JP4642550B2 - 基板載置台、基板処理装置、および基板の温度制御方法 - Google Patents

基板載置台、基板処理装置、および基板の温度制御方法 Download PDF

Info

Publication number
JP4642550B2
JP4642550B2 JP2005151025A JP2005151025A JP4642550B2 JP 4642550 B2 JP4642550 B2 JP 4642550B2 JP 2005151025 A JP2005151025 A JP 2005151025A JP 2005151025 A JP2005151025 A JP 2005151025A JP 4642550 B2 JP4642550 B2 JP 4642550B2
Authority
JP
Japan
Prior art keywords
substrate
heat transfer
mounting table
protrusion
transfer gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005151025A
Other languages
English (en)
Other versions
JP2006156938A5 (ja
JP2006156938A (ja
Inventor
英利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005151025A priority Critical patent/JP4642550B2/ja
Priority to US11/259,037 priority patent/US20060090855A1/en
Publication of JP2006156938A publication Critical patent/JP2006156938A/ja
Publication of JP2006156938A5 publication Critical patent/JP2006156938A5/ja
Application granted granted Critical
Publication of JP4642550B2 publication Critical patent/JP4642550B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、半導体ウエハ等の基板を載置する基板載置台、基板載置台に載置された基板に対してドライエッチング等の処理を施す基板処理装置、および基板載置台に載置された基板の温度を制御する基板の温度制御方法に関する。
例えば、半導体デバイスの製造プロセスにおいては、被処理基板である半導体ウエハに対して、ドライエッチングやスパッタリング、CVD(化学気相成長)等のプラズマ処理が多用されている。
例えば、プラズマエッチング処理においては、チャンバー内に半導体ウエハ(以下単にウエハと記す)を載置する載置台を設け、この載置台の上部を構成する静電チャックによりウエハを静電吸着して保持し、処理ガスのプラズマを形成してウエハに対してプラズマエッチング処理を施す。
このような処理の際には、被処理基板であるウエハを所望の温度に制御する必要があり、そのために載置台内に冷媒流路を設けるとともに、ウエハが載置される載置台とウエハ裏面との間にHeガス等の熱伝達用ガスを導入してその圧力を変化させることによりウエハの温度制御を行っている。
一方、このように熱伝達用のガスを用いてウエハの温度制御を行う際に、吸着面に複数の突起を設け、その高さと熱伝達用のガス圧力とを制御することにより被処理基板の温度を自在に制御する技術が知られている(特許文献1)。
また、このような突起の高さを1〜10μmに制御し、突起の接触面積の合計値を載置台表面積の1%以下とすることで、被処理基板であるウエハの温度制御性を良好にする技術も知られている(特許文献2)。
しかしながら、上記特許文献1、2の技術では、突起の高さが小さい場合には、熱伝達用のHeガスが均一に行き渡り難くなって被処理基板の温度制御応答性や均一性を保ち難くなり、これを防止するために突起を高くすると、被処理基板の温度を広い温度範囲にわたって制御する温度制御性が低くなるという問題点がある。
特開2000−317761号公報 特開2001−274228号公報
本発明はかかる事情に鑑みてなされたものであって、被処理基板の温度均一性や温度制御応答性が高く、かつ十分な温度制御性を得ることができる基板載置台、そのような載置台を用いた基板処理装置、および基板の温度制御方法を提供することを目的とする。
上記課題を解決するために、本発明の第1の観点では、基板処理装置において基板を載置する基板載置台であって、載置台本体と、前記載置台本体の基板載置側の基準面に、基板が載置された際に基板の周縁部に接触するように形成され、その際に基板の下方部分に熱伝達用ガスが充填される密閉空間を形成する周縁環状凸部と、前記基準面における前記周縁環状凸部の内側部分に、基板が載置された際に基板と接触するように設けられた複数の第1突起部と、前記基準面における前記周縁環状凸部の内側部分に、前記第1突起部と独立して、基板が載置された際に基板に接触せずに近接して設けられた複数の第2突起部とを有し、前記第2突起部と前記載置された基板との間の距離は略5μm以下であることを特徴とする基板載置台を提供する。
この場合に、前記第1突起部の前記載置された基板との接触面積および前記第2突起部の前記載置された基板との対向面の面積は、いずれも略0.8mm以下であることが好ましい。
また、前記第1突起部および前記第2突起部は円柱形状を有するものとすることができる。この場合に、前記第1突起部および前記第2突起部の直径が略1mm以下であることが好ましい。
前記第1突起部の前記載置された基板と接触する面積の総和は、前記基準面における前記周縁環状凸部の内側部分の面積に対して、略0.04〜5%の面積比率であることが好ましい。この場合に、前記第1突起部は、前記基準面における前記周縁環状凸部の内側部分全面に均一に形成されることが好ましい。
前記第2突起部の前記載置された基板と対向する面積の総和は、前記基準面の第2突起部が形成される領域の面積に対して、略15%以上の面積比率であることが好ましい。この場合に、前記第2突起部は、前記載置された基板の温度分布に応じて前記基準面における前記周縁環状凸部の内側部分に所定の分布で形成されることが好ましい。
前記周縁環状凸部および前記第1突起部の前記基準面からの高さは、略30μmであることが好ましい。
また、前記基準面の前記周縁環状凸部の内側に設けられ、基板が載置された際に基板と接触して前記密閉空間を内側部分と外側部分に分離する内側環状凸部をさらに有することが好ましい。
この場合、前記内側環状凸部を、第1の内側環状凸部と、該第1の内側環状凸部に近接して設けられた第2の内側環状凸部と、を有する二重構造にすることが好ましい。この場合、前記内側環状凸部により分離される前記密閉空間の内側部分と外側部分とに、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部を設けるとともに、前記第1の内側環状凸部と前記第2の内側環状凸部との間隙に、熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設けることがより好ましい。
また、前記内側環状凸部は、互いに近接して設けられた第1の環状壁および第2の環状壁と、これら第1の環状壁と第2の環状壁との間に形成された環状の凹部と、を有していることが好ましい。この場合、前記内側環状凸部により分離される前記密閉空間の内側部分と外側部分とに、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部を設けるとともに、前記環状の凹部内に熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設けることがより好ましい。
