JP4644117B2 - Powder and particle dispersion method and apparatus - Google Patents

Powder and particle dispersion method and apparatus Download PDF

Info

Publication number
JP4644117B2
JP4644117B2 JP2005379538A JP2005379538A JP4644117B2 JP 4644117 B2 JP4644117 B2 JP 4644117B2 JP 2005379538 A JP2005379538 A JP 2005379538A JP 2005379538 A JP2005379538 A JP 2005379538A JP 4644117 B2 JP4644117 B2 JP 4644117B2
Authority
JP
Japan
Prior art keywords
granular material
powder
spraying
spraying section
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005379538A
Other languages
Japanese (ja)
Other versions
JP2007175657A (en
Inventor
尚夫 石川
清輝 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005379538A priority Critical patent/JP4644117B2/en
Publication of JP2007175657A publication Critical patent/JP2007175657A/en
Application granted granted Critical
Publication of JP4644117B2 publication Critical patent/JP4644117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

本発明は、粉粒体供給機から定量供給される粉粒体を計量し、シートや容器等の散布対象物に均一に散布して圧着する粉粒体散布方法及び装置に関する。   The present invention relates to a powder and particle distribution method and apparatus for weighing powder particles quantitatively supplied from a powder and particle supply machine, uniformly spraying the powder particles on a distribution object such as a sheet and a container, and press-bonding them.

粉粒体散布装置として、特許文献1に記載の如く、粉粒体が1個以上入る大きさの多数の小孔が一様な密度でロール表面に穿設されている回転ロールに供給され、該小孔内に挿入された粉粒体を該回転ロールの下方を定速で移動する表面に接着剤を塗布された平板上に落下させるものがある。この粉粒体散布装置によれば、平板の接着性を帯びた表面に、概ね一定容積に計量された粉粒体を散布して接着できる。
特開平6-226202
As described in Patent Document 1, as a powder and particle distribution device, a large number of small holes with a size of one or more particles are supplied to a rotating roll that is drilled on the roll surface with a uniform density. There is one in which a granular material inserted into the small hole is dropped onto a flat plate coated with an adhesive on a surface that moves at a constant speed below the rotating roll. According to this granular material spreading | diffusion apparatus, the granular material measured to the substantially fixed volume can be spread | diffused and adhere | attached on the surface which took on the adhesiveness of the flat plate.
JP-A-6-226202

特許文献1の粉粒体散布装置は、容積計量粉粒体を平板の表面に落下させ、そのまま該平板の表面に該粉粒体を接着させようとするものである。接着剤に到達した粉粒体のみが接着され、上側に堆積している粉粒体は未接着のままである。即ち、粉粒体はハンドリングにより分級が発生し、容積計量の為に重量ばらつきが存在し、粉粒体を均一に散布して接着することは困難である。   The granular material spraying device of Patent Document 1 is intended to drop a volumetric granular material on the surface of a flat plate and to adhere the granular material to the surface of the flat plate as it is. Only the granular material that has reached the adhesive is adhered, and the granular material deposited on the upper side remains unadhered. That is, the powder particles are classified by handling, and there is a variation in weight due to volumetric measurement, and it is difficult to uniformly disperse and adhere the powder particles.

本発明の課題は、粉粒体の散布対象物に均一散布して接着することにある。   An object of the present invention is to uniformly disperse and adhere to an object to be dispersed.

請求項1の発明は、散布対象物の接着性を帯びた散布区画に粉粒体を投入し、散布対象物に振動を与え、散布区画内の粉粒体を該散布区画の全域に拡散させ、散布区画内の粉粒体を第1圧着手段により散布対象物に圧着し、散布対象物に再び振動を与え、散布区画内の粉粒体を該散布区画の全域に再び拡散させ、散布区画内の粉粒体を第2圧着手段により散布対象物に再び圧着する粉粒体散布方法である。 In the invention of claim 1, powder particles are put into a spraying section having adhesion of the object to be sprayed, the object to be sprayed is vibrated, and the particles in the spraying section are diffused throughout the spraying section. The powder particles in the spraying section are pressure-bonded to the object to be sprayed by the first crimping means, the vibration object is vibrated again, and the powder particles in the spraying section are diffused again throughout the spraying section. It is a granular material dispersion | distribution method which press-fits an inner granular material again to a dispersion | spreading object by a 2nd crimping | compression-bonding means .

粉粒体計量散布装置100は、図1に示す如く、粉粒体計量装置10と粉粒体散布装置40の組合せからなり、粉粒体計量装置10が計量した粉粒体Pを、粉粒体散布装置40によりシート(容器等でも可)からなる散布対象物1に定めた散布区画1Aに散布して接着可能にする。粉粒体Pとしては、例えば、予め粒度分布を710μm〜1400μm(平均粒径1100μm)の範囲に調整した酸化カルシウムである。   As shown in FIG. 1, the powder particle measuring device 100 includes a combination of a powder particle measuring device 10 and a powder material scattering device 40, and the powder material P measured by the powder particle measuring device 10 is used as a powder particle. The body spraying device 40 is sprayed on the spraying section 1A defined on the spraying object 1 made of a sheet (can be a container or the like) to enable bonding. As the granular material P, for example, calcium oxide whose particle size distribution is previously adjusted to a range of 710 μm to 1400 μm (average particle size 1100 μm) is used.

(粉粒体計量装置10)(図1〜図5)
粉粒体計量装置10は、粉粒体Pの単位時間当りの供給重量を一定にして連続的に供給する減算式電磁フィーダ(減算式粉粒体供給機)20と、減算式電磁フィーダ20が粉粒体Pを流すトラフ(粉粒体流路)23Cの排出端の直下に設置され、トラフ23Cからの粉粒体Pの流れを目標分配重量に対応する一定時間間隔で分配し、目標分配重量の粉粒体Pを計量する分配手段30とを有する。
(Powder particle measuring device 10) (FIGS. 1 to 5)
The granular material measuring device 10 includes a subtractive electromagnetic feeder (subtractive granular material feeder) 20 that continuously supplies the granular material P with a constant supply weight per unit time, and a subtractive electromagnetic feeder 20. It is installed directly under the discharge end of the trough (powder channel) 23C for flowing the powder P, distributes the flow of the powder P from the trough 23C at regular time intervals corresponding to the target distribution weight, and target distribution Distributing means 30 for weighing the granular material P in weight.

減算式電磁フィーダ20は、図1、図2に示す如く、大ホッパ21、ロードセル22、電磁フィーダ23、及びコントローラ24から構成される。電磁フィーダ23は、振動体23A、小ホッパ23B、及びトラフ23Cから構成され、振動体23Aの上に小ホッパ23Bとトラフ23Cが連結されて一体となって載せられている。小ホッパ23Bとトラフ23Cの連結状態は小ホッパ23Bの送り方向の壁面の1箇所にトラフ23Cの形状に合致する孔を開け、その孔にほぼ水平にトラフ23Cを取付けている。電磁フィーダ23はロードセルの上に直接載せられて固定される。大ホッパ21は供給する粉粒体Pを最初に投入され、小ホッパ23Bの概ね真上に底部を開口し、供給する粉粒体Pを一気に小ホッパ23Bの底部まで到達せしめる。減算式電磁フィーダ20は、粉粒体Pを電磁フィーダ23で供給するが、電磁フィーダ23はロードセル22に載せられており、粉粒体Pの供給時も常時粉粒体Pの残重量を計量できる。ロードセル22による計量データをコントローラ24に入力し、コントローラ24に設定した供給重量となるように電磁フィーダ23の振幅を増減する制御を行なう。   As shown in FIGS. 1 and 2, the subtraction type electromagnetic feeder 20 includes a large hopper 21, a load cell 22, an electromagnetic feeder 23, and a controller 24. The electromagnetic feeder 23 includes a vibrating body 23A, a small hopper 23B, and a trough 23C, and the small hopper 23B and the trough 23C are connected to and integrally mounted on the vibrating body 23A. In the connected state of the small hopper 23B and the trough 23C, a hole matching the shape of the trough 23C is formed at one place on the wall surface in the feed direction of the small hopper 23B, and the trough 23C is attached almost horizontally to the hole. The electromagnetic feeder 23 is directly mounted on the load cell and fixed. The large hopper 21 is initially charged with the powder P to be supplied, opens the bottom almost directly above the small hopper 23B, and causes the supplied powder P to reach the bottom of the small hopper 23B all at once. The subtractive electromagnetic feeder 20 supplies the granular material P with the electromagnetic feeder 23. The electromagnetic feeder 23 is mounted on the load cell 22, and the residual weight of the granular material P is always measured even when the granular material P is supplied. it can. Weighing data from the load cell 22 is input to the controller 24, and control is performed to increase or decrease the amplitude of the electromagnetic feeder 23 so that the supply weight set in the controller 24 is obtained.

以下、減算式電磁フィーダ20による粉粒体Pの供給方法を具体的に説明する。
電磁フィーダ23を停止させた状態で粉粒体Pを大ホッパ21に投入すると、粉粒体Pは小ホッパ23Bの底まで到達して流れを停止し静止する。小ホッパ23Bの底部は粉粒体Pが安定して流れるよう、その断面形状は略水平な底板の両側に略垂直に立てた側板から構成され、更に小ホッパ23B片側の側壁面から外側に向かって略水平に、底部形状と同じ縦断面形状のトラフ23Cが伸び、小ホッパ23Bから粉粒体Pを外部に供給できる。大ホッパ21から小ホッパ23Bにかけてつながって静止している粉粒体Pの最下部、即ち小ホッパ23Bの底部にある粉粒体Pは、電磁フィーダ23が斜め前方、即ち粉粒体Pを供給する方向に往復微振動することにより、トラフ23C上を何層か重なった状態でトラフ23Cの先端部まで搬送され、最後に落下排出する。このときの単位時間当りの供給重量は、ロードセル22でリアルタイムに粉粒体Pの残重量を計量し、これを単位時間当りの減少重量に置き換えて供給重量を算出し、これがコントローラ24に入力した一定供給重量になるようにコントローラ24が電磁フィーダ23の振幅を制御する。供給重量を増加させる場合には振幅を大きくし、減少させる場合は振幅を小さくする。
Hereinafter, a method for supplying the powder P by the subtractive electromagnetic feeder 20 will be specifically described.
If the granular material P is thrown into the large hopper 21 in a state where the electromagnetic feeder 23 is stopped, the granular material P reaches the bottom of the small hopper 23B, stops flowing and stops. The bottom of the small hopper 23B has a cross-sectional shape that is composed of side plates that are set substantially vertically on both sides of a substantially horizontal bottom plate so that the powder particles P can flow stably, and further outward from the side wall surface on one side of the small hopper 23B. The trough 23C having the same vertical cross-sectional shape as the bottom shape extends substantially horizontally, and the powder P can be supplied to the outside from the small hopper 23B. The lowermost part of the granular material P that is connected from the large hopper 21 to the small hopper 23B and is stationary, that is, the granular material P at the bottom of the small hopper 23B is supplied by the electromagnetic feeder 23 obliquely forward, that is, the granular material P. By reciprocating micro-vibration in the direction in which the trough 23C is moved, the trough 23C is transported to the front end of the trough 23C in a state where several layers are overlapped, and finally dropped and discharged. The supply weight per unit time at this time is calculated by supplying the remaining weight of the granular material P in real time with the load cell 22 and substituting it with the reduced weight per unit time, and this is input to the controller 24. The controller 24 controls the amplitude of the electromagnetic feeder 23 so as to obtain a constant supply weight. When the supply weight is increased, the amplitude is increased, and when the supply weight is decreased, the amplitude is decreased.

減算式電磁フィーダ20のトラフ23Cの先端部から落下排出される粉粒体Pの単位時間当りの供給重量は上述の如くに一定になる。このとき、トラフ23Cの縦断面形状、寸法は供給精度に大きく影響するので慎重に決定しなければならない。粉粒体Pは粒度調整してあるとはいうものの、ミクロ的には分級、偏析を起こしており、比重のばらつきが発生している。粉粒体Pを高精度で計量して供給するには、その影響を小さくしなければならないので、粉粒体Pの流れの断面積を小さくすることが重要である。即ち、トラフ23Cの幅を狭くし、トラフ23C上の粉粒体Pの厚みが薄くなるように供給する必要がある。トラフ23Cの幅は粉粒体Pの粒径との兼ね合いで決定され、狭すぎると小ホッパ23Bの側壁面部で詰まりを生じたり、流れが一時滞る現象が発生する。本実施例では粉粒体Pを最大粒径1400μm(平均粒径1100μm)の酸化カルシウムとしたが、小ホッパ23Bの側壁面の幅は6mmが下限であった。即ち、粉粒体Pをスムーズに滞りなく供給するには、トラフ23Cの搬送幅を粉粒体Pの最大粒径の4倍以上に設定する必要がある。また、小ホッパ23Bの側壁面の溝高さは最大粒径の3倍が下限であり、それ未満では流れが一時滞り、供給重量が不安定になる。   The supply weight per unit time of the granular material P that is dropped and discharged from the tip of the trough 23C of the subtractive electromagnetic feeder 20 is constant as described above. At this time, the longitudinal cross-sectional shape and dimensions of the trough 23C greatly affect the supply accuracy, and must be determined carefully. Although it is said that the particle size P is adjusted, microscopic classification and segregation occur, and variation in specific gravity occurs. In order to measure and supply the granular material P with high accuracy, its influence must be reduced, so it is important to reduce the cross-sectional area of the flow of the granular material P. That is, it is necessary to supply the trough 23C so that the width of the trough 23C is reduced and the thickness of the granular material P on the trough 23C is reduced. The width of the trough 23C is determined in consideration of the particle size of the granular material P, and if it is too narrow, a phenomenon occurs in which the side wall surface portion of the small hopper 23B is clogged or the flow is temporarily suspended. In this embodiment, the powder P is made of calcium oxide having a maximum particle size of 1400 μm (average particle size of 1100 μm), but the width of the side wall surface of the small hopper 23B has a lower limit of 6 mm. That is, in order to supply the granular material P smoothly and without stagnation, it is necessary to set the conveyance width of the trough 23C to be four times or more the maximum particle size of the granular material P. Further, the groove height on the side wall surface of the small hopper 23B is a lower limit of three times the maximum particle diameter, and if it is less than that, the flow is temporarily suspended and the supply weight becomes unstable.

粉粒体分配装置(分配手段)30は、図1、図3〜図5に示す如く、減算式電磁フィーダ20のトラフ23Cの先端部(排出端)の直下に配置されて等速移動する搬送手段31と、搬送手段31の移動方向に沿って該搬送手段31に定ピッチで固定される複数の分配容器32とを有する。   As shown in FIGS. 1 and 3 to 5, the powder particle distribution device (distribution means) 30 is disposed immediately below the tip (discharge end) of the trough 23 </ b> C of the subtractive electromagnetic feeder 20 and moves at a constant speed. Means 31 and a plurality of distribution containers 32 fixed to the transport means 31 at a constant pitch along the moving direction of the transport means 31.

搬送手段31は、図3に示す如く、サーボモータmにて連続回転される等速回転テーブル31Aからなり、分配容器32は回転テーブル31Aの周方向に定ピッチで固定され、回転テーブル31Aの周方向で相隣る分配容器32の入口と分配容器32の入口の間に図4に示す如くの横断面逆V字型の分配切刃33を配置してある。分配切刃33は、図5に示す如く、単位時間当りの供給重量を一定にして連続的にトラフ23Cを流れてきて落下排出される粉粒体Pの流れの帯(連続体)を、一定速度で回転する仕切りによりカットする如くにより、目標分配重量に対応する一定時間間隔で各分配容器32に分配する。   As shown in FIG. 3, the conveying means 31 includes a constant speed rotating table 31A that is continuously rotated by a servo motor m. The distribution container 32 is fixed at a constant pitch in the circumferential direction of the rotating table 31A. A distribution cutting blade 33 having an inverted V-shaped cross section as shown in FIG. 4 is arranged between the inlets of the distribution containers 32 adjacent to each other in the direction. As shown in FIG. 5, the distribution cutting edge 33 has a constant flow band (continuous body) of the granular material P that continuously flows through the trough 23C with a constant supply weight per unit time and falls and is discharged. Distributing to each distribution container 32 at regular time intervals corresponding to the target distribution weight by cutting with a partition rotating at a speed.

分配容器32の底部にはシャッタ32Aが設けられる。トラフ23Cの先端部から分配容器32に分配された目標分配重量の粉粒体Pは回転テーブル31Aの回転によりそのまま粉粒体投入ガイド41から散布先まで搬送され、散布先でシャッタ32Aが開かれると、粉粒体Pを粉粒体投入ガイド41から落下排出する。その後、分配容器32はシャッタ32Aを再び閉じ、回転テーブル31Aの回転によりトラフ23Cの先端部の直下に再び位置付けられ、目標分配重量の新たな粉粒体Pを受け取る作業をくり返す。   A shutter 32 </ b> A is provided at the bottom of the distribution container 32. The granular material P having a target distribution weight distributed from the tip of the trough 23C to the distribution container 32 is conveyed as it is from the granular material charging guide 41 to the spraying destination by the rotation of the rotary table 31A, and the shutter 32A is opened at the spraying destination. Then, the granular material P is dropped and discharged from the granular material charging guide 41. Thereafter, the distribution container 32 closes the shutter 32A again, and is positioned again immediately below the front end portion of the trough 23C by the rotation of the rotary table 31A, and repeats the operation of receiving the new granular material P having the target distribution weight.

搬送手段31は、分配容器32を備える回転テーブル31Aに限らず、チェーンやタイミングベルトに定ピッチで分配容器32を固定したもの、分配容器32の各個にリニアモータを積んで自走させるもの等を採用できる。   The conveying means 31 is not limited to the rotary table 31A including the distribution container 32, but includes a chain or a timing belt fixed to the distribution container 32 at a constant pitch, a linear motor mounted on each distribution container 32, and a self-propelled one. Can be adopted.

減算式電磁フィーダ20のトラフ23Cを流れる粉粒体Pの流速と、粉粒体分配装置30の分配精度とは密接な関係があり、高流速ほど分配精度を向上できる。即ち、トラフ23Cにおける粉粒体Pの流れを高流速にするほど、粉粒体Pの流れの帯を分割する横断面積が小さくなり、粉粒体Pの比重のばらつきの影響を最小限に抑えることを見い出した。   The flow rate of the granular material P flowing through the trough 23C of the subtractive electromagnetic feeder 20 and the distribution accuracy of the granular material distribution device 30 are closely related, and the distribution accuracy can be improved as the flow rate increases. That is, the higher the flow velocity of the granular material P in the trough 23C, the smaller the cross-sectional area that divides the flow band of the granular material P becomes, and the influence of variation in the specific gravity of the granular material P is minimized. I found out.

従って、粉粒体計量装置10(減算式電磁フィーダ20、粉粒体分配装置30)によれば以下の作用効果を奏する。   Therefore, according to the granular material measuring device 10 (the subtraction type electromagnetic feeder 20 and the granular material distribution device 30), the following effects are exhibited.

(a)単位時間当りの供給重量を一定にして連続的に供給される粉粒体Pの流れを、目標分配重量に対応する一定時間間隔で分配することにより、粉粒体Pの単位時間当りの分配重量を高精度に計量できる。   (a) By distributing the flow of the granular material P that is continuously supplied at a constant supply weight per unit time at a constant time interval corresponding to the target distribution weight, per unit time of the granular material P Can be accurately measured.

(b)粉粒体Pを連続的に供給し、その粉粒体Pの流れを上述の一定時間間隔で分配するものであり、計量速度を速め、計量時間を短縮できる。   (b) The granular material P is continuously supplied, and the flow of the granular material P is distributed at the above-mentioned fixed time intervals, so that the measuring speed can be increased and the measuring time can be shortened.

(c)減算式電磁フィーダ20により粉粒体Pを連続供給してトラフ23Cに流し、この粉粒体Pの流れを粉粒体分配装置30により上述の一定時間間隔で分配することにより、計量精度とともに、計量速度を速め、計量時間を短縮できる。減算式電磁フィーダ20によって常にトラフ23Cの先端から排出される粉粒体Pの単位時間当りの重量が一定になるように制御されているから、供給される粉粒体Pを一定時間毎に仕切って取出せば、その重量は粒量の微小なばらつき範囲内に留まる。   (c) The powder P is continuously supplied by the subtractive electromagnetic feeder 20 and flows into the trough 23C, and the flow of the powder P is distributed by the powder distributor 30 at the above-mentioned fixed time intervals. Along with accuracy, the measuring speed can be increased and the measuring time can be shortened. Since the weight per unit time of the granular material P discharged from the tip of the trough 23C is always controlled by the subtractive electromagnetic feeder 20, the supplied granular material P is partitioned at regular intervals. If removed, the weight remains within a minute variation range of the grain amount.

(d)粉粒体分配装置30が、トラフ23Cの排出端の直下に配置されて等速移動する搬送手段31と、搬送手段31の移動方向に沿って該搬送手段31に定ピッチで固定される分配容器32とを有してなることにより、減算式電磁フィーダ20が連続供給する粉粒体Pの流れを、簡易かつ高精度に一定の時間間隔で分配し、粉粒体Pの単位時間当りの分配重量を簡易かつ高精度に計量できる。   (d) The powder distribution device 30 is disposed immediately below the discharge end of the trough 23C and is moved at a constant speed, and is fixed to the conveyance unit 31 at a constant pitch along the moving direction of the conveyance unit 31. The flow of the granular material P continuously supplied by the subtractive electromagnetic feeder 20 is distributed at a constant time interval simply and with high accuracy, so that the unit time of the granular material P can be obtained. The distribution weight per hit can be measured easily and with high accuracy.

尚、減算式電磁フィーダを用いて粉粒体Pを計量する従来技術の1つは、粉粒体Pを1回計量する度に、粉粒体Pの供給を停止する間欠供給方式をとり、全数を計量していく方法であるから計量精度は同様に保証される。しかしながら、計量能力は低く、特に計量値が小さい場合はその影響が大きい。例えば、一個の分配容器32で平均粒径850μmの酸化カルシウムを0.8gずつ計量するに際し、計量精度の変動係数を2%以内に収めるように計量する場合、従来技術では分配容器32一個当りの計量速度が1.5秒かかった。これに対し、本実施例の減算式電磁フィーダ20では連続計量方式を採用しているため、一個の分配容器32でほぼ同条件である平均粒径1100μmの酸化カルシウムを1.0g計量した場合、計量精度の変動係数を2%以内に収めることができるとともに、分配容器32一個当りの計量速度を0.3秒と短くすることができた。これは従来技術の5倍以上の計量速度である。特に、医薬品等の高付加価値の粉粒体の計量、供給に特に適しているが、0.01mm〜10mm程度の粒径の粉粒体、例えば茶葉、ペレット、大豆、小豆、固形砂の結晶性粉粒末、スナック菓子等の粉粒体を計量、供給するにも好適である。   In addition, one of the prior arts which measures the granular material P using a subtraction type electromagnetic feeder takes the intermittent supply system which stops supply of the granular material P every time the granular material P is measured once, Since it is a method of measuring all the numbers, the measurement accuracy is guaranteed as well. However, the weighing capacity is low, and the influence is great especially when the measured value is small. For example, when 0.8 g of calcium oxide having an average particle diameter of 850 μm is weighed in a single dispensing container 32 so that the coefficient of variation of the weighing accuracy falls within 2%, the conventional technology measures the dispensing container 32 per weighing container 32. The speed took 1.5 seconds. On the other hand, since the subtraction type electromagnetic feeder 20 of this embodiment employs a continuous weighing method, when 1.0 g of calcium oxide having an average particle diameter of 1100 μm, which is substantially the same condition, is weighed in one distribution container 32, the weighing is performed. The accuracy variation coefficient could be kept within 2%, and the metering speed per dispensing container 32 could be shortened to 0.3 seconds. This is more than 5 times faster than the prior art. Particularly suitable for the measurement and supply of high-value-added powder granules such as pharmaceuticals, etc., but the crystallinity of powder granules having a particle size of about 0.01 mm to 10 mm, such as tea leaves, pellets, soybeans, red beans, solid sand It is also suitable for measuring and supplying powder particles such as powder powder and snacks.

また、この計量装置100は、計量精度を高く維持したまま、計量速度を速くできるため、後工程の装置の能力を充分に発揮できる。   In addition, since the weighing device 100 can increase the weighing speed while maintaining high weighing accuracy, the ability of the device in the subsequent process can be sufficiently exhibited.

(粉粒体散布装置40)(図1、図6〜図9)
粉粒体散布装置40は、粉粒体計量装置10の排出端に設けられている前述した粉粒体投入ガイド41の下方に間欠搬送ベルト42を間欠移動するように配置し、間欠搬送ベルト42の上に散布対象物1を載置し、散布対象物1を間欠搬送する。尚、散布対象物1は予めホットメルト等による接着性を帯びた散布区画1Aを定められ、シート状のマスキング手段2を散布対象物1の上に添設されて散布区画1Aの周囲をマスキングされる。
(Powder distribution device 40) (FIGS. 1 and 6 to 9)
The granular material spraying device 40 is disposed so as to intermittently move the intermittent conveying belt 42 below the above-described granular material charging guide 41 provided at the discharge end of the granular material measuring device 10. The scattering object 1 is placed on the surface, and the scattering object 1 is intermittently conveyed. In addition, the spraying object 1 is preliminarily defined with a spraying section 1A having adhesiveness by hot melt or the like, and a sheet-like masking means 2 is attached on the spraying object 1 to mask the periphery of the spraying section 1A. The

粉粒体散布装置40において、粉粒体投入ガイド41は、分配手段30の分配容器32から排出される粉粒体Pを散布対象物1の接着性を帯びた散布区画1Aに投入する。そして、粉粒体散布装置40は、間欠搬送ベルト42の搬送経路に沿って、粉粒体投入ガイド41の直下に第1振動付与ステーション50Aを配置し、第1振動付与ステーション50Aの下流側に順に第1圧着ステーション60A、第2振動付与ステーション70A、第2圧着ステーション80Aを配置し、散布対象物1の散布区画1Aを間欠搬送ベルト42の間欠移動によりそれらのステーション50A、60A、70A、80Aに順に搬送して停止させる。尚、間欠搬送ベルト42の搬送経路に沿う第1振動付与ステーション50Aの上流側には、散布対象物1に接着性を帯びさせる接着剤塗工ステーション40A(図1)が配置される。   In the granular material spraying device 40, the granular material charging guide 41 inputs the granular material P discharged from the distribution container 32 of the distribution means 30 into the spraying section 1 </ b> A having adhesion of the distribution object 1. And the granular material spreading | diffusion apparatus 40 arrange | positions the 1st vibration provision station 50A directly under the granular material injection | throwing-in guide 41 along the conveyance path | route of the intermittent conveyance belt 42, and is downstream from the 1st vibration provision station 50A. The first crimping station 60A, the second vibration applying station 70A, and the second crimping station 80A are arranged in this order, and the stations 50A, 60A, 70A, and 80A are moved by intermittently moving the intermittent conveying belt 42 in the spraying section 1A. Are transported in order and stopped. Note that an adhesive coating station 40A (FIG. 1) is provided on the upstream side of the first vibration applying station 50A along the conveyance path of the intermittent conveyance belt 42 so that the spray object 1 has adhesiveness.

第1振動付与ステーション50Aには第1振動付与手段50が設けられる。第1振動付与手段50は、モータ51により回転せしめられる四角板状の振動板52(図7)を間欠搬送ベルト42の下側に配置し、振動板52の角部52Aにより一定の周期で間欠搬送ベルト42の下面を打撃し、これによって散布対象物1に振動を与え、図9(A)に示す如く、散布区画1A内の粉粒体Pを該散布区画1Aの全域に拡散させる。   First vibration applying means 50 is provided at the first vibration applying station 50A. The first vibration applying means 50 includes a rectangular plate-like diaphragm 52 (FIG. 7) that is rotated by a motor 51 below the intermittent conveying belt 42, and is intermittently provided by a corner 52A of the diaphragm 52 at a constant cycle. The lower surface of the conveyor belt 42 is struck, thereby applying vibration to the object 1 to be dispersed, and as shown in FIG. 9A, the powder P in the spraying section 1A is diffused throughout the spraying section 1A.

第1圧着ステーション60Aには第1圧着手段60が設けられる。第1圧着手段60は、加圧手段(不図示)により加圧せしめられるスタンプ61を間欠搬送ベルト42の上方に配置し、図9(B)に示す如く、散布区画1A内の粉粒体Pを散布対象物1の接着性表面に圧着する。スタンプ61の圧着面は粉粒体Pにもホットメルト等にも付着しない、例えばシリコン61Aがコートされる。   A first crimping means 60 is provided in the first crimping station 60A. The first pressure-bonding means 60 has a stamp 61 pressed by a pressure means (not shown) disposed above the intermittent conveyance belt 42, and as shown in FIG. 9B, the granular material P in the spraying section 1A. Is crimped to the adhesive surface of the object 1 to be spread. The pressure bonding surface of the stamp 61 is coated with, for example, silicon 61A that does not adhere to the powder P or hot melt.

第2振動付与ステーション70Aには第2振動付与手段70が設けられる。第2振動付与手段70は、モータ71により回転せしめられる多角板状の振動板72(図8)を間欠搬送ベルト42の下方に配置し、振動板72の角部72Aにより一定の周期で間欠搬送ベルト42の下面を打撃し、これによって散布対象物1に第1振動付与手段50が加えるよりも激しい振動を与え、散布区画1A内の粉粒体Pを該散布区画1Aの全域に一層拡散させる。   Second vibration applying means 70 is provided in the second vibration applying station 70A. The second vibration applying means 70 is arranged with a polygonal plate-like diaphragm 72 (FIG. 8) rotated by a motor 71 below the intermittent conveyance belt 42, and intermittently conveyed by a corner 72A of the diaphragm 72 at a constant cycle. The lower surface of the belt 42 is struck, thereby giving more intense vibration to the object 1 to be applied than the first vibration applying means 50 applies, and the powder P in the spraying section 1A is further diffused throughout the spraying section 1A. .

第2圧着ステーション80Aには第2圧着手段80が設けられる。第2圧着手段80は、加圧手段(不図示)により加圧せしめられるスタンプ81を間欠搬送ベルト42の上方に配置し、図9(C)に示す如く、散布区画1A内の粉粒体Pを散布対象物1の接着性表面に更に圧着する。スタンプ81の圧着面は粉粒体Pにもホットメルト等にも付着しないシリコン81Aがコートされる。   A second crimping means 80 is provided at the second crimping station 80A. The second pressure-bonding means 80 arranges a stamp 81 pressed by a pressure means (not shown) above the intermittent conveyance belt 42, and as shown in FIG. 9C, the granular material P in the spraying section 1A. Is further crimped to the adhesive surface of the object 1 to be spread. The pressing surface of the stamp 81 is coated with silicon 81A that does not adhere to the powder P or hot melt.

以下、粉粒体散布装置40による粉粒体Pの散布方法を具体的に説明する。
粉粒体散布装置40において、散布対象物1の散布区画1Aに散布した粉粒体Pを均一に分散させるためには、粉粒体Pを散布区画1Aの表面に接着して動けなくする、例えばホットメルトが散布区画1Aの表面に予め塗工されていることが必要である。散布区画1Aの表面におけるホットメルトの塗工の形態は厚みが数10〜数100μmの連続帯であったり、スプレーで噴霧されたものであったり、また、同じパターンや異なるパターンの間隔を開けた繰り返しであっても良いが、ホットメルトが塗工されない非散布面には、飛散した粉粒体Pが落下して留まることによって、後工程に悪影響が出ないように、作業工程内において予め樹脂シート等のマスキング手段2でマスキングする。
Hereinafter, the method for spraying the powder P by the powder spray device 40 will be described in detail.
In the powder particle dispersion device 40, in order to uniformly disperse the powder particles P sprayed on the spraying section 1A of the object 1 to be sprayed, the powder particles P are adhered to the surface of the spraying section 1A so as not to move. For example, it is necessary that hot melt is applied in advance to the surface of the spraying section 1A. The form of hot melt coating on the surface of the spraying section 1A is a continuous band having a thickness of several tens to several hundreds of micrometers, sprayed with a spray, and the same pattern or different patterns are spaced apart. Although it may be repeated, resin is preliminarily used in the work process so that the scattered powder P is dropped and stays on the non-spreading surface where the hot melt is not applied so that the subsequent process is not adversely affected. Masking is performed by masking means 2 such as a sheet.

粉粒体投入ガイド41からの粉粒体Pの散布区画1Aの表面への散布直後、粉粒体Pのうちホットメルトに直接接触したものだけが、跳ね上がらずに散布区画1Aの表面に擬似的に接着固定化されるが、殆どのその余の粉粒体Pはその上部に堆積して静止する。この状態では、一部の粉粒体Pのみがホットメルトに擬似接着しているだけであり、そのままの状態でそれら粉粒体Pの上部から圧迫してホットメルトに押し付けても、ホットメルトに確実に接着される粉粒体Pは僅かしかない。そこで、粉粒体投入ガイド41の直下の第1振動付与ステーション50Aにおいて、散布区画1Aの表面上に堆積している非接着の粉粒体Pの多くをホットメルトまで到達させるため、第1振動付与手段50の振動板52により散布対象物1の散布面を上下に微振動させる。この操作で非接着の粉粒体Pは散布区画1Aの概ね全体に拡散される。その後、第1圧着ステーション60Aにおいて、第1圧着手段60のスタンプ61により、散布区画1A内の粉粒体Pを上部から圧迫してホットメルトに押し付ける。この操作により大方の粉粒体Pがホットメルトに固定化されるが、他の粉粒体P同士に挟まれていたり、他の粉粒体Pの上部に乗ってしまっている粉粒体Pは、散布区画1Aの表面に非接着である。そこで、それらの非接着粉粒体Pを散布区画1Aのホットメルトが露出している部分に到達させるように、第2振動付与ステーション70Aにおいて、第2振動付与手段70の振動板72により散布対象物1Aの散布面を更に上下に微振動させ、非接着の粉粒体Pを浮かしたり、転がしたりし、ホットメルトの露出部分に接触させ、第2圧着ステーション80Aにおいて、第2圧着手段80のスタンプ81により散布区画1A内の粉粒体Pを再び上部から圧迫してホットメルトに押し付ける。   Immediately after spraying the powder P from the powder input guide 41 to the surface of the spraying section 1A, only the powder P that is in direct contact with the hot melt does not jump up and is simulated on the surface of the spraying section 1A. However, most of the remaining granular material P is deposited on the upper part and is stationary. In this state, only a part of the granular material P is pseudo-adhered to the hot melt, and even if it is pressed as it is from above the granular material P and pressed against the hot melt, There are only a few particulates P that are securely bonded. Therefore, in the first vibration application station 50A immediately below the powder and granular material charging guide 41, in order to make most of the non-adhesive granular particles P deposited on the surface of the spraying section 1A reach the hot melt, the first vibration is applied. The spraying surface of the spray object 1 is slightly vibrated up and down by the diaphragm 52 of the applying means 50. By this operation, the non-adhesive granular material P is diffused almost throughout the spraying section 1A. Thereafter, in the first pressure-bonding station 60A, the stamp 61 of the first pressure-bonding means 60 presses the powder P in the spraying section 1A from above and presses it against the hot melt. By this operation, most of the granular material P is fixed to the hot melt, but the granular material P is sandwiched between other granular materials P or has been placed on top of the other granular material P. Is not adhered to the surface of the spray section 1A. Therefore, the non-adhesive granular material P is spread by the vibration plate 72 of the second vibration applying means 70 in the second vibration applying station 70A so that the hot melt of the spraying section 1A is exposed. The dispersion surface of the object 1A is further finely vibrated up and down to float or roll the non-adhesive powder P, and contact the exposed portion of the hot melt. The powder P in the spraying section 1A is pressed again from above by the stamp 81 and pressed against the hot melt.

粉粒体散布装置40において、散布区画1Aの散布面積が真円形1200mm2(約φ39mm)の場合、第1振動付与手段50による1回目の微振動条件は、振幅0.2mmで16回/0.5秒、第2振動付与手段70による2回目の微振動条件は、振幅0.7mmで40回/0.6秒である。散布区画1Aの散布面積が広過ぎたり、散布区画1Aの形状が非対称であったりすると、振動が均一に伝わり難く、粉粒体Pの分散精度が悪くなる。その後、散布対象物1からマスキング手段2を取り去り、粉粒体Pが散布区画1Aに均一に接着された散布対象物1を後工程に供給する。 When the spray area of the spraying section 1A is a perfect circle of 1200 mm 2 (about φ39 mm) in the granular material spraying device 40, the first microvibration condition by the first vibration applying means 50 is 16 times / 0.5 seconds with an amplitude of 0.2 mm. The second microvibration condition by the second vibration applying means 70 is 40 times / 0.6 seconds with an amplitude of 0.7 mm. If the spraying area of the spraying section 1A is too large or the shape of the spraying section 1A is asymmetric, vibrations are not easily transmitted uniformly, and the dispersion accuracy of the powder P is deteriorated. Thereafter, the masking means 2 is removed from the spray object 1 and the spray object 1 in which the powder P is uniformly bonded to the spray section 1A is supplied to the subsequent process.

従って、粉粒体散布装置40によれば以下の作用効果を奏する。
(a)散布対象物1の接着性を帯びた散布区画1Aに粉粒体Pを投入した状態で、散布対象物1に振動を与え、散布区画1A内の粉粒体Pを該散布区画1Aの全域に拡散させることにより、散布区画1Aに投入されて堆積する多くの粉粒体Pを散布区画1Aの概ね全域に拡散させて接着剤まで到達させることができる。更に、圧着手段60、80により散布区画1A内の粉粒体Pを散布対象物1に圧着することにより、粉粒体Pを散布対象物1に均一散布して接着できる。
Therefore, according to the granular material spraying apparatus 40, there exist the following effects.
(a) In a state where the powder P is put into the spraying section 1A having the adhesive property of the spray target 1, the spray target 1 is vibrated, and the powder P in the spray section 1A is applied to the spray section 1A. By diffusing throughout the entire area, a large number of the powders P that are put into and deposited in the spraying section 1A can be diffused almost throughout the spraying section 1A to reach the adhesive. Furthermore, by pressing the powder P in the spraying section 1 </ b> A to the spray target 1 by the crimping means 60, 80, the powder P can be uniformly sprayed and adhered to the spray target 1.

(b)散布対象物1に振動を与えて粉粒体Pを散布区画1Aの概ね全域に拡散させる動作と、散布区画1A内の粉粒体Pを散布対象物1に圧着させる動作を、第1と第2の振動付与ステーション50A、70Aと第1と第2の圧着ステーション60A、80Aにおいてそれぞれ2度くり返すことにより、粉粒体Pを散布対象物1に確実に、均一散布して接着できる。   (b) Firstly, an operation of applying vibration to the object 1 to diffuse the powder P to the entire area of the spraying section 1A and an operation of pressing the powder P in the spraying section 1A to the object 1 By repeating twice at each of the first and second vibration applying stations 50A and 70A and the first and second crimping stations 60A and 80A, the powder P is surely uniformly applied to the object 1 and adhered. it can.

(c)散布対象物1にマスキング手段2を設け、散布区画1Aの周囲をマスキングすることにより、粉粒体Pが散布区画1Aの外に飛散落下して留まることを防止できる。   (c) By providing the masking means 2 on the object to be sprayed 1 and masking the periphery of the spraying section 1A, it is possible to prevent the powder P from being scattered and falling outside the spraying section 1A.

粉粒体散布装置40にあっては、第1振動付与ステーション50Aと第1圧着ステーション60Aだけを有し、第2振動付与ステーション70Aと第2圧着ステーション80Aを有しないものとしても良い。   The granular material spraying device 40 may include only the first vibration applying station 50A and the first pressure bonding station 60A, and may not include the second vibration applying station 70A and the second pressure bonding station 80A.

尚、本実施例では、散布対象物1の散布区画1Aに粉粒体Pを固定化するとき、散布区画1Aの表面にホットメルトを塗工したが、ホットメルトは製品の一部として機能させることを前提とし、使用後まで、存在させて最終的に廃棄物として処理するものとする。但し、製品の仕様や使い方によっては、接着剤が製品の機能に影響してしまうので、接着剤を使用時に存在させたくない場合もあり得る。その場合には、接着剤として製造時にのみ一時的に接着効果を生ずるだけのものを塗工する必要がある。接着剤として理想的なものは、粉粒体Pを散布、接着固定化後、乾燥や揮発させることによって、その存在を皆無にするものである。但し、接着剤が存在しなくなることは即ち、粉粒体Pが自由に動けるようになることを意味するので、均一に分散した粉粒体Pを、別な手段で固定化しなければならない。その別な手段は、不織布を被せたり、スポンジを押し当てたり、散布面を過熱、溶解してアンカー効果を出したり等、多様な手段が考えられる。   In this embodiment, when the granular material P is fixed to the spraying section 1A of the spraying object 1, the hot melt is applied to the surface of the spraying section 1A, but the hot melt functions as a part of the product. As a premise, it will exist until after use and will eventually be treated as waste. However, depending on the specifications and usage of the product, the adhesive may affect the function of the product, so that it may not be desired to have the adhesive present at the time of use. In that case, it is necessary to apply only an adhesive that temporarily produces an adhesive effect only during production. What is ideal as an adhesive is that the powder P is dispersed, bonded and fixed, and then dried or volatilized to eliminate its presence. However, since the absence of the adhesive means that the granular material P can move freely, the uniformly dispersed granular material P must be fixed by another means. As other means, various means such as covering with a non-woven fabric, pressing a sponge, overheating and melting the spraying surface to produce an anchor effect, and the like can be considered.

図10、図11に示すように、粉粒体計量装置100にあっては、粉粒体分配装置30の分配容器32の直下に、ボトル、瓶、袋、箱等の容器201(302)を通過させ、計量した粉粒体を該容器201(302)に直接充填し、充填後に該容器201(302)の開口部を包装すれば、高能力な粉粒体計量充填包装機として幅広い分野で応用が可能である。 10, as shown in FIG. 11, in the particulate material weighing device 100, directly below the dispensing container 32 of the granular material dispensing apparatus 30, bottles, jars, bags, containers 201 of a box or the like (302) By directly filling the weighed and weighed granular material into the container 201 (302) and packaging the opening of the container 201 (302) after filling, it can be used in a wide range of fields as a high-capacity powder weighing and filling packaging machine. Application is possible.

図10にあっては、搬送ベルト200が搬送してくる空の箱201を粉粒体分配装置30の粉粒体排出ステーションの直下に位置付け、粉粒体排出ステーションに位置付けられる分配容器32に前述の如くに分配されている目標分配重量の粉粒体Pが、分配容器32のシャッタ32Aを開くことにより箱201に落下投入される。粉粒体P投入後の箱201は、その後蓋フラップを糊付けされてシールされる。   In FIG. 10, the empty box 201 conveyed by the conveyor belt 200 is positioned immediately below the granular material discharge station of the granular material distribution apparatus 30, and the distribution container 32 positioned at the granular material discharge station is described above. The granular material P having the target distribution weight distributed as described above is dropped into the box 201 by opening the shutter 32A of the distribution container 32. The box 201 after the powder P is charged is then sealed with a lid flap.

図11にあっては、シール機300の左右のサイドシーラー300Aに巻き掛けられる左右のフィルム301の会合部を粉粒体分配装置30の粉粒体排出ステーションの直下に設置している。粉粒体排出ステーションに位置付けられる分配容器32に前述の如くに分配されている目標分配重量の粉粒体Pが、分配容器32のシャッタ32Aを開くことにより左右のフィルム301の会合部上に落下投入され、左右のフィルム301はサイドシーラー300Aで両サイド部をシールされ、エンドシーラー300Bでボトム部とトップ部を順にシールされ、カッタ300Cで各1個の袋302に切断され、結果として粉粒体P投入済の袋302が製造される。   In FIG. 11, the meeting part of the left and right films 301 wound around the left and right side sealers 300 </ b> A of the sealing machine 300 is installed immediately below the powder discharge station of the powder distribution device 30. The granular material P of the target distribution weight distributed as described above to the distribution container 32 positioned at the granular material discharge station falls onto the meeting portion of the left and right films 301 by opening the shutter 32A of the distribution container 32. The left and right films 301 are sealed at both side portions by the side sealer 300A, the bottom portion and the top portion are sequentially sealed by the end sealer 300B, and cut into one bag 302 each by the cutter 300C. The bag 302 into which the body P has been charged is manufactured.

図1は粉粒体計量散布装置を示す模式平面図である。FIG. 1 is a schematic plan view showing a granular material measuring and dispersing apparatus. 図2は減算式電磁フィーダを示す模式側面図である。FIG. 2 is a schematic side view showing a subtractive electromagnetic feeder. 図3は粉粒体計量装置を示す模式正面図である。FIG. 3 is a schematic front view showing a granular material measuring device. 図4は粉粒体計量装置を示す模式側面図である。FIG. 4 is a schematic side view showing the granular material measuring device. 図5は粉粒体計量装置の分配原理を示す模式図である。FIG. 5 is a schematic diagram showing the distribution principle of the granular material measuring device. 図6は粉粒体散布装置を示す模式側面図である。FIG. 6 is a schematic side view showing the powder particle dispersion device. 図7は第1振動付与手段を示す模式図である。FIG. 7 is a schematic diagram showing the first vibration applying means. 図8は第2振動付与手段を示す模式図である。FIG. 8 is a schematic diagram showing the second vibration applying means. 図9は散布区画における粉粒体拡散状態を示す模式図である。FIG. 9 is a schematic diagram showing a state of powder particle diffusion in the spraying section. 図10は粉粒体計量充填包装機一例を示す模式図である。Figure 10 is a schematic diagram showing an example of a granule weighing filling and packaging machine. 図11は粉粒体計量充填包装機他の例を示す模式図である。Figure 11 is a schematic view showing another example of the granular material weighing filling and packaging machine.

符号の説明Explanation of symbols

1 散布対象物
1A 散布区画
2 マスキング手段
40 粉粒体散布装置
50 第1振動付与手段
60 第1圧着手段
70 第2振動付与手段
80 第2圧着手段
DESCRIPTION OF SYMBOLS 1 Application | coating object 1A Application | coating division 2 Masking means 40 Powder body distribution apparatus 50 1st vibration provision means 60 1st crimping means 70 2nd vibration provision means 80 2nd crimping means

Claims (3)

散布対象物の接着性を帯びた散布区画に粉粒体を投入し、
散布対象物に振動を与え、散布区画内の粉粒体を該散布区画の全域に拡散させ、
散布区画内の粉粒体を第1圧着手段により散布対象物に圧着し、
散布対象物に再び振動を与え、散布区画内の粉粒体を該散布区画の全域に再び拡散させ、
散布区画内の粉粒体を第2圧着手段により散布対象物に再び圧着する粉粒体散布方法。
Put the powder into the spraying area with the adhesion of the object to be sprayed,
Vibration is applied to the object to be dispersed, and the powder particles in the dispersion area are diffused throughout the area.
Crimp the granular material in the spraying section to the object to be sprayed by the first crimping means,
Vibrating the object to be sprayed again, causing the powder particles in the spraying section to diffuse again throughout the spraying section,
A granular material spraying method in which the granular material in the spraying section is pressure-bonded again to the object to be sprayed by the second pressing means.
前記散布対象物にマスキング手段を設け、散布区画の周囲をマスキングする請求項1に記載の粉粒体散布方法。 The method for spraying granular materials according to claim 1, wherein masking means is provided on the object to be sprayed to mask the periphery of the spraying section. 散布対象物の接着性を帯びた散布区画に粉粒体を投入する粉粒体投入手段と、
散布対象物に振動を与え、散布区画内の粉粒体を該散布区画の全域に拡散させる第1振動付与手段と、
散布区画内の粉粒体を散布対象物に圧着する第1圧着手段と、
散布対象物に再び振動を与え、散布区画内の粉粒体を該散布区画の全域に拡散させる第2振動付与手段と、
散布区画内の粉粒体を第2圧着手段により散布対象物に再び圧着する第2圧着手段とを有してなる粉粒体散布装置。
A granular material charging means for charging the granular material into the spraying section having the adhesive property of the sprayed object,
A first vibration applying means for applying vibration to the object to be dispersed and diffusing the powder particles in the dispersion section throughout the dispersion section;
A first crimping means for crimping the granular material in the spraying section to the sprayed object;
A second vibration applying means for applying vibration to the object to be sprayed again and diffusing the powder particles in the spraying section over the entire area of the spraying section;
The granular material dispersion | spreading apparatus which has a 2nd crimping | compression-bonding means which crimps | bonds the granular material in a dispersion | spreading area again to a dispersion | spreading object by a 2nd crimping | compression-bonding means.
JP2005379538A 2005-12-28 2005-12-28 Powder and particle dispersion method and apparatus Expired - Fee Related JP4644117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379538A JP4644117B2 (en) 2005-12-28 2005-12-28 Powder and particle dispersion method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379538A JP4644117B2 (en) 2005-12-28 2005-12-28 Powder and particle dispersion method and apparatus

Publications (2)

Publication Number Publication Date
JP2007175657A JP2007175657A (en) 2007-07-12
JP4644117B2 true JP4644117B2 (en) 2011-03-02

Family

ID=38301368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379538A Expired - Fee Related JP4644117B2 (en) 2005-12-28 2005-12-28 Powder and particle dispersion method and apparatus

Country Status (1)

Country Link
JP (1) JP4644117B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813758A (en) * 1981-07-10 1983-01-26 ダイセル化学工業株式会社 Nonwoven sheet and method
JPH04367762A (en) * 1991-06-12 1992-12-21 Nkk Corp Control of film thickness of powder painting
JPH08503141A (en) * 1991-04-24 1996-04-09 メールンリユーケ アーベー Method and apparatus for depositing particles on a moving material web
JPH08196981A (en) * 1994-10-14 1996-08-06 Toyo Seikan Kaisha Ltd Lining method with powder
JPH09304U (en) * 1985-11-22 1997-05-27 パラマウント・テクニカル・プロダクツ・インコーポレーテッド Device for depositing a layer of particles on a sheet material
JP2000157914A (en) * 1998-11-30 2000-06-13 Toppan Printing Co Ltd Coating method and device therefor
JP2000301048A (en) * 1999-04-23 2000-10-31 Sony Corp Method and device for arraying minute bodies
JP2001038274A (en) * 1999-05-21 2001-02-13 Agency Of Ind Science & Technol Method for leveled film formation of superfine particle material
JP2001096654A (en) * 1999-09-29 2001-04-10 Nippon Kyushutai Gijutsu Kenkyusho:Kk Water absorbable composite material surface-covered by fibrillated hot melt, manufacturing method therefor, and absorber article
JP2001171029A (en) * 1999-12-22 2001-06-26 Kao Corp Method for manufacturing particle accumulated layer
JP2002178429A (en) * 2000-12-18 2002-06-26 Kao Corp Method for manufacturing granule deposit
JP2004259545A (en) * 2003-02-25 2004-09-16 Seiko Precision Inc Manufacturing method of inorganic electroluminescent element
JP2005006958A (en) * 2003-06-19 2005-01-13 Livedo Corporation Manufacturing method and manufacturing apparatus of thin absorbor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813758A (en) * 1981-07-10 1983-01-26 ダイセル化学工業株式会社 Nonwoven sheet and method
JPH09304U (en) * 1985-11-22 1997-05-27 パラマウント・テクニカル・プロダクツ・インコーポレーテッド Device for depositing a layer of particles on a sheet material
JPH08503141A (en) * 1991-04-24 1996-04-09 メールンリユーケ アーベー Method and apparatus for depositing particles on a moving material web
JPH04367762A (en) * 1991-06-12 1992-12-21 Nkk Corp Control of film thickness of powder painting
JPH08196981A (en) * 1994-10-14 1996-08-06 Toyo Seikan Kaisha Ltd Lining method with powder
JP2000157914A (en) * 1998-11-30 2000-06-13 Toppan Printing Co Ltd Coating method and device therefor
JP2000301048A (en) * 1999-04-23 2000-10-31 Sony Corp Method and device for arraying minute bodies
JP2001038274A (en) * 1999-05-21 2001-02-13 Agency Of Ind Science & Technol Method for leveled film formation of superfine particle material
JP2001096654A (en) * 1999-09-29 2001-04-10 Nippon Kyushutai Gijutsu Kenkyusho:Kk Water absorbable composite material surface-covered by fibrillated hot melt, manufacturing method therefor, and absorber article
JP2001171029A (en) * 1999-12-22 2001-06-26 Kao Corp Method for manufacturing particle accumulated layer
JP2002178429A (en) * 2000-12-18 2002-06-26 Kao Corp Method for manufacturing granule deposit
JP2004259545A (en) * 2003-02-25 2004-09-16 Seiko Precision Inc Manufacturing method of inorganic electroluminescent element
JP2005006958A (en) * 2003-06-19 2005-01-13 Livedo Corporation Manufacturing method and manufacturing apparatus of thin absorbor

Also Published As

Publication number Publication date
JP2007175657A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP2007178371A (en) Powder and grain weighing device and method
US3960187A (en) Method and device for metering and dispersing fluid materials
EP0085149B1 (en) Process and apparatus for electrostatic application of liquids or powders on substances or objects
EP2260717B1 (en) Coating delivery method and apparatus
JP2574721B2 (en) Powder spray equipment for coating
JPS58210874A (en) Method and device for transferring and depositing viscous substance
CN107628287B (en) High-precision automatic brown sugar packaging machine and packaging method thereof
US5599581A (en) Method for pneumatically controlling discharge of particulate material
JP2010094507A (en) Device for dosing powdery or granular substance into capsule or the like
TWI682884B (en) Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article
JP2017221934A (en) Screening system having supply system, conveyance system and conveyance method
KR20130020875A (en) Method for packaging polycrystalline silicon
JP2017094294A (en) Granule scattering method and granule scattering device, and granule containing article manufacturing method
TW200524781A (en) Method and apparatus for filling a container
JP2005008282A (en) Feeder of powder
US8708002B2 (en) Method and apparatus for volumetric metering and depositing
JP4644117B2 (en) Powder and particle dispersion method and apparatus
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
US11945137B2 (en) Powder application device for producing stiffening elements from pulverous material
US4047546A (en) Method and apparatus for filling containers
US20130323376A1 (en) Food coating apparatuses, systems, and methods
US20220347922A1 (en) Device and method for depositing a granular material in additive manufacture
CN105129448A (en) Device capable of continuously supplying powder or granules in accurate flow mode without vibration
JP6100405B2 (en) Polysilicon piece packaging
US6294216B1 (en) Vibrating method for charging powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees