JP4635324B2 - Low NOx combustor for two-fluid cycle and operation method thereof - Google Patents

Low NOx combustor for two-fluid cycle and operation method thereof Download PDF

Info

Publication number
JP4635324B2
JP4635324B2 JP2000325143A JP2000325143A JP4635324B2 JP 4635324 B2 JP4635324 B2 JP 4635324B2 JP 2000325143 A JP2000325143 A JP 2000325143A JP 2000325143 A JP2000325143 A JP 2000325143A JP 4635324 B2 JP4635324 B2 JP 4635324B2
Authority
JP
Japan
Prior art keywords
steam
fuel
combustor
steam injection
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000325143A
Other languages
Japanese (ja)
Other versions
JP2002130674A (en
Inventor
潤 細井
浩二 新保
智昭 吉田
秀実 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000325143A priority Critical patent/JP4635324B2/en
Publication of JP2002130674A publication Critical patent/JP2002130674A/en
Application granted granted Critical
Publication of JP4635324B2 publication Critical patent/JP4635324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Description

【0001】
【発明の属する技術分野】
本発明は、二流体サイクル用の低NOx燃焼器とその運転方法に関する。
【0002】
【従来の技術】
近年、ガスタービンと蒸気タービンを組み合わせて発電効率の向上を図るコージェネレーションシステムが脚光を浴びている。図5は、特公平8−26780号公報に開示された二流体サイクルの構成図であり、ガスタービン設備1の排熱Eで発生した水蒸気2を混合器3で圧縮空気4と混合し、この混合ガスを排熱Eで加熱してガスタービンの燃焼器5に噴射することにより、余剰水蒸気2aをユーティリィティとして供給しながら、電力需要に応じて発電出力が増大できるようになっている。なおこの図で6は排熱回収ボイラ、Aは空気、Fは燃料、Wは給水である。
【0003】
一方、環境保護のために、ガスタービンの燃焼排ガス中のNOx(窒素酸化物)を低減することが義務付けられており、我国では、全国基準でも例えば70ppm以下、大都市(例えば東京)では例えば25〜30ppm以下にする必要がある。
NOxの発生要因は、燃焼時の高温火炎により空気中の窒素が酸化する、いわゆるサーマルNOxが主であり、このサーマルNOxを低減するには、火炎中のホットスポットを減少させ、高温火炎の発生をなくすことが効果的である。このため、上述した二流体サイクルでは、水蒸気の噴射により火炎温度を低下させる手段が用いられ、燃焼器には水蒸気を噴射しても安定燃焼ができる拡散燃焼器が使用されていた。
【0004】
【発明が解決しようとする課題】
上述した二流体サイクルでは、電力需要が大きいときには大量の水蒸気を燃焼器に噴射してガスタービンの出力を増大させ、電力需要が小さく水蒸気の需要が大きいときには、逆に蒸気噴射を最小限に絞って燃料消費を抑制するようになっている。しかし、上述した従来の燃焼器(蒸気噴射拡散燃焼器)では、水蒸気を減らしすぎるとNOx発生量が増大して規制値を超えるおそれがあり、常に蒸気噴射が必要となり、その分ユーティリィティ蒸気量が減り、かつ燃料消費量が多くなる問題点があった。
【0005】
一方、低NOx化が可能な燃焼器として、上述した蒸気噴射拡散燃焼器の他に希薄予混合燃焼器が知られている。この希薄予混合燃焼器は、燃料を十分な空気量と予混合して均質化し、これを希薄燃焼させるものであり、大量の空気と共に燃焼させるため、ホットスポットがなく、高温火炎の発生をなくし低NOx化を実現することができる。
【0006】
従って従来の希薄予混合燃焼器を二流体サイクル用に適用することにより、蒸気噴射をなくしても、NOx発生量を規制値内に抑えることができ、蒸気噴射を必要に応じてなくし、その分ユーティリィティ蒸気量を増やしかつ燃料消費量を低減することができる。
【0007】
しかし、この希薄予混合燃焼器は、低NOx化のために蒸気を必要としない反面、燃焼が不安定になりやすい問題点があった。このため、希薄予混合燃焼器に水蒸気を噴射すると火炎温度が下がり過ぎてほとんど安定燃焼ができず失火してしまったり、燃焼の安定化のために燃料を増加させると燃料領域で燃料が過剰となり、本来の希薄燃焼ができず、十分なNOx低減効果が得られなくなる、等の問題点があった。
【0008】
本発明は、かかる問題点を解決するために創案されたものである。すなわち本発明の目的は、電力需要が大きいときには大量の水蒸気を燃焼器に噴射してガスタービンの出力を増大させることができ、かつ電力需要が小さく水蒸気の需要が大きいときに、NOxの発生を抑制しながら、水蒸気噴射を完全になくし、これによりユーティリィティ蒸気の増加と燃料消費量の低減を図ることができる二流体サイクル用の低NOx燃焼器とその運転方法を提供することにある。
【0009】
参考例によれば、中心部に配置された拡散燃焼式のパイロットバーナー(12)と、そのまわりに配置された複数の予混合燃焼式のメインバーナー(14)とを備え、更に、メインバーナーの燃料噴射弁へ流入する空気と混合するように水蒸気を供給する蒸気噴射管(16)を備え、該蒸気噴射管(16)に供給しなかった残りの蒸気を噴射する希釈孔(22a)を有する燃焼器ライナ(22)を備える、ことを特徴とする二流体サイクル用の低NOx燃焼器が提供される。
【0010】
参考例の好ましい実施形態によれば、前記蒸気噴射管(16)は、メインバーナーの燃料噴射弁の旋回器の上流側に蒸気噴射する蒸気噴射口を有する。また、更に、パイロットバーナーの燃料噴射弁へ流入する空気と混合して水蒸気を供給する蒸気噴射管(18)を備えることが好ましい。
【0011】
また、参考例によれば、中心部に配置された拡散燃焼式のパイロットバーナー(12)と、そのまわりに配置された複数の予混合燃焼式のメインバーナー(14)とを備え、更に、メインバーナーの燃料噴射弁へ流入する空気と混合するように水蒸気を供給する蒸気噴射管(16)を備え、出力増加のために蒸気噴射を行う際に、噴射する蒸気の一部を前記蒸気噴射管から噴射して、メイン噴射弁へ流入する空気と混合して燃料噴射弁へ供給し、該蒸気噴射管(16)に供給しなかった残りの蒸気を燃焼器ライナ(22)の希釈孔(22a)から噴射する、ことを特徴とする二流体サイクル用の低NOx燃焼器の運転方法が提供される。また、前記蒸気噴射時に、燃料の増加量に応じて、蒸気噴射量を増加させ、これにより蒸気と空気の和と燃料との比率をほぼ一定に維持することが好ましい。
【0012】
また、本発明によれば、二流体サイクル用の低NOx燃焼器の運転方法であって、前記焼却器は、中心部に配置された拡散燃焼式のパイロットバーナー(12)と、そのまわりに配置された複数の予混合燃焼式のメインバーナー(14)とを備え、更に、メインバーナーの燃料噴射弁へ流入する空気と混合するように水蒸気を供給する蒸気噴射管(16)を備え、出力増加のために蒸気噴射を行う際に、噴射する蒸気の一部を前記蒸気噴射管から噴射して、メイン噴射弁へ流入する空気と混合して燃料噴射弁へ供給し、
前記蒸気噴射時に、燃料の増加量に応じて、蒸気噴射量及び蒸気割合を増加させ、これにより蒸気と空気の和と燃料との比率が一定になるように維持する、ことを特徴とする二流体サイクル用の低NOx燃焼器の運転方法が提供される。
【0013】
上記本発明の装置及びその運転方法によれば、二流体サイクルのガスタービンにおいて、出力増加のための蒸気噴射を行わない運用状態では、本発明の低NOx燃焼器は、従来の希薄予混合燃焼器として作動し、蒸気噴射をなくしても、NOx発生量を規制値内に抑えることができ、その分ユーティリィティ蒸気量を増やしかつ燃料消費量を低減することができる。
【0014】
また、出力増加のために蒸気噴射を行う際は、噴射する蒸気の一部を蒸気噴射管(16)から噴射させ、予混合燃焼のメイン噴射弁へ流入する空気と混合する。本発明では、メインバーナーの燃料噴射弁の旋回器の上流側に蒸気噴射する蒸気噴射口を有する蒸気噴射管(16)から、メインバーナーの燃料噴射弁へ流入する空気と混合するように水蒸気を供給するので、蒸気と空気を十分に均一に混合して導入することができる。従って、燃焼的に比較的不安定な予混合燃焼に蒸気を噴射しても、安定した燃焼が可能となる。
【0015】
更に、蒸気と燃料の割合は、燃料の増加量に応じて、蒸気噴射量を増加することにより、NOxの発生を抑えながら燃焼量を増大させ、二流体サイクルの出力を高めることができる。なお、残りの蒸気に関しては、燃焼器ライナの希薄孔など、比較的燃焼に関与しない位置に噴射するのがよい。
【0016】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0017】
図1は、本発明の二流体サイクル用の低NOx燃焼器の全体構成図である。この図に示すように、本発明の二流体サイクル用低NOx燃焼器10は、中央部に配置されたパイロットバーナー12と、そのまわりに配置された複数(例えば6つ)のメインバーナー14とを備える。なお、この図において、22は燃焼器ライナ、23はケーシング、24は点火栓(イグナイタ)であり、空気26がケーシング23とライナ22の間を流れてバーナー12、14に達し、このバーナーとその他の部分を通ってライナ22内に流入して火炎27a,27bを形成し、発生した燃焼ガスがスクロール部(図示せず)を通って図示しないガスタービンに導かれ、これを駆動するようになっている。
【0018】
図1において、パイロットバーナー12は、燃料Fを燃焼室11内で拡散燃焼させる拡散燃焼バーナーである。
メインバーナー14は、互いに同軸に配置された主噴射弁14aと予混合管14bとからなる。主噴射弁14aには、ケーシング3を通して外部から燃料Fが供給される。この燃料には、例えばガス燃料を用いる。予混合管14bは、この図で下端部が開口した円筒形の筒であり、内部で燃料と空気が互いに混合しやすくなっている。すなわち、メインバーナー14は、主噴射弁14aと予混合管14bで構成された予混合希薄バーナーである。この構成により、主噴射弁14aにより予混合管14b内に燃料Fを噴射し、予混合管14b内で燃料Fを十分な空気量と予混合しこれを希薄燃焼させることができる。
【0019】
本発明の二流体サイクル用低NOx燃焼器10は、更に、メインバーナー14の燃料噴射弁(主噴射弁14a)へ流入する空気と混合するように水蒸気を供給する蒸気噴射管16を備える。
この蒸気噴射管16は蒸気噴射口16aを有し、この蒸気噴射口16aはメインバーナー14の燃料噴射弁14aの旋回器の上流側に蒸気噴射するように位置決めされている。
【0020】
更に、本発明の低NOx燃焼器10は、パイロットバーナー12の燃料噴射弁へ流入する空気と混合して水蒸気を供給する蒸気噴射管18を備えている。
【0021】
上述した本発明の構成により、パイロットバーナー12により拡散燃焼を行いメインバーナー14の保炎源を形成できる。また、メインバーナー14の予混合管15における予混合燃焼によりNOxの発生を抑制することができる。
【0022】
【実施例】
以下、上述した低NOx燃焼器10の実施例を説明する。図1に示した低NOx燃焼器10を用い、蒸気噴射管16からの蒸気噴射(ケース1)、ライナ希釈孔22aからの蒸気噴射(ケース2)、スクロール21への蒸気噴射(ケース3)の3通りの試験を行い、その燃焼効率、発生NOx量、その他を試験した。
【0023】
図2はケース1の本発明の実施例の試験結果であり、図3はケース2の試験結果であり、図4はケース3の試験結果である。図2〜図4において、横軸は蒸気割合(蒸気流量/空気流量)、縦軸はNOx発生量である。なおこの試験は運転圧力6ataで実施した。
【0024】
また、表1は、各ケースの長所と短所をまとめたものである。
【0025】
【表1】

Figure 0004635324
【0026】
図2〜図4及び表1から、ケース1では、蒸気割合を増加させるほど発生するNOxの濃度が下がり、効果的にNOxを低減できることが確認できたが、ケース2と3では、蒸気割合を増加させても効果的なNOx低減ができないことが確認された。
またケース1では、燃焼器の出口温度T4を一定に制御しても燃焼効率をほぼ100%に維持でき、燃料効率の低下はなかった。
【0027】
上述した試験結果の知見を基に、本発明の運転方法では、出力増加のために蒸気噴射を行う際に、噴射する蒸気の少なくとも一部を前記蒸気噴射管16から噴射して、メイン噴射弁へ流入する空気と混合して燃料噴射弁へ供給する。また、好ましくは、この蒸気噴射時に、燃料の増加量に応じて、蒸気噴射量を増加させ、これにより蒸気と空気の和と燃料との比率をほぼ一定に維持する。
【0028】
上述した装置及びその運転方法によれば、二流体サイクルのガスタービンにおいて、出力増加のための蒸気噴射を行わない運用状態では、本発明の低NOx燃焼器は、従来の希薄予混合燃焼器として作動し、蒸気噴射をなくしても、NOx発生量を規制値内に抑えることができ、その分ユーティリィティ蒸気量を増やしかつ燃料消費量を低減することができる。
【0029】
また、出力増加のために蒸気噴射を行う際は、噴射する蒸気の少なくとも一部を蒸気噴射管16から噴射させ、予混合燃焼のメイン噴射弁へ流入する空気と混合する。この噴射により、メインバーナーの燃料噴射弁へ蒸気と空気を十分に均一に混合して導入することができる。従って、安定した燃焼を維持できると共に火炎温度を効果的に下げてNOxの発生量を更に低減することができる。
【0030】
更に、蒸気と燃料の割合を、燃料の増加量に応じて、蒸気噴射量を増加することにより、火炎温度の上昇を防止しNOxの発生量の増加を抑えながら燃焼量を増大させ、二流体サイクルの出力を高めることができる。なお、残りの蒸気に関しては、燃焼器ライナの希薄孔など、比較的燃焼に関与しない位置に噴射するのがよい。
【0031】
上述した本発明の二流体サイクル用の低NOx燃焼器とその運転方法により、通常では、蒸気噴射による出力増加のために増やした燃料で燃料過濃となり、火炎温度が上昇し、NOxの増加を招くが、本発明の装置と方法により予混合のメイン噴射弁への蒸気の噴射により火炎温度の上昇が抑えられ、NOxの増加が抑えられることが試験により確認された。なお、この試験では、メインバーナーの燃料流量とほぼ同量の蒸気噴射を行っても燃焼効率も悪化せず、蒸気噴射前の約1/2のNOx低減効果が確認された。
【0032】
なお本発明は上述した実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
【0033】
【発明の効果】
上述したように、本発明の二流体サイクル用の低NOx燃焼器とその運転方法は、電力需要が大きいときには大量の水蒸気を燃焼器に噴射してガスタービンの出力を増大させることができ、かつ電力需要が小さく水蒸気の需要が大きいときに、NOxの発生を抑制しながら、水蒸気噴射を完全になくし、これによりユーティリィティ蒸気の増加と燃料消費量の低減を図ることができる等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の二流体サイクル用の低NOx燃焼器の全体構成図である。
【図2】本発明の実施例の試験結果である。
【図3】別の実施例の試験結果である。
【図4】更に別の実施例の試験結果である。
【図5】従来の二流体サイクルの一例を示す構成図である。
【符号の説明】
1 ガスタービン設備、2 水蒸気、
2a 余剰水蒸気(ユーティリィティ)、
3 混合器、4 圧縮空気、5 燃焼器、6 排熱回収ボイラ、
10 低NOx燃焼器、
12 パイロットバーナー(拡散燃焼バーナー)、
14 メインバーナー(予混合希薄バーナー)、
14a 主噴射弁、14b 予混合管、
16 蒸気噴射管、18 蒸気噴射管、
21 スクロール、22 燃焼器ライナ、22a 希釈孔、
23 ケーシング、24 点火栓(イグナイタ)、
26 空気、27a,27b 火炎、
A 空気、E 排熱、F 燃料、W 給水、S 水蒸気[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low NOx combustor for a two-fluid cycle and a method of operating the same.
[0002]
[Prior art]
In recent years, cogeneration systems that improve power generation efficiency by combining gas turbines and steam turbines have attracted attention. FIG. 5 is a configuration diagram of a two-fluid cycle disclosed in Japanese Patent Publication No. 8-26780. Steam 2 generated by exhaust heat E of the gas turbine equipment 1 is mixed with compressed air 4 by a mixer 3. By heating the mixed gas with the exhaust heat E and injecting it into the combustor 5 of the gas turbine, the power generation output can be increased according to the power demand while supplying the surplus steam 2a as a utility. In this figure, 6 is an exhaust heat recovery boiler, A is air, F is fuel, and W is water supply.
[0003]
On the other hand, in order to protect the environment, it is obliged to reduce NOx (nitrogen oxide) in the combustion exhaust gas of the gas turbine. In Japan, for example, it is 70 ppm or less even in the national standards, and in a large city (for example, Tokyo), for example, 25 It is necessary to make it -30 ppm or less.
The main cause of NOx is so-called thermal NOx, in which nitrogen in the air is oxidized by a high-temperature flame at the time of combustion. To reduce this thermal NOx, hot spots in the flame are reduced to generate a high-temperature flame. It is effective to eliminate For this reason, in the above-described two-fluid cycle, a means for lowering the flame temperature by using water vapor is used, and a diffusion combustor capable of stable combustion even when water vapor is injected is used as the combustor.
[0004]
[Problems to be solved by the invention]
In the above-described two-fluid cycle, when the power demand is large, a large amount of steam is injected into the combustor to increase the output of the gas turbine. As a result, fuel consumption is reduced. However, in the above-described conventional combustor (steam injection diffusion combustor), if the water vapor is reduced too much, the amount of NOx generated may increase and exceed the regulation value, and steam injection is always required. However, there was a problem that fuel consumption was increased.
[0005]
On the other hand, as a combustor capable of reducing NOx, a lean premix combustor is known in addition to the above-described steam injection diffusion combustor. This lean premix combustor premixes fuel with a sufficient amount of air to homogenize it, and burns it with lean air. It burns with a large amount of air, so there are no hot spots and the generation of high-temperature flames is eliminated. Low NOx can be realized.
[0006]
Therefore, by applying the conventional lean premixed combustor for the two-fluid cycle, the amount of NOx generated can be kept within the regulation value even without the steam injection, and the steam injection is eliminated as necessary. The amount of utility steam can be increased and fuel consumption can be reduced.
[0007]
However, this lean premixed combustor does not require steam to reduce NOx, but has a problem that combustion tends to become unstable. For this reason, if water vapor is injected into a lean premixed combustor, the flame temperature will fall too low and almost no stable combustion will be possible, resulting in a misfire, or if fuel is increased to stabilize combustion, fuel will be excessive in the fuel region. However, there is a problem that the original lean combustion cannot be performed and a sufficient NOx reduction effect cannot be obtained.
[0008]
The present invention has been developed to solve such problems. That is, the object of the present invention is to increase the output of the gas turbine by injecting a large amount of steam into the combustor when the power demand is large, and to generate NOx when the power demand is small and the demand for steam is large. An object of the present invention is to provide a low-NOx combustor for a two-fluid cycle and an operation method thereof that can completely eliminate steam injection and thereby increase utility steam and reduce fuel consumption.
[0009]
According to the reference example , a diffusion combustion type pilot burner (12) disposed in the center and a plurality of premixed combustion type main burners (14) disposed therearound are provided. It has a steam injection pipe (16) for supplying water vapor so as to mix with air flowing into the fuel injection valve, and has a dilution hole (22a) for injecting the remaining steam not supplied to the steam injection pipe (16). A low NOx combustor for a two-fluid cycle is provided comprising a combustor liner (22).
[0010]
According to a preferred embodiment of the reference example, the steam injection pipe (16) has a steam injection port for injecting steam upstream of the swirler of the fuel injection valve of the main burner. Furthermore, it is preferable that a steam injection pipe (18) for supplying water vapor by mixing with air flowing into the fuel injection valve of the pilot burner is provided.
[0011]
In addition, according to the reference example , a diffusion combustion type pilot burner (12) disposed in the central portion and a plurality of premixed combustion type main burners (14) disposed around the center are provided. A steam injection pipe (16) for supplying water vapor so as to be mixed with the air flowing into the fuel injection valve of the burner is provided, and when steam injection is performed to increase the output, a part of the steam to be injected is said steam injection pipe The remaining steam, which is injected from the fuel, mixed with the air flowing into the main injection valve and supplied to the fuel injection valve, and not supplied to the steam injection pipe (16), is diluted in the dilution hole (22a) of the combustor liner (22). The method of operating the low NOx combustor for a two-fluid cycle is provided. Further, at the time of the steam injection, it is preferable that the steam injection amount is increased in accordance with the fuel increase amount, thereby maintaining the ratio of the sum of steam and air and the fuel substantially constant.
[0012]
Further , according to the present invention, there is provided a method of operating a low NOx combustor for a two-fluid cycle, wherein the incinerator is disposed in a diffusion combustion type pilot burner (12) disposed in the center and around the incinerator. A plurality of premixed combustion main burners (14), and a steam injection pipe (16) for supplying water vapor so as to be mixed with the air flowing into the fuel injection valve of the main burner. When performing steam injection for the purpose, a part of the steam to be injected is injected from the steam injection pipe, mixed with air flowing into the main injection valve, and supplied to the fuel injection valve,
In the steam injection, the steam injection amount and the steam ratio are increased in accordance with the fuel increase amount, whereby the ratio of the sum of steam and air and the fuel is kept constant. A method of operating a low NOx combustor for a fluid cycle is provided.
[0013]
According to the apparatus of the present invention and the method of operating the same, the low NOx combustor of the present invention is a conventional lean premixed combustion in an operation state in which steam injection for increasing the output is not performed in a two-fluid cycle gas turbine. Even if the steam injection is eliminated, the NOx generation amount can be suppressed within the regulation value, and accordingly, the utility steam amount can be increased and the fuel consumption amount can be reduced.
[0014]
Further, when steam injection is performed to increase the output, part of the steam to be injected is injected from the steam injection pipe (16) and mixed with air flowing into the main injection valve for premixed combustion. In the present invention, the steam is mixed with the air flowing into the fuel injection valve of the main burner from the steam injection pipe (16) having the steam injection port for injecting steam upstream of the swirler of the fuel injection valve of the main burner. Since it supplies, it can introduce | transduce vapor | steam and air sufficiently mixed uniformly. Therefore, stable combustion is possible even when steam is injected into premixed combustion that is relatively unstable in terms of combustion.
[0015]
Furthermore, the ratio of the steam and the fuel can be increased by increasing the steam injection amount in accordance with the increase amount of the fuel, thereby increasing the combustion amount while suppressing the generation of NOx, and increasing the output of the two-fluid cycle. The remaining steam is preferably injected into a position that is relatively not involved in combustion, such as a lean hole of a combustor liner.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0017]
FIG. 1 is an overall configuration diagram of a low-NOx combustor for a two-fluid cycle according to the present invention. As shown in this figure, the low-NOx combustor 10 for a two-fluid cycle according to the present invention includes a pilot burner 12 disposed in the center and a plurality of (for example, six) main burners 14 disposed around the pilot burner 12. Prepare. In this figure, 22 is a combustor liner, 23 is a casing, 24 is a spark plug (igniter), and air 26 flows between the casing 23 and the liner 22 to reach the burners 12 and 14. And flows into the liner 22 to form flames 27a and 27b, and the generated combustion gas is guided to a gas turbine (not shown) through a scroll portion (not shown) to drive it. ing.
[0018]
In FIG. 1, a pilot burner 12 is a diffusion combustion burner that diffuses and burns fuel F in the combustion chamber 11.
The main burner 14 includes a main injection valve 14a and a premixing tube 14b arranged coaxially with each other. Fuel F is supplied to the main injection valve 14a from the outside through the casing 3. As this fuel, for example, gas fuel is used. The premixing tube 14b is a cylindrical tube whose lower end is opened in this figure, and the fuel and air are easily mixed inside. That is, the main burner 14 is a premixed lean burner composed of a main injection valve 14a and a premixing tube 14b. With this configuration, the fuel F can be injected into the premixing tube 14b by the main injection valve 14a, the fuel F can be premixed with a sufficient amount of air in the premixing tube 14b, and the lean combustion can be performed.
[0019]
The low-NOx combustor 10 for a two-fluid cycle of the present invention further includes a steam injection pipe 16 that supplies water vapor so as to be mixed with air flowing into the fuel injection valve (main injection valve 14a) of the main burner 14.
The steam injection pipe 16 has a steam injection port 16a, and the steam injection port 16a is positioned so as to inject steam to the upstream side of the swirler of the fuel injection valve 14a of the main burner 14.
[0020]
Further, the low NOx combustor 10 of the present invention includes a steam injection pipe 18 that supplies water vapor by mixing with air flowing into the fuel injection valve of the pilot burner 12.
[0021]
With the configuration of the present invention described above, diffusion combustion can be performed by the pilot burner 12 to form a flame holding source for the main burner 14. Moreover, the generation of NOx can be suppressed by premix combustion in the premixing tube 15 of the main burner 14.
[0022]
【Example】
Hereinafter, an embodiment of the above-described low NOx combustor 10 will be described. The low NOx combustor 10 shown in FIG. 1 is used to perform steam injection from the steam injection pipe 16 (case 1), steam injection from the liner dilution hole 22a (case 2), and steam injection to the scroll 21 (case 3). Three kinds of tests were conducted, and the combustion efficiency, the amount of generated NOx, and others were tested.
[0023]
2 is a test result of the embodiment of the present invention in case 1, FIG. 3 is a test result of case 2, and FIG. 4 is a test result of case 3. 2 to 4, the horizontal axis represents the steam ratio (steam flow rate / air flow rate), and the vertical axis represents the NOx generation amount. This test was conducted at an operating pressure of 6 ata.
[0024]
Table 1 summarizes the advantages and disadvantages of each case.
[0025]
[Table 1]
Figure 0004635324
[0026]
From FIG. 2 to FIG. 4 and Table 1, in case 1, it was confirmed that the concentration of NOx generated decreases as the steam ratio increases, and NOx can be effectively reduced. However, in cases 2 and 3, the steam ratio is It has been confirmed that effective NOx reduction cannot be achieved even when the amount is increased.
In case 1, the combustion efficiency could be maintained at almost 100% even when the combustor outlet temperature T4 was controlled to be constant, and the fuel efficiency did not decrease.
[0027]
Based on the knowledge of the test results described above, in the operation method of the present invention, when steam injection is performed to increase the output, at least a part of the steam to be injected is injected from the steam injection pipe 16 to the main injection valve. It is mixed with the air flowing into and supplied to the fuel injection valve. Preferably, at the time of this steam injection, the steam injection amount is increased in accordance with the fuel increase amount, thereby maintaining the ratio of the sum of steam and air to the fuel substantially constant.
[0028]
According to the above-described apparatus and its operation method, in a gas turbine having a two-fluid cycle, the low NOx combustor according to the present invention is a conventional lean premixed combustor in an operation state in which steam injection for increasing output is not performed. Even if the operation is performed and the steam injection is eliminated, the amount of NOx generated can be suppressed within the regulation value, and accordingly, the utility steam amount can be increased and the fuel consumption amount can be reduced.
[0029]
When steam injection is performed to increase the output, at least a part of the steam to be injected is injected from the steam injection pipe 16 and mixed with air flowing into the main injection valve for premix combustion. By this injection, it is possible to introduce the steam and air into the fuel injection valve of the main burner with sufficiently uniform mixing. Therefore, stable combustion can be maintained and the flame temperature can be effectively lowered to further reduce the amount of NOx generated.
[0030]
Furthermore, the ratio of steam and fuel is increased according to the amount of fuel increase, and the amount of steam injection is increased to prevent an increase in flame temperature and increase the amount of combustion while suppressing an increase in the amount of NOx generated. The output of the cycle can be increased. The remaining steam is preferably injected into a position that is relatively not involved in combustion, such as a lean hole of a combustor liner.
[0031]
With the above-described low-NOx combustor for the two-fluid cycle and the operation method thereof according to the present invention, normally, fuel becomes rich with the increased fuel due to the increase in output by steam injection, the flame temperature rises, and NOx increases. However, tests have confirmed that the apparatus and method of the present invention can suppress an increase in flame temperature and an increase in NOx by injection of steam into the premixed main injection valve. In this test, the combustion efficiency was not deteriorated even when steam injection of the same amount as the fuel flow rate of the main burner was performed, and an NOx reduction effect of about ½ before steam injection was confirmed.
[0032]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
[0033]
【The invention's effect】
As described above, the low-NOx combustor for the two-fluid cycle of the present invention and its operation method can increase the output of the gas turbine by injecting a large amount of steam into the combustor when the power demand is large, and When the demand for power is small and the demand for water vapor is large, it is possible to completely eliminate water vapor injection while suppressing the generation of NOx, thereby improving utility steam and reducing fuel consumption. Have
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a low-NOx combustor for a two-fluid cycle according to the present invention.
FIG. 2 is a test result of an example of the present invention.
FIG. 3 is a test result of another example.
FIG. 4 is a test result of still another example.
FIG. 5 is a configuration diagram showing an example of a conventional two-fluid cycle.
[Explanation of symbols]
1 gas turbine equipment, 2 steam,
2a surplus water vapor (utility),
3 Mixer, 4 Compressed air, 5 Combustor, 6 Waste heat recovery boiler,
10 Low NOx combustor,
12 Pilot burner (diffusion combustion burner),
14 Main burner (premixed lean burner),
14a main injection valve, 14b premixing pipe,
16 steam injection pipes, 18 steam injection pipes,
21 scroll, 22 combustor liner, 22a dilution hole,
23 casing, 24 spark plug (igniter),
26 Air, 27a, 27b Flame,
A air, E exhaust heat, F fuel, W water supply, S water vapor

Claims (1)

二流体サイクル用の低NOx燃焼器の運転方法であって、前記焼却器は、中心部に配置された拡散燃焼式のパイロットバーナー(12)と、そのまわりに配置された複数の予混合燃焼式のメインバーナー(14)とを備え、更に、メインバーナーの燃料噴射弁へ流入する空気と混合するように水蒸気を供給する蒸気噴射管(16)を備え、出力増加のために蒸気噴射を行う際に、噴射する蒸気の一部を前記蒸気噴射管から噴射して、メイン噴射弁へ流入する空気と混合して燃料噴射弁へ供給し、
前記蒸気噴射時に、燃料の増加量に応じて、蒸気噴射量及び蒸気割合を増加させ、これにより蒸気と空気の和と燃料との比率が一定になるように維持する、ことを特徴とする二流体サイクル用の低NOx燃焼器の運転方法。
A method of operating a low NOx combustor for a two-fluid cycle, wherein the incinerator includes a diffusion combustion type pilot burner (12) disposed in a central portion and a plurality of premixed combustion types disposed around the incinerator. A steam injection pipe (16) for supplying water vapor so as to be mixed with air flowing into the fuel injection valve of the main burner, and performing steam injection to increase output In addition, a part of the steam to be injected is injected from the steam injection pipe, mixed with the air flowing into the main injection valve, and supplied to the fuel injection valve,
In the steam injection, the steam injection amount and the steam ratio are increased in accordance with the fuel increase amount, whereby the ratio of the sum of steam and air and the fuel is kept constant. A method of operating a low NOx combustor for a fluid cycle.
JP2000325143A 2000-10-25 2000-10-25 Low NOx combustor for two-fluid cycle and operation method thereof Expired - Lifetime JP4635324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325143A JP4635324B2 (en) 2000-10-25 2000-10-25 Low NOx combustor for two-fluid cycle and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325143A JP4635324B2 (en) 2000-10-25 2000-10-25 Low NOx combustor for two-fluid cycle and operation method thereof

Publications (2)

Publication Number Publication Date
JP2002130674A JP2002130674A (en) 2002-05-09
JP4635324B2 true JP4635324B2 (en) 2011-02-23

Family

ID=18802558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325143A Expired - Lifetime JP4635324B2 (en) 2000-10-25 2000-10-25 Low NOx combustor for two-fluid cycle and operation method thereof

Country Status (1)

Country Link
JP (1) JP4635324B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037858B2 (en) * 2013-01-30 2016-12-07 三菱日立パワーシステムズ株式会社 Combustor
JP2017020346A (en) * 2015-07-07 2017-01-26 三菱日立パワーシステムズ株式会社 Thermoelectric variable cogeneration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219839U (en) * 1988-07-22 1990-02-09
JPH0425967U (en) * 1990-06-14 1992-03-02

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327547A (en) * 1978-11-23 1982-05-04 Rolls-Royce Limited Fuel injectors
JPS59110336U (en) * 1983-01-17 1984-07-25 株式会社東芝 steam injection device
GB2219070B (en) * 1988-05-27 1992-03-25 Rolls Royce Plc Fuel injector
JP2929409B2 (en) * 1993-12-20 1999-08-03 三井造船株式会社 Supply structure of scavenging air in gas turbine combustor
JP3827783B2 (en) * 1996-10-23 2006-09-27 株式会社東芝 Gas turbine control device
JPH1130422A (en) * 1997-07-09 1999-02-02 Ishikawajima Harima Heavy Ind Co Ltd Low nox combustor for two-fluid cycle
JP3951155B2 (en) * 1998-02-24 2007-08-01 石川島播磨重工業株式会社 Low NOx steam injection combustor
JPH11344224A (en) * 1998-06-02 1999-12-14 Hitachi Ltd Gas turbine combustor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219839U (en) * 1988-07-22 1990-02-09
JPH0425967U (en) * 1990-06-14 1992-03-02

Also Published As

Publication number Publication date
JP2002130674A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
US20150362194A1 (en) Multifuel gas turbine combustor
JPH01114623A (en) Gas turbine combustor
JP2009052560A (en) System and method for fuel and air mixing in gas turbine
WO1994020793A1 (en) Premixed gas burning method and combustor
JP4635324B2 (en) Low NOx combustor for two-fluid cycle and operation method thereof
JPH03286906A (en) Boiler
BR112020022559A2 (en) system and method of improving combustion stability in a gas turbine
JP4386195B2 (en) Low NOx combustor for two-fluid cycle and operation method thereof
JP2755603B2 (en) Gas turbine combustor
JP2005526205A (en) Burner and its driving method
JP3706455B2 (en) Hydrogen / oxygen combustor for hydrogen combustion turbine
JP2004053144A (en) In-cylinder swirl combustor
JPH01139919A (en) Method and device for gas turbine combustion
JP4182414B2 (en) Combustion control method for steam injection gas turbine
JP4018809B2 (en) Additional combustion method using gas turbine exhaust gas and additional burner using this additional combustion method
KR100573310B1 (en) Combustion system of mixing gas
JPH04340020A (en) Gas turbine combustor
JPH1130421A (en) Low nox combustor for two-fluid cycle
JP2607387Y2 (en) Gas turbine combustor
JPH08261468A (en) Gas turbine combustor
JPH1130422A (en) Low nox combustor for two-fluid cycle
JP4524902B2 (en) Low NOx combustor with premixed fuel injection valve
JPS594823A (en) Gas turbine combustor for low calory gas
JP2004028352A (en) LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION
JPH066952U (en) Gas turbine combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4635324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term