また、前記内側環状凸部と前記周縁環状凸部との間に同心円状に複数の中間環状凸部を配備することが好ましい。この場合、前記内側環状凸部により分離される前記密閉空間の内側部分に、熱伝達用ガスを導入する熱伝達用ガス導入部を設けるとともに、前記同心円状に形成された複数の中間環状凸部の間に形成される複数の間隙に、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設けることが好ましい。
さらに、前記載置台本体は、静電気力を用いて基板を吸着する静電チャックを有するものとすることができる。
本発明の第2の観点では、基板を収容し、内部が減圧保持される処理室と、前記処理室内に設けられ、前記基板が載置され、上記いずれかの構成を有する基板載置台と、前記処理室内で基板に所定の処理を施す処理機構と、前記基板載置台と基板との間に形成された前記密閉空間に熱伝達用ガスを供給する熱伝達用ガス供給機構とを具備することを特徴とする基板処理装置を提供する。
この場合に、前記熱伝達用ガス供給機構から供給される熱伝達用ガスの圧力を制御する制御機構をさらに有することが好ましい。
本発明の第3の観点では、上記いずれかの構成の基板載置台を用いて基板の温度を制御する基板の温度制御方法であって、前記基板載置台と基板との間に形成された前記密閉空間に導入する熱伝達用ガスの圧力を制御することにより、基板の温度を制御することを特徴とする基板の温度制御方法を提供する。
ここで、前記内側環状凸部により分離される前記密閉空間の内側部分と外側部分とに、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部を設け、前記密閉空間の内側部分と外側部分とを独立的に圧力制御することにより、基板の温度を制御することが好ましい。
この場合に、前記内側環状凸部を、第1の内側環状凸部と、該第1の内側環状凸部に近接して設けられた第2の内側環状凸部と、を有する二重構造とし、
前記第1の内側環状凸部と前記第2の内側環状凸部との間隙に、熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設け、前記間隙内の圧力を、前記密閉空間の内側部分および外側部分よりも低く制御することが好ましい。
また、前記内側環状凸部を、互いに近接して設けられた第1の環状壁および第2の環状壁と、これら第1の環状壁と第2の環状壁との間に形成された環状の凹部と、を有するものとし、
前記環状の凹部内に熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設け、該凹部内の圧力を、前記密閉空間の内側部分および外側部分よりも低く制御することが好ましい。
さらに、前記内側環状凸部により分離される前記密閉空間の内側部分に、熱伝達用ガスを導入する熱伝達用ガス導入部を設け、前記密閉空間の内側部分を圧力制御するとともに、
前記内側環状凸部と前記周縁環状凸部との間に同心円状に複数の中間環状凸部を配備し、該複数の中間環状凸部の間に形成される複数の間隙に、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設け、該複数の間隙内の圧力を、それぞれ独立して制御することにより、基板の温度を制御することが好ましい。
また、本発明の第の観点では、コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、
前記制御プログラムは、実行時に、上記いずれかの基板の温度制御方法が行なわれるようにコンピュータに基板載置台を制御させるものであることを特徴とする、コンピュータ記憶媒体を提供する。
本発明によれば、載置台本体の基板載置側の基準面に、基板が載置された際に基板の周縁部に接触するように周縁環状凸部を形成して基板の下方部分に密閉空間を形成し、基準面における周縁環状凸部の内側部分に、基板が載置された際に基板と接触するように複数の第1突起部を設けて基板を支持し、密閉空間内にHeガス等の熱伝達ガスを導入して基板の温度制御を行う際に、前記基準面における前記周縁環状凸部の内側部分に、前記第1突起部と独立して、基板が載置された際に基板に接触せずに近接して複数の第2突起部を設けるので、密閉空間を熱伝達用ガスの均一性を損なわない高さに維持しつつ、第2突起部により良好な温度制御性を維持することができる。
以下、添附図面を参照して本発明の一実施形態について説明する。
ここでは、本発明に係る基板載置台をプラズマ処理装置に適用した例について説明する。図1は本発明の一実施形態に係るウエハ載置台が設けられたプラズマ処理装置を示す断面図、図2は本発明の一実施形態に係るウエハ載置台の主要部を拡大して示す断面図である。
このプラズマ処理装置1は、電極板が上下平行に対向し、これらの間に形成された高周波電界により容量結合プラズマが形成される平行平板エッチング装置として構成されている。
このエッチング処理装置1は、例えば表面が陽極酸化処理されたアルミニウムからなる円筒形状に成形されたチャンバー2を有している。チャンバー2内の底部にはセラミックなどの絶縁部材3を介して、被処理基板である半導体ウエハ(以下単に「ウエハ」と記す)Wを載置する本実施形態のウエハ載置台4が設けられている。本実施形態においては、このウエハ載置台4は後述するように下部電極として機能する。
ウエハ載置台4の上方には、このウエハ載置台4と平行に対向して上部電極として機能するシャワーヘッド10が設けられている。このシャワーヘッド10は、ウエハ載置台4との対向面を構成するとともに多数の吐出孔12を有する電極板11と、この電極板11を支持し、導電性材料、例えば表面が陽極酸化処理されたアルミニウムからなる水冷構造の電極板支持体13とによって構成されている。電極板支持体13内にはガス拡散空間13aが形成されている。
このシャワーヘッド10とチャンバー2の側壁の間にはリング状に絶縁材15が設けられている。この絶縁材15はチャンバー2の側壁に取り付けられている。また、絶縁材15の下端には、その周囲に沿って内側に延びる絶縁性の支持部材16が取り付けられており、シャワーヘッド10は、支持部材16により支持されている。なお、シャワーヘッド10とウエハ載置台4とは、例えば10〜60mm程度離間している。
前記シャワーヘッド10における電極板支持体13にはガス拡散空間13aに至るガス導入口18が設けられ、このガス導入口18にはガス供給管19の一端が接続されており、ガス供給管19の他端は処理ガス供給源20に接続されている。そして、処理ガス供給源20からガス供給管19を介してエッチングのための処理ガスがシャワーヘッド10へ供給され、電極板支持体13のガス拡散空間13aを経て吐出孔12からウエハW上へ吐出されるようになっている。ガス供給管19には、バルブ21およびマスフローコントローラ22が設けられている。
処理ガスとしては、従来用いられている種々のものを採用することができ、例えばフロロカーボンガス(C)やハイドロフロロカーボンガス(C)のようなハロゲン元素を含有するガスを好適に用いることができる。他にAr、He等の希ガスやNガス、Oガス等を添加してもよい。
チャンバー2の底部には排気管25が接続されており、この排気管25には排気装置26が接続されている。排気装置26はターボ分子ポンプなどの真空ポンプを備えており、これによりチャンバー2内を所定の減圧雰囲気、例えば1Pa以下の所定の圧力まで真空引き可能なように構成されている。また、チャンバー2の側壁にはゲートバルブ27が設けられており、このゲートバルブ27を開にした状態でウエハWが隣接するロードロック室(図示せず)との間で搬送されるようになっている。
シャワーヘッド10には、整合器31を介して第1の高周波電源30が接続されており、その際の給電はシャワーヘッド10における電極板支持体13の上面中央部に接続された給電棒33により行われる。また、シャワーヘッド10にはローパスフィルター(LPF)35が接続されている。この第1の高周波電源30から高周波電力が供給されることにより、ウエハWの上部電極であるシャワーヘッド10と下部電極であるウエハ載置台4との間に高周波電界が形成され、処理ガスのプラズマが生成される。この第1の高周波電源30は、例えば27MHz以上の周波数を有しており、具体例として60MHzが用いられる。このように比較的高い周波数を印加することによりチャンバー2内に好ましい解離状態でかつ高密度のプラズマを形成することができ、低圧条件下のプラズマ処理が可能となる。
本実施形態に係るウエハ載置台4は、略円柱状をなしており、絶縁部材3の上に設けられた金属製の電極板41と、電極板41の上に設けられた静電チャック42とを有している。静電チャック42は電極板41よりも小径であり、電極板41の上端周縁部には、静電チャック42を囲むように、環状のフォーカスリング43が配置されている。このフォーカスリング43は例えば絶縁材料からなっており、これによりエッチングの均一性が向上される。
電極板41の内部には、冷媒循環路45が設けられており、この冷媒循環路45には、冷媒導入管46および冷媒排出管47が接続されている。この冷媒循環路45には、例えばフッ素不活性液体などの冷媒が冷媒供給機構48から冷媒導入管46を介して供給されて循環され、その冷熱によりウエハWが所望の温度に制御される。冷媒温度は低い方が冷却能力が高く好ましいが、低すぎると結露を起こすため、20℃程度が好ましく、後に示すシミュレーションにおいては20℃を用いている。
静電チャック42は、ウエハWより若干小径に形成され、絶縁材からなる本体42aとその中に介在された電極42bとを有している。電極42bには直流電源50が接続されており、この直流電源50から例えば1.5kVの直流電圧が印加されることにより、静電気力、例えばクーロン力、ジョンセン・ラーベック力によってその上に載置されたウエハWを静電吸着する。直流電源50はスイッチ51によりオン・オフされるようになっている。本体42aを構成する絶縁材としてはAl、Zr、Si、Y等のセラミックスが例示される。
ウエハ載置台4に載置されたウエハWの裏面側には、熱伝達ガスであるHeガスを供給するための複数のガス流路52が接続されている。ガス流路52は絶縁部材3の上面に形成された環状凹部53から延びており、この環状凹部53にはガス供給配管54を介して熱伝達ガスであるHeガスを供給するHe供給機構55が接続されている。そして、He供給機構55からガス供給配管54を経て一旦環状凹部53に貯留されたHeガスがガス流路52を介してウエハWの裏面に供給され、Heガスを介して冷媒の冷熱をウエハWに伝達してウエハWの温度制御が行われる。
ウエハ載置台4の上部を構成する静電チャック42は、図2に示すように、ウエハ載置台本体を構成する絶縁材42aのウエハ載置側の表面を基準面60とした場合に、その基準面60の周縁部に沿って周縁環状凸部61が形成されている。この周縁環状凸部61はウエハWが載置された際にウエハWの周縁部に接触するように形成され、その際に基板の下方部分に熱伝達用のHeガスが充填される密閉空間62が形成される。また、基準面60における周縁環状凸部61の内側部分には、ウエハWが載置された際にウエハWと接触してウエハWを支持する複数の第1突起部63が設けられている。さらに、基準面60における周縁環状凸部61の内側部分に、第1突起部63と独立して、ウエハWが載置された際にウエハWに接触せずに近接するように複数の第2突起部64が設けられている。密閉空間62には、上述したガス流路52を介して熱伝達用のHeガスが導入される。
図3に第1突起部63と第2突起部64の配置を例示する。図3の例では、第1突起部63および第2突起部64は円柱状をなし、等間隔に配置された第1突起部63の間に多数の第2突起部64が等間隔で設けられている。
静電チャック42の上面には熱電対66が埋め込まれており、これによりウエハWの温度を検出し、後述するようにその検出値に基づいて密閉空間62のHeガス圧力が制御される。
下部電極として機能するウエハ載置台4の電極板41には、第2の高周波電源70が接続されており、その給電線には整合器71が介在されている。この第2の高周波電源70の周波数は、例えば100kHz〜13.56MHzの範囲であり、具体例として2MHzが用いられる。このような範囲の周波数を印加することにより、被処理体であるウエハWに対してダメージを与えることなく適切なイオン作用を与えることができる。
プラズマ処理装置1の各構成部は、プロセスコントローラ80に接続されて制御される構成となっている。具体的には、冷媒供給機構48、He供給機構55、排気装置26、静電チャック42のための直流電源50のスイッチ51、バルブ21、マスフローコントローラ22等が制御される。特に、He供給機構55に関しては、温度センサーである熱電対66からの検出信号に基づいてウエハWが所望の温度になるようにプロセスコントローラ80からHe供給機構55に制御信号が送信され、密閉空間62内のHeガス圧力が制御される。なお、電極板41にはハイパスフィルター72が接続されている。
また、プロセスコントローラ80には、工程管理者がプラズマ処理装置1を管理するためにコマンドの入力操作等を行うキーボードや、プラズマ処理装置1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース81が接続されている。
さらに、プロセスコントローラ80には、プラズマ処理装置1で実行される各種処理をプロセスコントローラ80の制御にて実現するための制御プログラムや処理条件データ等が記録されたレシピが格納された記憶部82が接続されている。
そして、必要に応じて、ユーザーインターフェース81からの指示等にて任意のレシピを記憶部82から呼び出してプロセスコントローラ80に実行させることで、プロセスコントローラ80の制御下で、プラズマ処理装置1での所望の処理が行われる。また、前記制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記憶媒体、例えばCD−ROM、ハードディスク、フレキシブルディスク、フラッシュメモリなどに格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用したりすることも可能である。
次に、以上のように構成されるプラズマエッチング装置1における処理動作について説明する。
まず、被処理基板であるウエハWは、ゲートバルブ27が開放された後、図示しないロードロック室からチャンバー2内へと搬入され、ウエハ載置台4の静電チャック42上に載置される。次いで、ゲートバルブ27が閉じられ、排気装置26によって、チャンバー2内が所定の真空度まで真空引きされる。
その後、バルブ21が開放されて、処理ガス供給源20から処理ガスがマスフローコントローラ22によってその流量が調整されつつ、ガス供給管19、ガス導入口18を通ってシャワーヘッド10の内部のガス拡散空間13aへ導入され、さらに電極板11の吐出孔12を通って、図1の矢印に示すように、ウエハWに対して均一に吐出され、チャンバー2内の圧力が所定の値に維持される。
その際に、第1の高周波電源30から27MHz以上、例えば60MHzの高周波が上部電極であるシャワーヘッド10に印加され、これにより、上部電極としてのシャワーヘッド10と下部電極としてのウエハ載置台4との間に高周波電界が生じ、処理ガスが解離してプラズマ化し、このプラズマにより、ウエハWに対してエッチング処理が施される。このようにしてプラズマが生成されると同時に、直流電源50から静電チャック42の電極42bに直流電圧が印加されることによって、ウエハWが静電チャック11上に静電吸着される。この際に、ウエハWが静電チャック42の絶縁材42aにおける基準面に形成された周縁環状凸部61に吸着されるとともに第1突起部63に支持され、ウエハWの下方に密閉空間が形成される。
他方、第2の高周波電源70からは、100kHz〜13.56MHz、例えば2MHzの高周波が下部電極であるウエハ載置台4に印加される。これにより、プラズマ中のイオンがウエハ載置台4側へ引き込まれ、イオンアシストによりエッチングの異方性が高められる。
このように形成されたプラズマにより高精度でエッチングを行うために、ウエハWの温度を高精度で制御する必要があり、そのためにウエハWの下方の密閉空間62に熱伝達用ガスであるHeガスを供給し、そのガス圧を所定値に制御することにより、ウエハを所望の温度に制御する。
ここで、従来は、周縁環状凸部61により規定された密閉空間62内には、第1突起部材63に相当するウエハを支持するための部材が設けられているにすぎなかった。
このような密閉空間に熱伝達用ガスとしてHeガスを供給した場合のガス圧と熱伝達係数との関係は図4に示すようになる。この図4は、伝宝ら(IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL.11, No.1, 1998 pp25-29)に記載された、ウエハと載置台との間の希薄なガスの熱伝達のモデリングを用い、DSCM(Direct Simulation Monte Carlo)法により実測データに基づいてシミュレーションして求めたものである。この図に示すように、熱伝達係数は、低圧領域では、密閉空間の高さ(距離)によらず圧力に比例して上昇していくが、高圧領域では、密閉空間の高さが高いと圧力を上げても熱伝達率が飽和する傾向にあることがわかる。すなわち、例えば密閉空間の高さが30μm以上では、ガス圧力を変化させることによる熱伝達率の変化マージンが狭くなり、ウエハの温度制御可能な範囲が狭くなる傾向となる。
このことから、ガス圧力を変化させることによるウエハの温度制御性を良好にするには、密閉空間の高さを例えば5μm以下程度に狭くすればよいことが理解される。
一方、空間内でのHeガスの均一性について、図5に示すような半径50mmで、高さを30μmまたは10μmの容器に、その中央下部の半径0.5mmの供給口から1333PaのHeガスを充填する過程をモデルとし容器壁面温度を300Kとしてシミュレーションにより計算した。その結果を図6に示す。図6は横軸に時間をとり、縦軸に容器内分子数をとって、これらの関係を示す図であるが、この図から、容器内分子数が一定になるまでに要する時間が、高さ30μmのときは0.6secであったのに対し、高さ10μmのときは1.5secであることがわかる。つまり、空間の高さが10μmと小さい場合には、分子移動の抵抗が大きく30μmの場合よりも分子の充填性が悪く、ガス分布が不均一となりやすくなり、ウエハの温度均一性や温度制御応答性が低下する。
以上の結果から、従来のように周縁環状凸部61により規定された密閉空間62内に、第1突起部材63に相当するウエハを支持するための部材が設けられているのみの場合には、Heガスを供給する密閉空間の高さを大きくすると温度制御性が悪い傾向にあり、密閉空間の高さを小さくするとガスの充填性が悪くウエハ温度の均一性が低下する傾向にあり、これらを両立させることは困難である。
これに対し、本実施形態では、基準面60における周縁環状凸部61の内側部分に、ウエハWが載置された際にウエハWと接触して支持する複数の第1突起部63の他に、ウエハWに接触せずに近接して複数の第2突起部64を独立して設け、この第2突起部64により実効的な熱伝達が行われるようにしたので、熱伝達の面からは密閉空間62の高さが小さくなるのと同等の状態となり、ガス圧力を変化させることによる熱伝達率の変化マージンを大きくしてウエハWの温度制御性を良好にすることができる一方、周縁環状凸部61および第1突起部63により実際の密閉空間62の高さを十分に確保することにより、密閉空間62内のガス分布を均一としてウエハ温度の均一性を確保することができる。
本実施形態のように、プラズマ処理(プラズマエッチング)中のウエハWを熱伝達ガスであるHeガスを使用して温度制御する場合、静電チャックの吸着力の点からHeガスの圧力が0〜6650Pa程度の範囲を使用することができる。そして、プラズマ処理の制御性の観点から前記Heガス圧力の範囲で、ウエハ温度を約50〜200℃の範囲で制御できることが望まれる。この場合に、第1突起部63がウエハWに固体接触しているため、第1突起部63を介しての熱伝達がHeガスを介しての熱伝達よりも多くなる。したがって、第1突起部63のウエハWへの接触面積が多すぎると、200℃を確保することが困難となる。そこで、第1突起部63の全体の接触面積比率(基準面60における周縁環状凸部61内側の面積に対する比率に相当)を変化させた場合のHeガス圧力とウエハ温度の関係を求めた。その結果を図7に示す。図7は、第2突起部64を設けず、第1突起部63として直径0.5mm、高さ30μmの円柱状のものを均等配置し、載置台径300mm、ウエハ径300mm、入熱2400Wの条件で、上述した伝宝らの手法に基づいてシミュレーションして求めたものである。図7から、最高温度が約200℃まで制御するためには、第1突起部63の接触面積比率を2〜5%程度に設定する必要があることがわかる。ただし、最高温度がそれより低い温度でよければ、それに応じて接触面積比率を大きくすることができ、例えば最高温度が80℃程度でよい場合には、面積比率を25%程度の大きい値に設定してもよい。
第1突起部63の接触面積の下限は、温度制御の観点からは設ける必要はないが、第1突起部63の直径が0.5mmで、均等配置されているとしたときに、圧力16630Paにおいて、最大たわみ量が3μmで全ての第1突起部63に均等圧力で接触すれば十分であることから、高さ製作精度が±2.5μmを考慮して、このような条件を満たす第1突起部63の間隔を計算すると21.2mmとなり、その値から接触面積0.04%が求められるから、第1突起部63の接触面積は0.04%が好ましい。
この場合に、第1突起部63は、基準面60における周縁環状凸部61の内側部分全面に均一に設けられていることが好ましい。
ウエハ温度を下げるためには、Heガスの圧力を上昇させる必要があり、6650Paで最低温度である約50℃を得るためには、密閉空間62の高さ、すなわち第1突起部63の高さを適当な値に設定する必要がある。そこで、第1突起部の高さを変化させた場合のHeガス圧力とウエハ温度の関係を求めた。その結果を図8に示す。図8は、図7と同様の条件、手法でシミュレーションして求めたものである。図8から第1突起部63の高さ(つまり密閉空間62の高さ)が50μm以上となると圧力が6650Pa程度で50℃近傍まで低下し難く、50℃付近で精度良く温度制御を行うことが困難であることがわかる。第1突起部63の高さが5μm以下では、上述したようにHeガスの均一充填性が劣り、ウエハ温度均一性、温度制御応答性に劣るため、第1突起部63の高さは略30μmが適当であると考えられる。
第2突起部64とウエハWとの間の距離は、Heガスの熱伝達性に影響を及ぼすので適当な値に設定することが好ましい。そこで、第2突起部64とウエハWとの間の距離を変化させた場合のHeガス圧力とウエハ温度の関係を求めた。その結果を図9に示す。図9は、図7と同様の条件、手法でシミュレーションして求めたものである。図9から、第2突起部64とウエハWとの間の距離が略5μm以下とすることにより、熱伝達性がより良好となって、圧力が6650Pa程度で50℃近傍まで低下させることが可能であることがわかる。したがって、第2突起部64とウエハWとの間の距離は略5μm以下が好ましい。
プラズマ処理中においては、ウエハ温度を速やかに変更する必要があるが、第1突起部63の高さを略30μmに設定し、第2突起部64とウエハWとの間の距離を略5μm以下に設定することにより、第1突起部63および第2突起部64の周囲の空間のHeガス圧力変化の応答性を高いものとすることができる。
また、第1突起部63および第2突起部64の周囲の空間のHeガス圧力変化の応答性の観点から、第1突起部63のウエハWとの接触面積および第2突起部64のウエハWとの対向面の面積は、いずれも略0.8mm以下(あるいはその径がウエハの厚さ以下)であることが好ましい。この範囲であれば、上記Heガス圧力変化の応答遅延は生じ難い。なお、第1および第2突起部63,64に対応するウエハ部分においては、横方向の熱伝達距離と厚さ方向の熱伝達距離とがほぼ同じになるので、温度制御の定常状態においても温度ムラが生じ難くなる。
第2突起部64は上述のように熱伝達性を調整する機能を有することから、第2突起部64を局部的に設置することにより、Heガスによるその部分の温度制御性を高めること、つまりその部分の温度をより低下させることができる。例えば、ウエハWにプラズマ処理を施すと、ウエハWの周縁部のほうが中心部よりも温度が高くなるので、ウエハWの周縁部に対応する部分のみに第2突起部64を設ける、またはその部分の第2突起部64の配置密度を他の部分よりも高くすることにより、ウエハWの周縁部の温度を低下させることができる。このように、ウエハWの温度分布に応じて第2突起部64を形成することにより、ウエハ温度の均一性をより高めることができる。
第2突起部64の面積比率は、ウエハ温度制御性に直接影響を及ぼす。図10は、第1突起部の面積比率を変化させた場合における、第2突起部の面積比率とウエハ温度との関係を示す図であり、図11は同様の場合における第2突起部の面積比率とウエハ温度差との関係を示す図である。これらの図は、第1突起部63の高さ30μm、第2突起部64とウエハWとの間の距離を5μmとして、図7と同様にシミュレーションして求めたものである。図10に示すように、第1突起部63の面積比率が小さいほどウエハ温度が高くなる傾向にあるが、図11に示すように、ウエハ温度差、つまり第2突起部64の存在による温度制御性も面積比率が小さいほど良好になる。そして、第1突起部63の面積比率が好ましい範囲である2〜5%において、第2突起部64の面積比率が15%程度で温度差が−0.6〜−0.7℃程度と比較的高い温度制御性が得られる。したがって、第2突起部64の面積比率は略15%以上が好ましい。また、20%程度で温度差が−0.8〜−1.0℃程度となるので略20%以上がより好ましい。第2突起部64の面積比率は高ければ高いほど温度制御性が上昇するが、同一の大きさおよび形状で均一に配置する場合には、加工性等の観点から25%が事実上の上限となる。ただし、第2突起部64を不均一配置したり、加工を工夫することによって、面積比率をさらに上昇させることができる。
なお、第1突起部63および第2突起部64は、加工性や温度制御性等の観点から円柱形状であることが好ましく、その直径が略1mm以下であることが好ましい。
次に、本発明の他の実施形態について説明する。
図12は、本発明の他の実施形態に係るウエハ載置台の要部を拡大して示す断面図であり、図13はその水平断面図である。本実施形態においては、基準面60における周縁環状凸部61の内側に、ウエハWが載置された際にウエハWと接触して密閉空間62を内側部分62aと外側部分62bに分離する内側環状凸部67が設けられている。そして、内側部分62aおよび外側部分62bには、それぞれガス流路52a,52bが接続されており、内側部分62aおよび外側部分62bのHeガス圧力を独立して制御可能となっている。なお、図13は、周縁環状凸部61と内側環状凸部67の配置関係を説明するためのものであり、他の部材は省略している。
このように、密閉空間62を内側部分62aと外側部分62bに分離し、これらのHeガス圧力を独立して制御することにより、プラズマ処理の際に温度が上昇しやすいウエハWの周縁部と、それ以外の部分とを別個に温度制御して、ウエハ温度の均一性をより高めることができる。具体的には、外側部分62bの圧力を相対的に高め、熱伝達性を良好にしてウエハWの周縁部分がより冷却されるようにすることにより、ウエハ温度の均一性を高めることができる。なお、図12における基本的構成は、図2に示す実施形態と同様であるため、同一の構成には同一の符号を付して説明を省略する。
図14および図15は、図12の実施形態に係るウエハ載置台の変形例を示すものである。図14は、この実施形態に係るウエハ載置台の要部を拡大して示す断面図であり、図15はその水平断面図である。本実施形態では、密閉空間62を内側部分62aと外側部分62bとに分離するための内側環状凸部67を二重構造にし、その間に形成される第3の密閉空間(間隙部62c)にガスを導入できるようにした。
内側環状凸部67は、第1の内側環状凸部67aと、その外側に近接して設けられた第2の内側環状凸部67bとにより構成され、これらはともにウエハWが載置された際にウエハWに接触する高さで設けられている。そして、これら第1の内側環状凸部67aと第2の内側環状凸部67bとの間に形成される間隙部62cに、ガス流路52cを接続する構成とした。これにより、内側部分62a、外側部分62bおよび間隙部62cは、それぞれガス流路52a,52b,52cによってHeガスが導入されるとともに、ガス圧力を独立して制御可能になっている。なお、図15では、周縁環状凸部61と内側環状凸部67(67a,67b)の配置関係を説明するためのものであり、他の部材は省略している。
間隙部62cのガス圧力は、内側部分62a、外側部分62bよりも低くすることが好ましい。通常、静電チャック42の径は、直接プラズマの影響を受けないように、ウエハWの径に比較して小さく設計される。従って、ウエハWは、その周端が、図示のように静電チャック42よりも横方向に突出した状態で載置される。このため、ウエハWの周縁部は、中央部に比べて温度が上昇しやすい。そのため、前記のとおり図12の実施形態では、内側環状凸部67を設けて密閉空間62を内側部分62aと外側部分62bに分離し、かつ、それぞれにガス流路52a,52bを通じて独立してガス導入を行い、ウエハWの周縁部に対応する外側部分62bの圧力を、ウエハWの中央部に対応する内側部分62aの圧力よりも高くすることによって、冷却効率を高め、ウエハ面内での温度の均一化を図っている。
しかし、図12の実施形態では、内側環状凸部67の頂部を超えてガス圧力の高い外側部分62bから内側部分62aへガスが漏れ込む場合がある。内側環状凸部67を超えて外側部分62bから内側部分62aガスが侵入すると、内側部分62aのガス圧力が変動して圧力が不安定になり、ウエハWの面内温度を均一に制御することが困難になるおそれがある。そこで、本実施形態では、内側環状凸部67を二重に設け、間に間隙部62cを設けるとともに、間隙部62cのガス圧力を、その両側の内側部分62aおよび外側部分62bよりも低くした。このようにすれば、相対的にガス圧力の高い外側部分62bから第2の内側環状凸部67bを超えてガスが漏れだしても、ガス圧力の低い間隙部62cへ流れ込み、そこが緩衝空間をして機能するので、内側部分62aの圧力変動を防止できる。
このように、内側環状凸部67を二重にして、それらの間に間隙部62cを形成することによって、内側部分62aと外側部分62bの相互のガス圧力の影響を緩和することができる。
図14および図15では、第1の内側環状凸部67aおよび第2の内側環状凸部67bの厚みと、間隙部62cの幅を変えて表現しているが、これらの厚みと幅は、同じでも異なっていてもよく、内側部分62a、外側部分62bおよび間隙部62cのガス圧力などに応じて適宜設定可能であり、例えば第1の内側環状凸部67aおよび第2の内側環状凸部67bの厚みは共に2mmとし、間隙部62cの幅は、1mmに設定することができる。なお、図14における基本的構成は、図2に示す実施形態と同様であるため、同一の構成には同一の符号を付して説明を省略する。
図16は、図12の実施形態に係るウエハ載置台の別の変形例を示しており、ウエハ載置台の要部を拡大して示す断面図である。本実施形態では、上面に溝を刻設した内側環状凸部68を配備した。
すなわち、内側環状凸部68は、ウエハWが載置された際にウエハWに接触する高さで環状に突設された内周壁68aおよび外周壁68bと、その間に形成された凹部である溝68cを有しており、溝68cの底には、ガス流路52dが接続されている。本実施形態では、溝68c内のガス圧力を、内側部分62aや外側部分62bよりも低く設定することにより、図14および図15に示す実施形態について説明した機構と同様に、内側部分62aと外側部分62bの相互のガス圧力の影響を緩和することができる。
本実施形態においても、内側環状凸部68の内周壁68aおよび外周壁68bの厚みと、溝68cの幅は、同じでも異なっていてもよく、適宜設定可能である。なお、図16における基本的構成は、図2に示す実施形態と同様であるため、同一の構成には同一の符号を付して説明を省略する。
図17および図18は、ウエハ載置台のさらに別の変形例を示すものである。図17は、この実施形態に係るウエハ載置台の要部を拡大して示す断面図であり、図18はその水平断面図である。本実施形態では、周縁環状凸部61と内側環状凸部67の間に、ウエハWが載置された際にウエハWに接触する高さで複数の中間環状凸部69a,69b,69c,69dを同心円状に設け、その間に形成される複数(本例では5つ)の間隙部62d,62e,62f,62g,62hにHeガスを導入するガス流路52eをそれぞれ接続し、ガス圧力を独立して制御可能にした。このような構成によって、間隙部62hのガス圧力を高く設定した場合は、隣接する間隙部62gのガス圧力は低く設定するというように、間隙部62d〜62hのガス圧力が交互に高、低、高、低・・・となるように設定できる。なお、図18では、周縁環状凸部61と内側環状凸部67および中間環状凸部69a〜69dの配置関係を説明するためのものであり、他の部材は省略している。
前記のとおり、ウエハWの周縁部は温度が上昇しやすいため、例えば図12に示す実施形態では、内側環状凸部67と周縁環状凸部61との間の外側部分62bのガス圧力を内側部分62aに比べて相対的に高く設定し、熱伝達性を良好にしてHeガスによる冷却効率を高めている。しかし、ウエハW自体の熱伝導率は比較的大きいので、周縁部のみを冷却しても、隣接する内側の領域に冷熱が伝達していく。このようなウエハW自体の熱伝導率を考慮に入れると、より細かなガス圧力の制御を行なうことが、ウエハWの面内の温度の均一性を高める上で好ましいと考えられる。
本実施形態では、上記構成により、例えば図19に示すように、ガス圧力が最も高く設定され、強く冷却される間隙部62hに隣接した間隙部62gでは、ウエハWの熱伝導を考慮してガス圧力を相対的に低めに設定して冷却を弱め、過度に冷却されないようにし、さらにその内側の間隙部62fでは、間隙部62gよりもガス圧力を高く設定して冷却を少し強める、というようにガス圧力を細かく変化させて冷却精度を高めることができる。これにより、Heガスによる精密な温度制御が可能になり、ウエハWにおける面内の温度分布を高精度で制御し、均一化を図ることが可能になる。
図17と同様の構成を有するウエハ載置台を用いてウエハWを加熱した場合のウエハ面内の温度分布を測定した結果を図20に示した。図20の横軸は、φ300mmのウエハWの中心を0とした場合の距離(半径)を示している。通常、同サイズのウエハWでは、面内温度に±5℃程度の差が生じるが、図20では、ウエハWの周縁部近傍のおよそ120mm〜150mmの距離でも、温度の分布(ばらつき)は±1℃以内に抑制されていることが理解される。従って、本実施形態のウエハ載置台を用いることにより、極めて高い精度でウエハ面内温度を均一化できることが確認された。
図17〜図19では、内側環状凸部67および周縁環状凸部61の厚みと、中間環状凸部69a〜69dの厚みと、間隙部62d〜62hの幅をそれぞれ変えて表現しているが、これらの厚みと幅は、同じでも異なっていてもよく、適宜設定可能である。また、中間環状凸部と間隙部の数も適宜設定できる。なお、図17および図19における基本的構成は、図2に示す実施形態と同様であるため、同一の構成には同一の符号を付して説明を省略する。
なお、本発明は上記実施の形態に限定されることなく本発明の思想の範囲内で種々変形可能である。例えば、上記実施形態では、静電チャック付きのウエハ載置台を対象にしたが、静電チャックは必須なものではない。また、上部電極および下部電極に高周波電力を印加するタイプの平行平板型プラズマエッチング装置を示したが、高周波電力の印加方式はこれに限るものではなく、また、平行平板型に限らず、例えば誘導結合型プラズマ処理装置等、他の方式のプラズマ装置であってもよいし、エッチング処理に限らず、アッシングやCVD等、他の処理であってもよい。さらには、処理容器内を減圧にする処理であれば、プラズマ処理以外であってもよい。さらに、熱伝達ガスとしてHeガスを用いた例を示したが、Arガス、HeガスとArガスとの混合ガス等、他のガスを用いてもよい。さらにまた、被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ基板等、他の基板であってもよい。
本発明の一実施形態に係るウエハ載置台が設けられたプラズマ処理装置を示す断面図。 本発明の一実施形態に係るウエハ載置台の主要部を拡大して示す断面図。 本発明の一実施形態に係るウエハ載置台における第1突起部および第2突起部の配置状態の一例を示す平面図。 本発明の一実施形態に係るウエハ載置台において、ウエハ下方の密閉空間に熱伝達用ガスとしてHeガスを供給した場合の各密閉空間高さにおけるガス圧と熱伝達係数との関係を示す図。 空間内でのHeガスの均一性についてのシミュレーションを行った際のモデルを示す図。 図5に示すモデルを用いたシミュレーション結果を示す図。 第1突起部の全体の接触面積比率を変化させた場合のHeガス圧力とウエハ温度の関係を示す図。 第1突起部の高さを変化させた場合のHeガス圧力とウエハ温度の関係を示す図。 第2突起部64とウエハWとの間の距離を変化させた場合のHeガス圧力とウエハ温度の関係を示す図。 第1突起部の面積比率を変化させた場合における、第2突起部の面積比率とウエハ温度との関係を示す図。 第1突起部の面積比率を変化させた場合における、第2突起部の面積比率とウエハ温度差との関係を示す図。 本発明の他の実施形態に係るウエハ載置台の主要部を拡大して示す断面図。 本発明の他の実施形態に係るウエハ載置台の主要部の水平断面図。 本発明の別の実施形態に係るウエハ載置台の主要部を拡大して示す断面図。 本発明の別の実施形態に係るウエハ載置台の主要部の水平断面図。 本発明のさらに別の実施形態に係るウエハ載置台の主要部を拡大して示す断面図。 本発明のさらに別の実施形態に係るウエハ載置台の主要部を拡大して示す断面図。 本発明のさらに別の実施形態に係るウエハ載置台の主要部の水平断面図。 間隙部のガス圧力の説明に供する模式図。 ウエハの面内温度分布の測定結果を示すグラフ図面。
符号の説明
1;プラズマ処理装置(プラズマエッチング装置)
2;チャンバー(処理室)
4;ウエハ載置台(基板載置台)
10;シャワーヘッド
20;処理ガス供給源
30;第1の高周波電源
41;電極板
42;静電チャック(載置台本体)
52,52a,52b;ガス流路
55;He供給機構
60;基準面
61;周縁環状凸部
62;密閉空間
62a;内側部分
62b;外側部分
63;第1突起部
64;第2突起部
67;内側環状凸部
67a;第1の内側環状凸部
67b;第2の内側環状凸部
68;内側環状凸部
68a;内周壁
68b;外周壁
68c;溝
69a,69b,69c,69d;中間環状凸部
70;第2の高周波電源
80;プロセスコントローラ

Claims (25)

  1. 基板処理装置において基板を載置する基板載置台であって、
    載置台本体と、
    前記載置台本体の基板載置側の基準面に、基板が載置された際に基板の周縁部に接触するように形成され、その際に基板の下方部分に熱伝達用ガスが充填される密閉空間を形成する周縁環状凸部と、
    前記基準面における前記周縁環状凸部の内側部分に、基板が載置された際に基板と接触するように設けられた複数の第1突起部と、
    前記基準面における前記周縁環状凸部の内側部分に、前記第1突起部と独立して、基板が載置された際に基板に接触せずに近接して設けられた複数の第2突起部と
    を有し、
    前記第2突起部と前記載置された基板との間の距離は略5μm以下であることを特徴とする基板載置台。
  2. 前記第1突起部の前記載置された基板との接触面積および前記第2突起部の前記載置された基板との対向面の面積は、いずれも略0.8mm以下であることを特徴とする請求項1に記載の基板載置台。
  3. 前記第1突起部および前記第2突起部は円柱形状を有することを特徴とする請求項1または請求項2に記載の基板載置台。
  4. 前記第1突起部および前記第2突起部の直径が略1mm以下であることを特徴とする請求項に記載の基板載置台。
  5. 前記第1突起部の前記載置された基板と接触する面積の総和は、前記基準面における前記周縁環状凸部の内側部分の面積に対して、略0.04〜5%の面積比率であることを特徴とする請求項1から請求項のいずれか1項に記載の基板載置台。
  6. 前記第1突起部は、前記基準面における前記周縁環状凸部の内側部分全面に均一に形成されることを特徴とする請求項に記載の基板載置台。
  7. 前記第2突起部の前記載置された基板と対向する面積の総和は、前記基準面における前記周縁環状凸部の内側部分の面積に対して、略15%以上の面積比率であることを特徴とする請求項1から請求項のいずれか1項に記載の基板載置台。
  8. 前記第2突起部は、前記載置された基板の温度分布に応じて前記基準面における前記周縁環状凸部の内側部分に所定の分布で形成されることを特徴とする請求項に記載の基板載置台。
  9. 前記周縁環状凸部および前記第1突起部の前記基準面からの高さは、略30μmであることを特徴とする請求項1から請求項のいずれか1項に記載の基板載置台。
  10. 前記基準面の前記周縁環状凸部の内側に設けられ、基板が載置された際に基板と接触して前記密閉空間を内側部分と外側部分に分離する内側環状凸部をさらに有することを特徴とする請求項1から請求項のいずれか1項に記載の基板載置台。
  11. 前記内側環状凸部を、第1の内側環状凸部と、該第1の内側環状凸部に近接して設けられた第2の内側環状凸部と、を有する二重構造にしたことを特徴とする請求項10に記載の基板載置台。
  12. 前記内側環状凸部により分離される前記密閉空間の内側部分と外側部分とに、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部を設けるとともに、
    前記第1の内側環状凸部と前記第2の内側環状凸部との間隙に、熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設けたことを特徴とする請求項11に記載の基板載置台。
  13. 前記内側環状凸部は、互いに近接して設けられた第1の環状壁および第2の環状壁と、これら第1の環状壁と第2の環状壁との間に形成された環状の凹部と、を有していることを特徴とする請求項10に記載の基板載置台。
  14. 前記内側環状凸部により分離される前記密閉空間の内側部分と外側部分とに、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部を設けるとともに、
    前記環状の凹部内に熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設けたことを特徴とする請求項13に記載の基板載置台。
  15. 前記内側環状凸部と前記周縁環状凸部との間に同心円状に複数の中間環状凸部を配備したことを特徴とする請求項10に記載の基板載置台。
  16. 前記内側環状凸部により分離される前記密閉空間の内側部分に、熱伝達用ガスを導入する熱伝達用ガス導入部を設けるとともに、
    前記同心円状に形成された複数の中間環状凸部の間に形成される複数の間隙に、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設けたことを特徴とする請求項15に記載の基板載置台。
  17. 前記載置台本体は、静電気力を用いて基板を吸着する静電チャックを有することを特徴とする請求項1から請求項16のいずれか1項に記載の基板載置台。
  18. 基板を収容し、内部が減圧保持される処理室と、
    前記処理室内に設けられ、前記基板が載置され、請求項1から請求項17のいずれかに記載された構成を有する基板載置台と、
    前記処理室内で基板に所定の処理を施す処理機構と、
    前記基板載置台と基板との間に形成された前記密閉空間に熱伝達用ガスを供給する熱伝達用ガス供給機構と
    を具備することを特徴とする基板処理装置。
  19. 前記熱伝達用ガス供給機構から供給される熱伝達用ガスの圧力を制御する制御機構を有することを特徴とする請求項18に記載の基板処理装置。
  20. 請求項1から請求項のいずれかに記載の基板載置台を用いて基板の温度を制御する基板の温度制御方法であって、
    前記基板載置台と基板との間に形成された前記密閉空間に導入する熱伝達用ガスの圧力を制御することにより、基板の温度を制御することを特徴とする基板の温度制御方法。
  21. 請求項10に記載の基板載置台を用いて基板の温度を制御する基板の温度制御方法であって、
    前記内側環状凸部により分離される前記密閉空間の内側部分と外側部分とに、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部を設け、前記密閉空間の内側部分と外側部分とを独立的に圧力制御することにより、基板の温度を制御することを特徴とする基板の温度制御方法。
  22. 前記内側環状凸部を、第1の内側環状凸部と、該第1の内側環状凸部に近接して設けられた第2の内側環状凸部と、を有する二重構造とし、
    前記第1の内側環状凸部と前記第2の内側環状凸部との間隙に、熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設け、前記間隙内の圧力を、前記密閉空間の内側部分および外側部分よりも低く制御するようにしたことを特徴とする請求項21に記載の基板の温度制御方法。
  23. 前記内側環状凸部は、互いに近接して設けられた第1の環状壁および第2の環状壁と、これら第1の環状壁と第2の環状壁との間に形成された環状の凹部と、を有するものとし、
    前記環状の凹部内に熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設け、該凹部内の圧力を、前記密閉空間の内側部分および外側部分よりも低く制御するようにしたことを特徴とする請求項21に記載の基板の温度制御方法。
  24. 請求項10に記載の基板載置台を用いて基板の温度を制御する基板の温度制御方法であって、
    前記内側環状凸部により分離される前記密閉空間の内側部分に、熱伝達用ガスを導入する熱伝達用ガス導入部を設け、前記密閉空間の内側部分を圧力制御するとともに、
    前記内側環状凸部と前記周縁環状凸部との間に同心円状に複数の中間環状凸部を配備し、該複数の中間環状凸部の間に形成される複数の間隙に、それぞれ熱伝達用ガスを導入する熱伝達用ガス導入部をさらに設け、該複数の間隙内の圧力を、それぞれ独立して制御することにより、基板の温度を制御することを特徴とする基板の温度制御方法。
  25. コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、
    前記制御プログラムは、実行時に、請求項20から請求項24のいずれか1項に記載された基板の温度制御方法が行なわれるようにコンピュータに基板載置台を制御させるものであることを特徴とする、コンピュータ記憶媒体。
JP2005151025A 2004-10-29 2005-05-24 基板載置台、基板処理装置、および基板の温度制御方法 Expired - Fee Related JP4642550B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005151025A JP4642550B2 (ja) 2004-10-29 2005-05-24 基板載置台、基板処理装置、および基板の温度制御方法
US11/259,037 US20060090855A1 (en) 2004-10-29 2005-10-27 Substrate mounting table, substrate processing apparatus and substrate temperature control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004316604 2004-10-29
JP2005151025A JP4642550B2 (ja) 2004-10-29 2005-05-24 基板載置台、基板処理装置、および基板の温度制御方法

Publications (3)

Publication Number Publication Date
JP2006156938A JP2006156938A (ja) 2006-06-15
JP2006156938A5 JP2006156938A5 (ja) 2008-06-26
JP4642550B2 true JP4642550B2 (ja) 2011-03-02

Family

ID=36634790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151025A Expired - Fee Related JP4642550B2 (ja) 2004-10-29 2005-05-24 基板載置台、基板処理装置、および基板の温度制御方法

Country Status (1)

Country Link
JP (1) JP4642550B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003102B2 (ja) * 2006-10-27 2012-08-15 東京エレクトロン株式会社 静電チャックの診断方法、真空処理装置及び記憶媒体
JP2008198800A (ja) * 2007-02-13 2008-08-28 Bridgestone Corp 熱処理用治具
JP5269335B2 (ja) * 2007-03-30 2013-08-21 東京エレクトロン株式会社 プラズマ処理装置
JP2009060011A (ja) * 2007-09-03 2009-03-19 Tokyo Electron Ltd 基板載置台、基板処理装置、及び温度制御方法
JP5644256B2 (ja) * 2010-08-20 2014-12-24 豊田合成株式会社 化合物半導体の製造装置及び化合物半導体の製造方法
US8520360B2 (en) * 2011-07-19 2013-08-27 Lam Research Corporation Electrostatic chuck with wafer backside plasma assisted dechuck
JP6010433B2 (ja) * 2012-11-15 2016-10-19 東京エレクトロン株式会社 基板載置台および基板処理装置
JP6612985B2 (ja) * 2016-07-25 2019-11-27 京セラ株式会社 試料保持具
TW202211367A (zh) * 2020-07-06 2022-03-16 美商應用材料股份有限公司 具有改進的溫度控制的靜電卡盤
CN114975178B (zh) * 2022-05-18 2024-04-05 江苏微导纳米科技股份有限公司 温度控制组件、半导体处理腔室及半导体处理设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335630A (ja) * 1994-06-13 1995-12-22 Hitachi Ltd 真空処理装置
JPH10107134A (ja) * 1996-10-01 1998-04-24 Ricoh Co Ltd 静電吸着装置
JP2000317761A (ja) * 1999-03-01 2000-11-21 Toto Ltd 静電チャックおよび吸着方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335630A (ja) * 1994-06-13 1995-12-22 Hitachi Ltd 真空処理装置
JPH10107134A (ja) * 1996-10-01 1998-04-24 Ricoh Co Ltd 静電吸着装置
JP2000317761A (ja) * 1999-03-01 2000-11-21 Toto Ltd 静電チャックおよび吸着方法

Also Published As

Publication number Publication date
JP2006156938A (ja) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4642550B2 (ja) 基板載置台、基板処理装置、および基板の温度制御方法
US20060090855A1 (en) Substrate mounting table, substrate processing apparatus and substrate temperature control method
CN100382275C (zh) 基板载置台、基板处理装置及基板的温度控制方法
JP5198226B2 (ja) 基板載置台および基板処理装置
US8282769B2 (en) Shower head and plasma processing apparatus having same
JP6335229B2 (ja) 基板温度制御方法及びプラズマ処理装置
JP5008478B2 (ja) 基板処理装置およびシャワーヘッド
TWI721062B (zh) 電漿處理方法及電漿處理裝置
KR20170074784A (ko) 에칭 방법
US9207689B2 (en) Substrate temperature control method and plasma processing apparatus
JP2016127170A (ja) 載置台及び基板処理装置
JP2006261541A (ja) 基板載置台、基板処理装置および基板処理方法
KR20110014104A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101898079B1 (ko) 플라즈마 처리 장치
US9991100B2 (en) Plasma processing apparatus and control method
JP2012004160A (ja) 基板処理方法及び基板処理装置
JP2010045200A (ja) フォーカスリング、プラズマ処理装置及びプラズマ処理方法
JP2009188173A (ja) 基板処理方法及び基板処理装置
TW201911976A (zh) 電漿處理裝置及氣體噴淋頭
WO2019244631A1 (ja) 載置台及び基板処理装置
JP2011119708A (ja) 基板保持装置、及び、プラズマ処理装置
JP5323303B2 (ja) プラズマ処理装置
JP2017212051A (ja) プラズマ処理方法
JP2019160846A (ja) 被処理体の載置装置及び処理装置
JP5336968B2 (ja) プラズマ処理装置用電極及びプラズマ処理装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees