages: a temporary connection process in which the IC chip is temporarily connected to the substrate by curing, and a main connection process in which the semi-cured adhesive is cured to the final stage and the IC chip is finally connected to the substrate.

そして、仮接続工程の段階でICチップを検査した結果不良であった場合には、そのICチップを基板から取り外して良好なものと交換する作業(リペア作業)を行っている。   If the result of inspection of the IC chip at the stage of the temporary connection process is defective, an operation (repair operation) is performed in which the IC chip is removed from the substrate and replaced with a good one.

ところで、従来の接着剤には、大別すると、熱可塑性タイプ、熱硬化性タイプ、紫外線硬化タイプの3種類があり、さらに従来の接着剤には、熱可塑性タイプと熱硬化性タイプとの中間的な性質を示す、いわゆる半熱硬化性タイプと、熱硬化性タイプと紫外線硬化タイプとの複合タイプとが挙げられる。   By the way, conventional adhesives are roughly classified into three types: thermoplastic type, thermosetting type, and ultraviolet curing type. Furthermore, conventional adhesives are intermediate between thermoplastic type and thermosetting type. And a so-called semi-thermosetting type, and a composite type of a thermosetting type and an ultraviolet curing type.

しかしながら、このような従来の接着剤を用いて電極間の接続を行うと、以下のような問題があった。
すなわち、熱可塑性タイプの接着剤を用いた場合には、リペアを行う際、基板からICチップの取り外しやすさ(リペア性)はよいものの、熱プレスを行う際、接着剤の耐熱性が低いため導通信頼性が悪いという問題があった。
However, when the electrodes are connected using such a conventional adhesive, there are the following problems.
That is, when a thermoplastic type adhesive is used, it is easy to remove the IC chip from the substrate when repairing (repairability), but the heat resistance of the adhesive is low when performing hot pressing. There was a problem of poor conduction reliability.

また、熱硬化性タイプの接着剤を用いた場合には、導通信頼性はよいものの、完全に熱硬化した場合にはリペア性が悪く、その一方でリペア性を確保するように熱硬化の反応を途中で止めるには、加熱温度、加熱時間等の諸条件を設定しなければならず、また、基板ごとにその設定条件が異なり接着剤の取扱いが困難であるという問題があった。   In addition, when a thermosetting type adhesive is used, the conduction reliability is good, but when it is completely heat-cured, the repair property is poor, while on the other hand, the heat-curing reaction is performed to ensure the repair property. In order to stop the process, various conditions such as the heating temperature and the heating time have to be set, and the setting conditions differ from substrate to substrate, making it difficult to handle the adhesive.

さらに、半熱硬化性タイプの接着剤を用いた場合には、熱硬化性タイプと比べて、リペア性が良くなるものの導通信頼性が十分でなかった。   Further, when a semi-thermosetting type adhesive was used, although the repairability was improved as compared with the thermosetting type, the conduction reliability was not sufficient.

一方、紫外線硬化タイプ、又は複合タイプの接着剤を用いる場合には、プレス装置とは別に、紫外線を照射するためのUV照射装置を導入しなければならず、しかも、このUV照射装置はその目的以外の用途がないため汎用性に欠けるという問題があった。   On the other hand, when an ultraviolet curing type or composite type adhesive is used, a UV irradiation device for irradiating ultraviolet rays must be introduced separately from the press device, and this UV irradiation device has its purpose. There was a problem of lack of versatility because there was no use other than.

本発明は、このような従来の技術の課題を解決するためになされたもので、その目的とするところは、リペア性と導通信頼性との両方を確保でき、しかも汎用性に富む電極接続用接着剤を提供することにある。   The present invention has been made in order to solve such problems of the prior art, and the object of the present invention is to secure both repairability and conduction reliability, and for versatile electrode connection. It is to provide an adhesive.

上記目的を達成するためになされた請求項1記載の発明は、相対向する基板の電極間に絶縁性接着剤を配置した状態で加熱加圧することにより、前記相対向する基板の電極を仮接続した後、本接続により接続を完了させる電極間接続体の製造方法において、前記絶縁性接着剤が、熱硬化機構の異なる2種の低温側硬化成分と高温側硬化成分を含み、前記低温側硬化成分と高温側硬化成分のDSC発熱ピークの温度差が20℃以上40℃以下であるとともに、前記低温側硬化成分は、そのDSC発熱ピークが、80℃以上130℃以下であり、かつ、当該低温硬化成分のみを10秒間加熱加圧すると80%反応温度が100℃以上を示す成分であって、ラジカル重合系熱硬化機構を有するアクリレート系の樹脂と硬化剤としての有機過酸化物であり、前記高温側硬化成分は、そのDSC発熱ピークが、100℃以上150℃以下であり、かつ、当該高温硬化成分のみを10秒間加熱加圧すると80%反応温度が140℃以上を示す成分であって、エポキシ系熱硬化機構を有する樹脂と硬化剤としてのイミダゾール系硬化剤であり、前記低温側硬化成分におけるアクリレート樹脂の配合量が、前記高温側硬化成分のエポキシ系熱硬化機構を有する樹脂との合計を100重量部とした場合に5〜70重量部であり、前記低温側硬化成分が80%以上硬化するように前記80%反応温度で前記絶縁性接着剤の仮接続を行った後、仮接続された前記基板の電極間の導通抵抗値の試験を行い、当該試験の結果として所期の値が得られた場合には、その後、前記高温側硬化成分の80%反応温度以上の温度で本接続を行って接続を完了させ、他方、当該試験の結果として所期の値が得られない場合には、前記相対向する基板についてリペア作業を行う工程を有する電極間接続体の製造方法である。
請求項2記載の発明は、請求項1記載の発明において、前記ラジカル重合系熱硬化機構を有するアクリレート系の樹脂が、ビスフェノールEO変性ジアクリレートであり、前記硬化剤が、1,1,3,3テトラメチルブチルパーオキシ2メチルエキサネート、t−ブチルパーオキシベンゾネート、又は有機過酸化物であるものである。
請求項3記載の発明は、請求項2記載の発明において、前記エポキシ系熱硬化機構を有する樹脂が、固形ビスフェノールA型エポキシ樹脂であるものである。
請求項4記載の発明は、請求項1乃至3のいずれか1項記載の発明において、フィルム状の絶縁性接着剤を用いるものである。
請求項5記載の発明は、絶縁性接着剤中に導電粒子を分散させた異方導電性接着剤を相対向する基板の電極間に配置した状態で加熱加圧することにより、前記相対向する基板の電極を仮接続した後、本接続により接続を完了させる電極間接続体の製造方法において、前記異方導電性接着剤が、熱硬化機構の異なる2種の低温側硬化成分と高温側硬化成分を含み、前記低温側硬化成分と高温側硬化成分のDSC発熱ピークの温度差が20℃以上40℃以下であるとともに、前記低温側硬化成分は、そのDSC発熱ピークが、80℃以上130℃以下であり、かつ、当該低温硬化成分のみを10秒間加熱加圧すると80%反応温度が100℃以上を示す成分であって、ラジカル重合系熱硬化機構を有するアクリレート系の樹脂と硬化剤としての有機過酸化物であり、前記高温側硬化成分は、そのDSC発熱ピークが、100℃以上150℃以下であり、かつ、当該高温硬化成分のみを10秒間加熱加圧すると80%反応温度が140℃以上を示す成分であって、エポキシ系熱硬化機構を有する樹脂と硬化剤としてのイミダゾール系硬化剤であり、前記低温側硬化成分におけるアクリレート樹脂の配合量は、前記高温側硬化成分のエポキシ系熱硬化機構を有する樹脂との合計を100重量部とした場合に5〜70重量部であり、前記低温側硬化成分が80%以上硬化するように前記80%反応温度で前記異方導電性接着剤の仮接続を行った後、仮接続された前記基板の電極間の導通抵抗値の試験を行い、当該試験の結果として所期の値が得られた場合には、その後、前記高温側硬化成分の80%反応温度以上の温度で本接続を行って接続を完了させ、他方、当該試験の結果として所期の値が得られない場合には、前記相対向する基板についてリペア作業を行う工程を有する電極間接続体の製造方法である。
請求項6記載の発明は、請求項5記載の発明において、前記ラジカル重合系熱硬化機構を有するアクリレート系の樹脂が、ビスフェノールEO変性ジアクリレートであり、前記硬化剤が、1,1,3,3テトラメチルブチルパーオキシ2メチルエキサネート、t−ブチルパーオキシベンゾネート、又は有機過酸化物であるものである。
請求項7記載の発明は、請求項6記載の発明において、前記エポキシ系熱硬化機構を有する樹脂が、固形ビスフェノールA型エポキシ樹脂であるものである。
請求項8記載の発明は、請求項5乃至7のいずれか1項記載の発明において、フィルム状の異方導電性接着剤を用いるものである。
In order to achieve the above object, the invention according to claim 1 is characterized in that the electrodes of the opposing substrates are temporarily connected by applying heat and pressure in a state where an insulating adhesive is disposed between the electrodes of the opposing substrates. Then, in the manufacturing method of the interelectrode connection body in which the connection is completed by the main connection, the insulating adhesive includes two kinds of low temperature side curing components and high temperature side curing components having different thermosetting mechanisms, and the low temperature side curing is performed. The temperature difference between the DSC exothermic peak of the component and the high temperature side curing component is 20 ° C. or higher and 40 ° C. or lower, and the low temperature side curing component has a DSC exothermic peak of 80 ° C. or higher and 130 ° C. or lower, and the low temperature When only the curing component is heated and pressurized for 10 seconds, the 80% reaction temperature is 100 ° C. or higher, an acrylate resin having a radical polymerization thermosetting mechanism and an organic peroxide as a curing agent. The DSC exothermic peak is 100 ° C. or more and 150 ° C. or less, and when only the high temperature curing component is heated and pressurized for 10 seconds, the 80% reaction temperature is 140 ° C. or more. A resin having an epoxy-based thermosetting mechanism and an imidazole-based curing agent as a curing agent, wherein the amount of the acrylate resin in the low-temperature-side curing component is a resin having an epoxy-based thermosetting mechanism of the high-temperature-side curing component And when the insulating adhesive is temporarily connected at the 80% reaction temperature so that the low-temperature-side curing component is cured by 80% or more. Then, a test of the conduction resistance value between the electrodes of the temporarily connected substrate is performed, and when the expected value is obtained as a result of the test, the test is performed at a temperature equal to or lower than the 80% reaction temperature of the high temperature side curing component. If the desired value is not obtained as a result of the test, the connection between the electrodes having a process of repairing the opposing substrates is performed. It is a manufacturing method.
The invention according to claim 2 is the invention according to claim 1, wherein the acrylate resin having the radical polymerization thermosetting mechanism is bisphenol EO-modified diacrylate, and the curing agent is 1,1,3, 3-tetramethylbutyl peroxy-2-methyl exercise sulfonates, t- butyl peroxy sulfonates, or those which are organic peroxides.
The invention according to claim 3 is the invention according to claim 2, wherein the resin having the epoxy thermosetting mechanism is a solid bisphenol A type epoxy resin.
According to a fourth aspect of the present invention, in the first aspect of the present invention, the film-like insulating adhesive is used.
The invention according to claim 5 is characterized in that the opposing substrates are heated and pressed in a state where an anisotropic conductive adhesive in which conductive particles are dispersed in an insulating adhesive is disposed between the electrodes of the opposing substrates. In the method for manufacturing an inter-electrode connection body in which the electrodes are temporarily connected and then the connection is completed by the main connection, the anisotropic conductive adhesive includes two types of low-temperature side curing components and high-temperature side curing components having different thermosetting mechanisms. The DSC exothermic peak temperature difference between the low temperature side curing component and the high temperature side curing component is 20 ° C. or higher and 40 ° C. or lower, and the low temperature side curing component has a DSC exothermic peak of 80 ° C. or higher and 130 ° C. or lower. In addition, when only the low-temperature curing component is heated and pressurized for 10 seconds, the 80% reaction temperature is 100 ° C. or higher, and it is an acrylate resin having a radical polymerization thermosetting mechanism and a curing agent. It is a peroxide, and the high temperature side curing component has a DSC exothermic peak of 100 ° C. or more and 150 ° C. or less, and when only the high temperature curing component is heated and pressurized for 10 seconds, the 80% reaction temperature is 140 ° C. or more. A resin having an epoxy-based thermosetting mechanism and an imidazole-based curing agent as a curing agent, and the amount of the acrylate resin in the low-temperature-side curing component is the epoxy-based thermosetting of the high-temperature-side curing component 5 to 70 parts by weight when the total of the resin having a mechanism is 100 parts by weight, and the anisotropic conductive adhesive is at the 80% reaction temperature so that the low-temperature side curing component is cured 80% or more. After performing the temporary connection, conduct a test of the conduction resistance value between the electrodes of the temporarily connected substrate, and when the expected value is obtained as a result of the test, then, When the main connection is completed at a temperature equal to or higher than 0% reaction temperature to complete the connection, and when the expected value is not obtained as a result of the test, a repair operation is performed on the opposing substrates. This is a method for manufacturing an interelectrode connector.
The invention according to claim 6 is the invention according to claim 5, wherein the acrylate resin having a radical polymerization thermosetting mechanism is bisphenol EO-modified diacrylate, and the curing agent is 1,1,3, 3-tetramethylbutyl peroxy-2-methyl exercise sulfonates, t- butyl peroxy sulfonates, or those which are organic peroxides.
The invention according to claim 7 is the invention according to claim 6, wherein the resin having the epoxy thermosetting mechanism is a solid bisphenol A type epoxy resin.
The invention according to claim 8 is the invention according to any one of claims 5 to 7, wherein a film-like anisotropic conductive adhesive is used.

本発明にあっては、まず、接着剤の低温側硬化成分の熱硬化が80%ほど進むように、すなわち、低温側硬化成分の80%反応温度で加熱しながら仮接続を行い、基板同士をある程度固定した後に導通試験を行う。 In the present invention, first, the thermal connection of the low temperature side curing component of the adhesive proceeds about 80%, that is, temporary connection is performed while heating at the 80% reaction temperature of the low temperature side curing component , and the substrates are connected to each other. performing the conduction test after a certain degree fixed.

この状態では、低温側硬化成分は完全に熱硬化しておらず、また、高温側硬化成分はまだ熱硬化の反応が開始していないため、検査結果が不良の基板を容易に取り外すことができる。   In this state, the low-temperature-side cured component is not completely cured by heat, and the high-temperature-side cured component has not yet started the heat-curing reaction, so that a substrate with a defective inspection result can be easily removed. .

また、検査済みの基板同士を仮接続した後、高温側硬化成分が熱硬化する温度すなわち、高温側硬化成分の80%反応温度以上の温度で本接続を行えば、低温側硬化成分とともに高温側硬化成分が熱硬化するため、基板同士が完全に固定される。 Further, after temporarily connecting the inspected substrates to each other, if the main connection is performed at a temperature at which the high temperature side curing component is thermally cured, that is, at a temperature equal to or higher than the 80% reaction temperature of the high temperature side curing component, Since the curing component is thermally cured, the substrates are completely fixed.

このように、本発明によれば、リペア性と導通信頼性との両方を確保しうる電極接続用接着剤を提供することができる。   As described above, according to the present invention, it is possible to provide an electrode connecting adhesive capable of ensuring both repairability and conduction reliability.

しかも、本発明の接着剤は熱圧着のみによって接続を行うことができるので、例えばUV照射装置等の特殊な装置を導入する必要がなく、汎用性に富むというメリットがあるものである。   Moreover, since the adhesive of the present invention can be connected only by thermocompression bonding, there is no need to introduce a special device such as a UV irradiation device, and there is a merit that it is versatile.

本発明によれば、リペア性と導通信頼性との両方を確保でき、しかも汎用性に富む電極接続用接着剤を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, both repair property and conduction | electrical_connection reliability can be ensured, and also the adhesive agent for electrode connection rich in versatility can be provided.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
本発明の絶縁性接着剤は、相対向する基板の電極間に配置した状態で加圧又は加熱加圧することにより基板同士を固定するとともに電極同士を電気的に接続するためのものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The insulating adhesive of the present invention is for fixing the substrates to each other and electrically connecting the electrodes by pressing or heating and pressing in a state of being arranged between the electrodes of the opposing substrates.

ここで、「基板」は、いわゆるマザーボードやドーターボード等の回路基板のほか、例えばICチップ等の電子部品を含むものとする。   Here, the “substrate” includes an electronic component such as an IC chip in addition to a circuit board such as a so-called mother board or daughter board.

そして、本発明の絶縁性接着剤は、2種の熱硬化機構を有する接着剤成分(低温側硬化成分及び高温側硬化成分とする。)を内在させたことを特徴とする。   The insulating adhesive of the present invention is characterized in that an adhesive component having two thermosetting mechanisms (a low temperature side curing component and a high temperature side curing component) is incorporated.

本発明においては、接着剤成分の反応性に鑑み、接着剤成分の熱硬化機構を、DSC発熱ピークと80%反応温度を用いて規定する。   In the present invention, in view of the reactivity of the adhesive component, the thermosetting mechanism of the adhesive component is defined using the DSC exothermic peak and the 80% reaction temperature.

ここで、DSC発熱ピークとは、支差走査熱量測定(Differential Scanning Calorimetry)、すなわち、温度調節された電気炉の中に置かれた試料と基準物質への熱量の出入りの差を試料温度とともに測定する方法によって得られた温度をいう。   Here, the DSC exothermic peak means differential scanning calorimetry, that is, the difference in heat amount between the sample placed in the temperature-controlled electric furnace and the reference material, together with the sample temperature. The temperature obtained by the method.

また、80%反応温度とは、所定時間(例えば10秒間)圧着後に当該接着剤が80%以上反応する温度をいう。   The 80% reaction temperature refers to a temperature at which the adhesive reacts 80% or more after pressure bonding for a predetermined time (for example, 10 seconds).

この80%反応温度は、当該接着剤成分のサンプルの初期DSC発熱ピークの測定値を100%とし、このサンプルを硬化させた後のDSC発熱ピークの測定値に基づいて算出する。   The 80% reaction temperature is calculated based on the measured value of the DSC exothermic peak after the sample was cured with the measured value of the initial DSC exothermic peak of the sample of the adhesive component as 100%.

本発明の場合、仮圧着と本圧着における反応性を考慮すると、低温側硬化成分と高温側硬化成分のDSC発熱ピークの温度差が20℃以上であることが好ましく、より好ましい当該温度差は、30℃以上である。   In the case of the present invention, in consideration of the reactivity in provisional pressure bonding and main pressure bonding, the temperature difference between the DSC exothermic peak of the low temperature side curing component and the high temperature side curing component is preferably 20 ° C. or more, and the more preferable temperature difference is 30 ° C or higher.

ここで、保存安定性及び反応性確保の観点からは、低温側硬化成分として、DSC発熱ピークが60〜140℃のものを用いることが好ましく、より好ましい当該温度は、80〜130℃である。   Here, from the viewpoint of ensuring storage stability and reactivity, it is preferable to use a low temperature side curing component having a DSC exothermic peak of 60 to 140 ° C., and more preferably the temperature is 80 to 130 ° C.

また、作業性及び接続信頼性確保の観点からは、高温側硬化成分として、DSC発熱ピークが80〜170℃のものを用いることが好ましく、より好ましい当該温度は、100〜150℃である。   Further, from the viewpoint of ensuring workability and connection reliability, it is preferable to use a high temperature side curing component having a DSC exothermic peak of 80 to 170 ° C., and a more preferable temperature is 100 to 150 ° C.

一方、作業性確保の観点からは、低温側硬化成分として、10秒間圧着後の80%反応温度が100℃以上のものを用いることが好ましく、より好ましい当該温度は、110℃以上である。   On the other hand, from the viewpoint of ensuring workability, it is preferable to use a low-temperature-side curing component that has an 80% reaction temperature after pressure bonding for 10 seconds of 100 ° C. or higher, more preferably 110 ° C. or higher.

また、作業性及び接続信頼性確保の観点からは、高温側硬化成分として、10秒間圧着後の80%反応温度が140℃以上のものを用いることが好ましく、より好ましい当該温度は、150℃以上である。   From the viewpoint of ensuring workability and connection reliability, it is preferable to use a high-temperature-side curing component having an 80% reaction temperature of 140 ° C. or higher after pressure bonding for 10 seconds, more preferably 150 ° C. or higher. It is.

本発明の場合、低温側硬化成分としては、反応速度及び保存安定性の観点から、例えば過酸化物を用いたラジカル重合系熱硬化機構を有するアクリレート系の接着剤を好適に用いることができる。   In the case of the present invention, as the low temperature side curing component, from the viewpoint of reaction rate and storage stability, for example, an acrylate adhesive having a radical polymerization thermosetting mechanism using a peroxide can be suitably used.

一方、高温側硬化成分としては、接続信頼性確保及び反応速度の観点から、例えば潜在性硬化剤を用いたエポキシ系熱硬化機構を有する接着剤を好適に用いることができる。   On the other hand, as the high temperature side curing component, for example, an adhesive having an epoxy thermosetting mechanism using a latent curing agent can be suitably used from the viewpoint of securing connection reliability and reaction rate.

この場合、接着剤の配合量は、低温側硬化成分及び高温側硬化成分の合計を100重量部としたときに低温側硬化成分の配合量を5〜70重量部とすることが好ましく、より好ましい当該配合量は、10〜50重量部である。   In this case, the blending amount of the adhesive is preferably 5 to 70 parts by weight, more preferably, the blending amount of the low temperature side curing component when the total of the low temperature side curing component and the high temperature side curing component is 100 parts by weight. The amount is 10 to 50 parts by weight.

低温硬化側接着剤の配合量が5重量部より小さいと、仮圧着時の導通の保持を確実に行うことができないという不都合があり、70重量%より大きいと、完全に硬化した後の接続信頼性が低下するという不都合がある。   If the blending amount of the low-temperature curing side adhesive is smaller than 5 parts by weight, there is an inconvenience that the conduction during the temporary crimping cannot be surely maintained. If it exceeds 70% by weight, the connection reliability after being completely cured There is an inconvenience that the performance decreases.

次に、本発明に係る接着フィルムの好ましい実施の形態を図面を参照して説明する。
図1は、本発明に係る絶縁性接着フィルムの好ましい実施の形態を示す概略構成図である。また、図2は、本発明に係る異方導電性接着フィルムの概略構成を示す図である。
Next, preferred embodiments of the adhesive film according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a preferred embodiment of an insulating adhesive film according to the present invention. Moreover, FIG. 2 is a figure which shows schematic structure of the anisotropically conductive adhesive film which concerns on this invention.

図1に示す絶縁性接着フィルム1Aは、例えばポリエステル樹脂等からなる剥離フイルム2上に、上記2種類の熱硬化機構を有する接着剤成分を用いた絶縁性接着剤層10が形成されたものである。   An insulating adhesive film 1A shown in FIG. 1 is obtained by forming an insulating adhesive layer 10 using an adhesive component having the above two types of thermosetting mechanisms on a peeling film 2 made of, for example, a polyester resin. is there.

この場合、絶縁性接着剤層10の厚さは特に限定されるものではないが、種々の用途に対応する観点から、5〜100μmとすることが好ましい。   In this case, the thickness of the insulating adhesive layer 10 is not particularly limited, but is preferably 5 to 100 μm from the viewpoint of corresponding to various applications.

本実施の形態の絶縁性接着フィルム1は、常法によって作成することができる。すなわち、上述した2種類の接着剤成分を所定の溶剤に溶解し、このバインダーペーストを剥離フィルム2上に塗布して乾燥させることにより得られる。   The insulating adhesive film 1 of this Embodiment can be produced by a conventional method. That is, it can be obtained by dissolving the above-described two types of adhesive components in a predetermined solvent, applying this binder paste onto the release film 2 and drying it.

一方、図2に示す異方導電性接着フィルム1Cは、上述した図1の接着フィルム1Aの絶縁性接着剤層10中に導電粒子13が分散されたものである。   On the other hand, an anisotropic conductive adhesive film 1C shown in FIG. 2 is obtained by dispersing conductive particles 13 in the insulating adhesive layer 10 of the adhesive film 1A shown in FIG.

ここで、導電粒子13の配合量は特に限定されるものではないが、導通及び絶縁特性確保の観点からは、1〜20体積%であることが好ましい。   Here, although the compounding quantity of the electroconductive particle 13 is not specifically limited, From a viewpoint of conduction | electrical_connection and insulation characteristic ensuring, it is preferable that it is 1-20 volume%.

また、導電粒子13の粒径も特に限定されるものではないが、導通信頼性確保の観点からは、1〜20μmであることが好ましい。   The particle diameter of the conductive particles 13 is not particularly limited, but is preferably 1 to 20 μm from the viewpoint of ensuring conduction reliability.

本実施の形態の異方導電性接着フィルム1Cもまた常法によって作成することができる。すなわち、所定の溶剤に溶解させた上記各接着剤成分に導電粒子13を分散させ、このバインダーを剥離フィルム2上に塗布して乾燥させることにより得られる。   The anisotropic conductive adhesive film 1C of the present embodiment can also be produced by a conventional method. That is, it can be obtained by dispersing the conductive particles 13 in each of the above adhesive components dissolved in a predetermined solvent, applying this binder onto the release film 2 and drying it.

図3(a)〜図3(e)は、本発明に係る電極接続用接着剤を用いた接続方法の好ましい実施の形態を示す工程図である。以下、導電粒子を含まない絶縁性接着を用いた場合を例にとって説明する。 FIG. 3A to FIG. 3E are process diagrams showing a preferred embodiment of a connection method using an electrode connecting adhesive according to the present invention. Hereinafter, a case where an insulating adhesive containing no conductive particles is used will be described as an example.

図3(a)に示すように、回路基板20の接続すべき電極21a上に本発明の絶縁性接着剤を塗布し、これにより形成された絶縁性接着フィルム10の上にICチップ30を載置して、ICチップ30の位置決めを行う。   As shown in FIG. 3A, the insulating adhesive of the present invention is applied on the electrode 21a to be connected to the circuit board 20, and the IC chip 30 is mounted on the insulating adhesive film 10 formed thereby. Then, the IC chip 30 is positioned.

そして、絶縁性接着フィルム10の温度が低温側硬化成分の80%反応温度(例えば130℃)になるように調整された圧着ヘッド40を用い、例えば、3MPa/cm2・バンプの圧力で、10秒間、仮圧着としての1次圧着(仮接続)を行う(図3(b))。 Then, using the pressure-bonding head 40 adjusted so that the temperature of the insulating adhesive film 10 becomes 80% reaction temperature (for example, 130 ° C.) of the low-temperature-side curing component, for example, with a pressure of 3 MPa / cm 2 · bump, For the second time, primary pressure bonding (temporary connection) as temporary pressure bonding is performed (FIG. 3B).

この状態では、絶縁性接着フィルム10の低温側硬化成分は完全に熱硬化しておらず、また、高温側硬化成分はまだ熱硬化の反応が開始していない。   In this state, the low temperature side curing component of the insulating adhesive film 10 has not been completely thermoset, and the high temperature side curing component has not yet started the thermosetting reaction.

さらに、仮接続された電極21a、31間の導通試験を行い、その結果が良好な場合には、図3(c)(d)に示すように、絶縁性接着フィルム10の温度が高温側硬化成分の80%反応温度以上(例えば170℃)になるように圧着ヘッド40を調整し、例えば、3MPa/cm2・バンプの圧力で、10秒間、本圧着としての2次圧着(本接続)を行う。 Furthermore, a continuity test between the temporarily connected electrodes 21a and 31 is performed, and when the result is good, the temperature of the insulating adhesive film 10 is high-temperature-side cured as shown in FIGS. The pressure bonding head 40 is adjusted so that the reaction temperature is 80% or higher (for example, 170 ° C.) of the components, and, for example, secondary pressure bonding (main connection) as main pressure bonding is performed for 10 seconds with a pressure of 3 MPa / cm 2 · bump. Do.

これにより、絶縁性接着フィルム10の低温側硬化成分及び高温側硬化成分が熱硬化するため、回路基板20とICチップ30が完全に固定される。 Thereby, since the low temperature side curing component and the high temperature side curing component of the insulating adhesive film 10 are thermally cured, the circuit board 20 and the IC chip 30 are completely fixed.

その後、図3(d)に示すように、回路基板20上の他の電極21bに、上述した手順により、別のICチップ30を仮圧着としての1次圧着を行い所定の導通試験を行う。   Thereafter, as shown in FIG. 3 (d), the other electrode 21b on the circuit board 20 is subjected to primary pressure bonding as a temporary pressure bonding with another IC chip 30 by the above-described procedure, and a predetermined continuity test is performed.

上述したように、この状態では、絶縁性接着フィルム10の低温側硬化成分は完全に熱硬化しておらず、また、高温側硬化成分はまだ熱硬化の反応が開始していないため、導通試験の結果が不良な場合には、図3(e)に示すように、当該不良のICチップ30を回路基板20から容易に取り外すことができる。   As described above, in this state, the low temperature side curing component of the insulating adhesive film 10 is not completely thermoset, and the high temperature side curing component has not yet started the thermosetting reaction. If the result is defective, the defective IC chip 30 can be easily removed from the circuit board 20 as shown in FIG.

そして、さらに別のICチップ30を上記同様の手順によって仮圧着し、新たな導通試験の結果が良好な場合には、上述した手順によって本圧着を行う。   Further, another IC chip 30 is temporarily press-bonded by the same procedure as described above, and when the result of a new continuity test is satisfactory, the main press-bonding is performed by the above-described procedure.

以下同様に、回路基板20の電極21a、21bにICチップ30を仮圧着して導通試験を行い、その結果に応じて適宜リペアを行いながら、導通試験の結果が良好なICチップ30のみを回路基板20に本圧着する。   Similarly, the IC chip 30 is temporarily crimped to the electrodes 21a and 21b of the circuit board 20, a continuity test is performed, and only the IC chip 30 having a good continuity test result is obtained while performing a repair according to the result. A main pressure bonding is performed on the substrate 20.

以上述べたように本実施の形態の絶縁性接着剤によれば、ICチップ30を回路基板20上に実装する際にリペア性と導通信頼性との両方を確保することができる。   As described above, according to the insulating adhesive of the present embodiment, both repairability and conduction reliability can be ensured when the IC chip 30 is mounted on the circuit board 20.

しかも、本実施の形態の絶縁性接着剤によれば、熱圧着のみによって接続を行うことができるので、例えばUV照射装置等の特殊な装置を導入する必要がないというメリットがある。   In addition, according to the insulating adhesive of the present embodiment, since the connection can be performed only by thermocompression bonding, there is an advantage that it is not necessary to introduce a special device such as a UV irradiation device.

なお、上記実施の形態においては導電粒子を含まない絶縁性接着を用いた場合を例にとって説明したが、導電粒子を含む異方導電性接着剤又は異方導電性接着フィルムを用いた場合も同様の手順によって接続を行うことができる。   In the above embodiment, the case where the insulating adhesive not including the conductive particles is used has been described as an example. However, the same applies to the case where the anisotropic conductive adhesive or the anisotropic conductive adhesive film including the conductive particles is used. The connection can be made by the following procedure.

以下、本発明の実施例を比較例とともに詳細に説明する。
まず、表1に示すように、実施例及び比較例の絶縁性接着剤の配合材料として、ラジカル重合系熱硬化機構を有する接着剤A−1〜A−3と、エポキシ系熱硬化機構を有する接着剤Bを調製した。
Examples of the present invention will be described below in detail together with comparative examples.
First, as shown in Table 1, as a compounding material for the insulating adhesives of Examples and Comparative Examples, adhesives A-1 to A-3 having a radical polymerization thermosetting mechanism and an epoxy thermosetting mechanism are included. Adhesive B was prepared.

<接着剤A−1>
絶縁性接着剤樹脂として、ビスフェノールF型エチレンオキサイド(EO)変性ジアクリレート(東亞合成社製、商品名M−208)を15重量部、開始剤として、有機過酸化物である1,1,3,3テトラメチルブチルパーオキシ2メチルエキサネート(日本油脂社製、商品名パーオクタO)を5重量部を配合した。
この接着剤A−1は、DSC発熱ピークが80℃、80%反応温度が130℃である。
<Adhesive A-1>
As an insulating adhesive resin, 15 parts by weight of bisphenol F-type ethylene oxide (EO) -modified diacrylate (manufactured by Toagosei Co., Ltd., trade name M-208) is used, and 1,1,3 which is an organic peroxide as an initiator , 3 Tetramethylbutyl peroxy 2-methylexanate (Nippon Yushi Co., Ltd., trade name Perocta O) was blended in an amount of 5 parts by weight.
This adhesive A-1 has a DSC exothermic peak of 80 ° C. and an 80% reaction temperature of 130 ° C.

<接着剤A−2>
絶縁性接着剤樹脂として、上記ビスフェノールF型エチレンオキサイド(EO)変性ジアクリレートを15重量部と、開始剤として、有機過酸化物であるt−ブチルパーオキシベンゾネート(日本油脂社製、商品名パーチブルZ)を5重量部を配合した。
この接着剤A−2は、DSC発熱ピークが100℃、80%反応温度が150℃である。
<Adhesive A-2>
As an insulating adhesive resin, 15 parts by weight of the above bisphenol F-type ethylene oxide (EO) -modified diacrylate and as an initiator, t-butyl peroxybenzoate which is an organic peroxide (manufactured by NOF Corporation, trade name) Particulate Z) was blended in 5 parts by weight.
This adhesive A-2 has a DSC exothermic peak of 100 ° C. and an 80% reaction temperature of 150 ° C.

<接着剤A−3>
絶縁性接着剤樹脂として、上記ビスフェノールF型エチレンオキサイド(EO)変性ジアクリレートを15重量部と、開始剤として、有機過酸化物(日本油脂社製、品名パーキュアHB)を5重量部を配合した。
この接着剤A−3は、DSC発熱ピークが120℃、80%反応温度が170℃である。
<Adhesive A-3>
Formulated as insulating adhesive resin, and the bisphenol F-type ethylene oxide (EO) modified diacrylate 15 parts by weight, as an initiator, an organic peroxide (manufactured by NOF Corporation, trade name Pakyua HB) 5 parts by weight did.
This adhesive A-3 has a DSC exothermic peak of 120 ° C. and an 80% reaction temperature of 170 ° C.

<接着剤B>
絶縁性接着剤樹脂として、固形ビスフェノールA型エポキシ樹脂(固形エポキシ樹脂:油化シェル社製 商品名EP1009)50重量部と、潜在性硬化剤として、イミダゾール系硬化剤(旭化成社製 商品名HX3941HP)50重量部と、カップリング剤として、エポキシシラン(日本ユニカー社製 商品名A187)1重量部を配合した。
この接着剤Bは、DSC発熱ピークが120℃、80%反応温度が170℃である。
<Adhesive B>
As an insulating adhesive resin, 50 parts by weight of a solid bisphenol A type epoxy resin (solid epoxy resin: product name EP1009 manufactured by Yuka Shell Co.) and an imidazole-based curing agent (product name HX3941HP manufactured by Asahi Kasei Co., Ltd.) as a latent curing agent. 50 parts by weight and 1 part by weight of epoxy silane (trade name A187 manufactured by Nippon Unicar Co., Ltd.) were blended as a coupling agent.
This adhesive B has a DSC exothermic peak of 120 ° C. and an 80% reaction temperature of 170 ° C.

Figure 0004644692
Figure 0004644692

そして、接着剤A−1〜A−3の配合量、接着剤Bの配合量を変えて実施例1〜4のサンプル、比較例1〜5のサンプルとした。   And the compounding quantity of adhesive agent A-1 to A-3 and the compounding quantity of adhesive agent B were changed, and it was set as the sample of Examples 1-4 and the sample of Comparative Examples 1-5.

[実施例1]
接着剤A−1を5重量部、接着剤Bを95重量部を配合したバインダー溶液に、導電粒子を15重量部加えてペースト状にして実施例1のサンプルとした。
[Example 1]
A sample of Example 1 was prepared by adding 15 parts by weight of conductive particles to a binder solution in which 5 parts by weight of adhesive A-1 and 95 parts by weight of adhesive B were blended to form a paste.

[実施例2]
接着剤A−1の配合量を25重量部、接着剤Bの配合量を75重量部とした以外は実施例1の場合と同様の方法によって実施例2のサンプルを作成した。
[Example 2]
A sample of Example 2 was prepared in the same manner as in Example 1 except that the amount of adhesive A-1 was 25 parts by weight and the amount of adhesive B was 75 parts by weight.

[実施例3]
接着剤A−1の配合量を70重量部、接着剤Bの配合量を30重量部とした以外は実施例1の場合と同様の方法によって実施例3のサンプルを作成した。
[Example 3]
A sample of Example 3 was prepared in the same manner as in Example 1 except that the amount of adhesive A-1 was 70 parts by weight and the amount of adhesive B was 30 parts by weight.

[比較例1]
接着剤Bを配合せず接着剤A−1の配合量を100重量部とした以外は、実施例1の場合と同様の方法によって比較例1のサンプルを作成した。
[Comparative Example 1]
A sample of Comparative Example 1 was prepared in the same manner as in Example 1 except that the adhesive B was not blended and the blending amount of the adhesive A-1 was 100 parts by weight.

[比較例2]
接着剤A−1の配合量を25重量部、接着剤A−2の配合量を75重量部とした以外は実施例1の場合と同様の方法によって実施例3のサンプルを作成した。
[Comparative Example 2]
A sample of Example 3 was prepared in the same manner as in Example 1 except that the amount of adhesive A-1 was 25 parts by weight and the amount of adhesive A-2 was 75 parts by weight.

[比較例3]
接着剤A−1の配合量を25重量部、接着剤A−3の配合量を75重量部とした以外は実施例1の場合と同様の方法によって実施例3のサンプルを作成した。
[Comparative Example 3]
A sample of Example 3 was prepared in the same manner as in Example 1 except that the amount of adhesive A-1 was 25 parts by weight and the amount of adhesive A-3 was 75 parts by weight.

[比較例4]
接着剤Aを配合せず接着剤Bの配合量を100重量部とした以外は、実施例1の場合と同様の方法によって比較例1のサンプルを作成した。
[Comparative Example 4]
A sample of Comparative Example 1 was prepared in the same manner as in Example 1 except that the adhesive A was not blended and the blending amount of the adhesive B was 100 parts by weight.

[比較例5]
比較例4のサンプルと同じものを比較例5のサンプルとした。
[Comparative Example 5]
The same sample as that of Comparative Example 4 was used as the sample of Comparative Example 5.

<評価方法及び評価結果>
(1次圧着後の導通抵抗)
上述したサンプルを乾燥後の厚さが40μmになるように回路基板上に塗布し、ICチップを位置決めした後、回路基板とICチップとを1次圧着(仮圧着)した。
<Evaluation method and evaluation results>
(Conduction resistance after primary pressure bonding)
The above-described sample was applied onto a circuit board so that the thickness after drying was 40 μm, the IC chip was positioned, and then the circuit board and the IC chip were subjected to primary pressure bonding (temporary pressure bonding).

この場合、回路基板としては、厚さ0.7mmの耐熱性ガラス基材エポキシ樹脂銅張積層板(FR−5)上に、厚さ18μm、幅100μm、ピッチ150μmの銅(Cu)パターンを形成し、その上にニッケル−金めっきを施したリジッド基板を用いた。   In this case, as a circuit board, a copper (Cu) pattern having a thickness of 18 μm, a width of 100 μm, and a pitch of 150 μm is formed on a heat-resistant glass base epoxy resin copper-clad laminate (FR-5) having a thickness of 0.7 mm. And the rigid board | substrate which gave nickel-gold plating on it was used.

一方、ICチップとしては、外形10mm×10mmの基板上に、外形20μm×20μm、高さ20μmのバンプ電極が形成されたものを用いた。なお、バンプ電極には、ニッケル−金めっきを施した。   On the other hand, as the IC chip, an IC chip in which a bump electrode having an outer shape of 20 μm × 20 μm and a height of 20 μm was formed on a substrate having an outer shape of 10 mm × 10 mm was used. The bump electrode was subjected to nickel-gold plating.

1次圧着の条件は、実施例1〜3及び比較例1、2については、温度130℃、圧力3MPa/cm2・バンプ、時間10秒とした。 The conditions of the primary pressure bonding were set to a temperature of 130 ° C., a pressure of 3 MPa / cm 2 · bump, and a time of 10 seconds for Examples 1-3 and Comparative Examples 1 and 2.

また、比較例5については、温度150℃、圧力3MPa/cm2・バンプ、時間10秒とした。
As for the specific Comparative Examples 5, temperature 0.99 ° C., a pressure 3 MPa / cm 2 · bumps, and a time of 10 seconds.

さらに、比較例3、4については、温度170℃、圧力3MPa/cm2・バンプ、時間10秒とした。 Further, for Comparative Examples 3 and 4, the temperature was 170 ° C., the pressure was 3 MPa / cm 2 · bump, and the time was 10 seconds.

1次圧着後、すべての電極間について導通抵抗値を測定して評価を行った。
ここでの導通抵抗の判定は、100mΩ未満のものを良好(○)、100〜500mΩのものをやや不良(△)、500mΩより大きくなったものを不良(×)とした。その結果を表2に示す。
After the primary pressure bonding, the conductive resistance values were measured and evaluated between all the electrodes.
In this case, the conduction resistance was determined as good (◯) when less than 100 mΩ, slightly poor (Δ) when 100 to 500 mΩ, and defective (×) when larger than 500 mΩ. The results are shown in Table 2.

(リペア性)
温度100℃に加熱した板金上に、ICチップを1次圧着した上記回路基板を載置して30秒間加熱した後、ICチップを剥離し、回路基板上の実施例及び比較例のサンプルの残渣をアセトンを用いて払拭した。
(Repairability)
The circuit board on which the IC chip is primarily pressure-bonded is placed on a sheet metal heated to a temperature of 100 ° C. and heated for 30 seconds, and then the IC chip is peeled off, and the residue of the samples of the examples and comparative examples on the circuit board Was wiped with acetone.

この場合、リペア性の判定は、ICチップを剥離でき、サンプルの残渣をすべて取り除くことができたものを良好(○)、ICチップを剥離できたもののサンプルの残渣をすべて取り除くことができなかったものをやや不良(△)、ICチップを剥離することが困難であったものを不良(×)とした。その結果を表2に示す。   In this case, the determination of the repair property was good (◯) that the IC chip could be peeled off and all of the sample residue could be removed, and the IC chip could be peeled off but not all of the sample residue. A thing was a little bad ((triangle | delta)), and the thing in which it was difficult to peel an IC chip was made into the defect (*). The results are shown in Table 2.

(2次圧着後の導通抵抗)
1次圧着後、実施例及び比較例のサンプルについて所定の条件で2次圧着(本圧着)を行った。
2次圧着の条件は、比較例1は、温度150℃、圧力3MPa/cm2・バンプ、時間10秒の条件とした。
(Conduction resistance after secondary crimping)
After the primary pressure bonding, secondary pressure bonding (main pressure bonding) was performed on the samples of Examples and Comparative Examples under predetermined conditions.
The conditions for the secondary pressure bonding were as follows: Comparative Example 1 was a temperature of 150 ° C., a pressure of 3 MPa / cm 2 · bump, and a time of 10 seconds.

また、実施例1〜3及び比較例2〜5については、温度170℃、圧力3MPa/cm2・バンプ、時間10秒とした。 Moreover, about Examples 1-3 and Comparative Examples 2-5, it was set as the temperature of 170 degreeC, the pressure of 3 MPa / cm < 2 > * bump, and time 10 seconds.

2次圧着後、すべての電極間について導通抵抗値を測定して評価を行った。
ここでの導通抵抗の判定は、100mΩ未満のものを良好(○)、100〜500mΩのものをやや不良(△)、500mΩより大きくなったものを不良(×)とした。その結果を表2に示す。
After the secondary pressure bonding, conduction resistance values were measured for all the electrodes and evaluated.
In this case, the conduction resistance was determined as good (◯) when less than 100 mΩ, slightly poor (Δ) when 100 to 500 mΩ, and defective (×) when larger than 500 mΩ. The results are shown in Table 2.

(PCT後の導通信頼性)
温度121℃、湿度100%RH、2気圧の条件下でプレッシャクッカ試験(Pressure Cooker Test)を行った後、すべての電極間について導通抵抗値を測定して評価を行った。
(Conduction reliability after PCT)
After performing a pressure cooker test under the conditions of a temperature of 121 ° C., a humidity of 100% RH, and 2 atmospheres, a conduction resistance value was measured and evaluated between all the electrodes.

ここでの導通抵抗の判定は、上記同様、100mΩ未満のものを良好(○)、100〜500mΩのものをやや不良(△)、500mΩより大きくなったものを不良(×)とした。その結果を表2に示す。   In the determination of the conduction resistance here, as described above, a sample having a value of less than 100 mΩ was determined to be good (◯), a value of 100 to 500 mΩ was determined to be slightly defective (Δ), and a value of more than 500 mΩ was determined to be defective (x). The results are shown in Table 2.

Figure 0004644692
Figure 0004644692

表2に示すように、実施例1〜3のものは、リペア性及び導通信頼性ともに良好な結果が得られた。   As shown in Table 2, in Examples 1 to 3, good results were obtained in both repairability and conduction reliability.

これに対し、接着剤A−1のみを用いた比較例1は、PCT後の導通信頼性が良くなかった。   On the other hand, Comparative Example 1 using only the adhesive A-1 did not have good conduction reliability after PCT.

また、1次圧着の温度が接着剤A−1の80%反応温度と等しい比較例2の場合は、接着剤A−2の硬化が十分ではないため、1次圧着後の導通抵抗が良くなかった。   Further, in the case of Comparative Example 2 where the temperature of the primary pressure bonding is equal to the 80% reaction temperature of the adhesive A-1, since the adhesive A-2 is not sufficiently cured, the conduction resistance after the primary pressure bonding is not good. It was.

さらに、1次圧着の温度が170℃と高い比較例3は、1次圧着時に接着剤A−1及びA−3が反応して硬化したため、リペア性が良くなかった。   Further, Comparative Example 3 having a high primary pressure bonding temperature of 170 ° C. had poor repairability because the adhesives A-1 and A-3 reacted and hardened during the primary pressure bonding.

さらにまた、接着剤Bのみを用いた比較例4は、1次圧着時に接着剤Bが反応して硬化したため、リペア性が良くなかった。   Furthermore, in Comparative Example 4 using only the adhesive B, the adhesive B reacted and hardened during the primary pressure bonding, so that the repairability was not good.

一方、比較例4と同一の材料を用い1次圧着時の温度を下げた比較例5にあっては、接着剤Bが十分に硬化せず、1次圧着後の導通抵抗が良くなかった。   On the other hand, in Comparative Example 5 in which the same material as that in Comparative Example 4 was used and the temperature during the primary pressure bonding was lowered, the adhesive B was not sufficiently cured and the conduction resistance after the primary pressure bonding was not good.

本発明に係る絶縁性接着フィルムの好ましい実施の形態を示す概略構成図である。It is a schematic block diagram which shows preferable embodiment of the insulating adhesive film which concerns on this invention. 本発明に係る異方導電性接着フィルムの概略構成図である。It is a schematic block diagram of the anisotropically conductive adhesive film which concerns on this invention. (a)〜(e):本発明に係る電極接続用接着剤を用いた接続方法の好ましい実施の形態を示す工程図である。(A)-(e): It is process drawing which shows preferable embodiment of the connection method using the adhesive agent for electrode connection which concerns on this invention.

符号の説明Explanation of symbols

1A 絶縁性接着フィルム
1C 異方導電性接着フィルム
2 剥離フィルム
10 絶縁性接着剤層
11a、11b 低温側硬化成分層
12 高温側硬化成分層
13 導電粒子
DESCRIPTION OF SYMBOLS 1A Insulating adhesive film 1C Anisotropic conductive adhesive film 2 Release film 10 Insulating adhesive layer 11a, 11b Low temperature side cured component layer 12 High temperature side cured component layer 13 Conductive particle

Claims (8)

相対向する基板の電極間に絶縁性接着剤を配置した状態で加熱加圧することにより、前記相対向する基板の電極を仮接続した後、本接続により接続を完了させる電極間接続体の製造方法において、
前記絶縁性接着剤が、熱硬化機構の異なる2種の低温側硬化成分と高温側硬化成分を含み、
前記低温側硬化成分と高温側硬化成分のDSC発熱ピークの温度差が20℃以上40℃以下であるとともに、
前記低温側硬化成分は、そのDSC発熱ピークが、80℃以上130℃以下であり、かつ、当該低温硬化成分のみを10秒間加熱加圧すると80%反応温度が100℃以上を示す成分であって、ラジカル重合系熱硬化機構を有するアクリレート系の樹脂と硬化剤としての有機過酸化物であり、
前記高温側硬化成分は、そのDSC発熱ピークが、100℃以上150℃以下であり、かつ、当該高温硬化成分のみを10秒間加熱加圧すると80%反応温度が140℃以上を示す成分であって、エポキシ系熱硬化機構を有する樹脂と硬化剤としてのイミダゾール系硬化剤であり、
前記低温側硬化成分におけるアクリレート樹脂の配合量が、前記高温側硬化成分のエポキシ系熱硬化機構を有する樹脂との合計を100重量部とした場合に5〜70重量部であり、
前記低温側硬化成分が80%以上硬化するように前記80%反応温度で前記絶縁性接着剤の仮接続を行った後、
仮接続された前記基板の電極間の導通抵抗値の試験を行い、
当該試験の結果として所期の値が得られた場合には、その後、前記高温側硬化成分の80%反応温度以上の温度で本接続を行って接続を完了させ、
他方、当該試験の結果として所期の値が得られない場合には、前記相対向する基板についてリペア作業を行う工程を有する電極間接続体の製造方法。
A method of manufacturing an inter- electrode connection body in which the connection is completed by the main connection after temporarily connecting the electrodes of the opposing substrates by heating and pressing in a state where an insulating adhesive is disposed between the electrodes of the opposing substrates. In
The insulating adhesive includes two low-temperature side curing components and a high-temperature side curing component having different thermosetting mechanisms,
While the temperature difference of the DSC exothermic peak between the low temperature side curing component and the high temperature side curing component is 20 ° C. or more and 40 ° C. or less,
Said cold side curing component, the DSC exothermic peak is at 80 ° C. or higher 130 ° C. or less, and a component when only the pressurized heat pressing 10 seconds the cold curing component 80% reaction temperature exhibits more than 100 ° C. Oh I, an organic peroxide as a acrylate-based resin and a curing agent having a radical polymerization-based thermosetting mechanism,
The hot-side curing component, the DSC exothermic peak is at 100 ° C. or higher 0.99 ° C. or less, and a component when only the pressurized heat pressing 10 seconds the high temperature curing component 80% reaction temperature exhibits more than 140 ° C. Oh I, an imidazole curing agent as resin and hardener with epoxy thermosetting mechanism,
The blending amount of the acrylate resin in the low temperature side curing component is 5 to 70 parts by weight when the total with the resin having the epoxy thermosetting mechanism of the high temperature side curing component is 100 parts by weight,
After temporarily connecting the insulating adhesive at the 80% reaction temperature so that the low temperature side curing component is cured by 80% or more,
Conduct a test of the conduction resistance value between the electrodes of the substrate temporarily connected,
When the expected value is obtained as a result of the test, the main connection is then performed at a temperature equal to or higher than the 80% reaction temperature of the high temperature side curing component to complete the connection.
On the other hand, when the expected value is not obtained as a result of the test, a method for manufacturing an interelectrode connector including a step of performing repair work on the opposing substrates.
前記ラジカル重合系熱硬化機構を有するアクリレート系の樹脂が、ビスフェノールEO変性ジアクリレートであり、前記硬化剤が、1,1,3,3テトラメチルブチルパーオキシ2メチルエキサネート、t−ブチルパーオキシベンゾネート、又は有機過酸化物である請求項1記載の電極間接続体の製造方法。 The acrylate resin having a radical polymerization type thermosetting mechanism is bisphenol EO-modified diacrylate, and the curing agent is 1,1,3,3 tetramethylbutylperoxy-2methylexanate, t-butylperoxy Benzoneto, or process according to claim 1, wherein the inter-electrode connecting body is organic peroxide. 前記エポキシ系熱硬化機構を有する樹脂が、固形ビスフェノールA型エポキシ樹脂である請求項2記載の電極間接続体の製造方法。The method for producing an interelectrode connector according to claim 2, wherein the resin having an epoxy thermosetting mechanism is a solid bisphenol A type epoxy resin. ィルム状の絶縁性接着剤を用いる請求項1乃至3のいずれか1項記載の電極間接続体の製造方法。 Off Irumu like process according to claim 1 to the inter-electrode connecting body according to any one of 3 using an insulating adhesive. 絶縁性接着剤中に導電粒子を分散させた異方導電性接着剤を相対向する基板の電極間に配置した状態で加熱加圧することにより、前記相対向する基板の電極を仮接続した後、本接続により接続を完了させる電極間接続体の製造方法において、After temporarily connecting the electrodes of the opposing substrates by heating and pressing the anisotropic conductive adhesive in which the conductive particles are dispersed in the insulating adhesive while being arranged between the electrodes of the opposing substrates, In the manufacturing method of the interelectrode connector that completes the connection by this connection,
前記異方導電性接着剤が、熱硬化機構の異なる2種の低温側硬化成分と高温側硬化成分を含み、The anisotropic conductive adhesive includes two kinds of low temperature side curing components and high temperature side curing components having different thermosetting mechanisms,
前記低温側硬化成分と高温側硬化成分のDSC発熱ピークの温度差が20℃以上40℃以下であるとともに、While the temperature difference of the DSC exothermic peak between the low temperature side curing component and the high temperature side curing component is 20 ° C. or more and 40 ° C. or less,
前記低温側硬化成分は、そのDSC発熱ピークが、80℃以上130℃以下であり、かつ、当該低温硬化成分のみを10秒間加熱加圧すると80%反応温度が100℃以上を示す成分であって、ラジカル重合系熱硬化機構を有するアクリレート系の樹脂と硬化剤としての有機過酸化物であり、The low temperature side curing component has a DSC exothermic peak of 80 ° C. or higher and 130 ° C. or lower, and when only the low temperature curing component is heated and pressurized for 10 seconds, the 80% reaction temperature is 100 ° C. or higher. , An acrylate resin having a radical polymerization thermosetting mechanism and an organic peroxide as a curing agent,
前記高温側硬化成分は、そのDSC発熱ピークが、100℃以上150℃以下であり、かつ、当該高温硬化成分のみを10秒間加熱加圧すると80%反応温度が140℃以上を示す成分であって、エポキシ系熱硬化機構を有する樹脂と硬化剤としてのイミダゾール系硬化剤であり、The high temperature side curing component has a DSC exothermic peak of 100 ° C. or more and 150 ° C. or less, and when only the high temperature curing component is heated and pressurized for 10 seconds, the 80% reaction temperature is 140 ° C. or more. A resin having an epoxy thermosetting mechanism and an imidazole curing agent as a curing agent,
前記低温側硬化成分におけるアクリレート樹脂の配合量は、前記高温側硬化成分のエポキシ系熱硬化機構を有する樹脂との合計を100重量部とした場合に5〜70重量部であり、The blending amount of the acrylate resin in the low temperature side curing component is 5 to 70 parts by weight when the total with the resin having the epoxy thermosetting mechanism of the high temperature side curing component is 100 parts by weight,
前記低温側硬化成分が80%以上硬化するように前記80%反応温度で前記異方導電性接着剤の仮接続を行った後、After performing the temporary connection of the anisotropic conductive adhesive at the 80% reaction temperature so that the low temperature side curing component is cured 80% or more,
仮接続された前記基板の電極間の導通抵抗値の試験を行い、Conduct a test of the conduction resistance value between the electrodes of the substrate temporarily connected,
当該試験の結果として所期の値が得られた場合には、その後、前記高温側硬化成分の80%反応温度以上の温度で本接続を行って接続を完了させ、When the expected value is obtained as a result of the test, the main connection is then performed at a temperature equal to or higher than the 80% reaction temperature of the high temperature side curing component to complete the connection.
他方、当該試験の結果として所期の値が得られない場合には、前記相対向する基板についてリペア作業を行う工程を有する電極間接続体の製造方法。On the other hand, when the expected value is not obtained as a result of the test, a method for manufacturing an interelectrode connector including a step of performing repair work on the opposing substrates.
前記ラジカル重合系熱硬化機構を有するアクリレート系の樹脂が、ビスフェノールEO変性ジアクリレートであり、前記硬化剤が、1,1,3,3テトラメチルブチルパーオキシ2メチルエキサネート、t−ブチルパーオキシベンゾネート、又は有機過酸化物である請求項5記載の電極間接続体の製造方法。 The acrylate resin having a radical polymerization type thermosetting mechanism is bisphenol EO-modified diacrylate, and the curing agent is 1,1,3,3 tetramethylbutylperoxy-2methylexanate, t-butylperoxy Benzoneto, or the method of manufacturing the organic peroxide in a claim 5, wherein the inter-electrode connecting body. 前記エポキシ系熱硬化機構を有する樹脂が、固形ビスフェノールA型エポキシ樹脂である請求項6記載の電極間接続体の製造方法。The method for producing an interelectrode connector according to claim 6, wherein the resin having an epoxy thermosetting mechanism is a solid bisphenol A type epoxy resin. ィルム状の異方導電性接着剤を用いる請求項5乃至7のいずれか1項記載の電極間接続体の製造方法。 Method for producing a connection between electrodes of any one of claims 5 to 7 using a full Irumu shaped anisotropic conductive adhesive.
JP2007112840A 2000-03-07 2007-04-23 Method for manufacturing interelectrode connector Expired - Fee Related JP4644692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112840A JP4644692B2 (en) 2000-03-07 2007-04-23 Method for manufacturing interelectrode connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000061548 2000-03-07
JP2007112840A JP4644692B2 (en) 2000-03-07 2007-04-23 Method for manufacturing interelectrode connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004116433A Division JP2004277745A (en) 2000-03-07 2004-04-12 Adhesive for electrode connection and connecting method using it

Publications (2)

Publication Number Publication Date
JP2007262412A JP2007262412A (en) 2007-10-11
JP4644692B2 true JP4644692B2 (en) 2011-03-02

Family

ID=38635689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112840A Expired - Fee Related JP4644692B2 (en) 2000-03-07 2007-04-23 Method for manufacturing interelectrode connector

Country Status (1)

Country Link
JP (1) JP4644692B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226562B2 (en) 2008-03-27 2013-07-03 デクセリアルズ株式会社 Anisotropic conductive film, joined body and method for producing the same
JP4897778B2 (en) 2008-11-20 2012-03-14 ソニーケミカル&インフォメーションデバイス株式会社 CONNECTION FILM, CONNECTED BODY, AND MANUFACTURING METHOD THEREOF
JP5315031B2 (en) * 2008-12-08 2013-10-16 デクセリアルズ株式会社 Anisotropic conductive film, joined body and method for producing the same
CN103264558B (en) * 2011-07-12 2015-06-10 苏州斯迪克新材料科技股份有限公司 Manufacturing method of release film for organic pressure sensitive adhesive
CN103242747A (en) * 2013-05-10 2013-08-14 西安航空动力股份有限公司 Method for bonding low-pressure oil-filter outlet bushing of aeroengine
JP6293524B2 (en) 2014-03-11 2018-03-14 デクセリアルズ株式会社 Anisotropic conductive film, method for producing the same, connection method and joined body
JP6542927B2 (en) * 2018-02-14 2019-07-10 デクセリアルズ株式会社 Anisotropic conductive film, connection method and joined body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154780A (en) * 1986-12-18 1988-06-28 Ibiden Co Ltd Adhesive composition and method of using the same as adhesive
JPH07238268A (en) * 1994-02-28 1995-09-12 Hitachi Chem Co Ltd Adhesive and semi-conductor unit
JPH10168412A (en) * 1996-12-10 1998-06-23 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive
JPH11135561A (en) * 1997-10-28 1999-05-21 Sony Corp Anisotropic conductive adhesive film, its manufacture, flip-chip mounting method, and flip-chip packaging board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154780A (en) * 1986-12-18 1988-06-28 Ibiden Co Ltd Adhesive composition and method of using the same as adhesive
JPH07238268A (en) * 1994-02-28 1995-09-12 Hitachi Chem Co Ltd Adhesive and semi-conductor unit
JPH10168412A (en) * 1996-12-10 1998-06-23 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive
JPH11135561A (en) * 1997-10-28 1999-05-21 Sony Corp Anisotropic conductive adhesive film, its manufacture, flip-chip mounting method, and flip-chip packaging board

Also Published As

Publication number Publication date
JP2007262412A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
KR100841584B1 (en) Adhesive for connecting electrodes and adhesion methods with the use of the same
JP3402267B2 (en) Electronic element mounting method
JP4644692B2 (en) Method for manufacturing interelectrode connector
KR101021437B1 (en) Multilayer anisotropic, conductive adhesive and joining structure using this
WO2011158666A1 (en) Process for production of connected structure
JP4385794B2 (en) Anisotropic conductive connection method
KR101098205B1 (en) Anisotropic electroconductive film
KR102115282B1 (en) Method for manufacturing connection structure
KR20140061247A (en) Method for producing connecting structure and connecting method
KR101842855B1 (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
KR100777255B1 (en) Anisotropic conductive film and packaging method of electronic parts using the same
JP5631654B2 (en) Manufacturing method and connection method of mounting body
JP6505423B2 (en) Method of manufacturing mounting body, and anisotropic conductive film
JP4780023B2 (en) Multi-chip module mounting method
JP2004277745A (en) Adhesive for electrode connection and connecting method using it
JP2000332393A (en) Conductive sheet in thickness direction
JP2001127107A (en) Connecting member and connector
JP2004244486A (en) Adhesive film, and semiconductor package and semiconductor device using it
WO2023234056A1 (en) Method for producing circuit connection structure, and circuit connection device
JP2007243223A (en) Electronic component mounting structure
JPH1140931A (en) Circuit board
JPH1140929A (en) Circuit board
JPH1140930A (en) Circuit board
JP2010118612A (en) Method of interconnecting terminals

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100910

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101104

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees