JP4637700B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4637700B2
JP4637700B2 JP2005277485A JP2005277485A JP4637700B2 JP 4637700 B2 JP4637700 B2 JP 4637700B2 JP 2005277485 A JP2005277485 A JP 2005277485A JP 2005277485 A JP2005277485 A JP 2005277485A JP 4637700 B2 JP4637700 B2 JP 4637700B2
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer layer
solution
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005277485A
Other languages
Japanese (ja)
Other versions
JP2007036168A (en
Inventor
清文 青木
慶一 尾形
直己 小谷
純也 辰野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2005277485A priority Critical patent/JP4637700B2/en
Publication of JP2007036168A publication Critical patent/JP2007036168A/en
Application granted granted Critical
Publication of JP4637700B2 publication Critical patent/JP4637700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、固体電解コンデンサおよびその製造方法に関するものである。   The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

近年、電子機器のデジタル化にともない、固体電解コンデンサには優れた高周波特性が求められており、固体電解コンデンサに用いられる固体電解質には、低ESR化を目的として導電性高分子が使用されている。一般に、固体電解コンデンサに使用される導電性高分子としては、ポリチオフェン、ポリピロール、ポリアニリンまたはそれらの誘導体等があり、中でもポリチオフェンはポリピロールやポリアニリンと比較して導電率が高く、かつ熱安定性に優れていることから使用されることが多い。   In recent years, with the digitization of electronic equipment, solid electrolytic capacitors have been required to have excellent high frequency characteristics, and conductive polymers have been used for solid electrolytes used in solid electrolytic capacitors for the purpose of reducing ESR. Yes. Generally, conductive polymers used for solid electrolytic capacitors include polythiophene, polypyrrole, polyaniline, or derivatives thereof. Among them, polythiophene has higher conductivity than polypyrrole or polyaniline and has excellent thermal stability. It is often used because of

導電性高分子の形成方法としては、電解重合および化学酸化重合を挙げることができる。電解重合を用いた場合、コンデンサ陽極体の個々に重合用電極を設置する必要があるため、大量生産には不利とされている。一方、化学酸化重合は容易に大量生産できる手法として当業者間で広く使用されている。   Examples of the method for forming the conductive polymer include electrolytic polymerization and chemical oxidation polymerization. When electrolytic polymerization is used, it is necessary to install a polymerization electrode for each capacitor anode body, which is disadvantageous for mass production. On the other hand, chemical oxidative polymerization is widely used among those skilled in the art as a technique that can be easily mass-produced.

従来の固体電解コンデンサは、図2に示す製造工程のようにコンデンサ陽極体をモノマーと酸化剤を混合した溶液に浸漬し、化学酸化重合することにより導電性高分子層を形成していた(例えば、特許文献1参照)。   In the conventional solid electrolytic capacitor, a conductive polymer layer is formed by immersing a capacitor anode body in a solution in which a monomer and an oxidant are mixed and performing chemical oxidative polymerization as in the manufacturing process shown in FIG. 2 (for example, , See Patent Document 1).

また、図3に示す製造工程のようにコンデンサ陽極体をモノマー溶液と酸化剤溶液に交互に浸漬し、化学酸化重合することにより導電性高分子層を形成する方法も知られている(例えば、特許文献2参照)。   Further, a method of forming a conductive polymer layer by alternately immersing a capacitor anode body in a monomer solution and an oxidant solution and performing chemical oxidative polymerization as in the manufacturing process shown in FIG. 3 (for example, Patent Document 2).

一般に、導電性高分子層は、高導電性の陰極層として作用するため、薄い方が低抵抗になり、有利である。しかし、導電性高分子層は外装樹脂からコンデンサ素子に加えられる機械的ストレスに対し、素子を保護する働きもしているため、ある程度の厚さを有する導電性高分子層の形成が必要となる(例えば、特許文献3、4参照)。
特許第3040113号 米国特許4697001号 特開2001―143968号公報 特開2003―188052号公報
In general, since the conductive polymer layer acts as a highly conductive cathode layer, a thinner one is advantageous because it has a lower resistance. However, since the conductive polymer layer also serves to protect the element against mechanical stress applied to the capacitor element from the exterior resin, it is necessary to form a conductive polymer layer having a certain thickness ( For example, see Patent Documents 3 and 4).
Patent No. 3040113 US Pat. No. 4,697,001 Japanese Patent Laid-Open No. 2001-143968 JP 2003-188052 A

しかし、特許文献1記載のコンデンサ陽極体をモノマーと酸化剤を混合した溶液に浸漬し、化学酸化重合を行う方法は、コンデンサ陽極体内部の空孔細部に導電性高分子層を形成できるが、ショート不良が少なく漏れ電流も低くできる十分な厚さを形成するには、化学酸化重合の繰り返し回数が極端に多くなり、また、モノマーと酸化剤を混合した溶液を用いるため、溶液中の重合反応の進行による液の劣化が早く、材料コストがかかるという問題があった。   However, the method of performing chemical oxidative polymerization by immersing the capacitor anode body described in Patent Document 1 in a solution in which a monomer and an oxidizing agent are mixed can form a conductive polymer layer in the pore details inside the capacitor anode body. In order to form a sufficient thickness that can reduce short-circuit failure and leakage current, the number of repetitions of chemical oxidative polymerization becomes extremely large, and a solution in which a monomer and an oxidant are mixed is used. There was a problem that the liquid deteriorated rapidly due to the progress of the material, and the material cost was high.

また、特許文献2記載のコンデンサ陽極体をモノマー溶液と酸化剤溶液に交互に浸漬し、化学酸化重合を行う方法は、上記と異なり、化学酸化重合の繰り返し回数が比較的少なくても、十分な導電性高分子厚さを形成することができ、また、モノマー溶液と酸化剤溶液を別々に浸漬するため、溶液中の重合反応の進行が遅く液寿命も長いが、導電性高分子層をコンデンサ陽極体内部の空孔細部に形成することが困難なため、十分な容量が得られないという問題があった。   Further, the method of performing chemical oxidative polymerization by alternately immersing the capacitor anode body described in Patent Document 2 in a monomer solution and an oxidant solution is different from the above, even if the number of repetitions of chemical oxidative polymerization is relatively small. Conductive polymer thickness can be formed, and since monomer solution and oxidant solution are immersed separately, the polymerization reaction in the solution progresses slowly and the liquid life is long. There is a problem that a sufficient capacity cannot be obtained because it is difficult to form fine holes in the anode body.

本発明は上記課題を解決するもので、少ない工数で、容量出現率が高く、かつ漏れ電流特性、ESR特性の良好な固体電解コンデンサを提供するものである。   The present invention solves the above-mentioned problems, and provides a solid electrolytic capacitor with a small man-hour, a high capacity appearance rate, and good leakage current characteristics and ESR characteristics.

上記課題を解決するため、本発明の固体電解コンデンサは、弁作用金属粉末によって形成された焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜を形成して、コンデンサ陽極体を形成後、該誘電体酸化皮膜の表面に導電性高分子からなる陰極層を形成する固体電解コンデンサにおいて、
該コンデンサ陽極体表面に、モノマーと酸化剤とを混合した溶液への浸漬による化学酸化重合にて形成した第1の導電性高分子層と、モノマー溶液と酸化剤溶液に交互に浸漬し、化学酸化重合にて形成した第2の導電性高分子層とを有し、
上記第1の導電性高分子層の被覆率が、20〜80%であることを特徴とする固体電解コンデンサである。
In order to solve the above problems, the solid electrolytic capacitor of the present invention is formed by forming a dielectric oxide film on the surface of a sintered body formed of a valve metal powder or a roughened valve metal foil. In the solid electrolytic capacitor in which a cathode layer made of a conductive polymer is formed on the surface of the dielectric oxide film after forming the capacitor anode body,
On the surface of the capacitor anode body, the first conductive polymer layer formed by chemical oxidative polymerization by immersion in a solution in which a monomer and an oxidant are mixed, and the monomer solution and the oxidant solution are alternately immersed in the chemical A second conductive polymer layer formed by oxidative polymerization,
The solid electrolytic capacitor is characterized in that the coverage of the first conductive polymer layer is 20 to 80%.

また、弁作用金属粉末によって形成された焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜を形成して、コンデンサ陽極体を形成後、該誘電体酸化皮膜の表面に導電性高分子からなる陰極層を形成する固体電解コンデンサの製造方法において、前記コンデンサ陽極体表面に、モノマーと酸化剤とを混合した溶液への浸漬による化学酸化重合にて第1の導電性高分子層を形成する第1の導電性高分子層形成工程と、モノマー溶液と酸化剤溶液に交互に浸漬し、化学酸化重合にて第2の導電性高分子層を形成する第2の導電性高分子層形成工程とを有し、前記第1の導電性高分子層の被覆率が20〜80%であり、前記第1の導電性高分子層形成工程と前記第2の導電性高分子層形成工程との間に再化成工程を有することを特徴とする固体電解コンデンサの製造方法である。 In addition, a dielectric oxide film is formed on the surface of a sintered body formed of a valve action metal powder or a roughened valve action metal foil to form a capacitor anode body, and then the dielectric oxide film In the method of manufacturing a solid electrolytic capacitor in which a cathode layer made of a conductive polymer is formed on the surface of the first electrode, the first surface is formed by chemical oxidative polymerization by immersion in a solution in which a monomer and an oxidizing agent are mixed on the surface of the capacitor anode body. A first conductive polymer layer forming step of forming a conductive polymer layer; a second step of alternately immersing in a monomer solution and an oxidant solution and forming a second conductive polymer layer by chemical oxidative polymerization; conductive and a polymer layer forming step, the coverage of the first conductive polymer layer is 20-80%, the second conductive with the first conductive polymer layer formation step Having a re-formation step between the functional polymer layer formation step A method for producing a solid electrolytic capacitor according to symptoms.

上記構成により、コンデンサ陽極体内部の空孔細部に導電性高分子層を容易に形成し、かつ十分な厚さの導電性高分子層も形成することができるため、容量出現率が高く、ショート不良が少なく、漏れ電流値も低く、かつESR値が低い固体電解コンデンサを提供できる。
また、重合溶液の劣化が早い第1の導電性高分子層形成の化学酸化重合の回数が少ないため、安定した製造条件で、かつ材料コストが安い固体電解コンデンサを提供できる。
With the above configuration, a conductive polymer layer can be easily formed in the pore details inside the capacitor anode body, and a sufficiently thick conductive polymer layer can be formed. A solid electrolytic capacitor with few defects, a low leakage current value, and a low ESR value can be provided.
In addition, since the number of times of chemical oxidation polymerization for forming the first conductive polymer layer in which the polymerization solution is rapidly deteriorated is small, it is possible to provide a solid electrolytic capacitor with stable manufacturing conditions and low material cost.

さらに、第1の導電性高分子層の被覆率を20〜80%とした後に、化学酸化重合によって劣化した誘電体酸化皮膜を再化成にて修復し、第2の導電性高分子層を形成することで、ESRを劣化させることなく漏れ電流をさらに低減することができる。   Further, after the coverage of the first conductive polymer layer is set to 20 to 80%, the dielectric oxide film deteriorated by the chemical oxidative polymerization is repaired by re-forming, thereby forming the second conductive polymer layer. By doing so, the leakage current can be further reduced without degrading the ESR.

[実施例1]
以下に、本発明の具体的な実施例について図面を参照しながら説明する。
図1は、実施例1〜3における製造工程である。
タンタル粉末に陽極導出線を埋設し、所定の形状にプレス成形後、焼結して0.60mm×1.00mm×0.60mmの多孔質体とし、リン酸水溶液中において印加電圧15Vで陽極酸化を行い、多孔質体の表面に誘電体酸化皮膜層を形成し、コンデンサ陽極体を得た。
[Example 1]
Specific embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a manufacturing process in Examples 1 to 3.
Anode lead wire is embedded in tantalum powder, pressed into a predetermined shape, sintered to a porous body of 0.60 mm x 1.00 mm x 0.60 mm, and anodized at an applied voltage of 15 V in a phosphoric acid aqueous solution Then, a dielectric oxide film layer was formed on the surface of the porous body to obtain a capacitor anode body.

次に、2,4−エチレンジオキシチオフェン(以下、EDTと略す)を含むモノマー溶液とドデシルベンゼンスルホン酸第二鉄を含む酸化剤溶液とを混合し、−5℃に保持した混合溶液に上記コンデンサ陽極体を浸漬した後、引き上げ、20℃で化学酸化重合し、第1の導電性高分子層を形成した。その後、アルコールで洗浄し85℃で乾燥した。以上の操作を2回行い、第1の導電性高分子層の被覆率(含浸率)を測定した結果、20%であった。   Next, a monomer solution containing 2,4-ethylenedioxythiophene (hereinafter abbreviated as EDT) and an oxidizer solution containing ferric dodecylbenzenesulfonate are mixed, and the mixture solution maintained at −5 ° C. is mixed with the above solution. After immersing the capacitor anode body, it was pulled up and chemically oxidized and polymerized at 20 ° C. to form a first conductive polymer layer. Then, it wash | cleaned with alcohol and dried at 85 degreeC. The above operation was performed twice, and the coverage (impregnation rate) of the first conductive polymer layer was measured and found to be 20%.

ここで被覆率(含浸率)とは、誘電体酸化皮膜層上に形成した導電性高分子層または固体電解質層の誘電体酸化皮膜層に対する被覆の割合を示している。具体的には、導電性高分子層または固体電解質層形成後のコンデンサ素子内に導電性溶液を十分に含有させた後の容量値(該コンデンサ素子が本来有する容量値)と、上記コンデンサ素子内から導電性溶液を洗浄し、水分を十分に乾燥させた後の容量値(導電性高分子層または固体電解質層形成後の該コンデンサ素子が実際に有する容量値)から算出した。
以下に被覆率の算出式を示す。
Here, the coverage (impregnation rate) indicates the ratio of the coating of the conductive polymer layer or solid electrolyte layer formed on the dielectric oxide film layer to the dielectric oxide film layer. Specifically, a capacitance value (capacitance value inherent to the capacitor element) after sufficiently containing the conductive solution in the capacitor element after the formation of the conductive polymer layer or the solid electrolyte layer, and the inside of the capacitor element From the capacitance value after washing the conductive solution and sufficiently drying the water (the capacitance value actually possessed by the capacitor element after the formation of the conductive polymer layer or the solid electrolyte layer).
The formula for calculating the coverage is shown below.

[数1]

Figure 0004637700
[Equation 1]
Figure 0004637700

さらに、該コンデンサ素子を、25℃に保持したEDTモノマー溶液に浸漬した後、引き上げて乾燥した。その後、25℃に保持したドデシルベンゼンスルホン酸第二鉄を含む酸化剤溶液に浸漬後、引き上げて20℃で化学酸化重合し第2の導電性高分子層を形成した。その後、アルコールで洗浄し85℃で乾燥した。以上の操作を4回繰り返した。   Further, the capacitor element was immersed in an EDT monomer solution maintained at 25 ° C., and then pulled up and dried. Then, after being immersed in an oxidant solution containing ferric dodecylbenzenesulfonate held at 25 ° C., it was pulled up and chemically oxidized and polymerized at 20 ° C. to form a second conductive polymer layer. Then, it wash | cleaned with alcohol and dried at 85 degreeC. The above operation was repeated 4 times.

次に、このコンデンサ素子の導電性高分子層の上に、カーボンペースト、銀ペーストを塗布して、カーボン層および銀層を順次形成し、この銀層の上に陰極引き出し端子を、前記陽極体から引き出した陽極リードに陽極端子をそれぞれ接続した後、トランスファーモールドにより外装樹脂を施し、固体電解コンデンサを作製した。   Next, a carbon paste and a silver paste are applied on the conductive polymer layer of the capacitor element to sequentially form a carbon layer and a silver layer, and a cathode lead terminal is formed on the silver layer. After connecting the anode terminal to the anode lead drawn out from each, an exterior resin was applied by transfer molding to produce a solid electrolytic capacitor.

[実施例2]
第1の導電性高分子層の被覆率(含浸率)が50%となるよう化学重合を繰り返した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 2]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the chemical polymerization was repeated so that the coverage (impregnation rate) of the first conductive polymer layer was 50%.

[実施例3]
第1の導電性高分子層の被覆率(含浸率)が80%となるよう化学重合を繰り返した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 3]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the chemical polymerization was repeated so that the coverage (impregnation rate) of the first conductive polymer layer was 80%.

[実施例4〜6]
図4は、実施例4〜6における製造工程である。
実施例1〜3の製造条件で、第1の導電性高分子層形成後に、濃度0.01wt%のリン酸水溶液中において、印加電圧14V、液温40℃で再化成を行い、誘電体酸化皮膜層の修復を行った以外は、実施例1〜3と同様の方法で固体電解コンデンサを作製した。
[Examples 4 to 6]
FIG. 4 shows the manufacturing process in Examples 4-6.
Under the manufacturing conditions of Examples 1 to 3, after forming the first conductive polymer layer, re-formation was performed in an aqueous solution of phosphoric acid having a concentration of 0.01 wt% at an applied voltage of 14 V and a liquid temperature of 40 ° C. A solid electrolytic capacitor was produced in the same manner as in Examples 1 to 3 except that the coating layer was repaired.

[比較例1]
第1の導電性高分子層の被覆率(含浸率)が10%となるよう化学重合を繰り返した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 1]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the chemical polymerization was repeated so that the coverage (impregnation rate) of the first conductive polymer layer was 10%.

[比較例2]
第1の導電性高分子層の被覆率(含浸率)が90%となるよう化学重合を繰り返した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 2]
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the chemical polymerization was repeated so that the coverage (impregnation rate) of the first conductive polymer layer was 90%.

(従来例1)
図2は、従来例1における製造工程である。
第2の導電性高分子層の形成を行わず、第1の導電性高分子層を形成する化学酸化重合を20回繰り返した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
(Conventional example 1)
FIG. 2 shows a manufacturing process in Conventional Example 1.
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the second conductive polymer layer was not formed and the chemical oxidation polymerization for forming the first conductive polymer layer was repeated 20 times. .

(従来例2)
図3は、従来例2における製造工程である。
第1の導電性高分子層の形成を行わず、第2の導電性高分子層を形成する化学酸化重合を5回繰り返した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
(Conventional example 2)
FIG. 3 shows a manufacturing process in Conventional Example 2.
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the chemical oxidation polymerization for forming the second conductive polymer layer was repeated 5 times without forming the first conductive polymer layer. .

上記の実施例1〜6、比較例1、2、従来例1、2で作製した固体電解コンデンサの高分子層厚さ、電気特性を測定した。なお、高分子層厚さは、コンデンサ素子の側面部分と底面部分の平均値とした。結果を表1に示す。   The polymer layer thickness and electric characteristics of the solid electrolytic capacitors produced in Examples 1 to 6, Comparative Examples 1 and 2 and Conventional Examples 1 and 2 were measured. The polymer layer thickness was an average value of the side surface portion and the bottom surface portion of the capacitor element. The results are shown in Table 1.

Figure 0004637700
Figure 0004637700

表1より明らかなように、実施例1〜3は従来例1と比較して、化学酸化重合の回数を少なくでき、かつ、高分子層が厚く、ショート不良が少なく漏れ電流も低い値を示した。   As can be seen from Table 1, Examples 1 to 3 can reduce the number of chemical oxidative polymerizations compared to Conventional Example 1, and the polymer layer is thick, the short-circuit failure is small, and the leakage current is low. It was.

また、実施例1〜3は従来例2と比較して静電容量が高く、かつ漏れ電流、ESRともほぼ同等の値を示した。ここで、被覆率(含浸率)が20%未満(比較例1)においては、静電容量が小さくなり、
さらに、被覆率(含浸率)が80%を超えると(比較例2)、ESRが高くなるため、第1の導電性高分子層の被覆率(含浸率)は20〜80%が望ましい。
また、本発明は、重合溶液の劣化が激しい第1の導電性高分子層形成における化学酸化重合の回数が少ないため、工数が少なく、かつ材料コストが安い固体電解コンデンサを提供できる。
In addition, Examples 1 to 3 had a higher capacitance than Conventional Example 2, and exhibited substantially the same values for leakage current and ESR. Here, when the coverage (impregnation rate) is less than 20% (Comparative Example 1), the electrostatic capacity becomes small,
Furthermore, when the coverage (impregnation rate) exceeds 80% (Comparative Example 2), the ESR becomes high. Therefore, the coverage (impregnation rate) of the first conductive polymer layer is desirably 20 to 80%.
In addition, the present invention can provide a solid electrolytic capacitor with a reduced man-hour and low material cost because the number of times of chemical oxidation polymerization in forming the first conductive polymer layer in which the polymerization solution is severely deteriorated is small.

さらに、再化成を行った条件(実施例4〜6)は、再化成を行わなかった条件(実施例1〜3)と各々比較し、静電容量、ESRに影響を与えることなく、ショート不良率、漏れ電流をさらに低減することができる。   Furthermore, the conditions under which the re-formation was performed (Examples 4 to 6) were compared with the conditions under which the re-formation was not performed (Examples 1 to 3), respectively, and the short circuit failure was observed without affecting the capacitance and ESR. Rate and leakage current can be further reduced.

また、第2の導電性高分子層の形成方法をモノマー溶液へ浸漬後、酸化剤溶液に浸漬としたが、酸化剤溶液へ浸漬後、モノマー溶液に浸漬しても同様の効果が得られる。   Moreover, although the formation method of the 2nd conductive polymer layer was immersed in the oxidant solution after being immersed in the monomer solution, the same effect is acquired even if it is immersed in the monomer solution after being immersed in the oxidant solution.

さらに、モノマーおよび酸化剤として、EDTおよびドデシルベンゼンスルホン酸第二鉄を用いたが、モノマーとしてはピロールやアニリンのような公知のモノマー、酸化剤としてはブチルナフタレンスルホン酸第二鉄、パラトルエンスルホン酸第二鉄のような公知の酸化剤を用いても同様の効果が得られる。   Furthermore, EDT and ferric dodecylbenzene sulfonate were used as the monomer and oxidant. Known monomers such as pyrrole and aniline were used as the monomer, and ferric butyl naphthalene sulfonate and p-toluene sulfone were used as the oxidant. The same effect can be obtained by using a known oxidizing agent such as ferric acid.

また、本発明において、再化成にリン酸水溶液を用いたが、アジピン酸、クエン酸、酢酸、蓚酸、酒石酸、硝酸、ホウ酸のような陽極酸化可能な公知の水溶液を用いても同様の効果が得られる。   In the present invention, an aqueous phosphoric acid solution is used for re-chemical conversion, but the same effect can be obtained by using a known anodizable aqueous solution such as adipic acid, citric acid, acetic acid, succinic acid, tartaric acid, nitric acid, boric acid. Is obtained.

さらに、コンデンサ陽極材料としてタンタルを用いたが、ニオブやアルミニウムのような弁作用金属を用いても同様の効果が得られる。   Further, although tantalum is used as the capacitor anode material, the same effect can be obtained by using a valve metal such as niobium or aluminum.

また、モノマーと酸化剤を混合した溶液にコンデンサ陽極体を浸漬し化学酸化重合する第1の導電性高分子層の形成において、モノマー溶液とドデシルベンゼンスルホン酸第二鉄を含む酸化剤溶液とを混合してなる溶液を−5℃に保持したが、溶液中の重合反応の進行を抑え、液寿命を長くさせるためにも、温度は溶液が凍結しない程度に低い方が好ましい。   Further, in the formation of the first conductive polymer layer in which the capacitor anode body is immersed in a solution in which the monomer and the oxidant are mixed and chemically oxidatively polymerized, the monomer solution and the oxidant solution containing ferric dodecylbenzenesulfonate are added. The mixed solution was maintained at −5 ° C., but it is preferable that the temperature is low enough not to freeze the solution in order to suppress the progress of the polymerization reaction in the solution and to increase the life of the solution.

さらに、第2の導電性高分子層の形成において、チオフェンを含むモノマー溶液を25℃、ドデシルベンゼンスルホン酸第二鉄を含む酸化剤溶液を25℃に保持したが、温度はこれに限られるものではない。   Further, in the formation of the second conductive polymer layer, the monomer solution containing thiophene was kept at 25 ° C. and the oxidant solution containing ferric dodecylbenzenesulfonate was kept at 25 ° C., but the temperature is limited to this. is not.

また、第1の導電性高分子層の形成において、20℃で化学酸化重合し、次いで、第2の導電性高分子層の形成において、20℃で化学酸化重合したが、温度はこれに限られるものではない。   Further, in the formation of the first conductive polymer layer, chemical oxidative polymerization was performed at 20 ° C., and then in the formation of the second conductive polymer layer, chemical oxidative polymerization was performed at 20 ° C., but the temperature was limited to this. Is not something

さらに、第1の導電性高分子層の形成において、モノマーとドーパント作用を有するドデシルベンゼンスルホン酸第二鉄を含む酸化剤との混合溶液を用いたが、モノマーとドデシルベンゼンスルホン酸等のドーパントと過硫酸アンモニウム等の酸化剤との混合溶液による重合を行っても同様の効果が得られる。   Furthermore, in the formation of the first conductive polymer layer, a mixed solution of a monomer and an oxidizing agent containing ferric dodecylbenzenesulfonate having a dopant action was used, but the monomer and a dopant such as dodecylbenzenesulfonate were used. The same effect can be obtained by polymerization using a mixed solution with an oxidizing agent such as ammonium persulfate.

また、第1の導電性高分子層形成後に、濃度0.01wt%のリン酸水溶液中において、液温40℃で再化成を行ったが、化成液種、濃度、液温ともこれに限られるものではない。   In addition, after the first conductive polymer layer was formed, re-chemical conversion was performed at a liquid temperature of 40 ° C. in a phosphoric acid aqueous solution having a concentration of 0.01 wt%, but the chemical conversion liquid type, concentration, and liquid temperature are limited to this. It is not a thing.

さらに、本発明は、タンタル固体電解コンデンサに適用したが、巻回形アルミニウム固体電解コンデンサ、積層形アルミニウム固体電解コンデンサまたはニオブ固体電解コンデンサに適用しても同様の効果が得られる。   Furthermore, although the present invention is applied to a tantalum solid electrolytic capacitor, the same effect can be obtained when applied to a wound aluminum solid electrolytic capacitor, a laminated aluminum solid electrolytic capacitor or a niobium solid electrolytic capacitor.

本発明の固体電解コンデンサ製造工程の概略図である。It is the schematic of the solid electrolytic capacitor manufacturing process of this invention. 従来例1の固体電解コンデンサ製造工程の概略図である。It is the schematic of the solid electrolytic capacitor manufacturing process of the prior art example 1. 従来例2の固体電解コンデンサ製造工程の概略図である。It is the schematic of the solid electrolytic capacitor manufacturing process of the prior art example 2. 実施例4〜6の固体電解コンデンサ製造工程の概略図である。It is the schematic of the solid electrolytic capacitor manufacturing process of Examples 4-6.

Claims (2)

弁作用金属粉末によって形成された焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜を形成して、コンデンサ陽極体を形成後、該誘電体酸化皮膜の表面に導電性高分子からなる陰極層を形成する固体電解コンデンサにおいて、
該コンデンサ陽極体表面に、モノマーと酸化剤とを混合した溶液への浸漬による化学酸化重合にて形成した第1の導電性高分子層と、モノマー溶液と酸化剤溶液に交互に浸漬し、化学酸化重合にて形成した第2の導電性高分子層とを有し、
上記第1の導電性高分子層の被覆率が、20〜80%であることを特徴とする固体電解コンデンサ。
A dielectric oxide film is formed on the surface of a sintered body formed of a valve action metal powder or a roughened valve action metal foil to form a capacitor anode body, and then the surface of the dielectric oxide film In a solid electrolytic capacitor that forms a cathode layer made of a conductive polymer in
On the surface of the capacitor anode body, the first conductive polymer layer formed by chemical oxidative polymerization by immersion in a solution in which a monomer and an oxidant are mixed, and the monomer solution and the oxidant solution are alternately immersed in the chemical A second conductive polymer layer formed by oxidative polymerization,
The solid electrolytic capacitor, wherein the coverage of the first conductive polymer layer is 20 to 80%.
弁作用金属粉末によって形成された焼結体、または、粗面化された弁作用金属箔の表面に、誘電体酸化皮膜を形成して、コンデンサ陽極体を形成後、該誘電体酸化皮膜の表面に導電性高分子からなる陰極層を形成する固体電解コンデンサの製造方法において、
前記コンデンサ陽極体表面に、モノマーと酸化剤とを混合した溶液への浸漬による化学酸化重合にて第1の導電性高分子層を形成する第1の導電性高分子層形成工程と、
モノマー溶液と酸化剤溶液に交互に浸漬し、化学酸化重合にて第2の導電性高分子層を形成する第2の導電性高分子層形成工程と
を有し、
前記第1の導電性高分子層の被覆率が20〜80%であり、
前記第1の導電性高分子層形成工程と前記第2の導電性高分子層形成工程との間に再化成工程を有することを特徴とする固体電解コンデンサの製造方法。
A dielectric oxide film is formed on the surface of a sintered body formed of a valve action metal powder or a roughened valve action metal foil to form a capacitor anode body, and then the surface of the dielectric oxide film In the method for producing a solid electrolytic capacitor in which a cathode layer made of a conductive polymer is formed,
A first conductive polymer layer forming step of forming a first conductive polymer layer by chemical oxidative polymerization by immersion in a solution in which a monomer and an oxidant are mixed on the surface of the capacitor anode body;
A second conductive polymer layer forming step of alternately immersing in a monomer solution and an oxidant solution and forming a second conductive polymer layer by chemical oxidative polymerization;
Have
The coverage of the first conductive polymer layer is 20 to 80%,
Method of manufacturing a solid electrolytic capacitor characterized by having a re-formation process between the first conductive polymer layer formation step and the second conductive polymer layer formation step.
JP2005277485A 2005-06-24 2005-09-26 Solid electrolytic capacitor and manufacturing method thereof Active JP4637700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277485A JP4637700B2 (en) 2005-06-24 2005-09-26 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005184362 2005-06-24
JP2005277485A JP4637700B2 (en) 2005-06-24 2005-09-26 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007036168A JP2007036168A (en) 2007-02-08
JP4637700B2 true JP4637700B2 (en) 2011-02-23

Family

ID=37795005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277485A Active JP4637700B2 (en) 2005-06-24 2005-09-26 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4637700B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289474A (en) * 2001-03-23 2002-10-04 Hitachi Aic Inc Manufacturing method for solid electrolytic capacitor
JP2002541659A (en) * 1999-04-06 2002-12-03 昭和電工株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2006032530A (en) * 2004-07-14 2006-02-02 Japan Carlit Co Ltd:The Manufacturing method of solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541659A (en) * 1999-04-06 2002-12-03 昭和電工株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2002289474A (en) * 2001-03-23 2002-10-04 Hitachi Aic Inc Manufacturing method for solid electrolytic capacitor
JP2006032530A (en) * 2004-07-14 2006-02-02 Japan Carlit Co Ltd:The Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2007036168A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5461110B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5933397B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4789751B2 (en) Manufacturing method of solid electrolytic capacitor
WO2004075220A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5906406B2 (en) Manufacturing method of solid electrolytic capacitor
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4944359B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP4845781B2 (en) Manufacturing method of solid electrolytic capacitor
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2007281268A (en) Solid electrolytic capacitor and its manufacturing method
JP4637700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007048936A (en) Method of manufacturing solid electrolytic capacitor
JP2010161182A (en) Solid-state electrolytic capacitor and manufacturing method thereof
JP2008277344A (en) Method for manufacturing solid-state electrolytic capacitor
JP4776567B2 (en) Manufacturing method of solid electrolytic capacitor
JP3907358B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007048947A (en) Solid electrolytic capacitor and manufacturing method thereof
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP5116130B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003092232A (en) Method for manufacturing solid electrolytic capacitor
JP4822362B2 (en) Method for manufacturing element for solid electrolytic capacitor
JP2011077383A (en) Solid electrolytic capacitor, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250