JP4636223B2 - LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE - Google Patents

LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE Download PDF

Info

Publication number
JP4636223B2
JP4636223B2 JP2003340369A JP2003340369A JP4636223B2 JP 4636223 B2 JP4636223 B2 JP 4636223B2 JP 2003340369 A JP2003340369 A JP 2003340369A JP 2003340369 A JP2003340369 A JP 2003340369A JP 4636223 B2 JP4636223 B2 JP 4636223B2
Authority
JP
Japan
Prior art keywords
heat
laminate film
film
battery element
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003340369A
Other languages
Japanese (ja)
Other versions
JP2005108633A (en
Inventor
牧宏 乙幡
弘志 屋ヶ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003340369A priority Critical patent/JP4636223B2/en
Publication of JP2005108633A publication Critical patent/JP2005108633A/en
Application granted granted Critical
Publication of JP4636223B2 publication Critical patent/JP4636223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電池要素をラミネートフィルムからなる外装材で気密封止(以下、単に機密封止という)したフィルム外装電池の製造方法、特に、電池要素を封止する際のラミネートフィルムの熱融着方法に関する。また本発明は、フィルム外装電池用のラミネートフィルムを熱融着するためのラミネートフィルム用熱融着装置に関する。   The present invention relates to a method for producing a film-clad battery in which a battery element is hermetically sealed (hereinafter simply referred to as confidential sealing) with an exterior material made of a laminate film, and in particular, heat fusion of a laminate film when sealing the battery element Regarding the method. The present invention also relates to a heat sealing apparatus for a laminate film for heat-sealing a laminate film for a film-clad battery.

近年、携帯機器等の電源としての電池は、軽量化、薄型化が強く要求されている。そこで、電池の外装材に関しても、さらなる軽量化、薄型化が可能であり、自由な形状を採ることが可能な外装材として、金属薄膜フィルム、または金属薄膜と熱融着性樹脂フィルムとを積層したラミネートフィルムを用いたものが使用されるようになっている。   In recent years, batteries as power sources for portable devices and the like are strongly required to be light and thin. Therefore, it is possible to further reduce the weight and thickness of the battery packaging material, and as a packaging material that can take any shape, a metal thin film or a metal thin film and a heat-sealable resin film are laminated. The one using the laminated film is used.

電池の外装材として用いられるラミネートフィルムの代表的な例としては、金属薄膜であるアルミニウム薄膜の片面にヒートシール層である熱融着性樹脂フィルムを積層するとともに、他方の面に保護フィルムを積層した3層ラミネートフィルムが挙げられる。   A typical example of a laminate film used as a battery exterior material is to laminate a heat-sealable resin film as a heat seal layer on one side of an aluminum thin film as a metal thin film and a protective film on the other side. Three-layer laminated film.

外装材にラミネートフィルムを用いたフィルム外装電池においては、一般的に、図6に示すように、正極、負極、および電解質等で構成される電池要素106を、熱融着性樹脂フィルムを互いに対向させて2枚のラミネートフィルム103,104で挟み、電池要素106の周囲(図中、斜線で示した領域)でラミネートフィルム103,104を熱融着することによって電池要素106を封止している。   In a film-clad battery using a laminate film as a packaging material, generally, as shown in FIG. 6, a battery element 106 composed of a positive electrode, a negative electrode, an electrolyte, and the like is placed with a heat-fusible resin film facing each other. The battery element 106 is sealed by heat-sealing the laminate film 103, 104 around the battery element 106 (the area shown by hatching in the figure) between the two laminate films 103, 104. .

電池要素106の正極および負極をラミネートフィルム103,104の外部へ引き出すために、正極および負極にはそれぞれ電極材料が塗布されていない金属箔からなる未塗布部が突出して設けられており、これら未塗布部をそれぞれの極ごとにまとめた集電部107a,107bに、リード端子105a,105bをラミネートフィルム103,104から突出させて接続している。また、ラミネートフィルム103,104は、電池要素106を収納し易いように、少なくとも一方が、深絞り成形によって鍔付きの容器状に形成されている。   In order to draw out the positive electrode and the negative electrode of the battery element 106 to the outside of the laminate films 103 and 104, the positive electrode and the negative electrode are each provided with an uncoated portion made of a metal foil to which no electrode material is applied. Lead terminals 105a and 105b are connected to current collectors 107a and 107b in which the coating portions are grouped for each pole so as to protrude from the laminate films 103 and 104. Further, at least one of the laminate films 103 and 104 is formed into a hooked container shape by deep drawing so that the battery element 106 can be easily stored.

ここで、ラミネートフィルムの熱融着は、図7に示すように、一対の熱融着ヘッド109a,109bでラミネートフィルム103,104を加圧しつつ加熱して行う。この際、熱融着ヘッド109a,109bにより与えられる熱は、ラミネートフィルム103,104の熱融着すべき部位の周囲にも伝わり、熱融着には必要ない領域でも熱融着性樹脂103d,104dが融けてしまうことがある。電池要素106と接触している部分A,Bで熱融着性樹脂103d,104dが融けると、電池要素106がラミネートフィルム103,104の金属薄膜103e,104eと接触し、両者間でショートが発生してしまうおそれがある。   Here, as shown in FIG. 7, the heat fusion of the laminate film is performed by heating the laminate films 103 and 104 while applying pressure to the pair of heat fusion heads 109a and 109b. At this time, the heat given by the heat fusion heads 109a and 109b is also transmitted to the periphery of the portions of the laminate films 103 and 104 where the heat fusion is to be performed. 104d may melt. When the heat-sealable resins 103d and 104d melt at the portions A and B that are in contact with the battery element 106, the battery element 106 comes into contact with the metal thin films 103e and 104e of the laminate films 103 and 104, and a short circuit occurs between them. There is a risk of it.

そこで、特許文献1には、ラミネートフィルムの熱融着される部位およびその近傍に、熱融着性樹脂と同一材質の熱融着性樹脂フィルムを配設し、ショートが発生し得る箇所で実質的に熱融着性樹脂の層の厚みを厚くすることによって、ショートを防止するようにした電池が開示されている。   Therefore, in Patent Document 1, a heat-fusible resin film made of the same material as that of the heat-fusible resin is disposed at and near the portion to be heat-sealed of the laminate film, so that it is substantially at the place where a short circuit can occur. In particular, a battery is disclosed in which a short circuit is prevented by increasing the thickness of the heat-fusible resin layer.

一方、特許文献2には、ラミネートフィルムの耐熱性を向上させる技術として、電子要素をラミネートフィルムで封止した後に、ラミネートフィルムの熱融着された領域に電子線を照射することによって熱融着性樹脂に架橋構造を形成し、封止の信頼性を向上させることが開示されている。
特開2001−126678号公報 特開2001−6633号公報
On the other hand, in Patent Document 2, as a technique for improving the heat resistance of a laminate film, an electronic element is sealed with a laminate film, and then heat fusion is performed by irradiating an electron beam to a heat-sealed region of the laminate film. It is disclosed that a cross-linked structure is formed in a functional resin to improve sealing reliability.
JP 2001-126678 A JP 2001-6633 A

しかしながら、特許文献1に開示されたものでは、単に熱融着性樹脂の層の厚みを部分的に厚くするだけであり、電池要素の封止に際しては、熱融着される部位の近傍の、ショートが発生し得る領域においても熱融着性樹脂が融けることには何ら変わりはない。したがって、熱融着性樹脂の層の厚みに応じて熱融着条件を適切に設定しないと、熱融着が十分に行われなかったり、その逆に、熱融着性樹脂が融けすぎて結果的に金属薄膜とのショートが発生したりするおそれがある。また、電池要素が収納される領域を形成するために深絞り成形したラミネートフィルムを用いる場合、ラミネートフィルムの電池要素と接触する部分は、ラミネートフィルムの深絞り成形が行われている部分であることが多い。そのため、ショート防止用の熱融着性樹脂フィルムを配設しても、深絞り成形によって熱融着性樹脂の層の厚さは深絞り成形によって薄くなり、思ったほどの効果は得られない。   However, in the one disclosed in Patent Document 1, the thickness of the heat-fusible resin layer is merely partially increased, and when sealing the battery element, in the vicinity of the portion to be heat-sealed, There is no change in that the heat-fusible resin melts even in a region where a short circuit can occur. Therefore, if the heat fusion conditions are not set appropriately according to the thickness of the layer of the heat-fusible resin, the heat-fusing resin is not sufficiently performed, or conversely, the heat-fusing resin is melted too much. There is a risk of short circuit with the metal thin film. In addition, when using a deep-drawn laminate film to form a region in which battery elements are stored, the portion of the laminate film that contacts the battery element is the portion where the laminate film is deep-drawn. There are many. Therefore, even if a heat-sealable resin film for preventing short-circuiting is provided, the thickness of the heat-sealable resin layer is reduced by deep drawing and the effect as expected cannot be obtained. .

一方、特許文献2に開示されたものは、ラミネートフィルムの熱融着性樹脂の耐熱性そのものを向上させるものであるが、熱融着後の熱融着部での封止信頼性を向上させるものであり、封止の際に生じる電池要素と金属薄膜とのショートを防止するものではない。   On the other hand, what is disclosed in Patent Document 2 improves the heat resistance itself of the heat-fusible resin of the laminate film, but improves the sealing reliability at the heat-sealed portion after heat-sealing. It does not prevent a short circuit between the battery element and the metal thin film that occurs during sealing.

本発明は、電池要素を熱融着性樹脂層と金属薄膜層とのラミネートフィルムで封止する際に、熱融着時に与えられる熱で電池要素との接触部で熱融着性樹脂が融けることによる電池要素と金属薄膜とのショートを防止することを目的とする。   In the present invention, when a battery element is sealed with a laminate film of a heat-fusible resin layer and a metal thin film layer, the heat-fusible resin melts at the contact portion with the battery element by heat applied during heat-sealing. An object is to prevent short circuit between the battery element and the metal thin film.

上記目的を達成するための本発明のラミネートフィルムの熱融着方法は、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムを用い、ラミネートフィルムで電池要素を包囲して封止する際の、ラミネートフィルムの熱融着方法であって、
熱融着性樹脂層を内側にしてラミネートフィルムで電池要素を包囲して、ラミネートフィルムの周縁部において熱融着性樹脂層同士を向き合わせる工程と、電池要素を包囲したラミネートフィルムの周縁部を、一対の熱融着ヘッドで加圧しつつ加熱する工程とを有し、加熱する工程は、ラミネートフィルムの電池要素と接触している領域のうち、少なくとも電池要素の熱融着ヘッド側のエッジ部と接触している領域が、熱融着性樹脂層の融点以上の温度とならないように、ラミネートフィルムの温度上昇を抑制する工程を含み、ラミネートフィルムの温度上昇を抑制する工程は、ラミネートフィルムの厚さ方向について片側または両側からラミネートフィルムに向けてエアを噴射することを含むことを特徴とする。
In order to achieve the above-mentioned object, the method for heat-sealing a laminate film of the present invention uses a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated. A method for heat-sealing a laminate film when stopping,
Surrounding the battery element with a laminate film with the heat-fusible resin layer inside, and facing the heat-fusible resin layers with each other at the periphery of the laminate film, and the periphery of the laminate film surrounding the battery element A step of heating while pressing with a pair of heat fusion heads, and the step of heating is at least an edge portion of the battery element in the heat fusion head side in the region in contact with the battery element of the laminate film contact area which is, so as not to a temperature above the melting point of the thermally adhesive resin layer and, viewed including the step of inhibiting the temperature rise of the laminate film, the step of suppressing the temperature increase of the laminate film, a laminate film and characterized in including Mukoto to the thickness direction from one side or both sides of the injection air toward the laminated film.

また、本発明のラミネートフィルムの熱融着方法は少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムを用い、ラミネートフィルムで電池要素を包囲して封止する際の、ラミネートフィルムの熱融着方法であって、
熱融着性樹脂層を内側にしてラミネートフィルムで電池要素を包囲して、ラミネートフィルムの周縁部において熱融着性樹脂層同士を向き合わせる工程と、電池要素を包囲したラミネートフィルムの周縁部を、一対の熱融着ヘッドで加圧しつつ加熱する工程とを有し、加熱する工程は、ラミネートフィルムの電池要素と接触している領域のうち、少なくとも電池要素の熱融着ヘッド側のエッジ部と接触している領域が、熱融着性樹脂層の融点以上の温度とならないように、ラミネートフィルムの温度上昇を抑制する工程を含み、ラミネートフィルムの温度上昇を抑制する工程は、一対の熱融着ヘッドの少なくとも一方の電池要素側の側面に、熱融着ヘッドによるラミネートフィルムの加圧時にラミネートフィルムに接触させるようにするとともに、側面との間に隙間が生じるように、断熱板を取り付けることを含むことを特徴とする
Further, heat how to wear method of the laminate film of the present invention uses a laminate film of at least heat-fusible resin layer and the metal thin film layer are laminated, the time of sealing surrounding the battery element with the laminate film A method of heat-sealing a laminate film,
Surrounding the battery element with the laminate film with the heat-fusible resin layer on the inside, and facing the heat-fusible resin layers at the periphery of the laminate film, and the periphery of the laminate film surrounding the battery element A step of heating while pressing with a pair of heat fusion heads, and the step of heating is at least an edge portion on the heat fusion head side of the battery element in the region of the laminate film in contact with the battery element Including a step of suppressing a rise in the temperature of the laminate film so that the region in contact with the temperature does not exceed the melting point of the heat-fusible resin layer. At least one battery element side surface of the fusion head is brought into contact with the laminate film when the laminate film is pressed by the thermal fusion head. , As a gap between the side surface occurs, characterized in that it comprises attaching a heat insulating plate.

本発明のラミネートフィルムの熱融着方法では、熱融着ヘッドによるラミネートフィルムの加熱時に、ショートが最も発生し易い領域でのラミネートフィルムの温度上昇を抑制する。これにより、ラミネートフィルムの、電池要素のエッジ部と接触している領域での熱融着性樹脂層の溶融が防止され、電池要素と金属薄膜層とのショートが防止される
In the method for heat-sealing a laminate film of the present invention, when the laminate film is heated by a heat-fusing head, the temperature rise of the laminate film is suppressed in a region where a short circuit is most likely to occur. Thereby, melting | fusing of the heat-fusible resin layer in the area | region which is contacting the edge part of a battery element of a laminate film is prevented, and the short circuit with a battery element and a metal thin film layer is prevented .

本発明のフィルム外装電池の製造方法は、電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで封止したフィルム外装電池の製造方法であって、電池要素を作製する工程と、上記本発明のラミネートフィルムの熱融着方法によって電池要素を封止する工程とを有する。   The method for producing a film-clad battery of the present invention is a method for producing a film-clad battery in which a battery element is sealed with a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated. And a step of sealing the battery element by the heat sealing method of the laminate film of the present invention.

本発明のラミネートフィルム用熱融着装置は、電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで封止するためのラミネートフィルム用熱融着装置であって、ラミネートフィルムを加圧しつつ加熱するための一対の熱融着ヘッドと、ラミネートフィルムの電池要素と接触している領域のうち、少なくとも電池要素の熱融着ヘッド側のエッジ部と接触している領域が、熱融着性樹脂層の融点以上の温度とならないように、ラミネートフィルムの温度上昇を抑制する温度上昇抑制手段とを有し、温度上昇抑制手段は、ラミネートフィルムに向けてエアを噴射するエアノズルである。
また、本発明のラミネートフィルム用熱融着装置は、電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで封止するためのラミネートフィルム用熱融着装置であって、ラミネートフィルムを加圧しつつ加熱するための一対の熱融着ヘッドと、ラミネートフィルムの電池要素と接触している領域のうち、少なくとも電池要素の熱融着ヘッド側のエッジ部と接触している領域が、熱融着性樹脂層の融点以上の温度とならないように、ラミネートフィルムの温度上昇を抑制する温度上昇抑制手段とを有し、温度上昇抑制手段は、一対の熱融着ヘッドの少なくとも一方の電池要素側の側面に、熱融着ヘッドによるラミネートフィルムの加圧時にラミネートフィルムに接触するように取り付けられるとともに、側面との間に隙間が生じるように取り付けられた断熱板である。
The heat sealing apparatus for laminate film of the present invention is a heat sealing apparatus for laminate film for sealing a battery element with a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated. A pair of heat fusion heads for heating the laminate film while pressurizing, and at least an edge portion of the battery element in contact with the battery element of the laminate film in contact with the heat fusion head side. region, so as not to a temperature above the melting point of the heat-fusible resin layer, have a and suppressing temperature rise suppression means an increase in the temperature of the laminate film, the temperature rise suppression means, injects air toward the laminated film Oh Ru in the air nozzle to be.
Further, the heat fusion device for laminate film of the present invention is a heat fusion device for laminate film for sealing a battery element with a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated. A pair of heat fusion heads for heating the laminate film while applying pressure, and at least an edge portion of the laminate film in contact with the battery element at the edge of the battery element on the heat fusion head side. Temperature rise suppression means for suppressing the temperature rise of the laminate film so that the region where the temperature is not higher than the melting point of the heat-fusible resin layer, and the temperature rise suppression means is a pair of heat fusion heads The side surface of the battery element is attached to the side surface of at least one of the battery elements so as to come into contact with the laminate film when the laminate film is pressed by the heat-fusing head. A heat insulating plate which is mounted so that a gap is formed between the.

本発明のラミネートフィルム用熱融着装置において、断熱板は、熱融着ヘッドよりも熱伝導率の低い材料で構成されることが望ましい。 In laminated film for heat sealing apparatus of the present invention, the cross-sectional heat plate is desirably composed of low thermal conductivity material than thermal fusion head.

本発明によれば、ラミネートフィルムの熱融着時における、電池要素のエッジ部での熱融着性樹脂層の溶融による電池要素と金属薄膜とのショートを有効に防止することができ、信頼性の高いフィルム外装電池を製造することができる。   According to the present invention, it is possible to effectively prevent a short circuit between the battery element and the metal thin film due to melting of the heat-fusible resin layer at the edge portion of the battery element at the time of heat-sealing the laminate film, and reliability. High film-clad battery can be manufactured.

次に、本発明の実施形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態によるフィルム外装電池の分解斜視図である。本実施形態のフィルム外装電池1は、電池要素6と、電池要素6に設けられた正極集電部7aおよび負極集電部7bと、電池要素6を電解液とともに収納する外装体と、正極集電部7aに接続された正極リード端子5aと、負極集電部7bに接続された負極リード端子5bとを有する。   FIG. 1 is an exploded perspective view of a film-clad battery according to an embodiment of the present invention. The film-clad battery 1 of the present embodiment includes a battery element 6, a positive electrode current collector 7a and a negative electrode current collector 7b provided in the battery element 6, an outer package that houses the battery element 6 together with an electrolyte, and a positive electrode current collector. It has a positive electrode lead terminal 5a connected to the electric part 7a and a negative electrode lead terminal 5b connected to the negative electrode current collector 7b.

電池要素6は、それぞれ電極材料が両面に塗布された複数の正極板と複数の負極板とを、セパレータを介して交互に積層して構成されている。各正極板および各負極板の一辺からはそれぞれ電極材料が塗布されていない金属箔からなる未塗布部が突出して設けられており、正極板の未塗布部同士、および負極板の未塗布部同士がそれぞれ一括して超音波溶接されて、正極集電部7aおよび負極集電部7bが形成される。   The battery element 6 is configured by alternately laminating a plurality of positive plates and a plurality of negative plates each coated with an electrode material on both sides via a separator. From one side of each positive electrode plate and each negative electrode plate, an uncoated portion made of a metal foil to which no electrode material is applied is provided so as to protrude between the uncoated portions of the positive electrode plate and between the uncoated portions of the negative electrode plate Are collectively ultrasonically welded to form the positive electrode current collector 7a and the negative electrode current collector 7b.

外装体は、電池要素6を上下から挟んで包囲する2枚のラミネートフィルム3,4からなり、これらラミネートフィルム3,4の周縁部を熱融着することで、電池要素6が封止される。図1には、ラミネートフィルム3,4の熱融着される領域を封止領域3a,4aとして斜線で示している。   The exterior body is composed of two laminated films 3 and 4 that sandwich and surround the battery element 6 from above and below, and the battery element 6 is sealed by heat-sealing the peripheral portions of the laminated films 3 and 4. . In FIG. 1, regions where the laminate films 3 and 4 are heat-sealed are indicated by hatching as sealing regions 3 a and 4 a.

一方のラミネートフィルム3には、電池要素6を収納する室を形成するために、電池要素6側から見て凹部が形成されるように、鍔付きの容器状に加工されている。この凹部は、例えば深絞り成形によって形成することができる。図1に示した例では一方のラミネートフィルム3に凹部が形成されているが、他方のラミネートフィルム4に形成してもよい。また、電池要素6の厚みによっては両方のラミネートフィルム3,4に凹部を形成してもよいし、凹部を形成せずにラミネートフィルム3,4自身の柔軟性を利用して電池要素6を封止してもよい。   One laminate film 3 is processed into a hooked container shape so that a recess is formed when viewed from the battery element 6 side in order to form a chamber for housing the battery element 6. This recess can be formed by, for example, deep drawing. In the example shown in FIG. 1, the concave portion is formed in one laminate film 3, but it may be formed in the other laminate film 4. Depending on the thickness of the battery element 6, a concave portion may be formed in both the laminate films 3 and 4, or the battery element 6 may be sealed using the flexibility of the laminate films 3 and 4 without forming the concave portion. You may stop.

ラミネートフィルム3,4としては、電解液が漏洩しないように電池要素6を封止できるものであれば、この種のフィルム外装電池に一般に用いられるフィルムを用いることができる。図2に、フィルム外装電池1の封止領域近傍での断面図を示す。   As the laminate films 3 and 4, a film generally used for this type of film-clad battery can be used as long as the battery element 6 can be sealed so that the electrolyte does not leak. In FIG. 2, sectional drawing in the sealing area vicinity of the film-clad battery 1 is shown.

図2に示すように、ラミネートフィルム3,4は、それぞれ少なくとも金属薄膜層3e,4eと熱融着性樹脂層3d,4dとを積層した構造を有している。また、本実施形態では、金属薄膜層3e,4eの、熱融着性樹脂層3d,4dと反対側の面に、ポリエチレンテレフタレートなどのポリエステルやナイロン等のフィルムからなる保護層3f,4fが積層されているが、この保護層3f,4fは、必要に応じて設けられる。   As shown in FIG. 2, the laminate films 3 and 4 each have a structure in which at least metal thin film layers 3e and 4e and heat-fusible resin layers 3d and 4d are laminated. In the present embodiment, protective layers 3f and 4f made of a film of polyester such as polyethylene terephthalate or nylon are laminated on the surface of the metal thin film layers 3e and 4e opposite to the heat-fusible resin layers 3d and 4d. However, the protective layers 3f and 4f are provided as necessary.

金属薄膜層3e,4eとしては、例えば、厚さ10μm〜100μmの、Al、Ti、Ti系合金、Fe、ステンレス、Mg系合金などの箔を用いることができる。熱融着性樹脂層3d,4dに用いられる樹脂としては、熱融着が可能な樹脂であれば特に制限はなく、例えば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフェニレンサルファイド、ポリエチレンテレフタレートなどのポリエステル等、ポリアミド、エチレン−酢酸ビニル共重合体などが使用できる。   As the metal thin film layers 3e and 4e, for example, a foil of Al, Ti, Ti-based alloy, Fe, stainless steel, Mg-based alloy having a thickness of 10 μm to 100 μm can be used. The resin used for the heat-sealable resin layers 3d and 4d is not particularly limited as long as it is a resin that can be heat-sealable, and examples thereof include polypropylene, polyethylene, acid modified products thereof, polyphenylene sulfide, and polyethylene terephthalate. Polyester, polyamide, ethylene-vinyl acetate copolymer and the like can be used.

以上のように構成されたフィルム外装電池1は、以下のようにして作製される。   The film-clad battery 1 configured as described above is manufactured as follows.

まず、複数の正極板と複数の負極板とを、セパレータを介して交互に積層し、さらに正極集電部7aおよび負極集電部7bを形成した電池要素6を作製する。正確には、この段階で得られた、正極板、セパレータ、および負極板からなる積層体は、電解液を染み込ませる前の段階では電池要素前駆体とも呼ばれるが、本明細書ではこれらを区別せず単に電池要素6と表す。   First, a battery element 6 in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately laminated via separators and further formed with a positive electrode current collector 7a and a negative electrode current collector 7b is produced. To be precise, the laminate made of the positive electrode plate, the separator, and the negative electrode plate obtained at this stage is also called a battery element precursor in the stage before impregnating the electrolytic solution. It is simply expressed as battery element 6.

次いで、正極集電部7aに正極リード端子5aを接続するとともに、負極集電部7bに負極集電部5bを接続する。正極集電部7aへの正極リード端子5aの接続、および負極集電部7bへの負極リード端子の接続は、製造工程の簡略化のために正極集電部7aおよび負極集電部7bの形成と同時に行ってもよいが、別工程で行ってもよい。   Next, the positive electrode lead terminal 5a is connected to the positive electrode current collector 7a, and the negative electrode current collector 5b is connected to the negative electrode current collector 7b. The positive electrode current collector 7a is connected to the positive electrode lead terminal 5a and the negative electrode current collector 7b is connected to the negative electrode current collector 7b to form the positive electrode current collector 7a and the negative electrode current collector 7b in order to simplify the manufacturing process. Although it may be performed simultaneously, it may be performed in a separate process.

次いで、2枚のラミネートフィルム3,4を、熱融着性樹脂層3d,4dが内側となるように向き合わせて、正極リード端子aおよび負極リード端子5bが接続された電池要素6を挟んで包囲する。これにより、ラミネートフィルム3,4の周縁部(封止領域3a,4a)では、熱融着性樹脂層3d,4d同士が直接向き合う。その後、封止領域3a,4aにおいてラミネートフィルム3,4を熱融着し、電池要素6を封止することによって、フィルム外装電池1が製造される。   Next, the two laminated films 3 and 4 are faced to each other so that the heat-fusible resin layers 3d and 4d are inside, and the battery element 6 to which the positive electrode lead terminal a and the negative electrode lead terminal 5b are connected is sandwiched. Siege. Thereby, in the peripheral part (sealing area | region 3a, 4a) of the laminate films 3 and 4, the heat-fusible resin layers 3d and 4d face each other directly. Then, the film-clad battery 1 is manufactured by heat-sealing the laminate films 3 and 4 in the sealing regions 3a and 4a and sealing the battery element 6.

封止に際しては、ラミネートフィルム3,4の3辺を先に熱融着して1辺が開放した袋状としておき、その袋状となったラミネートフィルム3,4の開放している残りの1辺から電解液を注入し、その後、残りの1辺を熱融着する。電解液を注入することによって、電池要素6に電解液が染み込む。電解液の注入前に行う3辺の熱融着は、3辺を一括して行ってもよいし、複数の工程に分けて行ってもよい。また、ラミネートフィルム3,4の熱融着に先立って電池要素6に電解液を含浸させておき、その後、4辺を一括して熱融着することもできる。   At the time of sealing, the three sides of the laminate films 3 and 4 are first heat-sealed to form a bag shape in which one side is opened, and the remaining 1 of the laminate films 3 and 4 in the bag shape is opened. The electrolyte is injected from the side, and then the remaining one side is heat-sealed. By injecting the electrolytic solution, the electrolytic solution penetrates into the battery element 6. The three sides of the heat fusion performed before the injection of the electrolytic solution may be performed collectively for the three sides or may be performed in a plurality of steps. In addition, the battery element 6 can be impregnated with an electrolytic solution prior to the thermal fusion of the laminate films 3 and 4, and then the four sides can be thermally fused together.

ここで、ラミネートフィルム3,4の熱融着について、図3を参照してさらに詳しく説明する。図3は、図1に示すフィルム外装電池の、ラミネートフィルムの熱融着時における封止領域近傍での断面図である。   Here, the heat fusion of the laminate films 3 and 4 will be described in more detail with reference to FIG. FIG. 3 is a cross-sectional view of the film-clad battery shown in FIG. 1 in the vicinity of the sealing region when the laminated film is heat-sealed.

封止領域3a,4aにおけるラミネートフィルム3,4の熱融着は、一対の熱融着ヘッド9a,9bによってラミネートフィルム3,4を挟んで加圧しつつ加熱することで行う。各熱融着ヘッド9a,9bの近傍には、それぞれラミネートフィルム3,4に向けてエアを噴射するエアノズル8a,8bが配置されている。エアノズル8a,8bは特に、ラミネートフィルム3,4の、電池要素6を収納した領域に向けてエアを噴射する。   The heat sealing of the laminate films 3 and 4 in the sealing regions 3a and 4a is performed by heating while pressing the laminate films 3 and 4 between the pair of heat fusion heads 9a and 9b. Air nozzles 8a and 8b for injecting air toward the laminate films 3 and 4 are arranged in the vicinity of the heat fusion heads 9a and 9b, respectively. In particular, the air nozzles 8a and 8b inject air toward the region of the laminate films 3 and 4 in which the battery element 6 is stored.

ラミネートフィルム3,4の熱融着時には、ラミネートフィルム3,4は、熱融着ヘッド9a,9bが加圧された領域では、熱融着性樹脂層3d,4dが溶融してラミネートフィルム3,4同士が融着する。この際、エアノズル8a,8bからはエアが噴射されているので、エアが噴射された領域では、ラミネートフィルム3,4は、熱融着ヘッド9a,9bから伝わった熱が強制的に放熱され、温度上昇が抑制される。また、エアノズル8a,8bからエアを噴射することにより、熱融着ヘッド9a,9bから電池要素6側への熱の放射も抑制される。エアノズル8a,8bからは、熱融着性樹脂層3d,4dの温度がその融点以上にならないようにエアが噴射され、その結果、熱融着時の熱融着性樹脂層3d,4dの溶融が防止される。   When the laminating films 3 and 4 are heat-sealed, the laminating films 3 and 4 are melted in the region where the heat-fusing heads 9a and 9b are pressed, and the laminating films 3 and 4 are melted. 4 fuse together. At this time, since air is jetted from the air nozzles 8a and 8b, in the area where the air is jetted, the heat transmitted from the heat-fusing heads 9a and 9b is forcibly radiated from the laminate films 3 and 4, Temperature rise is suppressed. Further, by ejecting air from the air nozzles 8a and 8b, radiation of heat from the heat fusion heads 9a and 9b to the battery element 6 side is also suppressed. Air is jetted from the air nozzles 8a and 8b so that the temperature of the heat-fusible resin layers 3d and 4d does not exceed the melting point, and as a result, the heat-fusible resin layers 3d and 4d are melted at the time of heat-fusing. Is prevented.

以上のように、ラミネートフィルム3,4の熱融着時にエアノズル8a,8bからエアを噴射し、封止領域3a,4a以外での熱融着性樹脂層3d,4dの溶融を防止することで、ラミネートフィルム3,4は、電池要素6との接触部においても金属薄膜層3e,4eが露出せず、金属薄膜層3e,4eと電池要素6とのショートを防止することができる。従って、従来のように、熱融着性樹脂層3d,4dの厚さを必要以上に厚くしたり、熱融着性樹脂層3d,4dの耐熱性を向上させるための工程を追加したりすることなく、金属薄膜層3e,4eと電池要素6とのショートを防止することができる。   As described above, air is jetted from the air nozzles 8a and 8b when the laminated films 3 and 4 are heat-sealed, thereby preventing the heat-fusible resin layers 3d and 4d from melting other than the sealing regions 3a and 4a. In the laminate films 3 and 4, the metal thin film layers 3 e and 4 e are not exposed even at the contact portion with the battery element 6, and a short circuit between the metal thin film layers 3 e and 4 e and the battery element 6 can be prevented. Therefore, as in the prior art, the thickness of the heat-fusible resin layers 3d and 4d is increased more than necessary, or a process for improving the heat resistance of the heat-fusible resin layers 3d and 4d is added. Without short-circuiting, the metal thin film layers 3e, 4e and the battery element 6 can be prevented from being short-circuited.

エアの噴射によるラミネートフィルム3,4の温度上昇をより効果的に抑制するためには、エアノズル8a,8bをそれぞれ、ラミネートフィルム3,4の、熱融着ヘッド9a,9bと電池要素6が接触する部位との間の領域にエアを噴射するように配置することが好ましい。このようにエアノズル8a,8bを配置することにより、熱融着ヘッド9a,9bからラミネートフィルム3,4に伝わった熱を、電池要素6と接触する部位に達する前に放熱させることができる。   In order to more effectively suppress the temperature rise of the laminate films 3 and 4 due to the air injection, the air nozzles 8a and 8b are brought into contact with the heat fusion heads 9a and 9b and the battery element 6 of the laminate films 3 and 4, respectively. It is preferable to arrange so as to inject air into a region between the parts to be performed. By disposing the air nozzles 8a and 8b in this way, the heat transferred from the heat fusion heads 9a and 9b to the laminate films 3 and 4 can be dissipated before reaching the portion in contact with the battery element 6.

エアノズル8a,8bによるエアの噴射は、ラミネートフィルム3,4が電池要素6と接触する領域全体に対して行う必要はない。ショートが発生する可能性があるのは、ラミネートフィルム3,4の電池要素6と接触している領域のうち、電池要素6のエッジ部と接触している領域である。その中でも、温度が高く熱融着性樹脂層3d,4dが溶融し易いのは、熱融着ヘッド9a,9b側の領域である。従って、ラミネートフィルム3,4の少なくとも電池要素6の熱融着ヘッド9a,9b側のエッジ部と接触している領域が、熱融着性樹脂層3d,4dの融点以上の温度とならないようにエアを噴射できれば、ラミネートフィルム3,4に部分的にエアを噴射してもよい。エアノズル8a,8bから噴射するエアの温度は、ラミネートフィルム3,4を冷却するという観点からは、ラミネートフィルム3,4および電池要素6の機能に影響を及ぼさない範囲でできるだけ低いほうが好ましいが、冷却したエアを用いる必要はなく、室温のエアで十分である。   It is not necessary for the air nozzles 8a and 8b to eject the air to the entire region where the laminate films 3 and 4 are in contact with the battery element 6. A short circuit may occur in a region in contact with the edge portion of the battery element 6 among the regions in contact with the battery element 6 of the laminate films 3 and 4. Among these, it is a region on the side of the heat fusion heads 9a and 9b that the heat-fusible resin layers 3d and 4d are easily melted at a high temperature. Therefore, the region of the laminate films 3 and 4 that is in contact with at least the edge portion of the battery element 6 on the side of the heat fusion heads 9a and 9b does not have a temperature higher than the melting point of the heat fusion resin layers 3d and 4d. If air can be injected, air may be partially injected to the laminate films 3 and 4. From the viewpoint of cooling the laminate films 3 and 4, the temperature of air sprayed from the air nozzles 8 a and 8 b is preferably as low as possible without affecting the functions of the laminate films 3 and 4 and the battery element 6. The air at room temperature is sufficient.

また、図3では、上下の熱融着ヘッド9a,9bに対応してそれぞれエアノズル8a,8bを設けた例を示したが、ラミネートフィルム3,4の厚さ方向について片側からだけのエアの噴射で、電池要素6の熱融着ヘッド9a,9b側のエッジ部と接触している領域での熱融着性樹脂層3d,4dの温度上昇を抑制できるのであれば、いずれか一方の熱融着ヘッド9a,9b側にのみエアノズルを設け、エアの噴射を片側のみから行ってもよい。   FIG. 3 shows an example in which the air nozzles 8a and 8b are provided corresponding to the upper and lower heat fusion heads 9a and 9b, respectively. However, air is injected from only one side in the thickness direction of the laminate films 3 and 4. Thus, if the temperature rise of the heat-fusible resin layers 3d and 4d in the region in contact with the edge portion of the battery element 6 on the heat-fusing head 9a and 9b side can be suppressed, either one of the heat-fusing components The air nozzles may be provided only on the landing heads 9a and 9b, and the air may be ejected from only one side.

図4は、本発明の他の実施形態による、ラミネートフィルムの熱融着時における封止領域近傍での断面図である。なお、フィルム外装電池は図1に示したものと同様に構成されているので、図4では、フィルム外装電池の構成については図1等に示したものと同じ符号を付している。   FIG. 4 is a cross-sectional view in the vicinity of the sealing region when the laminate film is heat-sealed according to another embodiment of the present invention. Since the film-clad battery is configured similarly to that shown in FIG. 1, in FIG. 4, the same reference numerals as those shown in FIG.

図4に示す例では、各熱融着ヘッド19a,19bの、電池要素6側の側面に、熱融着ヘッド19a,19bよりも熱伝導率の低い材料からなる断熱板18a,18bを取り付け、熱融着ヘッド19a,19bによるラミネートフィルム3,4の加圧時に、断熱板18a,18bもラミネートフィルム3,4に接触するように構成している。断熱板18a,18bとしては、セラミックや耐熱性樹脂などを用いることができる。また、熱融着ヘッド19a,19bがアルミニウムである場合には、断熱板18a,18bとして鉄やステンレスを用いることもできる。   In the example shown in FIG. 4, heat insulating plates 18 a and 18 b made of a material having a lower thermal conductivity than the thermal fusion heads 19 a and 19 b are attached to the side surfaces of the thermal fusion heads 19 a and 19 b on the battery element 6 side. The heat insulating plates 18a and 18b are also configured to come into contact with the laminate films 3 and 4 when the laminate films 3 and 4 are pressed by the heat fusion heads 19a and 19b. As the heat insulating plates 18a and 18b, ceramic, heat resistant resin, or the like can be used. When the heat fusion heads 19a and 19b are made of aluminum, iron or stainless steel can be used as the heat insulating plates 18a and 18b.

熱融着ヘッド19a,19bに断熱板18a,18bを設けることにより、ラミネートフィルム3,4を介して電池要素6側へ伝わる熱、および熱融着ヘッド19a,19bから電池要素6側への熱の放射による、熱融着ヘッド19a,19bにより熱融着される領域以外でのラミネートフィルム3,4の温度上昇を抑制することができる。これにより、ラミネートフィルム3,4の電池要素6と接触している部分での熱融着性樹脂層3d,4dの溶融が防止され、結果的に、電池要素6と金属薄膜層3e,4eとのショートを防止することができる。   By providing the heat sealing heads 19a and 19b with the heat insulating plates 18a and 18b, heat transmitted to the battery element 6 side through the laminate films 3 and 4 and heat from the heat sealing heads 19a and 19b to the battery element 6 side. It is possible to suppress the temperature rise of the laminate films 3 and 4 outside the region heat-sealed by the heat-sealing heads 19a and 19b due to the radiation of. This prevents melting of the heat-fusible resin layers 3d and 4d at the portions of the laminate films 3 and 4 that are in contact with the battery element 6, and as a result, the battery element 6 and the metal thin film layers 3e and 4e Can be prevented.

なお、断熱板18a,18bは、ラミネートフィルム3,4を加圧しているが、その厚みを適宜設定することによって、ラミネートフィルム3,4の断熱板18a,18bで加圧されている部位であっても、熱融着ヘッド19a,19bからの伝熱を受けて熱融着性樹脂3d,4dを溶融させ、熱融着させることもできる。   The heat insulating plates 18a and 18b pressurize the laminate films 3 and 4, but the portions are pressed by the heat insulating plates 18a and 18b of the laminate films 3 and 4 by appropriately setting the thickness thereof. Alternatively, the heat-fusible resins 3d and 4d can be melted by heat transfer from the heat-fusing heads 19a and 19b, and heat-sealed.

また、図4に示した例では、断熱板18a,18bを熱融着ヘッド19a,19bの側面に密着させて取り付けた例を示したが、熱融着ヘッド19a,19bによる断熱板18a,18b自身の加熱を抑制するため、図5に示すように、断熱板28a,28bを、支持部材30a,30bを介して熱融着ヘッド29a,29bに部分的に支持し、熱融着ヘッド29a,29bから離して設置してもよい。断熱板28a,28bと熱融着ヘッド29a,29bとの隙間は大きくとる必要はなく、実質的に両者が接触しない程度以上の大きさがあれば十分である。   In the example shown in FIG. 4, the heat insulating plates 18a and 18b are attached in close contact with the side surfaces of the heat fusion heads 19a and 19b, but the heat insulation plates 18a and 18b formed by the heat fusion heads 19a and 19b are shown. In order to suppress the heating of itself, as shown in FIG. 5, the heat insulating plates 28a, 28b are partially supported by the heat fusion heads 29a, 29b via the support members 30a, 30b, and the heat fusion heads 29a, 29b, You may install away from 29b. The gap between the heat insulating plates 28a and 28b and the heat fusion heads 29a and 29b does not need to be large.

さらに、本例においても、エアノズルによるエアの噴射の場合と同様に、いずれか一方の熱融着ヘッド29a,29b側にのみ断熱板を設けてもよい。   Further, in this example as well, a heat insulating plate may be provided only on one of the heat fusion heads 29a and 29b as in the case of air injection by an air nozzle.

以上、本発明について代表的な幾つかの例を挙げて説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内において適宜変更され得ることは明らかである。   The present invention has been described above with some typical examples. However, the present invention is not limited to these examples, and it is obvious that the present invention can be appropriately modified within the scope of the technical idea of the present invention. .

例えば、上述した例では2枚のラミネートフィルムで電池要素をその厚み方向両側から挟んで周囲の4辺を熱融着したものを示したが、その他にも、1枚のラミネートフィルムを2つ折りにして電池要素を挟み、開放している3辺を熱融着することによって電池要素を封止してもよい。   For example, in the above-mentioned example, the battery element is sandwiched from both sides in the thickness direction by two laminated films and the surrounding four sides are heat-sealed. In addition, one laminated film is folded in two. The battery element may be sealed by sandwiching the battery element and thermally fusing the three open sides.

また、電池要素としては、正極、負極および電解質を含むものであれば、通常の電池に用いられる任意の電池要素が適用可能である。一般的なリチウムイオン二次電池における電池要素は、リチウム・マンガン複合酸化物、コバルト酸リチウム等の正極活物質をアルミニウム箔などの両面に塗布した正極板と、リチウムをドープ・脱ドープ可能な炭素材料を銅箔などの両面に塗布した負極板とを、セパレータを介して対向させ、それにリチウム塩を含む電解液を含浸させて形成される。またこの他に、ニッケル水素電池、ニッケルカドミウム電池、リチウムメタル一次電池あるいは二次電池、リチウムポリマー電池等、他の種類の化学電池の電池要素、さらにはキャパシタ要素等にも本発明は適用可能である。   Moreover, as a battery element, if the positive electrode, the negative electrode, and electrolyte are included, the arbitrary battery elements used for a normal battery are applicable. Battery elements in a typical lithium ion secondary battery include a positive electrode plate in which a positive electrode active material such as lithium-manganese composite oxide and lithium cobaltate is applied on both sides of an aluminum foil, etc., and carbon that can be doped / undoped with lithium. A negative electrode plate coated with a material on both sides of a copper foil or the like is opposed to each other with a separator interposed between them and impregnated with an electrolytic solution containing a lithium salt. In addition, the present invention is applicable to battery elements of other types of chemical batteries such as nickel metal hydride batteries, nickel cadmium batteries, lithium metal primary batteries or secondary batteries, lithium polymer batteries, and capacitor elements. is there.

電池要素の構造についても、上述した例では複数の正極板および負極板を交互に積層した積層型を示したが、正極板、負極板およびセパレータを帯状に形成し、セパレータを挟んで正極板および負極板を重ね合わせ、これを捲回した後、扁平状に圧縮することによって、正極と負極を交互に配置させた捲回型の電池要素であってもよい。   Regarding the structure of the battery element, in the above-described example, a laminated type in which a plurality of positive plates and negative plates are alternately laminated was shown. However, the positive plate, the negative plate, and the separator are formed in a strip shape, and the positive plate and A wound battery element in which the positive electrode and the negative electrode are alternately arranged by stacking the negative electrode plates, winding them, and then compressing them in a flat shape may be used.

さらに、図1には、正極リード端子5aと負極リード端子5bをフィルム外装電池1の同じ辺から延出させた例を示したが、これらリード端子はそれぞれ異なる辺、例えば互いに対向する辺から延出させてもよい。   Further, FIG. 1 shows an example in which the positive electrode lead terminal 5a and the negative electrode lead terminal 5b are extended from the same side of the film-covered battery 1, but these lead terminals extend from different sides, for example, opposite sides. You may let it come out.

本発明の一実施形態によるフィルム外装電池の分解斜視図である。It is a disassembled perspective view of the film-clad battery by one Embodiment of this invention. 図1に示すフィルム外装電池の、封止領域近傍での断面図である。It is sectional drawing in the sealing region vicinity of the film-clad battery shown in FIG. 図1に示すフィルム外装電池の、熱融着時の封止領域近傍での断面図である。It is sectional drawing in the sealing region vicinity at the time of heat sealing | fusion of the film-clad battery shown in FIG. 本発明の他の実施形態による、熱融着時の封止領域近傍での断面図である。It is sectional drawing in the sealing region vicinity at the time of heat sealing | fusion by other embodiment of this invention. 図4の変更例を示す、熱融着時の封止領域近傍での断面図である。It is sectional drawing in the sealing region vicinity at the time of heat sealing | fusion showing the example of a change of FIG. 従来のフィルム外装電池の分解斜視図である。It is a disassembled perspective view of the conventional film-clad battery. 図8に示すフィルム外装電池における熱融着時のラミネートフィルムの封止領域近傍での断面図である。It is sectional drawing in the sealing area vicinity of the laminate film at the time of the heat sealing | fusion in the film-clad battery shown in FIG.

符号の説明Explanation of symbols

1 フィルム外装電池
3,4 ラミネートフィルム
3a,4a 封止領域
3d,4d 熱融着性樹脂層
3e,4e 金属薄膜層
5a 正極リード端子
5b 負極リード端子
6 電池要素
7a 正極集電部
7b 負極集電部
8a,8b エアノズル
9a,9b,19a,19b,29a,29b 熱融着ヘッド
18a,18b,28a,28b 断熱板
30a,30b 支持部材


DESCRIPTION OF SYMBOLS 1 Film exterior battery 3, 4 Laminate film 3a, 4a Sealing area | region 3d, 4d Heat-fusion resin layer 3e, 4e Metal thin film layer 5a Positive electrode lead terminal 5b Negative electrode lead terminal 6 Battery element 7a Positive electrode current collection part 7b Negative electrode current collection Part 8a, 8b Air nozzle 9a, 9b, 19a, 19b, 29a, 29b Thermal fusion head 18a, 18b, 28a, 28b Heat insulation plate 30a, 30b Support member


Claims (9)

少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムを用い、前記ラミネートフィルムで電池要素を包囲して封止する際の、前記ラミネートフィルムの熱融着方法であって、
前記熱融着性樹脂層を内側にして前記ラミネートフィルムで前記電池要素を包囲して、前記ラミネートフィルムの周縁部において前記熱融着性樹脂層同士を向き合わせる工程と、
前記電池要素を包囲した前記ラミネートフィルムの周縁部を、一対の熱融着ヘッドで加圧しつつ加熱する工程とを有し、
前記加熱する工程は、前記ラミネートフィルムの前記電池要素と接触している領域のうち、少なくとも前記電池要素の前記熱融着ヘッド側のエッジ部と接触している領域が、前記熱融着性樹脂層の融点以上の温度とならないように、前記ラミネートフィルムの温度上昇を抑制する工程を含み、
前記ラミネートフィルムの温度上昇を抑制する工程は、前記ラミネートフィルムの厚さ方向について片側または両側から前記ラミネートフィルムに向けてエアを噴射することを含
ことを特徴とするラミネートフィルムの熱融着方法。
Using a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated, a method for heat-sealing the laminate film when enclosing and sealing a battery element with the laminate film,
Surrounding the battery element with the laminate film with the heat-fusible resin layer inside, and facing the heat-fusible resin layers at the periphery of the laminate film; and
Heating the peripheral edge of the laminate film surrounding the battery element while applying pressure with a pair of heat fusion heads,
In the heating step, among the regions of the laminate film that are in contact with the battery element, at least the region of the battery element that is in contact with the edge portion on the heat fusion head side is the heat-fusible resin. so as not to a temperature above the melting point of the layers, viewed including the step of suppressing the temperature rise of the laminated film,
Step of inhibiting an increase in temperature of the laminated film, heat Chakuhoho laminate film characterized in including that to inject air toward the from one or both sides for thickness direction laminate film of the laminated film .
前記ラミネートフィルムの温度上昇を抑制する工程は、前記ラミネートフィルムの、前記電池要素が接触する部位と前記熱融着ヘッドとの間の領域にエアを噴射することを含む、請求項に記載のラミネートフィルムの熱融着方法。 Step of inhibiting an increase in temperature of the laminated film, the laminated film comprises injecting air into the region between the heat-fusible head and sites where the battery element is in contact, according to claim 1 Laminate film heat fusion method. 少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムを用い、前記ラミネートフィルムで電池要素を包囲して封止する際の、前記ラミネートフィルムの熱融着方法であって、
前記熱融着性樹脂層を内側にして前記ラミネートフィルムで前記電池要素を包囲して、前記ラミネートフィルムの周縁部において前記熱融着性樹脂層同士を向き合わせる工程と、
前記電池要素を包囲した前記ラミネートフィルムの周縁部を、一対の熱融着ヘッドで加圧しつつ加熱する工程とを有し、
前記加熱する工程は、前記ラミネートフィルムの前記電池要素と接触している領域のうち、少なくとも前記電池要素の前記熱融着ヘッド側のエッジ部と接触している領域が、前記熱融着性樹脂層の融点以上の温度とならないように、前記ラミネートフィルムの温度上昇を抑制する工程を含み、
前記ラミネートフィルムの温度上昇を抑制する工程は、前記一対の熱融着ヘッドの少なくとも一方の前記電池要素側の側面に、前記熱融着ヘッドによる前記ラミネートフィルムの加圧時に前記ラミネートフィルムに接触させるようにするとともに、前記側面との間に隙間が生じるように、断熱板を取り付けることを含む
ことを特徴とするラミネートフィルムの熱融着方法。
Using a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated, a method for heat-sealing the laminate film when enclosing and sealing a battery element with the laminate film,
Surrounding the battery element with the laminate film with the heat-fusible resin layer inside, and facing the heat-fusible resin layers at the periphery of the laminate film; and
Heating the peripheral edge of the laminate film surrounding the battery element while applying pressure with a pair of heat fusion heads,
In the heating step, among the regions of the laminate film that are in contact with the battery element, at least the region of the battery element that is in contact with the edge portion on the heat fusion head side is the heat-fusible resin. Including a step of suppressing the temperature rise of the laminate film so as not to reach a temperature higher than the melting point of the layer,
Step of inhibiting an increase in temperature of the laminate film on at least the side surface of one of the battery element side of the pair of heat-sealing heads, before Symbol laminate film upon pressurization of the laminate film according to the heat-fusible head And attaching a heat insulating plate so that a gap is formed between the side surface and the side surface.
A method for heat-sealing a laminate film, comprising:
前記断熱板を、前記熱融着ヘッドよりも熱伝導率の低い材料で構成する、請求項に記載のラミネートフィルムの熱融着方法。 The method for heat-sealing a laminated film according to claim 3 , wherein the heat insulating plate is made of a material having a lower thermal conductivity than the heat-sealing head. 電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで封止したフィルム外装電池の製造方法であって、
前記電池要素を作製する工程と、
請求項1ないしのいずれか1項に記載の熱融着方法によって前記電池要素を封止する工程とを有するフィルム外装電池の製造方法。
A method for producing a battery case in which a battery element is sealed with a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated,
Producing the battery element;
Method of producing a film-covered battery including a step of sealing the battery element by heat sealing method according to any one of claims 1 to 4.
前記電池要素は、化学電池要素またはキャパシタ要素である請求項に記載のフィルム外装電池の製造方法。 The method for manufacturing a film-clad battery according to claim 5 , wherein the battery element is a chemical battery element or a capacitor element. 電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで封止するためのラミネートフィルム用熱融着装置であって、
前記ラミネートフィルムを加圧しつつ加熱するための一対の熱融着ヘッドと、
前記ラミネートフィルムの前記電池要素と接触している領域のうち、少なくとも前記電池要素の前記熱融着ヘッド側のエッジ部と接触している領域が、前記熱融着性樹脂層の融点以上の温度とならないように、前記ラミネートフィルムの温度上昇を抑制する温度上昇抑制手段とを有し、
前記温度上昇抑制手段は、前記ラミネートフィルムに向けてエアを噴射するエアノズルであ
ラミネートフィルム用熱融着装置。
A laminating film heat sealing apparatus for sealing a battery element with a laminating film in which at least a heat fusible resin layer and a metal thin film layer are laminated,
A pair of heat fusion heads for heating the laminate film while applying pressure;
Of the region of the laminate film that is in contact with the battery element, at least the region that is in contact with the edge portion of the battery element on the heat fusion head side is a temperature equal to or higher than the melting point of the heat-fusible resin layer. so as not to, possess a suppressing temperature rise suppression means the temperature rise of the laminated film,
It said temperature rise suppression means, a laminate film for heat sealing device Ru Ah air nozzle for injecting air toward the laminated film.
電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで封止するためのラミネートフィルム用熱融着装置であって、
前記ラミネートフィルムを加圧しつつ加熱するための一対の熱融着ヘッドと、
前記ラミネートフィルムの前記電池要素と接触している領域のうち、少なくとも前記電池要素の前記熱融着ヘッド側のエッジ部と接触している領域が、前記熱融着性樹脂層の融点以上の温度とならないように、前記ラミネートフィルムの温度上昇を抑制する温度上昇抑制手段とを有し、
前記温度上昇抑制手段は、前記一対の熱融着ヘッドの少なくとも一方の前記電池要素側の側面に、前記熱融着ヘッドによる前記ラミネートフィルムの加圧時に前記ラミネートフィルムに接触するように取り付けられるとともに、前記側面との間に隙間が生じるように取り付けられた断熱板であ
ミネートフィルム用熱融着装置。
A laminating film heat sealing apparatus for sealing a battery element with a laminating film in which at least a heat fusible resin layer and a metal thin film layer are laminated,
A pair of heat fusion heads for heating the laminate film while applying pressure;
Of the region of the laminate film that is in contact with the battery element, at least the region that is in contact with the edge portion of the battery element on the heat fusion head side is a temperature equal to or higher than the melting point of the heat-fusible resin layer. In order not to become, it has a temperature rise suppression means for suppressing the temperature rise of the laminate film,
It said temperature rise suppression means, on at least the side surface of one of the battery element side of the pair of heat-sealing heads, that is mounted to contact the laminate film upon pressurization of the laminate film according to the heat-fusible head together, Ru insulating plate der mounted so that a gap occurs between the side surface
La Mi titanate film for heat sealing equipment.
前記断熱板は、前記熱融着ヘッドよりも熱伝導率の低い材料で構成される請求項に記載のラミネートフィルム用熱融着装置。 The said heat insulation board is a heat sealing apparatus for laminate films of Claim 8 comprised with the material whose heat conductivity is lower than the said heat welding head.
JP2003340369A 2003-09-30 2003-09-30 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE Expired - Lifetime JP4636223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340369A JP4636223B2 (en) 2003-09-30 2003-09-30 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340369A JP4636223B2 (en) 2003-09-30 2003-09-30 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE

Publications (2)

Publication Number Publication Date
JP2005108633A JP2005108633A (en) 2005-04-21
JP4636223B2 true JP4636223B2 (en) 2011-02-23

Family

ID=34535284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340369A Expired - Lifetime JP4636223B2 (en) 2003-09-30 2003-09-30 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE

Country Status (1)

Country Link
JP (1) JP4636223B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830267B2 (en) * 2004-05-21 2011-12-07 トヨタ自動車株式会社 Laminated battery
KR100818206B1 (en) 2006-08-10 2008-03-31 (주)비피에스 Method of making battery using as case with aluminium foil
JP2011204590A (en) * 2010-03-26 2011-10-13 Nisshin Steel Co Ltd Lithium-ion battery and heat-seal manufacturing method
JP5693327B2 (en) * 2011-03-29 2015-04-01 Fdk鳥取株式会社 Method for producing electrochemical element
KR101603074B1 (en) * 2013-09-27 2016-03-14 주식회사 엘지화학 Folding Device for Battery Cell having Heating Member
KR101811482B1 (en) * 2014-03-03 2017-12-21 주식회사 엘지화학 Sealing Apparatus Having Insulator
US20160268064A1 (en) * 2015-03-09 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
KR20170026230A (en) * 2015-08-27 2017-03-08 주식회사 엘지화학 apparatus for sealing secondary battery
JP7232803B2 (en) * 2020-10-29 2023-03-03 プライムプラネットエナジー&ソリューションズ株式会社 Storage cell and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265974A (en) * 1996-03-29 1997-10-07 Sumitomo Electric Ind Ltd Non-aqueous electrolytic battery
JP2004253158A (en) * 2003-02-18 2004-09-09 Ngk Spark Plug Co Ltd Plate type battery and manufacturing method of the same, and heater for manufacturing battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265974A (en) * 1996-03-29 1997-10-07 Sumitomo Electric Ind Ltd Non-aqueous electrolytic battery
JP2004253158A (en) * 2003-02-18 2004-09-09 Ngk Spark Plug Co Ltd Plate type battery and manufacturing method of the same, and heater for manufacturing battery

Also Published As

Publication number Publication date
JP2005108633A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
KR100708023B1 (en) Film-packaged electric device and its manufacturing method
KR100705101B1 (en) Film-covered electric device having pressure release opening
JP5395749B2 (en) Secondary battery
JP4775555B2 (en) Film-clad battery and manufacturing method thereof
WO2020203101A1 (en) Power storage module
JP6004112B2 (en) Manufacturing method of laminate-type electricity storage device
JP4636223B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP5229440B2 (en) Electrochemical devices
WO2017098995A1 (en) Electrochemical device and method for manufacturing same
JP2018098167A (en) Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2018186001A (en) Lithium ion secondary battery
JP5114018B2 (en) Film-clad electrical device and manufacturing method thereof
KR100601549B1 (en) Pouch type lithium secondary battery
JP2012104503A (en) Electric component, nonaqueous electrolyte battery, and lead conductor with insulation coating layer and encapsulation container used therefor
JP4812173B2 (en) Battery sealing structure, battery and manufacturing method thereof
JP2019029642A (en) Electrochemical cell module and manufacturing method of electrochemical cell module
JP6736264B2 (en) Secondary battery
JP2005259391A (en) Manufacturing device of film-armored battery, and manufacturing method of film-armored battery
WO2017057691A1 (en) Electrochemical device and method for manuacturing same
JP2019057473A (en) Electrochemical cell
JP2002190283A (en) Manufacturing method of thin secondary battery and thin secondary battery
JP3601583B2 (en) Laminated film encapsulated battery and manufacturing method thereof
EP4354573A1 (en) Solid electrolyte battery, manufacturing method for solid electrolyte battery, and transportation apparatus
CN113725523B (en) Battery monomer and battery module

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4636223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term