JP4638310B2 - Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core - Google Patents

Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core Download PDF

Info

Publication number
JP4638310B2
JP4638310B2 JP2005270749A JP2005270749A JP4638310B2 JP 4638310 B2 JP4638310 B2 JP 4638310B2 JP 2005270749 A JP2005270749 A JP 2005270749A JP 2005270749 A JP2005270749 A JP 2005270749A JP 4638310 B2 JP4638310 B2 JP 4638310B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic alloy
amorphous soft
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005270749A
Other languages
Japanese (ja)
Other versions
JP2007077488A (en
Inventor
裕之 松元
照彦 藤原
忠夫 片平
格 浅田
浩一 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, NEC Tokin Corp filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2005270749A priority Critical patent/JP4638310B2/en
Publication of JP2007077488A publication Critical patent/JP2007077488A/en
Application granted granted Critical
Publication of JP4638310B2 publication Critical patent/JP4638310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、主としてインダクタンス部品用高周波磁心に用いる非晶質軟磁性合金粉末に関するものである。   The present invention relates to an amorphous soft magnetic alloy powder mainly used for a high frequency magnetic core for an inductance component.

従来から高周波用インダクタンス部品には、主にソフトフェライト,高珪素鋼,および純鉄粉,非晶質鉄粉,Fe−Si粉末,Fe−Cr−Si粉末などの軟磁性粉末がインダクタ部品における磁心材料として用いられている。   Conventionally, high frequency inductance components mainly include soft ferrite, high silicon steel, and soft magnetic powders such as pure iron powder, amorphous iron powder, Fe-Si powder, and Fe-Cr-Si powder. It is used as a material.

これらの材料が使用される理由は、ソフトフェライトの場合のように材料自体の比抵抗が高いことにより渦電流損失が小さくできることにあり,その他金属材料の場合においても薄板化による積層、或いは圧粉成形磁芯のように粉末化し樹脂と混練りすることで材料自体の比抵抗が低くても渦電流を小さくできるためである。   The reason why these materials are used is that the eddy current loss can be reduced due to the high specific resistance of the material itself, as in the case of soft ferrite. This is because eddy current can be reduced by pulverizing like a molded magnetic core and kneading with resin even if the specific resistance of the material itself is low.

特に、最近の各種電子機器の急激な小型化と高機能化に伴い、コイル・トランスといったインダクタ部品には小型化と同時に大きな直流電流下におけるインダクタンスが求められており、それを達成するには磁心の飽和磁束密度と高周波での損失特性を同時に向上させることが重要視されることから,近年では金属系材料を用いた圧粉成形磁心の利用が盛んになっている。   In particular, with recent rapid downsizing and high functionality of various electronic devices, inductor parts such as coils and transformers are required to be downsized and have an inductance under a large DC current. Since importance is attached to improving the saturation magnetic flux density and loss characteristics at high frequencies simultaneously, in recent years, the use of dust-molded magnetic cores made of metallic materials has become active.

その中でも,飽和磁束密度が高く,特定方位の結晶構造を持たないことから磁性材料特有の損失であるヒステリシス損失も少ない非晶質軟磁性合金粉末の圧粉成形磁心の適用が進んでいる。   Among them, the application of compacted magnetic cores of amorphous soft magnetic alloy powders, which have a high saturation magnetic flux density and do not have a crystal structure in a specific orientation, has little hysteresis loss, which is characteristic of magnetic materials.

しかしながら,非晶質軟磁性合金粉末は10K/sec以上の高い急冷速度を必要とするため水アトマイズ法或いはガスアトマイズ法による噴霧急冷製法にのみで製造されるが,装置の能力上,製造可能な粉末の平均粒子径は12μmが限界であり,非晶質軟磁性合金粉末を用いた圧粉成形磁心の渦電流損失の改善には限界があった。 However, since amorphous soft magnetic alloy powder requires a rapid quenching speed of 10 4 K / sec or higher, it can be produced only by the spray quenching method using the water atomization method or the gas atomization method. The average particle size of such powders is limited to 12 μm, and there is a limit to the improvement of eddy current loss of a compacted magnetic core using amorphous soft magnetic alloy powder.

そこで、非晶質軟磁性合金粉末のさらなる微細化が必要とされるが,例えば、特許文献1及び2など、現在いろいろな粉砕法が提案されてはいるものの非晶質軟磁性合金粉末の粉砕法として適用されている例は無い。   Therefore, further refinement of the amorphous soft magnetic alloy powder is required. For example, although various pulverization methods have been proposed such as Patent Documents 1 and 2, the amorphous soft magnetic alloy powder is pulverized. There is no example applied as a law.

また粉砕は出来ても粉砕時のおける発熱により非晶質形態を維持した状態での非晶質軟磁性合金粉末砕粉末の製造は不可能で,事実上高周波域においても優れた低損失を示す非晶質軟磁性合金粉末の製造は不可能な状況にある。   In addition, even if pulverization is possible, it is impossible to produce a crushed amorphous soft magnetic alloy powder while maintaining the amorphous form due to the heat generated during pulverization, and practically low loss in the high frequency range. It is impossible to produce amorphous soft magnetic alloy powder.

そのため,大電流対応可能で且つ5MHz以上の高周波域においても安定した高い電力効率を有するインダクタの実現が困難であり,高周波域においても優れた低損失特性を示す非晶質軟磁性合金粉末の実用化が強く望まれている。   Therefore, it is difficult to realize an inductor capable of handling a large current and having a stable and high power efficiency even in a high frequency range of 5 MHz or more, and an amorphous soft magnetic alloy powder exhibiting excellent low loss characteristics in a high frequency range. There is a strong demand for it.

特許第3533526号(要約)Japanese Patent No. 3533526 (Abstract) 特許第3486682号(要約)Japanese Patent No. 3486682 (Abstract)

圧粉成形磁心を用いたインダクタ部品において,今後の更なる大電流化,高効率に対応可能な圧粉磁心用非晶質軟磁性合金粉末の提供が難しい。   It is difficult to provide amorphous soft magnetic alloy powders for dust cores that can handle higher current and higher efficiency in the future for inductor parts using dust-formed cores.

そこで、本発明はかかる問題点を解決すべくなされたもので,その技術的課題は、高周波領域においても低損失を維持できる圧粉成形磁心用非晶質軟磁性合金粉末を実用化することにあり,その結果として大電流に対応でき,且つ優れた低損失特性を有するインダクタ部品用圧粉成形磁心を提供することにある.   Therefore, the present invention has been made to solve such problems, and its technical problem is to put into practical use an amorphous soft magnetic alloy powder for a compacted magnetic core that can maintain a low loss even in a high frequency region. As a result, it is intended to provide a dust-molded magnetic core for inductor parts that can handle a large current and has excellent low-loss characteristics.

本発明では、高速粉体反応装置を用いて非晶質軟磁性合金粉末を粉砕することで,平均粒子径が3〜10μの粒子で,粉末の50%以上が2以下のアスペクト比の破砕形状粒子にて構成されることを特徴とする高周波領域においても優れた低損失特性を有する非晶質軟磁性合金粉末を得るものである。   In the present invention, an amorphous soft magnetic alloy powder is pulverized by using a high-speed powder reactor, so that the average particle diameter is 3 to 10 μm, and 50% or more of the powder has an aspect ratio of 2 or less. An amorphous soft magnetic alloy powder having excellent low-loss characteristics even in a high-frequency region characterized by being composed of particles is obtained.

即ち、本発明によれば、粉砕機外容器内に収容される金属およびジルコニアの少なくとも一方からなる粉砕媒体と、前記粉砕機外容器内に設けられた可変ガイドベーンとを備えて構成される高速粉体反応装置を用いた非晶質軟磁性合金粉砕粉末を製造する方法であって、前記粉砕外容器を回転させて、当該粉砕外容器内の非晶質軟磁性合金粉末からなる被粉砕物を前記粉砕媒体ボールと前記可変ガイドベーンを用いて粉砕することで、前記非晶質軟磁性合金粉末が微細に粉砕されることで形成された粒子からなる粉末およびそれら粒子の造粒粉末の内の少なくとも一方からなる非晶質軟磁性合金粉砕粉末を得ることを特徴とする非晶質軟磁性合金粉砕粉末の製造方法が得られる。 That is, according to the present invention, a high-speed configuration comprising a grinding medium made of at least one of metal and zirconia accommodated in a pulverizer outer container, and a variable guide vane provided in the pulverizer outer container. A method for producing an amorphous soft magnetic alloy pulverized powder using a powder reactor, the object to be crushed comprising an amorphous soft magnetic alloy powder in the pulverized outer container by rotating the pulverized outer container Of the particles formed by finely pulverizing the amorphous soft magnetic alloy powder and the granulated powder of the particles. method for producing an amorphous magnetically soft alloy pulverized powder and obtaining an amorphous soft magnetic alloy pulverized powder made of at least one can be obtained.

また、本発明によれば、前記非晶質軟磁性合金粉砕粉末の製造方法によって製造された非晶質軟磁性合金粉砕粉末であって、平均粒子径が3〜10μmの粒子で,粉末の50%以上が2以下のアスペクト比の破砕形状粒子にて構成されることを特徴とする非晶質軟磁性合金粉砕粉末が得られる。 Further, according to the present invention, the amorphous soft magnetic alloy pulverized powder produced by the method for producing the amorphous soft magnetic alloy pulverized powder, the particles having an average particle diameter of 3 to 10 μm, An amorphous soft magnetic alloy pulverized powder characterized in that it is composed of crushed particles having an aspect ratio of not less than 2% and not more than 2.

また、本発明によれば、前記非晶質軟磁性合金粉砕粉末において、当該粉末における粉砕を促進させることで、前記非晶質軟磁性合金粉末が微細に粉砕されることで形成された粒子の再凝集反応により粒子内部が3〜9μm以下の粉末にて構成され、平均粒子径10μm以上の前記微細に粉砕された非晶質軟磁性合金粉砕粒子の造粒粉末からなることを特徴とする非晶質軟磁性合金粉砕粉末が得られる。 Further, according to the present invention, in the pulverized powder of the amorphous soft magnetic alloy, the particles formed by finely pulverizing the amorphous soft magnetic alloy powder by promoting pulverization in the powder. particles inside by the re-agglutination can be constituted by the following powder 3~9Myuemu, non characterized in that it consists of granulated powder of the above average particle diameter 10μm was finely ground amorphous soft magnetic alloy ground particles A crystalline soft magnetic alloy pulverized powder is obtained.

さらに、本発明によれば、軟磁性粉末とバインダーとを混合して圧縮成形してなる圧粉成形磁心であって、前記軟磁性粉末は、前記いずれかの非晶質軟磁性合金粉砕粉末からなり、前記圧粉成形磁心は、5MHz以上の高周波領域においてもQ100以上の優れた低損失特性を有することを特徴とする圧粉成形磁心が得られる。 Further, according to the present invention, there is provided a dust-molded magnetic core formed by mixing and compressing a soft magnetic powder and a binder, wherein the soft magnetic powder is made of any one of the above-mentioned amorphous soft magnetic alloy pulverized powder. Thus, the powder-molded magnetic core is characterized by having an excellent low loss characteristic of Q100 or higher even in a high-frequency region of 5 MHz or higher.

本発明による非晶質軟磁性粉末は,高速粉体反応装置を用いることで,遊星型ボールミルなどの従来粉砕法に比べ高効率且つ容易に粉砕或いは造粒が可能であることから製造コストが低減できることに加え,非晶質を維持した状態での微細化或いは再造粒化が可能となることから渦電流損失が改善され,従来に比べても安価且つ低損失特性を有する圧粉成形磁心を提供することができる。   The amorphous soft magnetic powder according to the present invention can be pulverized or granulated more efficiently and easily than conventional pulverization methods such as a planetary ball mill by using a high-speed powder reactor. In addition to being able to reduce the eddy current loss because it can be refined or re-granulated while maintaining an amorphous state, a powder-molded magnetic core that has lower loss characteristics and lower cost than conventional ones can be obtained. Can be provided.

本発明についてさらに詳細に説明する。   The present invention will be described in further detail.

本発明者らは,高速粉体反応装置を用いて非晶質軟磁性合金粉末の非晶質構造を維持したままでの粉砕による微粒子化,或いは微細化後の反応を促進再合成させることにより,低損失な非晶質軟磁性粉砕微粉末や2次造粒された非晶質軟磁性合金造粒粉末の製造が可能であることを見出した。   The present inventors use a high-speed powder reactor to finely pulverize the amorphous soft magnetic alloy powder while maintaining the amorphous structure, or to promote re-synthesis of the reaction after miniaturization. It has been found that it is possible to produce low-loss amorphous soft magnetic pulverized fine powder and secondary granulated amorphous soft magnetic alloy granulated powder.

その結果,本発明の非晶質軟磁性粉砕粉末を圧粉成形磁心材料として用いることで,5MHz以上の高周波域においても低損失な特性を有するインダクタンス部品用の圧粉成形磁心が提供できる。   As a result, by using the amorphous soft magnetic pulverized powder of the present invention as a powder molding magnetic core material, it is possible to provide a powder molding magnetic core for an inductance component having low loss characteristics even in a high frequency region of 5 MHz or higher.

この時の非晶質軟磁性粉末は,Fe或いはCo,Niのいずれかを主構成元素としSi,B,P,C,Cr,Mo,Nb,Vの1種類或いは2種類以上を副構成元素として含有し,その他不可避元素としてAl,O,S,N,Mg,Caを含有する非晶質軟磁性粉末を用いる事が望ましい。   At this time, the amorphous soft magnetic powder is composed of Fe, Co, or Ni as a main constituent element, and Si, B, P, C, Cr, Mo, Nb, or V as a sub constituent element. It is desirable to use amorphous soft magnetic powder containing Al, O, S, N, Mg, and Ca as other inevitable elements.

また,本発明者らは、高速反応装置内の雰囲気についてはAr或いはN雰囲気であることが望ましく,より微細化を促進する場合にはステアリン酸やチタネートカップリング材或いは界面活性剤等を添加することがより望ましく,粉砕効率も大幅に改善されることを見出した。 In addition, the present inventors desirably set the atmosphere in the high-speed reactor to an Ar or N 2 atmosphere, and in order to promote further miniaturization, stearic acid, a titanate coupling material, or a surfactant is added. It was more desirable to do this and found that the grinding efficiency was greatly improved.

さらに、本発明者らは、微粉砕効果をより促進させることで5μm以下の粉砕粒子にて再合成された非晶質軟磁性合金造粒粉末の製造も可能となり,平均粒子径が10μ以上においても高周波領域での渦電流損失が非常に少ない造粒粉末が製造可能な事も見出した。   Furthermore, the present inventors can also produce an amorphous soft magnetic alloy granulated powder re-synthesized with pulverized particles of 5 μm or less by further promoting the fine pulverization effect, and the average particle diameter is 10 μm or more. We have also found that it is possible to produce granulated powder with very little eddy current loss in the high frequency range.

本発明では、これらの諸条件を組み合わせることで,非晶質軟磁性材料の特性を十分活用し且つ損失特性も改善された圧粉成形用磁心材料の提供を可能としたものである。   In the present invention, by combining these various conditions, it is possible to provide a magnetic core material for dust molding that fully utilizes the characteristics of an amorphous soft magnetic material and has improved loss characteristics.

それでは、本発明の非晶質軟磁性合金粉末及びそれを用いた圧粉成形磁心の具体例について、製造工程を含めて具体的に説明する。   Now, specific examples of the amorphous soft magnetic alloy powder of the present invention and the dust-molded magnetic core using the same will be specifically described including the manufacturing process.

図1は本発明に用いた粉砕装置の構成の一例を示す概略図である。図1を参照すると、粉砕装置10は、上述の軟磁性粉末を得るために、矢印5で示されるように、粉砕機外容器2を回転させ、この粉砕機外容器2内の被粉砕物1を粉砕媒体ボール3およびガイドベーン4により粉砕する様子を示している。   FIG. 1 is a schematic view showing an example of the configuration of a crusher used in the present invention. Referring to FIG. 1, in order to obtain the above-described soft magnetic powder, the pulverizer 10 rotates the pulverizer outer container 2 as indicated by the arrow 5, and the pulverized object 1 in the pulverizer outer container 2 is obtained. A state in which the pulverized material is pulverized by the pulverizing medium ball 3 and the guide vane 4 is shown.

具体的には,平均粒子径が12μmの非晶質軟磁性粉末である鉄系非晶質粉(Fe−Si,Fe−Si−B,Fe−Si−B−Crおよびその他Fe基非晶質軟磁性粉末を含む),コバルト系非晶質粉をArおよびN雰囲気中にて,直径8mmのCr鋼球およびジルコニア球を用いて800rpmで1h〜12h粉砕し非晶質軟磁性微粉末を作製した。 Specifically, iron-based amorphous powders (Fe—Si, Fe—Si—B, Fe—Si—B—Cr, and other Fe-based amorphous powders) are amorphous soft magnetic powders having an average particle size of 12 μm. (Including soft magnetic powder), cobalt-based amorphous powder is ground in Ar and N 2 atmospheres using Cr steel balls and zirconia balls having a diameter of 8 mm at 800 rpm for 1 h to 12 h to obtain amorphous soft magnetic fine powder. Produced.

また,回転数を2000rpmへ増加させ粉砕された非晶質軟磁性微粉末の再結合を促進させることで再造粒化をはかり,非晶質軟磁性2次造粒粉末を作製した。   In addition, re-granulation was attempted by increasing the number of rotations to 2000 rpm and promoting recombination of the pulverized amorphous soft magnetic fine powder to produce an amorphous soft magnetic secondary granulated powder.

図2は高速反応装置回転数と粉砕時間および非晶質軟磁性粉末平均粒子径の変化を示す図である。図2に示すように,高速反応装置の回転数(即ち、外容器の回転数)の上昇および粉砕時間の長時間化に伴い粉砕粒子径は微細化する傾向にある事が確認できる。   FIG. 2 is a graph showing changes in the rotational speed of the high-speed reactor, the pulverization time, and the average particle diameter of the amorphous soft magnetic powder. As shown in FIG. 2, it can be confirmed that the pulverized particle diameter tends to become finer as the rotational speed of the high-speed reactor (that is, the rotational speed of the outer container) increases and the pulverization time becomes longer.

そして、回転数が400〜1200rpmまでは、粉砕時間の長時間化に伴い粒子径の微細化が促進され1200rpm,12hの条件において平均粒子径4μmの非晶質軟磁性微粉末を製造できる事が確認できる。   When the rotational speed is 400 to 1200 rpm, the refinement of the particle diameter is promoted as the pulverization time is prolonged, and an amorphous soft magnetic fine powder having an average particle diameter of 4 μm can be produced under the conditions of 1200 rpm and 12 h. I can confirm.

また、さらに高速反応装置の回転数を高め2000rpmとする事により,粉砕による微細化は短時間で終了し6h経過以降は粉末の2次造粒化が促進され最終的には12hの粉砕で,投入時よりも粒子径が大きい14μmの2次造粒粉末も製造可能な事が確認できる。   Furthermore, by further increasing the rotational speed of the high-speed reactor to 2000 rpm, the refinement by pulverization is completed in a short time, and after the lapse of 6 hours, secondary granulation of the powder is promoted and finally pulverization is performed for 12 hours. It can be confirmed that a secondary granulated powder having a particle diameter of 14 μm larger than that at the time of charging can be produced.

尚,試料はSi=6mass%,B=4mass%,Cr=2mass%,C=0.5mass%,Fe=balanceにて構成される水アトマイズ法にて作製した平均粒子径=12μmの粉末を使用し,評価を行った。   The sample used is a powder with an average particle diameter of 12 μm prepared by a water atomization method comprising Si = 6 mass%, B = 4 mass%, Cr = 2 mass%, C = 0.5 mass%, and Fe = balance. And evaluated.

図3は、この時作製した非晶質軟磁性合金粉砕粉末の形状を示す電子顕微鏡写真である。尚,粉末は上記組成の非晶質軟磁性合金粉末を800rpm×10hの条件にて作製された平均粒子径6.3μmの粉末である。   FIG. 3 is an electron micrograph showing the shape of the pulverized amorphous soft magnetic alloy powder produced at this time. The powder is a powder having an average particle size of 6.3 μm prepared from an amorphous soft magnetic alloy powder having the above composition under the condition of 800 rpm × 10 h.

この粉末は,被粉砕粉末特有の形状である破砕形状粒子にて構成され,扁平化も抑制された状態で粉末化されていることが確認される。 It is confirmed that this powder is composed of crushed particles, which is a shape peculiar to the powder to be crushed, and is powdered in a state in which flattening is suppressed.

また、粒子も50%以上がアスペクト比=2以下の粉末にて構成され,形状異方性による影響も問題ない特徴を持つ粉末であることが確認される。   Further, it is confirmed that the particles are composed of a powder having an aspect ratio of 2 or less of 50% or more, and have a characteristic that the influence of shape anisotropy is not problematic.

図4は、この時作製した非晶質軟磁性合金造粒粉末の粒子形状を示す電子顕微鏡写真である。尚,粉末は上記組成の非晶質軟磁性合金粉末を2000rpm×12hの条件にて作製された平均粒子径13.8μmの粉末である。図4に示すように、造粒粉末は図3に示した破砕形状粒子とは異なり少なくとも5μm以下の粉末が凝集し2次粒子を形成していることが確認できる。   FIG. 4 is an electron micrograph showing the particle shape of the amorphous soft magnetic alloy granulated powder produced at this time. The powder is a powder having an average particle diameter of 13.8 μm prepared from an amorphous soft magnetic alloy powder having the above composition under the condition of 2000 rpm × 12 h. As shown in FIG. 4, unlike the crushed particles shown in FIG. 3, the granulated powder can be confirmed to have at least 5 μm or less aggregated to form secondary particles.

図5は本発明により作製した微粉末と従来粉砕法である遊星型ボールミルにて粉砕した粉末のX線回折結果を示す図である。図5に示すように遊星型ボールミルにて粉砕した粉末は,明らかなα−Feの回折ピークが確認され結晶化の進行が確認できる。   FIG. 5 is a view showing the X-ray diffraction results of the fine powder produced according to the present invention and the powder pulverized by a planetary ball mill which is a conventional pulverization method. As shown in FIG. 5, in the powder pulverized by the planetary ball mill, an obvious α-Fe diffraction peak is confirmed and the progress of crystallization can be confirmed.

それに対して,本発明による微細粉末においては、明確な回折ピークは確認されず,処理開始前である0hと12h処理後でも非晶質特有の回折パターンであるハローパターンを示している事から,粉砕により結晶化する事は無く,粉砕後でも非晶質軟磁性合金の形態を維持していることが確認された。   On the other hand, in the fine powder according to the present invention, a clear diffraction peak is not confirmed, and shows a halo pattern which is a diffraction pattern peculiar to amorphous even after 0h and 12h treatment before the treatment start. It did not crystallize by pulverization, and it was confirmed that the morphology of the amorphous soft magnetic alloy was maintained even after pulverization.

またこの時,遊星型ボールミルにおける粉末回収率が5%であったのに対して,本発明に用いた高速粉体反応装置においては,各種粉砕条件に関わらず90%以上の高い粉末回収率であり,本発明による粉末は回収率の高さから考えても従来粉砕法に比べ高効率且つ低コストな粉砕粉末であり製法としても処理コストに優れる粉砕,造粒方法である事が確認された。   At this time, the powder recovery rate in the planetary ball mill was 5%, whereas in the high-speed powder reactor used in the present invention, the powder recovery rate was as high as 90% or more regardless of various grinding conditions. In view of the high recovery rate, the powder according to the present invention was confirmed to be a pulverized and granulated method that is a pulverized powder that is more efficient and lower in cost than the conventional pulverization method and that is excellent in processing cost as a manufacturing method. .

図6は本発明によって作製した非晶質粉砕粉末における損失係数tanδの逆数で効率を表す指標であるQの周波数特性を示す図である。尚,材料特性評価には,Si=6mass%,B=4mass%,Cr=2mass%,C=0.5mass%,Fe=balanceの組成から成るFe系非晶質軟磁性粉砕粉末に樹脂成分にて3.0mass%のとなるリコーン樹脂を添加し撹拌混合後,100℃×1hにて乾燥を行い,φ13×φ8×tの金型にて、981MPa(10.0ton/cm)の成形圧にて作製したコアに,φ0.35の銅線にて10T(ターン)の巻線を施したトロイダル形状の圧粉成形磁心を使用し評価した。 FIG. 6 is a graph showing the frequency characteristics of Q, which is an index representing efficiency by the reciprocal of the loss factor tan δ, in the amorphous pulverized powder produced according to the present invention. For the material property evaluation, Fe-based amorphous soft magnetic pulverized powder composed of Si = 6 mass%, B = 4 mass%, Cr = 2 mass%, C = 0.5 mass%, Fe = balance is used as a resin component. After adding a corn resin of 3.0 mass%, stirring and mixing, drying is performed at 100 ° C. × 1 h, and a molding pressure of 981 MPa (10.0 ton / cm 2 ) is used in a φ13 × φ8 × t mold. The core produced in (1) was evaluated using a toroidal dust core formed by winding 10T (turn) with a copper wire of φ0.35.

またQの周波数特性評価にはインピータンスアナライザーを用い評価を行った。その結果を図6に示す。図6の曲線61は、粉砕前(D50=12μm),曲線62は、1200rpm、12時間(D50=4.1μm)、曲線63は、800rpm,8時間(D50=9.8μm、曲線64は2000rpm、12時間(D50=13.6μm)を夫々示している。図6から、曲線61で示される粉砕前粉末においては渦電流損失により4MHz以上の高周波領域におけるQの値が急激に低下している事が確認される。   Q frequency characteristics were evaluated using an impedance analyzer. The result is shown in FIG. Curve 61 in FIG. 6 is before grinding (D50 = 12 μm), curve 62 is 1200 rpm, 12 hours (D50 = 4.1 μm), curve 63 is 800 rpm, 8 hours (D50 = 9.8 μm, curve 64 is 2000 rpm) , 12 hours (D50 = 13.6 μm) From Fig. 6, in the powder before pulverization indicated by the curve 61, the Q value in the high frequency region of 4 MHz or more is drastically decreased due to eddy current loss. Things are confirmed.

それに比べて、曲線62乃至63で示される本発明による非晶質軟磁性微細粉末は、5MHz以上の高周波域においてもQ=100以上の高い値を示す事が確認され,微粉化により高周波領域における渦電流損失が大幅に改善された事が確認された。   In contrast, it was confirmed that the amorphous soft magnetic fine powder according to the present invention shown by the curves 62 to 63 shows a high value of Q = 100 or higher even in a high frequency region of 5 MHz or higher. It was confirmed that the eddy current loss was greatly improved.

また、曲線64で示されるように、微粉末の再合成により14μmまで粗大化した粉末においても5MHz以上の高周波領域におけるQは粉砕前粉末に比べ高く,この結果からも図4に示した粉末が再合成粉末であり,微粉末が再合成された事により渦電流損失が改善された結果である事が確認されたといえる。   Further, as shown by the curve 64, even in the powder coarsened to 14 μm by re-synthesis of fine powder, the Q in the high frequency region of 5 MHz or higher is higher than the powder before pulverization. From this result, the powder shown in FIG. This is a re-synthesized powder, and it can be said that it was confirmed that the eddy current loss was improved by re-synthesizing the fine powder.

以上の事から,高速反応装置を用いる事で損失特性に優れた低損失な非晶質軟磁性合金粉末が得られることが確認され,実施例記載の内容にならい本発明による非晶質軟磁性合金粉砕粉末を圧扮成形磁心とすることで次世代磁心材料におけるクロック周波数の増加に伴う高周波化(スイッチング周波数〜10MHz)にも対応できると共に,次世代磁心材料のトレンドである大電流且つ省電力化にも対応可能な磁心材料を提供することができる.   From the above, it was confirmed that a low-loss amorphous soft magnetic alloy powder excellent in loss characteristics can be obtained by using a high-speed reactor, and the amorphous soft magnetism according to the present invention follows the contents described in the examples. It is possible to cope with higher frequency (switching frequency-10MHz) with the increase of clock frequency in next-generation magnetic core materials by using pulverized alloy powder as the compacted core, and the large current and power saving that is the trend of next-generation magnetic core materials. It is possible to provide a magnetic core material that can be used for manufacturing.

以上述べた通り、本発明に係る非晶質軟磁性合金粉末は、粉砕粉末微粒子或いは微粉の再合成による造粒化粉末であることにより低損失特性を有することから,各種電子機器の電源用部品であるチョークコイル,トランス用などの圧粉成形磁心への適用が好適である。   As described above, since the amorphous soft magnetic alloy powder according to the present invention is a granulated powder obtained by re-synthesis of pulverized powder fine particles or fine powder, it has low loss characteristics. It is suitable for application to a dust core such as a choke coil or a transformer.

また、本発明による微粉末および微粉末の再造粒化粉末で成形された高周波用磁心は、5MHz以上の高周波領域においてさらなる高性能インダクタンス部品を作製出来る。   Further, the high frequency magnetic core formed from the fine powder and the finely re-granulated powder according to the present invention can produce a further high-performance inductance component in a high frequency region of 5 MHz or more.

更に、本発明の非晶質軟磁性粉砕粉末を高周波用磁心とすることで低損失圧粉成形磁心の実用化が可能となり,金属系非晶質軟磁性粉砕粉末を用い大電流に対応できる事に加え,電力効率も改善を必要とする次世代電子機器への応用が可能である。   Furthermore, by using the amorphous soft magnetic pulverized powder of the present invention as a high-frequency magnetic core, a low-loss compacted magnetic core can be put into practical use, and a metal-based amorphous soft magnetic pulverized powder can be used for large currents. In addition, it can be applied to next-generation electronic devices that require improved power efficiency.

本発明に用いた高速粉体反応装置の概略構成を示す図である。It is a figure which shows schematic structure of the high-speed powder reaction apparatus used for this invention. 高速反応装置の回転数及び粉砕時間と、平均粒子径の変化を示す図である。It is a figure which shows the rotation speed and grinding | pulverization time of a high-speed reactor, and the change of an average particle diameter. 本発明の非晶質軟磁性粉砕粉末の形状の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the shape of the amorphous soft magnetic ground powder of this invention. 本発明の非晶質軟磁性合金造粒粉末の形状の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the shape of the amorphous soft magnetic alloy granulated powder of this invention. 本発明により作製した微粉末の結晶構造評価結果を示す図で、比較のために、従来法による遊星型ボールミルによって粉砕した粉末のX線回折結果も示している。It is a figure which shows the crystal structure evaluation result of the fine powder produced by this invention, and the X-ray-diffraction result of the powder grind | pulverized with the planetary ball mill by the conventional method is also shown for the comparison. 本発明の非晶質粉砕粉末のQの周波数特性を示す図である。It is a figure which shows the frequency characteristic of Q of the amorphous ground powder of this invention.

符号の説明Explanation of symbols

1 被粉砕物
2 粉砕機外容器
3 粉砕媒体ボール
4 ガイドベーン
5 容器回転方向
10 高速反応装置
DESCRIPTION OF SYMBOLS 1 Object to be pulverized 2 Container outside pulverizer 3 Ball for grinding media 4 Guide vane 5 Direction of container rotation 10 High-speed reactor

Claims (4)

粉砕機外容器内に収容される金属およびジルコニアの少なくとも一方からなる粉砕媒体と、前記粉砕機外容器内に設けられた可変ガイドベーンとを備えて構成される高速粉体反応装置を用いた非晶質軟磁性合金粉砕粉末を製造する方法であって、
前記粉砕外容器を回転させて、当該粉砕外容器内の非晶質軟磁性合金粉末からなる被粉砕物を前記粉砕媒体ボールと前記可変ガイドベーンを用いて粉砕することで、前記非晶質軟磁性合金粉末が微細に粉砕されることで形成された粒子からなる粉末およびそれら粒子の造粒粉末の内の少なくとも一方からなる非晶質軟磁性合金粉砕粉末を得ることを特徴とする非晶質軟磁性合金粉砕粉末の製造方法。
Non-use using a high-speed powder reactor comprising a grinding medium made of at least one of metal and zirconia accommodated in a pulverizer outer container and a variable guide vane provided in the pulverizer outer container. A method for producing a crystalline soft magnetic alloy pulverized powder, comprising:
By rotating the outer pulverization container and pulverizing the material to be crushed made of amorphous soft magnetic alloy powder in the pulverization outer container using the pulverization medium balls and the variable guide vanes, Amorphous, characterized in that a powder comprising particles formed by finely pulverizing a magnetic alloy powder and an amorphous soft magnetic alloy pulverized powder comprising at least one of granulated powders of these particles are obtained. Method for producing soft magnetic alloy pulverized powder.
請求項1に記載の非晶質軟磁性合金粉砕粉末の製造方法によって製造された非晶質軟磁性合金粉砕粉末であって、平均粒子径が3〜10μmの粒子で,粉末の50%以上が2以下のアスペクト比の破砕形状粒子にて構成されることを特徴とする非晶質軟磁性合金粉砕粉末。 An amorphous soft magnetic alloy pulverized powder produced by the method for producing an amorphous soft magnetic alloy pulverized powder according to claim 1, wherein the particles have an average particle diameter of 3 to 10 μm, and 50% or more of the powder is An amorphous soft magnetic alloy pulverized powder comprising crushed particles having an aspect ratio of 2 or less. 請求項2に記載の非晶質軟磁性合金粉砕粉末において、当該粉末における粉砕を促進させることで、前記非晶質軟磁性合金粉末が微細に粉砕されることで形成された粒子の再凝集反応により粒子内部が3〜9μm以下の粉末にて構成され、平均粒子径10μm以上の前記微細に粉砕された非晶質軟磁性合金粉砕粒子の造粒粉末からなることを特徴とする非晶質軟磁性合金粉砕粉末。 The amorphous soft magnetic alloy pulverized powder according to claim 2, wherein the pulverization of the amorphous soft magnetic alloy powder is promoted to promote the pulverization of the amorphous soft magnetic alloy powder. the particle inside is constituted by the following powder 3~9Myuemu, amorphous, characterized in that it consists of granulated powder of the above average particle diameter 10μm was finely ground amorphous soft magnetic alloy ground particles Shitsu軟Magnetic alloy pulverized powder. 軟磁性粉末とバインダーとを混合して圧縮成形してなる圧粉成形磁心であって、前記軟磁性粉末は、請求項2又は3に記載の非晶質軟磁性合金粉砕粉末からなり、前記圧粉成形磁心は、5MHz以上の高周波領域においてもQ100以上の優れた低損失特性を有することを特徴とする圧粉成形磁心。 A compacted magnetic core formed by mixing and compressing soft magnetic powder and a binder, wherein the soft magnetic powder comprises the amorphous soft magnetic alloy pulverized powder according to claim 2, and the pressure The powder-molded magnetic core is characterized by having an excellent low loss characteristic of Q100 or higher even in a high-frequency region of 5 MHz or higher.
JP2005270749A 2005-09-16 2005-09-16 Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core Expired - Fee Related JP4638310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270749A JP4638310B2 (en) 2005-09-16 2005-09-16 Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270749A JP4638310B2 (en) 2005-09-16 2005-09-16 Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core

Publications (2)

Publication Number Publication Date
JP2007077488A JP2007077488A (en) 2007-03-29
JP4638310B2 true JP4638310B2 (en) 2011-02-23

Family

ID=37938089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270749A Expired - Fee Related JP4638310B2 (en) 2005-09-16 2005-09-16 Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core

Country Status (1)

Country Link
JP (1) JP4638310B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248065B2 (en) * 2007-08-31 2013-07-31 株式会社タムラ製作所 Core material and core using the same, choke coil using the core
JP6530164B2 (en) * 2014-03-04 2019-06-12 株式会社トーキン Nanocrystalline soft magnetic alloy powder and dust core using the same
JPWO2019124224A1 (en) 2017-12-19 2020-12-17 株式会社村田製作所 Amorphous alloy particles and method for producing amorphous alloy particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000823A (en) * 2002-05-24 2004-01-08 Tohoku Techno Arch Co Ltd High-speed powder reactor
JP2004130305A (en) * 2003-08-12 2004-04-30 Tohoku Techno Arch Co Ltd High-speed powder reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328802A (en) * 1986-07-21 1988-02-06 Tdk Corp Amorphous particulate matter and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000823A (en) * 2002-05-24 2004-01-08 Tohoku Techno Arch Co Ltd High-speed powder reactor
JP2004130305A (en) * 2003-08-12 2004-04-30 Tohoku Techno Arch Co Ltd High-speed powder reactor

Also Published As

Publication number Publication date
JP2007077488A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4274897B2 (en) Method for producing Fe-based amorphous metal powder and method for producing soft magnetic core using the same
JP5831866B2 (en) Ferromagnetic particle powder and method for producing the same, anisotropic magnet, bonded magnet, and compacted magnet
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP5858419B2 (en) Method for producing ferromagnetic particle powder, anisotropic magnet, bonded magnet, and dust magnet
CN111386161B (en) Magnetic material and method for producing the same
KR20090130135A (en) Magnetic material for high frequency wave, and method for production thereof
WO2007010860A1 (en) Rare earth sintered magnet and method for production thereof
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP2020161726A (en) Composite magnetic material for high frequency
JP2007134591A (en) Composite magnetic material, dust core using the same and magnetic element
JP4638310B2 (en) Amorphous soft magnetic alloy pulverized powder manufacturing method, amorphous soft magnetic alloy pulverized powder, and compacted magnetic core
US9427805B2 (en) Method to prepare hard-soft magnetic FeCo/ SiO2/MnBi nanoparticles with magnetically induced morphology
JP5681839B2 (en) Magnetic material and method for manufacturing magnetic material
JP3727863B2 (en) Manufacturing method of magnet material
CN110506314B (en) Magnetic material and method for producing the same
JP4345588B2 (en) Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained
CN113416903B (en) Application of alloy powder, hard magnetic material and preparation method and application thereof
JP3786190B2 (en) Manufacturing method of rare earth sintered magnet
JP7139082B2 (en) SOFT MAGNETIC ALLOY POWDER, COMPACT THEREOF, AND METHOD FOR MANUFACTURING THEM
McGrath et al. Nanoparticles and nanocomposites for new permanent magnets
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS6333506A (en) Production of raw material powder for permanent magnet material
JPWO2022202760A5 (en)
JP2023134350A (en) Magnetic material and rotary electric machine
JP2006237368A (en) Powder magnetic core and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees