JP4639830B2 - Booster and flow velocity or flow rate measuring device - Google Patents

Booster and flow velocity or flow rate measuring device Download PDF

Info

Publication number
JP4639830B2
JP4639830B2 JP2005027559A JP2005027559A JP4639830B2 JP 4639830 B2 JP4639830 B2 JP 4639830B2 JP 2005027559 A JP2005027559 A JP 2005027559A JP 2005027559 A JP2005027559 A JP 2005027559A JP 4639830 B2 JP4639830 B2 JP 4639830B2
Authority
JP
Japan
Prior art keywords
voltage
charge pump
power supply
pump type
boosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005027559A
Other languages
Japanese (ja)
Other versions
JP2006217724A (en
Inventor
文一 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005027559A priority Critical patent/JP4639830B2/en
Publication of JP2006217724A publication Critical patent/JP2006217724A/en
Application granted granted Critical
Publication of JP4639830B2 publication Critical patent/JP4639830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、負荷に電源電圧より高電圧の電力を供給するチャージポンプ型昇圧手段を用いる昇圧装置、及びこの昇圧装置を設け超音波を利用して気体や液体などの流量を計測する流速または流量計測装置に関するものである。   The present invention relates to a booster using a charge pump type booster that supplies electric power higher than a power supply voltage to a load, and a flow velocity or flow rate for measuring the flow rate of gas or liquid using the ultrasonic wave provided with this booster. The present invention relates to a measuring device.

従来の昇圧装置としてはDCDCコンバータを利用したものがあり、これを利用した流量計測装置は超音波を用いた電気的な計測方法である(例えば、特許文献1参照)。   As a conventional boosting device, there is one using a DCDC converter, and a flow rate measuring device using the DCDC converter is an electrical measuring method using ultrasonic waves (for example, see Patent Document 1).

図12は一般的な昇圧回路の構成を示すブロック図である。図12において1は電源、2はDCDCコンバータ、3はインダクタンスL,4はダイオードD,5はコンデンサC、6は負荷である。DCDCコンバータ2はインダクタンス3をスイッチング動作することによりオンからオフになったときにインダクタンスに生じる逆起電力がダイオード4を介して整流し、コンデンサ5でリップルを小さくした安定した高電圧を負荷6に供給するものである。図13は、従来の超音波流量計の構成を示すブロック図である。   FIG. 12 is a block diagram showing a configuration of a general booster circuit. In FIG. 12, 1 is a power source, 2 is a DCDC converter, 3 is an inductance L, 4 is a diode D, 5 is a capacitor C, and 6 is a load. In the DC-DC converter 2, the back electromotive force generated in the inductance is rectified through the diode 4 when the inductance 3 is switched from on to off by switching the inductance 3, and a stable high voltage in which the ripple is reduced by the capacitor 5 is applied to the load 6. To supply. FIG. 13 is a block diagram showing a configuration of a conventional ultrasonic flowmeter.

図13において、流体流路11の途中に超音波を発信する第1振動子12と受信する第2振動子13が流れ方向に配置されている。14は第1振動子12への送信回路、15は第2振動子13で受信した超音波を信号処理する受信回路である。16は受信回路15で超音波を検知した後第1振動子12からの送信と第2振動子13での受信を複数回繰り返す繰返し手段である。17は受信回路で超音波を検出した後、再度第1振動子12から超音波を送信するまでの遅延時間を発生させる遅延時間発生手段であり、18は遅延時間発生手段17により発生した遅延時間を計測する遅延時間計測手段、19は遅延時間発生手段17の計測値を基に、遅延時間を制御する遅延時間制御手段、20は繰返し手段により行われる複数回の超音波伝達の所要時間を計測する累積時間計測手段、21は遅延時間計測手段18および累積時間計測手段20の計測値から流量を求める流量演算手段である。   In FIG. 13, a first vibrator 12 that transmits ultrasonic waves and a second vibrator 13 that receives ultrasonic waves are disposed in the flow direction in the middle of the fluid flow path 11. Reference numeral 14 denotes a transmission circuit to the first vibrator 12, and 15 denotes a reception circuit that performs signal processing on the ultrasonic waves received by the second vibrator 13. Reference numeral 16 denotes a repeating unit that repeats transmission from the first vibrator 12 and reception by the second vibrator 13 after the ultrasonic wave is detected by the receiving circuit 15. Reference numeral 17 denotes delay time generating means for generating a delay time until ultrasonic waves are transmitted again from the first transducer 12 after the ultrasonic wave is detected by the receiving circuit, and 18 is a delay time generated by the delay time generating means 17. Is a delay time measuring means for measuring the delay time, 19 is a delay time control means for controlling the delay time based on the measured value of the delay time generating means 17, and 20 is a time required for a plurality of ultrasonic transmissions performed by the repetition means. The accumulated time measuring means 21 is a flow rate calculating means for obtaining a flow rate from the measured values of the delay time measuring means 18 and the accumulated time measuring means 20.

送信回路14より送出されたバースト信号により第1振動子12から発信された超音波信号は、流れの中を伝搬し、第2振動子13で受信され受信回路15で検知され、遅延時間発生手段17で発生した遅延時間を置いた後、再び送信回路14よりバースト信号が送出される。送信回路14からのバースト信号は、予め定められた回数だけ繰り返され、この繰返しに要した時間を累積時間計測手段20で、また、遅延時間を遅延時間計測手段10により計測する。   The ultrasonic signal transmitted from the first transducer 12 by the burst signal transmitted from the transmission circuit 14 propagates in the flow, is received by the second transducer 13 and detected by the reception circuit 15, and delay time generating means After the delay time generated at 17 is set, the burst signal is transmitted from the transmission circuit 14 again. The burst signal from the transmission circuit 14 is repeated a predetermined number of times, and the time required for this repetition is measured by the accumulated time measuring means 20 and the delay time is measured by the delay time measuring means 10.

更に、流量演算手段21では、累積時間計測手段20で求めた値から遅延時間計測手段19で求めた遅延時間を差し引くことにより、超音波の伝達のみの所要時間Tを求める。通常、この送信回路から振動子を駆動する際には伝搬距離により信号が減衰することを考慮して高電圧を供給する。その回路として上記に説明した昇圧回路を利用することが多い。
特開2000−292232号公報(第2頁、第1図)
Further, the flow rate calculating means 21 obtains the required time T for only transmitting ultrasonic waves by subtracting the delay time obtained by the delay time measuring means 19 from the value obtained by the accumulated time measuring means 20. Normally, when driving a vibrator from this transmission circuit, a high voltage is supplied in consideration of the signal attenuation due to the propagation distance. As the circuit, the booster circuit described above is often used.
JP 2000-292232 A (2nd page, FIG. 1)

しかしながら従来の昇圧回路における高電圧供給回路では負荷の動作および回路全体の安定性を考えたDCDCコンバータの動作タイミングが統一されておらず、個々に動作している。例えば送信、受信回路への供給電圧が安定する前にDCDCコンバータの動作を開始すると充電後、負荷が動作するまでの時間に無駄が発生する可能性がでてくる。さらに回路の初期設定動作などを行っている時に昇圧回路が動作するとシステムの電圧が変動したり、ノイズの発生による計測精度の劣化につながる可能性がある。   However, in the conventional high voltage supply circuit in the booster circuit, the operation timing of the DCDC converter considering the operation of the load and the stability of the entire circuit is not unified, and operates individually. For example, if the operation of the DCDC converter is started before the supply voltage to the transmission / reception circuit is stabilized, there is a possibility that waste will occur in the time after the charging until the load operates. Furthermore, if the booster circuit operates during the initial setting operation of the circuit, the system voltage may fluctuate or the measurement accuracy may be degraded due to noise.

また、誘導性の素子を用いるDCDCコンバータでは動作時の逆起電力や誘導ノイズにより他の回路へ影響を及ぼす可能性がある。   In addition, in a DCDC converter using an inductive element, there is a possibility that other circuits are affected by back electromotive force or induced noise during operation.

本発明は上記の課題を解決するもので、チャージポンプ型昇圧手段をこまめに、特にタイミングを重視して時間的に制御することで、安定した電圧で負荷への電力供給を行うとともに、コイルを使用しない回路構成によりノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することを目的としている。   The present invention solves the above-mentioned problems, and by controlling the time with emphasis on the timing, especially with the charge pump type boosting means, the power is supplied to the load with a stable voltage, and the coil is An object of the present invention is to realize the operation of the boosting means that does not affect the system due to the circuit configuration that is not used.

さらにチャージポンプ型昇圧手段の充電動作も過充電、過放電が極力少なくなるように動作して入力側電源の省エネにも対処できることを目的としている。   Furthermore, the charge operation of the charge pump type boosting means is also intended to cope with energy saving of the input side power supply by operating so as to minimize overcharge and overdischarge.

そして、このような安定した昇圧制御手段を用いることで、計測系の安定動作を実現する精度の良い流量計測を実現することを目的としている。   An object of the present invention is to realize an accurate flow rate measurement that realizes a stable operation of the measurement system by using such a stable boost control means.

本発明の昇圧装置は、蓄電手段の充電電圧が一定値以上になると電源制御手段は第1の開閉手段を開く。In the booster of the present invention, the power supply control means opens the first opening / closing means when the charging voltage of the power storage means becomes a certain value or more.

本発明の、昇圧装置における電源制御手段は、チャージポンプ型昇圧手段と蓄電手段の間に第1の開閉手段を備え、前記蓄電手段の充電が一定値以上になると電源制御手段は前記第1の開閉手段を開成することにより、蓄電手段への過充電を防止するとともに逆流による放電を防止することが可能になる。 The power supply control means in the booster of the present invention comprises a first opening / closing means between the charge pump type boosting means and the power storage means, and when the charge of the power storage means exceeds a certain value, the power supply control means By opening the opening / closing means, it is possible to prevent overcharging of the power storage means and to prevent discharge due to backflow.

第1の発明は、電源より高電圧を発生させ負荷へ電圧を出力するチャージポンプ型昇圧手段と、前記チャージポンプ型昇圧手段に接続され電力を蓄える蓄電手段と、前記電源と前記チャージポンプ型昇圧手段を時間的に制御する電源制御手段とを備え、前記電源制御手段は、動作が安定した後にクロック信号を前記チャージポンプ型昇圧手段に出力する昇圧装置である。   According to a first aspect of the present invention, there is provided a charge pump type boosting unit that generates a high voltage from a power source and outputs a voltage to a load, a power storage unit that is connected to the charge pump type boosting unit and stores electric power, the power source, and the charge pump type boosting unit Power supply control means for controlling the means in time, and the power supply control means is a booster that outputs a clock signal to the charge pump booster after the operation is stabilized.

これにより、電源制御手段は電源立ち上げ時に、それ自体の動作が安定した後でチャージポンプ型昇圧手段の動作を行うクロック信号を出力して高圧電圧の出力を制御することで、回路動作が安定した後に例えば負荷の動作に応じてチャージポンプ型昇圧手段の出力電圧を制御する動作を行うことにより安定した電圧で負荷への電力供給を行うとともに、コイルなどのノイズ発生源となる素子を使用しない回路構成により昇圧などの動作による電圧の不安定さやスイッチングノイズの発生を抑えることができる。そしてノイズ等の影響をシステムに与えないようなチャージポンプ型昇圧手段の動作を実現することができるとともに、チャージポンプ型昇圧手段の充電動作も過充電、過放電が極力少なくなるように動作して入力側電源の省エネにも対処できることで計測系の安定動作を実現する精度を向上できる。   As a result, when the power supply is turned on, the circuit operation is stabilized by outputting the clock signal for operating the charge pump type boosting means after the operation itself is stabilized and controlling the output of the high voltage. After that, for example, by performing an operation of controlling the output voltage of the charge pump type boosting means according to the operation of the load, power is supplied to the load with a stable voltage, and an element that is a noise generation source such as a coil is not used. With the circuit configuration, it is possible to suppress voltage instability and switching noise due to operations such as boosting. The operation of the charge pump type boosting means that does not affect the system such as noise can be realized, and the charging operation of the charge pump type boosting means also operates so that overcharge and overdischarge are minimized. The accuracy of realizing stable operation of the measurement system can be improved by coping with energy saving of the input side power supply.

第2の発明は、特に第1の発明の電源制御手段が、チャージポンプ型昇圧手段の後段に設けた蓄電手段の充電を監視し一定値以上になるとを電源制御手段からのクロック信号を停止することにより昇圧動作による過充電を防止し蓄電手段の寿命劣化を防止するとともに、電源の省エネルギーを図ることが可能になる。   In the second invention, particularly, the power supply control means of the first invention monitors the charge of the power storage means provided in the subsequent stage of the charge pump type boosting means, and stops the clock signal from the power supply control means when it exceeds a certain value. As a result, overcharging due to the boosting operation can be prevented, the life of the power storage means can be prevented from being deteriorated, and the power can be saved.

第3の発明は、特に第1の発明で、チャージポンプ型昇圧手段と蓄電手段の間に第1の開閉手段を備え、前記蓄電手段の充電が一定値以上になると電源制御手段は前記第1の開閉手段を開成することにより、蓄電手段への過充電を防止するとともに逆流による放電を防止することが可能になる。   The third invention is particularly the first invention, wherein the first opening / closing means is provided between the charge pump type boosting means and the power storage means, and when the charge of the power storage means exceeds a certain value, the power supply control means is the first control means. By opening the opening / closing means, it is possible to prevent overcharging of the power storage means and to prevent discharge due to backflow.

第4の発明は、特に第1の発明で、蓄電手段と負荷の間に第2の開閉手段を備え、前記蓄電手段の充電が一定値以上になると電源制御手段は前記第2の開閉手段を閉止することにより、充電が完了してから負荷への電源供給を行うことで、安定した電圧での動作を実現できる。   The fourth invention is particularly the first invention, and further comprises a second opening / closing means between the power storage means and the load, and when the charge of the power storage means exceeds a certain value, the power control means turns the second opening / closing means By closing, by supplying power to the load after the charging is completed, an operation at a stable voltage can be realized.

第5の発明は、特に第1の発明で、蓄電手段の充電が一定値以上になると電源制御手段は負荷への制御信号を送出することにより、負荷は蓄電手段の電圧が安定領域に入った後で動作することができる。   The fifth aspect of the invention is particularly the first aspect of the invention. When the charge of the power storage means becomes a predetermined value or more, the power supply control means sends a control signal to the load, so that the load enters the stable region of the voltage of the power storage means. Can work later.

第6の発明は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、前記送信側振動子を駆動する送信手段と、前記受信側振動子の出力信号を電気信号に変換する受信手段と、前記受信手段の電気信号を用いて前記被測定流体の流速を算出する演算手段と、第1から5のいずれかの昇圧装置を備えた流速計測装置であり、これにより、安定した動作で精度のよい流速計測を実現できる。   According to a sixth aspect of the present invention, there is provided a pair of transducers arranged in a flow path through which the fluid to be measured flows and transmits / receives ultrasonic waves, transmission means for driving the transmission-side transducers, and output signals of the reception-side transducers as electrical signals A flow rate measuring device comprising: a receiving means for converting to a calculation means; a computing means for calculating a flow velocity of the fluid under measurement using an electrical signal of the receiving means; Realizes accurate flow velocity measurement with stable operation.

第7の発明は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、前記送信側振動子を駆動する送信手段と、前記受信側振動子の出力信号を電気信号に変換する受信手段と、前記受信手段の電気信号を用いて前記被測定流体の流量を算出する演算手段と、第1から5のいずれかの昇圧装置を備えた流量計測装置であり、これにより、安定した動作で精度のよい流量計測を実現できる。   According to a seventh aspect of the present invention, a pair of transducers disposed in a flow path through which a fluid to be measured flows transmits / receives ultrasonic waves, transmission means for driving the transmission-side transducers, and output signals of the reception-side transducers as electrical signals A flow rate measuring device comprising: a receiving means for converting to a calculation means; a calculation means for calculating a flow rate of the fluid under measurement using an electrical signal of the receiving means; and a booster device according to any one of the first to fifth aspects. Realizes accurate flow measurement with stable operation.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
実施の形態1に関する本発明の昇圧装置とこの装置を備えた流速または流量計測装置について説明する。図1は本実施の形態1の構成を示す流速または流量計測装置のブロック図である。
(Embodiment 1)
A booster of the present invention relating to the first embodiment and a flow velocity or flow rate measuring device provided with the device will be described. FIG. 1 is a block diagram of a flow velocity or flow rate measuring apparatus showing the configuration of the first embodiment.

図1おいて、被測定流体の流れる流路31と、流路31に配置された超音波を送受信する第1の振動子32、第2の振動子33を設置し、第1の振動子32を駆動する送信手段34と、第2の振動子33の受信信号を受け受信タイミングを決定する受信手段35と、送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段36を設け、超音波の送受信を第1の振動子32と第2の振動子33の間で交互に行うようにしている。   In FIG. 1, a flow path 31 through which a fluid to be measured flows, a first vibrator 32 and a second vibrator 33 that transmit and receive ultrasonic waves arranged in the flow path 31 are installed, and the first vibrator 32 is installed. Transmitting means 34 for driving the signal, receiving means 35 for receiving the reception signal of the second vibrator 33 and determining the reception timing, transmitting means 34 and the first vibrator 32, and the second vibrator 33 and the receiving means. Switching means 36 is provided between the first vibrator 32 and the second vibrator 33 so as to alternately transmit and receive ultrasonic waves.

受信手段35の出力を受け送信手段34を介して再度超音波の送受信を繰り返すという動作回数を計測し所定の回数で動作を停止する繰返し手段37と、繰返し手段37の信号を受け所定の遅延時間遅れて送信手段34のトリガ信号として出力する遅延手段38と、少なくとも送信手段34による第1の振動子32の駆動開始から繰返し手段37の動作停止までの超音波の伝搬時間を測定する計時手段39と、計時手段39の値から一対の振動子32、33間の流速を演算し、それから流量を求める流量演算手段40(演算手段)とを有するものである。   The repeater 37 that receives the output of the receiver 35 and repeats transmission / reception of the ultrasonic wave again through the transmitter 34 and stops the operation at a predetermined number of times, and receives a signal from the repeater 37 for a predetermined delay time Delay means 38 that outputs the trigger signal of the transmission means 34 with a delay, and timing means 39 that measures at least the propagation time of the ultrasonic wave from the start of driving of the first vibrator 32 by the transmission means 34 to the stop of the operation of the repeat means 37. And a flow rate calculating means 40 (calculating means) for calculating the flow velocity between the pair of vibrators 32 and 33 from the value of the time measuring means 39 and obtaining the flow rate therefrom.

さらに計測制御手段41を設け、送信手段34を動作する計測スタート信号を出力する。さらに電力の供給を行う電源42と、電源より高電圧の負荷を駆動するためのチャージポンプ型昇圧手段43と、前記電源とチャージポンプ型昇圧手段43を制御する電源制御手段44を備えている。   Further, a measurement control means 41 is provided, and a measurement start signal for operating the transmission means 34 is output. Furthermore, a power supply 42 for supplying power, a charge pump booster 43 for driving a load having a higher voltage than the power supply, and a power supply controller 44 for controlling the power supply and the charge pump booster 43 are provided.

通常の動作を説明する。計測制御手段41からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は計測制御手段41からの信号によって時間計測始める。パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。繰返し動作を行わない場合はこの超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。   Normal operation will be described. Upon receiving the start signal from the measurement control means 41, the transmission means 34 pulse-drives the first vibrator 32 for a fixed time, and at the same time, the time measurement means 39 starts measuring time according to the signal from the measurement control means 41. An ultrasonic wave is transmitted from the pulse-driven first vibrator 32. The ultrasonic wave transmitted from the first vibrator 32 propagates through the fluid to be measured and is received by the second vibrator 33. The reception output of the second vibrator 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing. When the repeated operation is not performed, the operation of the time measuring means 39 is stopped when the reception of the ultrasonic wave is determined, and the flow velocity is obtained from the time information t by (Equation 1).

(計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。)
v=(L/t)−c ・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
(The measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v.)
v = (L / t) -c (Formula 1)
The receiving means 35 is usually configured to compare the reference voltage and the received signal by a comparator.

繰返し手段37を用いる今回の動作は受信手段35の判定結果を遅延手段38で一定時間遅延させた後に送信手段34に返し、再度送信を行う。繰返し動作を決められた回数行い、その時間を計時手段39で測定し、計時手段39の測定時間を元に(式2)の計算によって流速を求める。
(遅延手段の遅延時間をTd、繰返しの回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。)
v=L/(ts/n−Td)−c ・・・(式2)
この方法によれば(式1)の方法に比べ精度よく測定することができる。
In this operation using the repeating unit 37, the determination result of the receiving unit 35 is delayed by a delay unit 38 for a predetermined time, and then returned to the transmitting unit 34, and then transmitted again. The repeated operation is performed a predetermined number of times, the time is measured by the time measuring means 39, and the flow velocity is obtained by the calculation of (Equation 2) based on the measurement time of the time measuring means 39.
(The delay time of the delay means is Td, the number of repetitions is n, the measurement time is ts, the effective distance in the flow direction between the ultrasonic transducers is L, the speed of sound is c, and the flow velocity of the fluid to be measured is v.)
v = L / (ts / n-Td) -c (Formula 2)
According to this method, it is possible to measure with higher accuracy than the method of (Equation 1).

また、第1の超音波振動子32と第2の超音波振動子33とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める。
(上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする)
v=L/2((1/t1)−(1/t2))・・・(式3)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路1の断面積を乗ずることにより流量を導くことができる。
Further, the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured. Find v.
(Measurement time from upstream to downstream is t1, and measurement time from downstream to upstream is t2.)
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 1.

通常の動作は図2に示すタイミング図のようになる。すなわち、計測制御手段41による時刻t0における開始信号から計測を開始し、t1で送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路内を伝搬し時刻t2で第2の超音波振動子33に到達し、受信手段35で受信点を検知すると繰返し手段37は設定回数に達していない場合、遅延手段38に信号を送出する。そして時刻t3から遅延手段38が動作し、予め定めた時間だけ動作した後時刻t4で送信手段34に信号を送出し、再び第1の超音波振動子32を駆動する。以下、この繰返しを行っている。   Normal operation is as shown in the timing diagram of FIG. That is, measurement is started from the start signal at time t0 by the measurement control means 41, and the first ultrasonic transducer 32 is driven via the transmission means 34 at t1. The ultrasonic signal generated there propagates in the flow path, reaches the second ultrasonic transducer 33 at time t2, and when the reception means detects the reception point, the repeat means 37 does not reach the set number of times. A signal is sent to the means 38. Then, the delay means 38 starts operating from time t3, operates for a predetermined time, and then sends a signal to the transmitting means 34 at time t4 to drive the first ultrasonic transducer 32 again. This is repeated below.

繰返し手段37で決められた回数動作すると図2時刻t5で送受信動作は停止し、その時間は図に示すTとなる。その後、切換え手段36が送受信を切換える。すなわち第1の超音波振動子32が受信側、第2の超音波振動子33が送信側になる。そして同様な繰返し動作を行う。   When the number of times determined by the repeating means 37 is operated, the transmission / reception operation stops at time t5 in FIG. 2, and the time is T shown in the figure. Thereafter, the switching means 36 switches between transmission and reception. That is, the first ultrasonic transducer 32 is the reception side, and the second ultrasonic transducer 33 is the transmission side. Then, the same repeated operation is performed.

次に計測制御手段41などに電力を供給する電源周辺について説明する。図3は本実施例の電源周辺の構成を示すブロック図である。   Next, the vicinity of the power source that supplies power to the measurement control means 41 and the like will be described. FIG. 3 is a block diagram showing the configuration around the power source of this embodiment.

図3において、42は電源、43はチャージポンプ型昇圧手段、44は電源制御手段、5は蓄電手段、6は負荷である。チャージポンプ型昇圧手段43の例としては内部に少なくとも1つのコンデンサを有するスイッチング昇圧手段43a、出力電圧を安定する電圧安定手段43bで構成できる。   In FIG. 3, 42 is a power supply, 43 is a charge pump type boosting means, 44 is a power supply control means, 5 is a power storage means, and 6 is a load. As an example of the charge pump type boosting means 43, it can be constituted by a switching boosting means 43a having at least one capacitor therein and a voltage stabilizing means 43b for stabilizing the output voltage.

チャージポンプ型昇圧手段43の動作を図6のブロック図で説明する。電源1の下流にスイッチとコンデンサで構成するチャージポンプ型昇圧手段43を接続し、その出力は安定用コンデンサ5と並列に接続した負荷6に送られる。   The operation of the charge pump type boosting means 43 will be described with reference to the block diagram of FIG. A charge pump type boosting means 43 composed of a switch and a capacitor is connected downstream of the power source 1, and its output is sent to a load 6 connected in parallel with the stabilizing capacitor 5.

チャージポンプ型昇圧手段は電源制御手段44からのクロック信号による発振により制御する。チャージフェーズではスイッチS1,S4が開成し、スイッチS2,S3が閉止している。電源1はフライングコンデンサCFを入力電圧まで充電する。次にトランスファフェーズではスイッチS1,S4が閉止し、スイッチS2,S3が開成する。CFにかかる電圧は入力電圧Vinと直列になり、電源とCFの双方は安定用コンデンサに放電する。基本的なチャージポンプ型昇圧手段は倍電圧器として動作し、この図6では出力電圧は入力電圧の2倍となる。このスイッチとCFを直列に複数段構成することにより出力電圧は高くなる。   The charge pump type boosting means is controlled by oscillation by a clock signal from the power supply control means 44. In the charge phase, the switches S1 and S4 are opened and the switches S2 and S3 are closed. The power supply 1 charges the flying capacitor CF to the input voltage. Next, in the transfer phase, the switches S1 and S4 are closed and the switches S2 and S3 are opened. The voltage applied to CF is in series with the input voltage Vin, and both the power supply and CF are discharged to the stabilizing capacitor. The basic charge pump type boosting means operates as a voltage doubler. In FIG. 6, the output voltage is twice the input voltage. The output voltage is increased by configuring this switch and CF in a plurality of stages in series.

クロック信号とスイッチの関係を図7に示す。このようにクロック信号が入ることによりチャージポンプ型昇圧手段43は高電圧をつくりだす。   The relationship between the clock signal and the switch is shown in FIG. In this way, the charge pump type boosting means 43 generates a high voltage when the clock signal is input.

図3では負荷6の動作は電圧制御手段44で検知できるようになっている。電圧の情報によりスイッチの開閉手段を制御して昇圧電圧を調節することが可能である。また出力電圧を電源制御手段44で測定し、例えばAD変換器などにより電圧信号を得ることにより電源制御手段44はチャージポンプ型昇圧手段43の出力電圧を一定にするようスイッチの開閉動作を調整する信号を送出する。このように電源制御手段44は負荷6の動作を検知し、その動作に応じてチャージポンプ型昇圧手段43に信号を送出し電圧を調整することで、安定した電圧で負荷6への電力供給を行うとともに、負荷の動作に影響を与えない時期に昇圧手段22を動作することでノイズ等の影響をシステムに与えないようなチャージポンプ型昇圧手段の動作を実現することが可能になる。   In FIG. 3, the operation of the load 6 can be detected by the voltage control means 44. It is possible to adjust the boost voltage by controlling the switching means of the switch according to the voltage information. Further, the output voltage is measured by the power supply control means 44, and the power supply control means 44 adjusts the opening / closing operation of the switch so as to keep the output voltage of the charge pump type boosting means 43 constant by obtaining a voltage signal by, for example, an AD converter. Send a signal. In this way, the power supply control unit 44 detects the operation of the load 6 and sends a signal to the charge pump type boosting unit 43 according to the operation to adjust the voltage, thereby supplying power to the load 6 with a stable voltage. In addition, by operating the boosting means 22 at a time that does not affect the operation of the load, it is possible to realize the operation of the charge pump type boosting means that does not affect the system by noise or the like.

電圧安定手段43bとしては高精度の電圧レギュレータを用いれば電圧制御はさらに良くなる。それは電圧安定手段43bの入力を高電圧として降圧動作により出力電圧を安定させるためである。一般にDCDCコンバータよりレギュレータの方が出力電圧の安定度が高いためより回路の安定度が向上する。   If a high-precision voltage regulator is used as the voltage stabilizing means 43b, the voltage control is further improved. This is because the output voltage is stabilized by the step-down operation with the input of the voltage stabilizing means 43b as a high voltage. In general, the regulator is more stable than the DCDC converter, and the stability of the circuit is further improved.

従来例との差を図6のタイミングを用いて説明する。図6(a)は従来の昇圧回路であるDCDCコンバータ2における負荷の動作タイミングである。負荷が動作することにより昇圧手段2の出力電圧が図6(b)のように低下してくる。そしてt1で電圧が低下したことを検知してDCDCコンバータが動作する。   A difference from the conventional example will be described with reference to the timing of FIG. FIG. 6A shows the operation timing of the load in the DCDC converter 2 which is a conventional booster circuit. When the load operates, the output voltage of the booster 2 decreases as shown in FIG. Then, it is detected that the voltage has dropped at t1, and the DCDC converter operates.

このt1のタイミングは電圧によってのみ決まり負荷の動作を考慮していない。したがって、図6にあるように負荷6が動作中に電圧が低下した場合もすぐにDCDCコンバータが昇圧動作を開始してしまう。これは負荷の端子電圧が動作中に変動することを示している。計測装置などに使用していると動作電圧が変動するため安定度が悪くなってくる。   The timing of t1 is determined only by the voltage and does not consider the operation of the load. Therefore, as shown in FIG. 6, even when the voltage drops during the operation of the load 6, the DCDC converter immediately starts the boosting operation. This indicates that the terminal voltage of the load fluctuates during operation. If it is used in a measuring device, the operating voltage fluctuates and the stability becomes worse.

同様に図6(c)は本発明の電源制御手段44を用いた場合の負荷の動作タイミングである。そして図6(d)が電源制御手段44の動作タイミングである。電源制御手段44は負荷6の動作を検知しているため負荷の動作が終了すると時刻t3、t4でチャージポンプ型昇圧手段43に信号を送出しスイッチ動作を調節することで昇圧動作を行う。したがってチャージポンプ型昇圧手段43の出力電圧は図6(e)のようになり、負荷の動作タイミングを外して電圧の変更を行うことが可能になる。   Similarly, FIG. 6C shows the operation timing of the load when the power control means 44 of the present invention is used. FIG. 6D shows the operation timing of the power supply control means 44. Since the power supply control unit 44 detects the operation of the load 6, when the operation of the load ends, a signal is sent to the charge pump type boosting unit 43 at time t3 and t4 to adjust the switch operation to perform the boosting operation. Accordingly, the output voltage of the charge pump type boosting means 43 is as shown in FIG. 6E, and the voltage can be changed by removing the operation timing of the load.

流速またはた流量計測装置において図7のように電源制御手段44から送信手段34付近の動作について説明する。第1の振動子32を駆動するには流路31の内部を十分な超音波信号レベルで伝送するためある程度高電圧で駆動する必要がある。そこで昇圧手段43の出力は送信手段34を介して第1の振動子32に繋がっている。途中の切換え手段36は送受信を切換えているだけなのでここでの詳しい説明は除く。送信手段34の内部の一例として振動子を動作するために34aから34dまでの送信開閉手段を用いたブリッジ構成をとる。最初送信開閉手段34a,34dを通電状態にし、反対に34b、34cを開放しておく。次に送信開閉手段34a,34dを開放し、34b、34cを通電状態にする。この動作で振動子が動作し始める。振動子への電源は昇圧手段43からの高電圧が供給される。   An operation in the vicinity of the transmission means 34 from the power supply control means 44 as shown in FIG. In order to drive the first vibrator 32, it is necessary to drive the flow path 31 at a certain high voltage in order to transmit the inside of the flow path 31 at a sufficient ultrasonic signal level. Therefore, the output of the booster 43 is connected to the first vibrator 32 via the transmitter 34. Since the switching means 36 on the way only switches between transmission and reception, a detailed description here is omitted. As an example of the inside of the transmission unit 34, a bridge configuration using transmission opening / closing units 34a to 34d is used to operate the vibrator. First, the transmission opening / closing means 34a and 34d are energized, and on the contrary, 34b and 34c are opened. Next, the transmission opening / closing means 34a and 34d are opened, and 34b and 34c are energized. With this operation, the vibrator starts to operate. A high voltage from the booster 43 is supplied to the power source for the vibrator.

この高電圧の供給が図6(b)に示してあるように負荷(ここでは振動子)の動作状態によらず、DCDCコンバータのみの動作で昇圧動作を行うと振動子への供給電圧が動作中に変化してしまい、受信信号が一定でなくなる。これは流量の計測精度に大きく影響するために好ましいことではない。図6(d),(e)のように電源制御手段44がチャージポンプ型昇圧手段43の動作や振動子32の動作を検知し、振動子32の動作に影響の無い時期にチャージポンプ型昇圧手段43を動作するように制御信号を送出することにより安定した電圧で振動子への電力供給を行うとともに、ノイズ等の影響を流量計測システム全体に与えないようなチャージポンプ型昇圧手段43の動作を実現することが可能になる。   As shown in FIG. 6 (b), this high voltage supply does not depend on the operating state of the load (here, the vibrator), and when the boosting operation is performed only with the DCDC converter, the supply voltage to the vibrator operates. The received signal is not constant. This is not preferable because it greatly affects the measurement accuracy of the flow rate. As shown in FIGS. 6D and 6E, the power supply control unit 44 detects the operation of the charge pump type boosting unit 43 and the operation of the vibrator 32, and the charge pump type boosting is performed at a time when the operation of the vibrator 32 is not affected. Operation of the charge pump type boosting means 43 that supplies power to the vibrator with a stable voltage by sending a control signal so as to operate the means 43 and does not affect the entire flow rate measurement system, such as noise. Can be realized.

さらにチャージポンプ型昇圧手段43の出力段には電源安定手段43bとしてレギュレータを設置することでさらに電圧安定度を向上することが可能である。   Furthermore, it is possible to further improve the voltage stability by providing a regulator as the power supply stabilizing means 43b at the output stage of the charge pump type boosting means 43.

電源制御手段44は計測制御手段41から計測動作信号が出ているのを信号として受け取ることが可能なため、より確実に振動子の動作に影響を与えない状態でチャージポンプ型昇圧手段43を制御することできるようになる。図7では電源制御手段44と計測制御手段41を別々に設けているが同じ制御手段として1つの論理手段、例えばマイコンを用いても良い。   Since the power supply control means 44 can receive the measurement operation signal from the measurement control means 41 as a signal, the charge pump type boosting means 43 is controlled more securely without affecting the operation of the vibrator. To be able to. In FIG. 7, the power supply control means 44 and the measurement control means 41 are provided separately, but one logic means, for example, a microcomputer may be used as the same control means.

さらに、チャージポンプ型昇圧手段43内部のコンデンサが中途半場な充電である場合はまだ昇圧動作を必要としないが、負荷に電力を供給するには容量不足というような場合もある。この場合は電源制御手段44がチャージポンプ型昇圧手段43に発振信号を送出しスイッチの開閉動作を指示し、さらに高い電圧をつくり出力コンデンサ43dを充電する方法もある。またチャージポンプ型昇圧手段43の素子自体で出力電圧を監視している場合は、出力に抵抗などの電力消費を促す素子を一時的に接続し電圧を低下させてから昇圧動作を確実に動作する方法をとることも可能である。またチャージポンプ型昇圧手段43内部のスイッチの動作回数を変化するよう電源制御手段からの発振動作信号を変化してチャージポンプ型昇圧手段43の出力電圧を微調整することが可能である。   Further, when the capacitor in the charge pump type boosting means 43 is halfway charged, the boosting operation is not yet required, but there is a case where the capacity is insufficient to supply power to the load. In this case, there is also a method in which the power supply control means 44 sends an oscillation signal to the charge pump type boosting means 43 to instruct an opening / closing operation of the switch, thereby creating a higher voltage and charging the output capacitor 43d. Further, when the output voltage is monitored by the element itself of the charge pump type boosting means 43, an element that promotes power consumption, such as a resistor, is temporarily connected to the output, and the boosting operation is reliably performed after the voltage is lowered. It is also possible to take a method. Further, it is possible to finely adjust the output voltage of the charge pump type boosting means 43 by changing the oscillation operation signal from the power supply control means so as to change the number of operations of the switches in the charge pump type boosting means 43.

出力電圧の変化幅はチャージポンプ型昇圧手段43の内部にある電圧安定手段43bの精度によって決まることがあるため、電圧安定手段43bの電圧閾値の設定には注意することが大切である。   Since the change width of the output voltage may be determined by the accuracy of the voltage stabilizing means 43b inside the charge pump type boosting means 43, it is important to pay attention to the setting of the voltage threshold value of the voltage stabilizing means 43b.

動作開始時の電源周辺のタイミングについて説明する。省電力で動作する場合などは電源をこまめに入り切りし、本当に動作が必要な場合のみ電源を各部に供給し、それ以外は休止する方法が多くの制御手段に用いられている。流速または流量計測装置のように周期的に動作を行う機器では非動作時に電源を遮断することが有用である。そのため電源を立ち上げる動作が頻発するが、その度に各種設定を行う必要がでてくる。送信手段34、受信手段35への供給電圧が安定する前にチャージポンプ型昇圧手段43の動作を開始すると充電後、負荷としての振動子が動作するまでの時間に無駄が発生する可能性がでてくる。さらに計測制御手段41の初期設定動作などを行なっている時にチャージポンプ型昇圧手段43が動作するとシステムの電圧が変動したり、ノイズの発生による計測精度の劣化につながる可能性がある。例えば計測制御手段41の内部に複数の集積回路が存在し、初期データのやり取りやアナログ部の調整を行っているような場合である。   The timing around the power supply at the start of operation will be described. Many control means use a method in which the power supply is frequently turned on when operating with power saving, the power supply is supplied to each unit only when the operation is really necessary, and the rest is performed otherwise. In a device that periodically operates such as a flow velocity or flow rate measuring device, it is useful to shut off the power supply when not operating. As a result, the power-on operation frequently occurs, but it is necessary to make various settings each time. If the operation of the charge pump type boosting means 43 is started before the supply voltage to the transmitting means 34 and the receiving means 35 is stabilized, there is a possibility that waste will occur in the time until the vibrator as a load operates after charging. Come. Further, if the charge pump type boosting means 43 operates during the initial setting operation of the measurement control means 41, the system voltage may fluctuate, or the measurement accuracy may be deteriorated due to the generation of noise. For example, there is a case where a plurality of integrated circuits exist inside the measurement control means 41, and exchange of initial data and adjustment of an analog unit are performed.

このような場合は図8(a)に示しているように電源制御手段44の入力部の電圧が上昇し、規定電圧を超えると図8(b)のようにデジタル機器は動作を開始する。時刻t1で計測制御手段41が動作を開始し、初期設定を行いはじめる。そしてt2までの時間で各部の設定を終了する。その間に電源制御手段44の動作も安定している。そして図8(c)で電源制御手段44がチャージポンプ型昇圧手段43を動作するよう信号を送出するとともに図8(d)のようにクロック信号も出力しチャージポンプ型昇圧手段43内部のスイッチを切り替えて昇圧動作を行う。チャージポンプ型昇圧手段43の出力は図8(e)のように立ち上がりt3で所定の電圧を満足する。その後で計測制御手段41は送信手段34を動作する。   In such a case, as shown in FIG. 8A, the voltage of the input part of the power control means 44 rises, and when the voltage exceeds the specified voltage, the digital device starts its operation as shown in FIG. 8B. At time t1, the measurement control means 41 starts its operation and starts performing initial setting. Then, the setting of each part is completed in the time until t2. Meanwhile, the operation of the power control means 44 is also stable. In FIG. 8C, the power control means 44 sends a signal to operate the charge pump booster 43 and also outputs a clock signal as shown in FIG. The voltage is boosted by switching. The output of the charge pump type boosting means 43 satisfies a predetermined voltage at the rising edge t3 as shown in FIG. Thereafter, the measurement control unit 41 operates the transmission unit 34.

このように、電源制御手段44は電源立ち上げ時に、それ自体の動作が安定した後でチャージポンプ型昇圧手段43の動作を行うクロック信号を出力して高圧電圧の出力を制御する。回路動作が安定した後に例えば負荷の動作に応じてチャージポンプ型昇圧手段の出力電圧を制御する動作を行うことにより安定した電圧で負荷への電力供給を行うとともに、コイルなどのノイズ発生源となる素子を使用しない回路構成により昇圧などの動作による電圧の不安定さやスイッチングノイズの発生を抑えることができる。そしてノイズ等の影響をシステムに与えないようなチャージポンプ型昇圧手段の動作を実現することができるとともに、チャージポンプ型昇圧手段43の充電動作も過充電、過放電が極力少なくなるように動作して入力側電源の省エネにも対処できることで計測系の安定動作を実現する精度の良い流量計測を実現することが可能になる。   Thus, when the power supply is turned on, the power supply control means 44 controls the output of the high voltage by outputting the clock signal for operating the charge pump type boosting means 43 after its own operation is stabilized. After the circuit operation is stabilized, for example, by controlling the output voltage of the charge pump type booster according to the operation of the load, power is supplied to the load with a stable voltage and it becomes a noise generation source such as a coil. With a circuit configuration that does not use elements, voltage instability and switching noise caused by operations such as boosting can be suppressed. The operation of the charge pump type boosting means that does not affect the system such as noise can be realized, and the charging operation of the charge pump type boosting means 43 also operates so that overcharge and overdischarge are minimized. Therefore, it is possible to realize accurate flow rate measurement that realizes stable operation of the measurement system by coping with energy saving of the input side power supply.

また、図9を用いて他の動作を説明する。電源の立ち上げを頻発している場合、電源42からの電圧立ち上がりが安定しない間にチャージポンプ型昇圧手段43が動作すると周辺の動作に悪影響を与えたり、無駄な動作待ち時間、特に負荷への動作がまだ必要の無い時間が生じる場合がある。そこで図9(a)のように電源制御手段44の入力部の電圧が上昇し、t0で規定電圧を超えると図9(b)のようにデジタル機器は動作を開始する。そして図9(c)のようにt1で電源制御手段44がチャージポンプ型昇圧手段43を動作するよう信号を送出する。そして電源制御手段44がチャージポンプ型昇圧手段43を動作するよう信号を送出するとともに、図9(d)のようにクロック信号も出力しチャージポンプ型昇圧手段43内部のスイッチを切り替えて昇圧動作を行う。   Further, another operation will be described with reference to FIG. When the power supply is frequently started up, if the charge pump type boosting means 43 operates while the voltage rise from the power supply 42 is not stable, it will adversely affect the peripheral operation, and wasteful operation waiting time, particularly to the load There may be times when no action is required yet. Therefore, when the voltage of the input part of the power supply control means 44 rises as shown in FIG. 9A and exceeds the specified voltage at t0, the digital device starts operation as shown in FIG. 9B. Then, as shown in FIG. 9C, the power supply control means 44 sends a signal to operate the charge pump type boosting means 43 at t1. Then, the power supply control means 44 sends a signal to operate the charge pump type boosting means 43, and also outputs a clock signal as shown in FIG. 9D, and switches the switch inside the charge pump type boosting means 43 to perform the boosting operation. Do.

チャージポンプ型昇圧手段43の出力は図9(e)のように立ち上がりt2で所定の電圧を満足する。その後で計測制御手段41は送信手段34を動作する。時刻t0からt1の間で電源出力はほぼ安定しているため各部の動作も落ち着いてきている。なおかつ時刻t2までクロック信号によりチャージポンプ型昇圧手段43の出力電圧が上昇し、監視している蓄電手段5の充電が一定値以上になると負荷6を動作するのに十分な状態になるとそれ以上の昇圧動作は不要のため電源制御手段44からのクロック信号の送出を停止する。   The output of the charge pump type boosting means 43 satisfies a predetermined voltage at the rising edge t2 as shown in FIG. Thereafter, the measurement control unit 41 operates the transmission unit 34. Since the power supply output is almost stable between time t0 and t1, the operation of each part is settled. In addition, the output voltage of the charge pump type boosting means 43 is increased by the clock signal until time t2, and when the charge of the power storage means 5 being monitored exceeds a certain value, the load 6 is in a state sufficient to operate. Since the step-up operation is unnecessary, the transmission of the clock signal from the power supply control means 44 is stopped.

これにより、昇圧動作による過充電を防止し蓄電手段5の寿命劣化を防止するとともに、電源42の省エネルギーを図ることが可能になる。   Thereby, it is possible to prevent overcharging due to the boosting operation, prevent the life of the power storage means 5 from deteriorating, and save energy of the power source 42.

本実施の形態ではチャージポンプ型昇圧手段43の負荷として超音波振動子を例にとり説明したが、電圧駆動型の負荷であればセンサやアクチュエータの種類を特定せずに利用できることは言うまでもない。またチャージポンプ型昇圧手段43の内部構成は図2のようなものに限ったものでない。   In the present embodiment, the ultrasonic vibrator has been described as an example of the load of the charge pump type boosting unit 43. However, it goes without saying that a voltage driven type load can be used without specifying the type of sensor or actuator. Further, the internal configuration of the charge pump type boosting means 43 is not limited to that shown in FIG.

(実施の形態2)
実施の形態2に関する本発明の昇圧装置と流速または流量計測装置について図1、図7、図10、図11を用いて説明する。実施の形態1と異なるところはチャージポンプ型昇圧手段43の出力側に開閉手段を設け過充電、過放電を防止することである。
(Embodiment 2)
A booster device and a flow velocity or flow rate measuring device of the present invention relating to Embodiment 2 will be described with reference to FIGS. 1, 7, 10, and 11. FIG. The difference from the first embodiment is that an opening / closing means is provided on the output side of the charge pump type boosting means 43 to prevent overcharge and overdischarge.

実施の形態1で示したように流速または流量計測装置に用いられている振動子などの負荷は動作することにより電力を消費するためチャージポンプ型昇圧手段43の出力電圧が低下する。例えば図1の第1の振動子32が動作すると図7におけるチャージポンプ型昇圧手段43の出力電圧は低下するため、それを補うためチャージポンプ型昇圧手段43が動作しなければならない。そこでチャージポンプ型昇圧手段43を動作するタイミングを調節することにより振動子の動作を安定したものにしていく。   As shown in the first embodiment, a load such as a vibrator used in the flow velocity or flow rate measuring device operates to consume electric power, so that the output voltage of the charge pump type boosting unit 43 decreases. For example, when the first vibrator 32 of FIG. 1 operates, the output voltage of the charge pump booster 43 in FIG. 7 decreases. Therefore, the charge pump booster 43 must operate to compensate for this. Therefore, the operation of the vibrator is stabilized by adjusting the timing at which the charge pump type booster 43 is operated.

図10で45はチャージポンプ型昇圧手段43と蓄電手段5の間に設けた第1の開閉手段である。また46は蓄電手段5と負荷6の間に設けた第2の開閉手段である。電源制御手段44からチャージポンプ型昇圧手段43に、図11に示した時刻t1で動作信号を送出すると高電圧の出力が出てくる。これを第1の開閉手段45が閉止している間、蓄電手段5に充電していく。充電手段5の端子間電圧は電源制御手段44で監視しておき、十分な電力を充電すると、時刻t2でチャージポンンプ型昇圧手段43の動作を停止する信号を送出する。   In FIG. 10, 45 is a first opening / closing means provided between the charge pump type boosting means 43 and the power storage means 5. Reference numeral 46 denotes a second opening / closing means provided between the power storage means 5 and the load 6. When an operation signal is sent from the power supply control means 44 to the charge pump type boosting means 43 at time t1 shown in FIG. 11, a high voltage output is output. While the first opening / closing means 45 is closed, the power storage means 5 is charged. The inter-terminal voltage of the charging means 5 is monitored by the power supply control means 44, and when sufficient power is charged, a signal for stopping the operation of the charge pump type boosting means 43 is sent out at time t2.

昇圧動作が停止するとチャージポンプ型昇圧手段43の内部電流だけが消費電流となり省エネではあるが、蓄電手段5の電力が逆流する可能性もある。高電圧までした電力が無駄に消費されると電源の効率も悪くなる。したがって蓄電手段5の充電が一定値以上になると電源制御手段44は第1の開閉手段45を開成することにより、チャージポンプ型昇圧手段43と蓄電手段5の間を電気的に切り離すようにする。これにより、蓄電手段5への過充電を防止するとともに逆流による放電を防止することが可能になり、蓄電手段の寿命を縮めることが無く、電源の無駄な消費も無くなり長期間の使用もできるようになる。   When the boosting operation is stopped, only the internal current of the charge pump type boosting means 43 is consumed to save energy, but there is a possibility that the power of the power storage means 5 flows backward. If power up to a high voltage is consumed in vain, the efficiency of the power supply also deteriorates. Therefore, when the charge of the power storage means 5 exceeds a certain value, the power supply control means 44 opens the first opening / closing means 45 so as to electrically disconnect the charge pump type boosting means 43 and the power storage means 5. As a result, it is possible to prevent overcharging of the power storage means 5 and to prevent discharge due to reverse flow, so that the life of the power storage means is not shortened, wasteful consumption of the power source is eliminated, and long-term use is possible. become.

蓄電手段5の電圧は充電中と充電を停止した直後、および待機中では異なる場合がある。電源制御手段44は第1の開閉手段45を開成動作した後も蓄電手段5の電圧を時々監視し、電圧低下が検出されると再度チャージポンプ型昇圧手段43を動作するとともに第1の開閉手段45を閉止して充電を開始する操作を行っても良い。   The voltage of the power storage means 5 may be different during charging, immediately after stopping charging, and during standby. The power supply control means 44 sometimes monitors the voltage of the power storage means 5 even after the opening operation of the first opening / closing means 45, and when the voltage drop is detected, the charge pump type boosting means 43 is operated again and the first opening / closing means. You may perform operation which closes 45 and starts charge.

第2の開閉手段46を使用する他の動作を説明する。電源制御手段44からチャージポンプ型昇圧手段43に動作信号を送出すると高電圧の出力が出てくる。これを蓄電手段5に充電している間は電圧が不安定な場合もありうる。この電圧が負荷6や他の回路部分にこの高電圧がかかると誤動作の原因にもなるため、充電手段5の端子間電圧は電源制御手段44で監視しておき、十分な電力を充電するまでは第2に開閉手段46を開成動作しておく。蓄電手段5の充電が十分満足できる値までになると本来の動作をするため図11時刻t3で第2の開閉手段を閉止する。そして負荷6への給電を開始する。このように充電中の電圧は外に出さず、蓄電手段5の充電が一定値以上になると電源制御手段44は第2の開閉手段46を閉止することにより、充電が完了してから負荷6への電源供給を行うことで、安定した電圧での動作による計測系の安定動作と精度の良い流量計測を実現することが可能になる。   Another operation using the second opening / closing means 46 will be described. When an operation signal is sent from the power supply control means 44 to the charge pump type boosting means 43, a high voltage output is produced. The voltage may be unstable while the power storage means 5 is being charged. If this high voltage is applied to the load 6 or other circuit parts, it may cause a malfunction. Therefore, the voltage between the terminals of the charging means 5 is monitored by the power supply control means 44 until sufficient power is charged. Secondly, the opening / closing means 46 is opened. When the charge of the power storage means 5 reaches a sufficiently satisfactory value, the second opening / closing means is closed at time t3 in FIG. Then, power supply to the load 6 is started. In this way, the voltage being charged does not go out, and when the charge of the power storage means 5 reaches a certain value or more, the power supply control means 44 closes the second opening / closing means 46 to the load 6 after the charging is completed. By supplying the power, it is possible to realize stable operation of the measurement system by operation with a stable voltage and accurate flow rate measurement.

負荷6への制御信号を送出する他の動作を説明する。負荷6への供給電圧はチャージポンプ型昇圧手段43で作成し、開閉手段などにより供給するタイミングを調整しているが、負荷6自体も電源制御手段44で動作を調整することができる。蓄電手段5への充電する電力が十分安定すると、負荷6が動作しても良いように、例えば超音波振動子の場合は決められた周波数で駆動できる準備が整ったことになる。そこで電源制御手段44は負荷6に動作を許可する信号を送出することで動作可能にすることができる。   Another operation for sending a control signal to the load 6 will be described. The supply voltage to the load 6 is created by the charge pump type boosting means 43 and the supply timing is adjusted by an opening / closing means or the like, but the operation of the load 6 itself can also be adjusted by the power supply control means 44. For example, in the case of an ultrasonic transducer, preparations for driving at a predetermined frequency are completed so that the load 6 may operate when the power charged in the power storage means 5 is sufficiently stabilized. Therefore, the power control means 44 can be made operable by sending a signal permitting operation to the load 6.

このような動作により例えば超音波振動子の駆動電圧が常にある程度の一定値を保つことができ、安定した駆動ができ、再現性の良い動作が可能になる。   By such an operation, for example, the driving voltage of the ultrasonic transducer can always be maintained at a certain constant value, stable driving can be performed, and an operation with good reproducibility becomes possible.

このように蓄電手段5の充電が一定値以上になると電源制御手段44は負荷6への制御信号を送出することにより、負荷は蓄電手段5の電圧が安定領域に入った後で動作することにより精度の良い流量計測を行うことが可能になる。   In this way, when the charge of the power storage means 5 exceeds a certain value, the power supply control means 44 sends a control signal to the load 6, and the load operates by the voltage of the power storage means 5 entering the stable region. Accurate flow rate measurement can be performed.

(実施の形態3)
実施の形態1と異なるところは、チャージポンプ型昇圧手段43の動作を調整する電源制御手段44の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体46を用いていることである。図1、および図7において実施の形態1から実施の形態2で示した電源制御手段44の動作を行うには、予め実験等により振動子の動作によるチャージポンプ型昇圧手段43の出力変化、経年変化、温度変化、システムの安定度に関してチャージポンプ型昇圧手段43の動作タイミングなどの相関を求め、例えばファジィ制御のメンバーシップ関数のように適合度というような形で判断する判定ソフトをプログラムとして記憶媒体47に格納しておく。通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。
(Embodiment 3)
The difference from the first embodiment is that a storage medium 46 having a program for causing a computer to function to ensure the operation of the power supply control means 44 for adjusting the operation of the charge pump type boosting means 43 is used. is there. In order to perform the operation of the power supply control means 44 shown in FIGS. 1 and 7 in the first to second embodiments, the output change of the charge pump type boosting means 43 due to the operation of the vibrator is determined in advance through experiments or the like. Stores as a program judgment software that obtains correlations such as the operation timing of the charge pump type boosting means 43 with respect to changes, temperature changes, system stability, and makes judgments in the form of fitness, for example, as a fuzzy control membership function It is stored in the medium 47. Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory.

このように電源制御手段44の動作をプログラムで行うことができるようになると振動子の駆動電圧の変化に対して追随するチャージポンプ型昇圧手段43の動作をソフトで行うことになる。これにより送信回数の条件設定、切換手段36動作前後における電圧調整の条件設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測時間の精度向上を行うことができる。なお本実施例において電源制御手段44以外の動作もマイコン等によりプログラムで行ってもよい。   As described above, when the operation of the power supply control unit 44 can be performed by a program, the operation of the charge pump type boosting unit 43 that follows the change in the driving voltage of the vibrator is performed by software. As a result, it is possible to easily set and change the condition of the number of transmissions, set and change the voltage adjustment condition before and after the operation of the switching means 36, and flexibly cope with secular change, etc., so that the accuracy of the measurement time can be improved more flexibly. . In this embodiment, operations other than the power supply control means 44 may be performed by a program using a microcomputer or the like.

また第1の開閉手段、第2の開閉手段も効率良く動作することが可能になる。   Further, the first opening / closing means and the second opening / closing means can also operate efficiently.

本発明の昇圧装置は電源制御手段が、回路全体の動作と負荷の動作に応じてこまめに特にタイミングを重視して時間的に、チャージポンプ型昇圧手段による電圧の上昇動作を制御するものである。   In the boosting device of the present invention, the power supply control means controls the voltage raising operation by the charge pump type boosting means in terms of time according to the operation of the entire circuit and the operation of the load with particular emphasis on timing. .

これによって、回路動作が安定する電源電圧を確保するとともに負荷の動作に応じてチャージポンプ型昇圧手段の出力電圧を制御する動作を行うことにより安定した電圧で負荷への電力供給を行うとともに、コイルを使用しない回路構成により昇圧などの動作による電圧の不安定さやスイッチングノイズの発生を抑える。さらにチャージポンプ型昇圧手段の充電動作も過充電、過放電が極力少なくなるように動作して入力側電源の省エネにも対処できる。   As a result, a power supply voltage that stabilizes the circuit operation is secured, and the output voltage of the charge pump type boosting means is controlled according to the operation of the load, thereby supplying power to the load with a stable voltage and the coil. A circuit configuration that does not use voltage suppresses voltage instability and switching noise caused by operations such as boosting. Further, the charging operation of the charge pump type boosting means operates so as to minimize overcharge and overdischarge, and can cope with energy saving of the input side power supply.

したがって、ノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することで計測系の安定動作を実現する精度の良い流量計測を実現することが可能になり、ガスメータや各種流体の計測装置などの用途にも適用できる。   Therefore, it is possible to realize accurate flow measurement that realizes stable operation of the measurement system by realizing the operation of the boosting means that does not affect the system such as noise, and it is possible to measure gas meters and various fluids. It can also be applied to applications such as devices.

本発明の流速または流量計測装置の全体ブロック図Overall block diagram of the flow velocity or flow rate measuring device of the present invention 同計測装置における計測制御手段の動作を示すタイミング図Timing chart showing the operation of the measurement control means in the same measuring device 本発明の実施の形態1における電源周辺のブロック図Block diagram around a power supply in Embodiment 1 of the present invention 同チャージポンプ型昇圧手段のブロック図Block diagram of the charge pump booster 同チャージポンプ型昇圧手段の動作を示すタイミング図Timing chart showing the operation of the charge pump type boosting means 従来の昇圧回路の動作を示すタイミング図Timing diagram showing the operation of a conventional booster circuit 同計測装置の送信手段周辺の接続を示すブロック図Block diagram showing connections around the transmission means of the measuring device 同計測装置における電源の動作を示すタイミング図Timing chart showing the operation of the power supply in the measuring device 同計測装置における電源の動作を示すタイミング図Timing chart showing the operation of the power supply in the measuring device 本発明の実施の形態2の計測装置における電源制御手段周辺のブロック図Block diagram around power supply control means in the measurement apparatus according to Embodiment 2 of the present invention 同計測装置における電源の動作を示すタイミング図Timing chart showing the operation of the power supply in the measuring device 従来の昇圧回路の全体のブロック図Overall block diagram of conventional booster circuit 従来の流量計測装置の全体のブロック図Overall block diagram of a conventional flow measurement device

符号の説明Explanation of symbols

1 電源
6 負荷
31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
36 切換え手段
37 繰返し手段
38 遅延手段
39 計時手段
40 流量演算手段(演算手段)
42 電源
43 チャージポンプ型昇圧手段
44 電源制御手段
45 第1の開閉手段
46 第2の開閉手段
47 記憶媒体
DESCRIPTION OF SYMBOLS 1 Power supply 6 Load 31 Flow path 32 1st vibrator | oscillator 33 2nd vibrator | oscillator 34 Transmitting means 35 Receiving means 36 Switching means 37 Repeating means 38 Delay means 39 Time measuring means 40 Flow rate calculating means (calculating means)
42 Power supply 43 Charge pump type boosting means 44 Power supply control means 45 First opening / closing means 46 Second opening / closing means 47 Storage medium

Claims (4)

電源より高電圧を発生させ負荷へ前記電圧を出力するチャージポンプ型昇圧手段と、
前記チャージポンプ型昇圧手段に接続され電力を蓄える蓄電手段と、
前記電源と前記チャージポンプ型昇圧手段を時間的に制御する電源制御手段と
前記チャージポンプ型昇圧手段と前記蓄電手段との間の第1の開閉手段と、を備え、
前記蓄電手段の充電電圧が一定値以上になると前記電源制御手段は前記第1の開閉手段を開く昇圧装置。
A charge pump type booster means to generate from the not high voltage power supply to output the voltage to a load,
Power storage means connected to the charge pump boosting means for storing electric power;
Power supply control means for temporally controlling the power supply and the charge pump boosting means ;
A first opening / closing means between the charge pump type boosting means and the power storage means,
The boosting device that opens the first opening / closing means when the charging voltage of the power storage means exceeds a certain value.
前記電源から前記電源制御手段への入力電圧が規定電圧を超えた後に、クロック信号を前記チャージポンプ型昇圧手段に出力する請求項1記載の昇圧装置。2. The boosting device according to claim 1, wherein a clock signal is output to the charge pump type boosting unit after an input voltage from the power source to the power source control unit exceeds a specified voltage. 被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、
前記送信側振動子を駆動する送信手段と、
前記受信側振動子の出力信号を電気信号に変換する受信手段と、
前記受信手段の電気信号を用いて前記被測定流体の流速を算出する演算手段と、
請求項1または2に記載の昇圧装置を備えた流速計測装置。
A pair of transducers arranged in the flow path of the fluid to be measured and transmitting and receiving ultrasonic waves;
Transmitting means for driving the transmitting-side vibrator;
Receiving means for converting an output signal of the receiving-side vibrator into an electrical signal;
Arithmetic means for calculating a flow velocity of the fluid under measurement using an electrical signal of the receiving means;
A flow velocity measuring device comprising the booster according to claim 1 .
被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、
前記送信側振動子を駆動する送信手段と、
前記受信側振動子の出力信号を電気信号に変換する受信手段と、
前記受信手段の電気信号を用いて前記被測定流体の流量を算出する演算手段と、
請求項1または2に記載の昇圧装置を備えた流量計測装置。
A pair of transducers arranged in the flow path of the fluid to be measured and transmitting and receiving ultrasonic waves;
Transmitting means for driving the transmitting-side vibrator;
Receiving means for converting an output signal of the receiving-side vibrator into an electrical signal;
Arithmetic means for calculating a flow rate of the fluid under measurement using an electric signal of the receiving means;
A flow rate measuring device comprising the booster according to claim 1 .
JP2005027559A 2005-02-03 2005-02-03 Booster and flow velocity or flow rate measuring device Active JP4639830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027559A JP4639830B2 (en) 2005-02-03 2005-02-03 Booster and flow velocity or flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027559A JP4639830B2 (en) 2005-02-03 2005-02-03 Booster and flow velocity or flow rate measuring device

Publications (2)

Publication Number Publication Date
JP2006217724A JP2006217724A (en) 2006-08-17
JP4639830B2 true JP4639830B2 (en) 2011-02-23

Family

ID=36980453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027559A Active JP4639830B2 (en) 2005-02-03 2005-02-03 Booster and flow velocity or flow rate measuring device

Country Status (1)

Country Link
JP (1) JP4639830B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123518B2 (en) * 2006-11-16 2013-01-23 愛知時計電機株式会社 Ultrasonic flow meter
KR101464257B1 (en) 2013-11-12 2014-11-21 현대모비스 주식회사 Ultrasonic Wave Parking Assistance Apparatus Using Charge Pumping Circuit for Car and Method Thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875516A (en) * 1994-09-07 1996-03-22 Tokyo Keiso Co Ltd Phase locked loop and ultrasonic flowmeter
JPH08228472A (en) * 1994-11-03 1996-09-03 Motorola Inc Circuit and method for lowering gate voltage of transmissiongate in charge-pump circuit
JPH1125673A (en) * 1997-06-30 1999-01-29 Nec Corp Boosting circuit and its control
JP2000180229A (en) * 1998-12-14 2000-06-30 Tokyo Keiso Co Ltd Phase-locked ultrasonic flowmeter
JP2003061341A (en) * 2001-08-13 2003-02-28 Sony Corp Electric power unit
JP2003244940A (en) * 2002-02-20 2003-08-29 Rohm Co Ltd Semiconductor device equipped with boosting circuit
JP2004284378A (en) * 2003-03-19 2004-10-14 Denso Corp Power source circuit for air bag

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20022268A1 (en) * 2002-10-25 2004-04-26 Atmel Corp VARIABLE CHARGE PUMP CIRCUIT WITH DYNAMIC LOAD

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875516A (en) * 1994-09-07 1996-03-22 Tokyo Keiso Co Ltd Phase locked loop and ultrasonic flowmeter
JPH08228472A (en) * 1994-11-03 1996-09-03 Motorola Inc Circuit and method for lowering gate voltage of transmissiongate in charge-pump circuit
JPH1125673A (en) * 1997-06-30 1999-01-29 Nec Corp Boosting circuit and its control
JP2000180229A (en) * 1998-12-14 2000-06-30 Tokyo Keiso Co Ltd Phase-locked ultrasonic flowmeter
JP2003061341A (en) * 2001-08-13 2003-02-28 Sony Corp Electric power unit
JP2003244940A (en) * 2002-02-20 2003-08-29 Rohm Co Ltd Semiconductor device equipped with boosting circuit
JP2004284378A (en) * 2003-03-19 2004-10-14 Denso Corp Power source circuit for air bag

Also Published As

Publication number Publication date
JP2006217724A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
US7579820B2 (en) PWM/PFM control circuit and switching power supply circuit
KR100912865B1 (en) Switching regulator and semiconductor device using the same
JP5504685B2 (en) Switching regulator and operation control method thereof
JP5195182B2 (en) Current mode control switching regulator
KR100927882B1 (en) Control method of DC-DC converter and DC-DC converter
US7250745B2 (en) Control circuit of DC-DC converter and its control method
US20050237037A1 (en) Switching power supply controller system and method
WO2006120842A1 (en) Switching regulator and electronic device having same
WO2006104194A1 (en) Discharging device
CN104426360B (en) Regulation circuit and adjusting method for charge pump
JP4639830B2 (en) Booster and flow velocity or flow rate measuring device
JP4336799B2 (en) Portable electronic device, power supply control circuit and control method for portable electronic device
JP4649822B2 (en) Fluid flow measuring device
US8947062B2 (en) Power supply circuit
JP3695432B2 (en) Flow measuring device
JP4735005B2 (en) Flow measuring device
US8643346B2 (en) Device and method for converting a potential
JP2005257613A (en) Apparatus for measuring flow of fluid
JP2002051541A (en) Switching power supply device and semiconductor device for it
JP2005249641A (en) Flow measuring device
JP2005257362A (en) Flow-measuring apparatus
JP4788166B2 (en) Fluid flow measuring device
JP2010136577A (en) Start-up circuit and power supply apparatus
JP4788176B2 (en) Flow measuring device
US7427852B2 (en) Low power control mode for power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3