JP4635360B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4635360B2
JP4635360B2 JP2001091624A JP2001091624A JP4635360B2 JP 4635360 B2 JP4635360 B2 JP 4635360B2 JP 2001091624 A JP2001091624 A JP 2001091624A JP 2001091624 A JP2001091624 A JP 2001091624A JP 4635360 B2 JP4635360 B2 JP 4635360B2
Authority
JP
Japan
Prior art keywords
general formula
epoxy resin
epoxy
different
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001091624A
Other languages
Japanese (ja)
Other versions
JP2002284843A (en
Inventor
慎吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001091624A priority Critical patent/JP4635360B2/en
Publication of JP2002284843A publication Critical patent/JP2002284843A/en
Application granted granted Critical
Publication of JP4635360B2 publication Critical patent/JP4635360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子表面のポリイミド樹脂との密着性に優れた半導体封止用エポキシ樹脂組成物及びメモリー用のLOC構造、非LOC構造、非LOCウインドウパッド構造といった各種薄型半導体装置で耐半田リフロー性に優れた半導体装置に関するものである。
【0002】
【従来の技術】
電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、半導体素子の封止に用いられているエポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田リフロー処理時に高温にさらされ、半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生し、ひいては硬化物にクラックを生じる等、半導体装置の信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田クラック性の向上が大きな課題となっている。これらの課題に対し、IC、LSI等の半導体素子の封止用エポキシ樹脂組成物に使用されるエポキシ樹脂や硬化剤であるフェノール樹脂の改良により、上記の問題に対する特性の向上が図られてきた。更に封止材料では解決できない問題点に対しては、リードフレームの形状変更、特に半導体素子と接着されるアイランドの形状変更により、対策が行われ、LOC(リードオンチップ)構造、ウインドウ・パッドフレームがこれに相当する。
【0003】
近年、環境負荷物質の撤廃の一環として、鉛を含まない半田への代替化が進められている。鉛を含まない半田では、従来の半田に比べ融点が高いため表面実装時の半田リフロー温度は、従来より20℃程度高く、260℃が必要とされる。鉛を含まない半田対応のための半田リフロー温度の変更によりウインドウ・パッドフレームでもエポキシ樹脂組成物の硬化物とパッドの剥離、半導体素子と半導体用樹脂ペーストの剥離に起因する半導体装置のクラックの問題が生じてきた。このため、260℃表面実装時の耐半田クラック性向上を目的として様々な改良が進められてきたが、そのいずれにおいても、完全なる解決策とはならず、更なる改良が望まれている。更にメモリー用半導体装置ではLOC構造、非LOC構造、非LOCウインドウパッド構造の薄型半導体装置が適用されるが、製造工程管理、在庫管理、コストの面から、全ての構造に共通して使用できる半導体封止用エポキシ樹脂組成物が要求されている。
【0004】
【発明が解決しようとする課題】
本発明は半導体素子表面のポリイミド樹脂との密着性に優れた半導体封止用エポキシ樹脂組成物及びメモリー用のLOC構造、非LOC構造、非LOCウインドウパッド構造といった各種薄型半導体装置で耐半田リフロー性に優れた半導体装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、
[1](A)一般式(1)、一般式(2)及び一般式(3)で示されるエポキシ樹脂の群から選ばれる1種以上を40〜80重量%と一般式(4)で示されるエポキシ樹脂を20〜60重量%含むエポキシ樹脂、(B)一般式(5)で示されるフェノール樹脂、(C)硬化促進剤、及び(D)無機質充填材を必須成分とし、全エポキシ樹脂と全フェノール樹脂の当量比=1.05〜1.50である半導体封止用エポキシ樹脂組成物を用いて、表面にポリイミド樹脂皮膜を有する半導体素子を封止してなることを特徴とする半導体装置、
である。
【化6】

Figure 0004635360
(R1は、水素原子、炭素数1〜4のアルキル基を示し、互いに同じであっても異なっていてもよい。)
【0006】
【化7】
Figure 0004635360
(R2、R3は、水素原子、炭素数1〜4のアルキルを示し、互いに同じであっても異なっていてもよい。炭素−炭素二重結合に結合している2個のアリール基は互いに異なる。)
【0007】
【化8】
Figure 0004635360
(R4は、水素原子、炭素数1〜4のアルキルを示し、互いに同じであっても異なっていてもよい。炭素−炭素二重結合に結合している2個のアリール基は互いに同じである。)
【0008】
【化9】
Figure 0004635360
(R5は、水素原子、炭素数1〜4のアルキル基を示し、互いに同じであっても異なっていてもよい。nは平均値で、1〜10の正数)
【0009】
【化10】
Figure 0004635360
【0011】
【発明の実施の形態】
本発明において密着性の対象とした半導体素子表面に存在するポリイミド樹脂は、表面がプラズマ処理されているためにイミド環中のC−N結合が優先的に切断され、カルボキシル基、アミノ基等の官能基が導入されている。従って、用いる全エポキシ樹脂と全フェノール樹脂の当量比を1.05〜1.50とすることにより、架橋構造に寄与しないエポキシ樹脂がポリイミド樹脂表面のカルボキシ基、アミノ基等の官能基と相溶もしくは反応し、優れた密着性を与えるものである。本発明で言う当量比とは、エポキシ樹脂のエポキシ基数/フェノール樹脂の水酸基数の比を指す。
一般式(1)で示されるビフェニル型エポキシ樹脂、一般式(2)及び一般式式(3)で示されるスチルベン型エポキシ樹脂は、溶融時に低粘度であるため優れた流動性を与える。更に前記当量比を1.05〜1.50とすることにより架橋構造に寄与しないエポキシ樹脂が流動性を付与し、ポリイミド樹脂のみならず、金属等の異種界面との塗れ性を向上するといった相乗効果を与える。
一般式(4)で示されるエポキシ樹脂は、エポキシ基間に疎水性構造を有することを特徴とする。 一般式(4)で示されるエポキシ樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を多く含むことから吸湿率が低く、又架橋密度が低いため、 ガラス転移温度を越えた高温域での弾性率が低いという特徴があり表面実装の半田付け時における熱応力を低減し、耐半田クラック性、半田処理後の基材との密着性に優れるという特徴を有している。一方エポキシ基間の疎水性構造は、剛直なビフェニル骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有する。
一般式(1)、一般式(2)及び一般式(3)で示されるエポキシ樹脂の群から選ばれる1種以上と一般式(4)で示されるエポキシ樹脂を併用することにより、それぞれ単独で用いた場合に比べ流動性、密着性、耐熱性が向上し、高温における耐半田クラック性が向上する。
【0012】
当量比が1.50を越えると十分な架橋構造が得られないため、硬化性が大きく低下し、耐半田クラック性に問題を生じる。一方当量比が1.05未満だと、架橋構造に寄与しないエポキシ樹脂量が極端に少なくなるため、大型化する半導体素子上のポリイミド樹脂表面への濡れ性が悪くなり、十分な密着性が得られないので好ましくない。
本発明に用いるエポキシ樹脂は、一般式(1)、一般式(2)及び一般式(3)で示されるエポキシ樹脂の群から選ばれる1種以上を40〜80重量%と一般式(4)で示されるエポキシ樹脂を20〜60重量%からなるが、一般式(4)で示されるエポキシ樹脂が60重量%を越えると、溶融粘度が高くなり濡れ性が悪くなるため、LOC構造の様な段差のあるものに対しては、異種界面との間に十分な密着性が得られず、更に流動性も低下してしまうため、薄型半導体装置を充填することができない。一般式(4)で示されるエポキシ樹脂が20重量%未満だと、疎水性、耐熱性が低下し耐半田クラック性の向上が得られない。
【0013】
本発明で用いる一般式(5)で示されるフェノール樹脂は、パラキシリレン骨格を含む構造を有することを特徴とする。一般式(5)で示されるフェノール樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を含むことから吸湿率が低く、又架橋密度が低いため、 ガラス転移温度を越えた高温域での弾性率が低いという特徴があり、表面実装の半田付け時における熱応力を低減し、リードフレーム等の金属類及び半導体素子との密着性に優れるという特徴を有している。又フェニル基間のパラキシリレン結合は架橋密度が低い割には耐熱性の低下が少ないという特徴を有する。
【0014】
更に一般式(5)で示されるフェノール樹脂の特徴を損なわない範囲で、分子内にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ビスフェノールA、トリフェノールメタン等のフェノール樹脂を併用しても差し支えない。併用する場合の一般式(5)で示されるフェノール樹脂の配合量としては、全フェノール樹脂中に70重量%以上が好ましい。70重量%未満だと吸湿率が多くなったり、弾性率が高くなり、耐半田クラック性に悪影響を及ぼすおそれがある。
本発明に用いられる硬化促進剤は、エポキシ樹脂とフェノール性水酸基との反応を促進させるものであればよく、一般に封止用材料に使用されているものを広く使用することができ、例えば1,8−ジアザビシクロ(5、4、0)ウンデセン−7、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、2−メチルイミダゾール等を単独又は混合しても良い。
本発明に用いる無機質充填材としては、溶融シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末、多孔質シリカ粉末、2次凝集シリカ粉末又は多孔質シリカ粉末を粉砕したシリカ粉末、アルミナ等が挙げられ、特に溶融シリカ粉末が好ましい。
【0015】
本発明のエポキシ樹脂組成物は、(A)〜(D)を必須成分とするが、これ以外に必要に応じてシランカップリング剤、赤燐系難燃剤、ブロム化エポキシ樹脂、酸化アンチモン、ヘキサブロムベンゼン等の難燃剤、カーボンブラック、ベンガラ等の着色剤及びシリコーンオイル、ゴム等の低応力添加剤、離型剤等の種々の添加剤を適宜配合しても差し支えない。
又本発明の封止用エポキシ樹脂組成物を成形材料として製造するには、(A)〜(D)成分、その他の添加剤をミキサー等により十分に均一混合した後、更に熱ロールまたはニーダー等で溶融混合し、冷却後粉砕して成形材料とすることができる。
本発明のエポキシ樹脂組成物を用いて、半導体等の電子部品を封止し、半導体装置を製造するにはトランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すれば良い。
【0016】
【実施例】
以下に本発明を実施例で示す。実施例で使用したエポキシ樹脂組成物の各成分は下記のとおりである。配合割合を表1に示した。各成分の配合割合は重量部とする。
・エポキシA:式(6)で示されるビフェニル型エポキシ樹脂(エポキシ当量190、融点105℃)
・エポキシB:(4,4’−ビス(2,3’−エポキシプロポキシ)−5’−ターシャリブチル−2,3’,5’−トリメチルスチルベン(式(7))を主成分とする樹脂40重量%と4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルスチルベン(式(8))を主成分とする樹脂60重量%の混合物(エポキシ当量209)
・エポキシC:式(9)で示されるエポキシ樹脂(軟化点60℃、エポキシ当量270)
・フェノールA:式(5)で示されるフェノールアラルキル樹脂(軟化点75℃、水酸基当量174)
・フェノールB:フェノールノボラック樹脂(軟化点105℃、水酸基当量105)
・溶融シリカ :平均粒径20um
・赤燐系難燃剤:赤燐の表面を水酸化アルミニウムで被覆した後、更にその表面をフェノール樹脂で被覆したもので、赤燐含有量94重量%、平均粒径4.5um、最大粒径11um
・1,8−ジアザビシクロ(5、4、0)ウンデセン−7(以下、DBUという)
・三酸化アンチモン
・シランカップリング剤
・カルナバワックス
・カーボンブラック
上記の各成分を表1の処方に従って配合し、常温でミキサーを用いて混合し、50〜130℃で2軸ロールにより混練し、冷却後粉砕し成形材料とし、これをタブレット化して半導体封止用エポキシ樹脂組成物を得た。この組成物を低圧トランスファー成形機(成形条件:175℃、70Kg/cm2、120秒)を用いて成形し、得られた成形品を175℃、8時間で後硬化し評価した。結果を表1に示す。
【0017】
【化11】
Figure 0004635360
【0018】
【化12】
Figure 0004635360
【0019】
【化13】
Figure 0004635360
【0020】
【化14】
Figure 0004635360
【0021】
《評価方法》
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。スパイラルフローは流動性のパラメーターであり、数値が大きい方が流動性良好である。単位:cm
耐クラック性、剥離率:使用したパッケージは50pTSOP(LOC構造、パッケージサイズ:21×10×1.0mm、42アロイリードフレーム、チップサイズ:8.8×18.8×0.35mm)、44pTSOP通常構造(非LOC構造、パッケージサイズ:18×10×1.0mm、42アロイリードフレーム、アイランドサイズ:5.0X8.5mm、チップサイズ:4.5×8.0×0.35mm)、44pTSOPウインドウフレーム構造(非LOC構造、パッケージサイズ:18×10×1.0mm、42アロイリードフレーム、アイランドサイズ/ウインドウサイズ:5.0×8.5mm/2.0×5.0mm、チップサイズ:4.5×8.0×0.35mm)の計3種。表面にポリイミド樹脂皮膜を有する半導体素子をLOC、非LOC2種、計3種のTSOP型リードフレーム(42アロイ材、インナーリード先端を銀メッキで被覆)に載置した後、前記樹脂組成物を用いて175℃、1分で硬化し成形品を得、175℃、8時間の後硬化を行ってサンプルとした。各材料毎に5個のパッケージを得た。このパッケージを85℃、60%の恒温恒湿槽内に168時間投入した後に260℃のIRリフロー処理を行った。顕微鏡で処理後のパッケージを観察し、外部クラックの発生率[(クラック発生パッケージ数)/(全パッケージ数)×100]を求めた。単位は%。処理後のパッケージ内部の半導体素子表面のポリイミド樹脂皮膜、リードフレームパッド裏面の剥離を超音波探傷機で観察し、チップと樹脂組成物との剥離面積の割合を測定した。
剥離率((剥離面積)/(チップ面積)×100)を%で表示した。
比較例1〜6
表2の処方に従って配合し、実施例と同様にして樹脂組成物を得、実施例と同様にして評価した。
【0022】
【表1】
Figure 0004635360
【0023】
【表2】
Figure 0004635360
【0024】
【発明の効果】
本発明に従うと半導体素子表面のポリイミド樹脂、金属リードフレームとの密着性に優れた半導体封止用エポキシ樹脂組成物及びメモリー用のLOC構造、非LOC構造、非LOCウインドウパッド構造といった各種薄型半導体装置は、耐半田リフロー性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent adhesion to a polyimide resin on the surface of a semiconductor element, and solder-resistant reflow in various thin semiconductor devices such as a memory LOC structure, a non-LOC structure, and a non-LOC window pad structure. The present invention relates to a semiconductor device having excellent properties.
[0002]
[Prior art]
In the market trend of downsizing, weight reduction, and high performance of electronic devices, semiconductor elements are increasingly integrated and the surface mounting of semiconductor devices is promoted. The demand for epoxy resin compositions is becoming increasingly severe. In particular, the surface mounting of semiconductor devices is becoming common, and moisture-absorbing semiconductor devices are exposed to high temperatures during solder reflow processing, and peeled off at the interface between the semiconductor element and lead frame and the cured epoxy resin composition. This causes defects that greatly impair the reliability of the semiconductor device, such as cracks in the cured product, and prevention of these defects, that is, improvement of resistance to solder cracks, is a major issue. In response to these problems, improvements in the epoxy resin used in the epoxy resin composition for sealing semiconductor elements such as IC and LSI, and the phenol resin as a curing agent have been improved in the characteristics for the above problems. . Furthermore, for problems that cannot be solved by the sealing material, countermeasures are taken by changing the shape of the lead frame, particularly the shape of the island that is bonded to the semiconductor element, and the LOC (lead-on-chip) structure, window pad frame Corresponds to this.
[0003]
In recent years, as part of the removal of environmentally hazardous substances, replacement with solder containing no lead has been promoted. Since solder containing no lead has a higher melting point than conventional solder, the solder reflow temperature at the time of surface mounting is about 20 ° C. higher than before, and requires 260 ° C. Due to changes in solder reflow temperature for solders that do not contain lead, the cured epoxy resin composition and pads are peeled off even in window pad frames, and semiconductor device cracks are caused by peeling of semiconductor elements and resin paste for semiconductors. Has arisen. For this reason, various improvements have been made for the purpose of improving solder crack resistance at the time of 260 ° C. surface mounting, but none of them is a complete solution, and further improvements are desired. Furthermore, thin semiconductor devices with a LOC structure, non-LOC structure, and non-LOC window pad structure are applied to semiconductor devices for memory, but a semiconductor that can be used in common for all structures in terms of manufacturing process management, inventory management, and cost. There is a demand for an epoxy resin composition for sealing.
[0004]
[Problems to be solved by the invention]
The present invention is an epoxy resin composition for semiconductor encapsulation having excellent adhesion to a polyimide resin on the surface of a semiconductor element, and various thin semiconductor devices such as a memory LOC structure, non-LOC structure, and non-LOC window pad structure. An excellent semiconductor device is provided.
[0005]
[Means for Solving the Problems]
The present invention
[1] (A) One or more selected from the group of epoxy resins represented by general formula (1), general formula (2), and general formula (3) is represented by 40 to 80% by weight and general formula (4). An epoxy resin containing 20 to 60% by weight of an epoxy resin, (B) a phenol resin represented by the general formula (5), (C) a curing accelerator, and (D) an inorganic filler as essential components, A semiconductor device characterized by sealing a semiconductor element having a polyimide resin film on its surface by using an epoxy resin composition for semiconductor sealing with an equivalent ratio of all phenol resins = 1.05 to 1.50. ,
It is.
[Chemical 6]
Figure 0004635360
(R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same as or different from each other.)
[0006]
[Chemical 7]
Figure 0004635360
(R2 and R3 represent a hydrogen atom and alkyl having 1 to 4 carbon atoms, and may be the same or different from each other. Two aryl groups bonded to a carbon-carbon double bond are different from each other. .)
[0007]
[Chemical 8]
Figure 0004635360
(R4 represents a hydrogen atom or alkyl having 1 to 4 carbon atoms, and may be the same or different. The two aryl groups bonded to the carbon-carbon double bond are the same as each other. .)
[0008]
[Chemical 9]
Figure 0004635360
(R5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. N is an average value and a positive number of 1 to 10)
[0009]
Embedded image
Figure 0004635360
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the polyimide resin present on the surface of the semiconductor element targeted for adhesion is preferentially cleaved in the imide ring because the surface is plasma-treated, such as carboxyl group, amino group, etc. Functional groups have been introduced. Therefore, by setting the equivalent ratio of the total epoxy resin and the total phenol resin to be used to 1.05-1.50, the epoxy resin that does not contribute to the crosslinked structure is compatible with the functional groups such as carboxy groups and amino groups on the polyimide resin surface. Alternatively, it reacts and gives excellent adhesion. The equivalent ratio in the present invention refers to the ratio of the number of epoxy groups in the epoxy resin / the number of hydroxyl groups in the phenol resin.
Since the biphenyl type epoxy resin represented by the general formula (1) and the stilbene type epoxy resin represented by the general formula (2) and the general formula (3) have a low viscosity at the time of melting, they provide excellent fluidity. Further, by setting the equivalent ratio to 1.05-1.50, an epoxy resin that does not contribute to the crosslinked structure imparts fluidity, and improves synergisticity with not only polyimide resins but also different types of interfaces such as metals. Give effect.
The epoxy resin represented by the general formula (4) is characterized by having a hydrophobic structure between epoxy groups. The cured product of the epoxy resin composition using the epoxy resin represented by the general formula (4) has a low hygroscopicity because it contains a lot of hydrophobic structures, and also has a low crosslink density. It has a characteristic that the elastic modulus in the region is low, reduces thermal stress during surface mounting soldering, and has excellent characteristics such as resistance to solder cracking and adhesion to a substrate after soldering. On the other hand, since the hydrophobic structure between epoxy groups is a rigid biphenyl skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density.
By using one or more selected from the group of epoxy resins represented by general formula (1), general formula (2) and general formula (3) in combination with the epoxy resin represented by general formula (4), respectively Compared with the case of using, fluidity, adhesion and heat resistance are improved, and solder crack resistance at high temperature is improved.
[0012]
If the equivalent ratio exceeds 1.50, a sufficient cross-linked structure cannot be obtained, so that the curability is greatly lowered and a problem is caused in solder crack resistance. On the other hand, if the equivalent ratio is less than 1.05, the amount of epoxy resin that does not contribute to the crosslinked structure is extremely reduced, so that the wettability to the surface of the polyimide resin on the semiconductor element to be enlarged is deteriorated and sufficient adhesion is obtained. Since it is not possible, it is not preferable.
The epoxy resin used in the present invention contains 40 to 80% by weight of one or more selected from the group of epoxy resins represented by the general formula (1), general formula (2) and general formula (3). The epoxy resin represented by the general formula (4) is composed of 20 to 60% by weight. However, if the epoxy resin represented by the general formula (4) exceeds 60% by weight, the melt viscosity becomes high and the wettability deteriorates. For those with a level difference, sufficient adhesion cannot be obtained between different types of interfaces, and the fluidity is also lowered, so that a thin semiconductor device cannot be filled. When the epoxy resin represented by the general formula (4) is less than 20% by weight, the hydrophobicity and heat resistance are lowered, and improvement in solder crack resistance cannot be obtained.
[0013]
The phenol resin represented by the general formula (5) used in the present invention has a structure including a paraxylylene skeleton. The cured product of the epoxy resin composition using the phenol resin represented by the general formula (5) has a low hygroscopicity because it contains a hydrophobic structure, and has a low crosslinking density. It has a feature that it has a low elastic modulus, reduces thermal stress during surface mounting soldering, and has a feature that it has excellent adhesion to metals such as lead frames and semiconductor elements. In addition, the paraxylylene bond between phenyl groups has a feature that the heat resistance is less lowered for a low crosslinking density.
[0014]
Furthermore, monomers, oligomers, and polymers having a phenolic hydroxyl group in the molecule, such as phenol novolak resin, cresol novolak resin, terpene-modified phenol resin, dicyclopentadiene, within a range that does not impair the characteristics of the phenol resin represented by the general formula (5) A phenolic resin such as a modified phenolic resin, bisphenol A, or triphenolmethane may be used in combination. As a compounding quantity of the phenol resin shown by General formula (5) in the case of using together, 70 weight% or more is preferable in all the phenol resins. If it is less than 70% by weight, the moisture absorption rate increases, the elastic modulus increases, and solder crack resistance may be adversely affected.
The curing accelerator used in the present invention is not limited as long as it promotes the reaction between the epoxy resin and the phenolic hydroxyl group, and those generally used for sealing materials can be widely used. 8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, tetraphenylphosphonium / tetraphenylborate, 2-methylimidazole and the like may be used alone or in combination.
Examples of the inorganic filler used in the present invention include fused silica powder, spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, porous silica powder, secondary agglomerated silica powder or silica powder obtained by pulverizing porous silica powder, alumina Among them, fused silica powder is particularly preferable.
[0015]
The epoxy resin composition of the present invention comprises (A) to (D) as essential components, but in addition to this, a silane coupling agent, a red phosphorus flame retardant, a brominated epoxy resin, antimony oxide, hexa Various additives such as a flame retardant such as bromobenzene, a colorant such as carbon black and bengara, a low stress additive such as silicone oil and rubber, and a release agent may be appropriately blended.
Moreover, in order to produce the sealing epoxy resin composition of the present invention as a molding material, the components (A) to (D) and other additives are sufficiently uniformly mixed by a mixer or the like, and then heated roll or kneader. The mixture can be melt-mixed and cooled and pulverized to obtain a molding material.
The epoxy resin composition of the present invention can be used to encapsulate electronic components such as semiconductors and manufacture semiconductor devices by curing using conventional molding methods such as transfer molding, compression molding, and injection molding.
[0016]
【Example】
The present invention is illustrated by the following examples. Each component of the epoxy resin composition used in the examples is as follows. The blending ratio is shown in Table 1. The blending ratio of each component is parts by weight.
Epoxy A: biphenyl type epoxy resin represented by the formula (6) (epoxy equivalent 190, melting point 105 ° C.)
Epoxy B: a resin mainly composed of (4,4′-bis (2,3′-epoxypropoxy) -5′-tertiarybutyl-2,3 ′, 5′-trimethylstilbene (formula (7)) A mixture of 40% by weight and 60% by weight of a resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylstilbene (formula (8)) ( Epoxy equivalent 209)
Epoxy C: epoxy resin represented by formula (9) (softening point 60 ° C., epoxy equivalent 270)
Phenol A: phenol aralkyl resin represented by the formula (5) (softening point 75 ° C., hydroxyl group equivalent 174)
Phenol B: phenol novolac resin (softening point 105 ° C., hydroxyl group equivalent 105)
・ Fused silica: Average particle size 20um
・ Red phosphorus flame retardant: The surface of red phosphorus is coated with aluminum hydroxide, and then the surface is further coated with a phenol resin. The content of red phosphorus is 94% by weight, the average particle size is 4.5um, the maximum particle size 11um
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU)
-Antimony trioxide-Silane coupling agent-Carnauba wax-Carbon black The above ingredients are blended according to the formulation shown in Table 1, mixed at room temperature using a mixer, kneaded with a biaxial roll at 50 to 130 ° C, and cooled. After pulverization to obtain a molding material, this was tableted to obtain an epoxy resin composition for semiconductor encapsulation. This composition was molded using a low-pressure transfer molding machine (molding conditions: 175 ° C., 70 Kg / cm 2 , 120 seconds), and the resulting molded product was post-cured at 175 ° C. for 8 hours for evaluation. The results are shown in Table 1.
[0017]
Embedded image
Figure 0004635360
[0018]
Embedded image
Figure 0004635360
[0019]
Embedded image
Figure 0004635360
[0020]
Embedded image
Figure 0004635360
[0021]
"Evaluation methods"
Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. Spiral flow is a parameter of fluidity, and a larger value means better fluidity. Unit: cm
Crack resistance, peeling rate: The package used is 50 pTSOP (LOC structure, package size: 21 × 10 × 1.0 mm, 42 alloy lead frame, chip size: 8.8 × 18.8 × 0.35 mm), 44 pTSOP normal Structure (non-LOC structure, package size: 18 × 10 × 1.0 mm, 42 alloy lead frame, island size: 5.0 × 8.5 mm, chip size: 4.5 × 8.0 × 0.35 mm), 44pTSOP window frame Structure (non-LOC structure, package size: 18 × 10 × 1.0 mm, 42 alloy lead frame, island size / window size: 5.0 × 8.5 mm / 2.0 × 5.0 mm, chip size: 4.5 X 8.0 x 0.35 mm). A semiconductor element having a polyimide resin film on the surface is placed on three types of TSOP-type lead frames (42 alloy materials, inner lead tips are covered with silver plating), a total of three types, LOC and non-LOC, and then the resin composition is used. Was cured at 175 ° C. for 1 minute to obtain a molded product, and post-cured at 175 ° C. for 8 hours to obtain a sample. Five packages were obtained for each material. This package was placed in a constant temperature and humidity chamber at 85 ° C. and 60% for 168 hours, and then IR reflow treatment at 260 ° C. was performed. The package after the treatment was observed with a microscope, and the occurrence rate of external cracks [(number of crack generation packages) / (total number of packages) × 100] was determined. Units%. After the treatment, peeling of the polyimide resin film on the surface of the semiconductor element inside the package and the back surface of the lead frame pad was observed with an ultrasonic flaw detector, and the ratio of the peeling area between the chip and the resin composition was measured.
The peel rate ((peel area) / (chip area) × 100) was expressed in%.
Comparative Examples 1-6
It compounded according to prescription of Table 2, and obtained the resin composition like the Example, and evaluated it similarly to the Example.
[0022]
[Table 1]
Figure 0004635360
[0023]
[Table 2]
Figure 0004635360
[0024]
【The invention's effect】
According to the present invention, various thin semiconductor devices such as a polyimide resin on the surface of a semiconductor element, an epoxy resin composition for semiconductor sealing excellent in adhesion to a metal lead frame, and a LOC structure, non-LOC structure, and non-LOC window pad structure for memory Is excellent in solder reflow resistance.

Claims (1)

(A)一般式(1)、一般式(2)及び一般式(3)で示されるエポキシ樹脂の群から選ばれる1種以上を40〜80重量%と一般式(4)で示されるエポキシ樹脂を20〜60重量%含むエポキシ樹脂、(B)一般式(5)で示されるフェノール樹脂、(C)硬化促進剤、及び(D)無機質充填材を必須成分とし、全エポキシ樹脂と全フェノール樹脂の当量比=1.05〜1.50である半導体封止用エポキシ樹脂組成物を用いて、表面にポリイミド樹脂皮膜を有する半導体素子を封止してなることを特徴とする半導体装置
Figure 0004635360
(R1は、水素原子、炭素数1〜4のアルキル基を示し、互いに同じであっても異なっていてもよい。)
Figure 0004635360
(R2、R3は、水素原子、炭素数1〜4のアルキルを示し、互いに同じであっても異なっていてもよい。炭素−炭素二重結合に結合している2個のアリール基は互いに異なる。)
Figure 0004635360
(R4は、水素原子、炭素数1〜4のアルキルを示し、互いに同じであっても異なっていてもよい。炭素−炭素二重結合に結合している2個のアリール基は互いに同じである。)
Figure 0004635360
(R5は、水素原子、炭素数1〜4のアルキル基を示し、互いに同じであっても異なっていてもよい。nは平均値で、1〜10の正数)
Figure 0004635360
(A) 40-80% by weight of one or more selected from the group of epoxy resins represented by general formula (1), general formula (2) and general formula (3) and an epoxy resin represented by general formula (4) An epoxy resin containing 20 to 60% by weight, (B) a phenol resin represented by the general formula (5), (C) a curing accelerator, and (D) an inorganic filler as essential components, and all epoxy resins and all phenol resins A semiconductor device, wherein a semiconductor element having a polyimide resin film on the surface is sealed using an epoxy resin composition for semiconductor encapsulation having an equivalent ratio of 1.05 to 1.50.
Figure 0004635360
(R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same as or different from each other.)
Figure 0004635360
(R2 and R3 represent a hydrogen atom and alkyl having 1 to 4 carbon atoms, and may be the same or different from each other. Two aryl groups bonded to a carbon-carbon double bond are different from each other. .)
Figure 0004635360
(R4 represents a hydrogen atom or alkyl having 1 to 4 carbon atoms, and may be the same or different. The two aryl groups bonded to the carbon-carbon double bond are the same as each other. .)
Figure 0004635360
(R5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. N is an average value and a positive number of 1 to 10)
Figure 0004635360
JP2001091624A 2001-03-28 2001-03-28 Semiconductor device Expired - Fee Related JP4635360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091624A JP4635360B2 (en) 2001-03-28 2001-03-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091624A JP4635360B2 (en) 2001-03-28 2001-03-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002284843A JP2002284843A (en) 2002-10-03
JP4635360B2 true JP4635360B2 (en) 2011-02-23

Family

ID=18946206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091624A Expired - Fee Related JP4635360B2 (en) 2001-03-28 2001-03-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4635360B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048958A (en) * 2001-08-07 2003-02-21 Kyocera Chemical Corp Epoxy resin composition and device for sealing semiconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140277A (en) * 1997-11-10 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device produced by using the composition
JP2000273280A (en) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140277A (en) * 1997-11-10 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device produced by using the composition
JP2000273280A (en) * 1999-03-26 2000-10-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2002284843A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP2002012742A (en) Epoxy resin composition and semiconductor device
JP4306329B2 (en) Epoxy resin composition and semiconductor device
JP2008291155A (en) Sealing epoxy resin composition and semiconductor device
JP4635360B2 (en) Semiconductor device
JP2003105059A (en) Epoxy resin composition and semiconductor device
JP3565118B2 (en) Epoxy resin composition for semiconductor encapsulation
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2004285316A (en) Epoxy resin composition and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP2002241585A (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP2001247653A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP4254265B2 (en) Epoxy resin composition and semiconductor device
JP4296820B2 (en) Epoxy resin composition and semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP4432562B2 (en) Epoxy resin composition and semiconductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JP2002179882A (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JPH11147998A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4635360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees