JP4632899B2 - LED spotlight - Google Patents

LED spotlight Download PDF

Info

Publication number
JP4632899B2
JP4632899B2 JP2005236239A JP2005236239A JP4632899B2 JP 4632899 B2 JP4632899 B2 JP 4632899B2 JP 2005236239 A JP2005236239 A JP 2005236239A JP 2005236239 A JP2005236239 A JP 2005236239A JP 4632899 B2 JP4632899 B2 JP 4632899B2
Authority
JP
Japan
Prior art keywords
lens
light
array
irradiation
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005236239A
Other languages
Japanese (ja)
Other versions
JP2007052957A (en
Inventor
久志 浅川
Original Assignee
丸茂電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸茂電機株式会社 filed Critical 丸茂電機株式会社
Priority to JP2005236239A priority Critical patent/JP4632899B2/en
Publication of JP2007052957A publication Critical patent/JP2007052957A/en
Application granted granted Critical
Publication of JP4632899B2 publication Critical patent/JP4632899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばテレビスタジオ、舞台、展示会場、宴会場などの各種演出空間において照明器具として用いられるスポットライトに関し、詳しくは、複数の発光ダイオード(LED)を光源とするスポットライトに関する。   The present invention relates to a spotlight used as a lighting fixture in various production spaces such as a television studio, a stage, an exhibition hall, and a banquet hall, and more particularly to a spotlight using a plurality of light emitting diodes (LEDs) as light sources.

従来から、白熱電球を光源とするスポットライトが知られているが、白熱電球はフィラメントが高温になるため電球寿命が短く、思わぬ電球切れにより照明演出に支障をきたしたり、電球交換の手間がかかる、電球切れに伴うコストが嵩むなどの問題があった。また、スポットライトの運搬中に振動や衝撃がかかると、フィラメントの断線や管球の破損が起きるなどの問題もあった。   Conventionally, spotlights that use incandescent bulbs as the light source are known, but incandescent bulbs have a short filament life due to the high filament temperature. There has been a problem such as an increase in the cost associated with running out of the light bulb. In addition, when vibration or impact is applied during the transportation of the spotlight, there are problems such as breakage of the filament and breakage of the tube.

このような従来のスポットライトが有する問題を解消するために、近年、白熱電球に代えてLEDを光源とするスポットライトが提案されている(例えば特許文献1、2参照)。   In order to solve such problems of conventional spotlights, spotlights using LEDs as light sources in place of incandescent bulbs have been recently proposed (see, for example, Patent Documents 1 and 2).

特開2001−307502号公報JP 2001-307502 A 特開2005−158699号公報JP 2005-158699 A

しかし、従来のLEDスポットライトは、複数のLEDを曲面上に並べることで各LEDからの照射光を前方に集光させて仮想光源を形成したり、平面上に並べた複数のLEDからの照射光をアパーチャに集光して仮想光源を形成している。このため、各LEDからの照射光を一点に集中させることができず仮想光源が大きくなるため、被照射面への照射光として利用できない余分な光が生じ光の利用効率が低いという問題がある。
また、仮想光源が大きくなる結果、照射光のムラが生じ、被照射面において明度の違いが発生するという問題がある。
本発明はこのような従来事情に鑑みてなされたものであり、その目的とする処は、白熱電球に代えて、複数のLEDを光源として用いるに際し、各LEDからの照射光を一点に集中させ、白熱電球のフィラメントと同程度の大きさの仮想光源を形成して、光利用効率に優れると共に、ムラの無い均一な照射光を得ることができる新規なLEDスポットライトを提供することにある。
However, in the conventional LED spotlight, a plurality of LEDs are arranged on a curved surface to collect light emitted from each LED forward to form a virtual light source, or irradiation from a plurality of LEDs arranged on a plane. Light is condensed on the aperture to form a virtual light source. For this reason, the irradiation light from each LED cannot be concentrated on one point, and the virtual light source becomes large. Therefore, there is a problem that extra light that cannot be used as irradiation light to the irradiated surface is generated and the light use efficiency is low. .
In addition, as a result of the increase in the virtual light source, there is a problem that unevenness of the irradiated light occurs and a difference in brightness occurs on the irradiated surface.
The present invention has been made in view of such conventional circumstances, and the purpose of the present invention is to concentrate the irradiation light from each LED at one point when using a plurality of LEDs as a light source instead of an incandescent bulb. Another object of the present invention is to provide a novel LED spotlight that can form a virtual light source that is approximately the same size as the filament of an incandescent light bulb and has excellent light utilization efficiency and uniform illumination light without unevenness.

以上の目的を達成するために、本発明に係るスポットライトは、複数の発光ダイオードを並列状に並べて各発光ダイオードの照射光が前方へ照射されるよう形成したLED配列部と、該LED配列部の前方に設置され、前記LED配列部から照射された光束を平行光にして前方へ照射するアレイレンズと、該アレイレンズの前方に設置され、前記アレイレンズを通過した光を集光して仮想焦点に集める非球面平凸レンズである集光レンズと、該集光レンズの前方に設置され、前記仮想焦点を通過した光の照射角を制御して被照射面に向けて照射する凸レンズである照射角制御レンズと、該照射角制御レンズを前記仮想焦点に対し光軸に沿って移動可能とすると共に、該照射角制御レンズを前記仮想焦点に対し所望位置で固定させる手段と、前記LED配列部、アレイレンズ、集光レンズ、照射角制御レンズを保持する灯体と、から構成されることを特徴とする。 In order to achieve the above object, a spotlight according to the present invention includes an LED array portion formed by arranging a plurality of light emitting diodes in parallel so that the light emitted from each light emitting diode is irradiated forward, and the LED array portion. An array lens that is installed in front of the LED array unit to irradiate the light beam emitted from the LED array unit as parallel light, and is installed in front of the array lens and condenses the light that has passed through the array lens. A condensing lens that is an aspherical plano-convex lens that collects at the focal point, and an irradiation that is a convex lens that is installed in front of the condensing lens and that irradiates the irradiated surface by controlling the irradiation angle of light that has passed through the virtual focal point. and angular control lens, a means for fixing in the desired position along with the irradiation angle control lens to said virtual focal point movable along the optical axis with respect to the virtual focal point of the irradiation angle control lens, before LED array unit, array lens, a condenser lens, characterized in that it is composed of a light body that holds the irradiation angle control lens.

光源としての発光ダイオードは、小型で振動、衝撃に強く、堅牢で信頼性があり、発熱が少なく、長寿命で、白熱電球に匹敵する発光効率を持ち、演色性が良く、指向性が狭角(例えば10〜20度)である一般的な発光ダイオード、例えばパワー型LED、砲弾型LEDを用いることができる。また、要求される照明効果に応じて、白色発光ダイオード、青色発光ダイオード、赤色発光ダイオードなどを選択的に用いることができるが、汎用性や明るさなどを考慮すると、白色発光ダイオードを用いることが好ましい。
白色発光ダイオードは、材料にInGaN/YAGを使った化合物半導体のPN接合ダイオードの一種であり、電流を流し接合部にキャリアを注入することで材料自身が白色の光を放つ。例えば、明るさ:40ルーメン(lm)以上、動作電圧:3.8V以上の白色発光ダイオードを好ましく用いることができる。
Light-emitting diode as a light source is small, strong against vibration and shock, robust and reliable, has little heat generation, has a long life, has luminous efficiency comparable to incandescent bulbs, good color rendering, and narrow directivity Common light emitting diodes (for example, 10 to 20 degrees) such as power type LEDs and bullet type LEDs can be used. In addition, a white light emitting diode, a blue light emitting diode, a red light emitting diode, or the like can be selectively used depending on a required lighting effect. However, in consideration of versatility and brightness, a white light emitting diode is used. preferable.
The white light emitting diode is a kind of compound semiconductor PN junction diode using InGaN / YAG as a material, and the material itself emits white light by flowing current and injecting carriers into the junction. For example, a white light emitting diode having a brightness of 40 lumens (lm) or more and an operating voltage of 3.8 V or more can be preferably used.

このような発光ダイオードを、平面板上で縦横、縦横斜め、千鳥状、ハニカム状などの配列形態になるよう並列状に複数並べ、各発光ダイオードの照射光が前方へ照射されるようにして、所望の光量を備えたLED配列部を形成する。用いる発光ダイオードとその数、配列パターンなどは、スポットライトの使用状況に対応して要求される明るさ、照射距離範囲、照射径などの各種条件に応じて適宜選択される。   A plurality of such light emitting diodes are arranged in parallel so as to form an arrangement form such as vertical and horizontal, vertical and horizontal diagonal, staggered, and honeycomb on a flat plate, so that irradiation light of each light emitting diode is irradiated forward, An LED array portion having a desired light amount is formed. The light-emitting diodes to be used, the number of the light-emitting diodes, the arrangement pattern, and the like are appropriately selected according to various conditions such as brightness, irradiation distance range, irradiation diameter, and the like required corresponding to the use situation of the spotlight.

アレイレンズは、各発光ダイオードから照射される狭角拡散光を平行光に変換する(コリメートする)ためのレンズで、各発光ダイオードの正面前方に位置するレンズを、各発光ダイオードの配列パターンに合わせて整列してなるレンズ集合体である。
該アレイレンズにおける各レンズのレンズ径、レンズ厚さなどは、スポットライトの使用状況に対応して要求される明るさ、照射距離範囲、照射径、焦点距離などの各種条件に応じて適宜選択される。
アレイレンズを構成する各レンズは、平凸レンズ、両凸レンズ、メニスカスレンズなどで形成することができる。
The array lens is a lens for converting (collimating) the narrow-angle diffused light emitted from each light emitting diode into parallel light. The lens located in front of each light emitting diode is aligned with the array pattern of each light emitting diode. This is a lens assembly formed by aligning.
The lens diameter, lens thickness, etc. of each lens in the array lens are appropriately selected according to various conditions such as brightness, irradiation distance range, irradiation diameter, focal length, etc. required in accordance with the spotlight usage conditions. The
Each lens constituting the array lens can be formed of a plano-convex lens, a biconvex lens, a meniscus lens, or the like.

集光レンズは、各発光ダイオードから照射されアレイレンズで平行光に変換された照射光を集光して仮想焦点(仮想光源)に集めるためのレンズで、球面平凸レンズ、非球面平凸レンズ、両凸レンズ、メニスカスレンズなどで構成することができる。前記仮想焦点を、白熱電球のフィラメントと同程度の大きさの仮想光源とするためには、収差の影響などを考慮し、非球面平凸レンズを用いることが好ましい。
該集光レンズのレンズ径、レンズ厚さなどは、スポットライトの使用状況に対応して要求される明るさ、照射距離範囲、照射径、焦点距離、LED配列部における各発光ダイオードの配列パターン、LED配列部からの照射光束の照射径などの各種条件に応じて適宜選択される。
The condensing lens is a lens for condensing the irradiation light irradiated from each light emitting diode and converted into parallel light by the array lens, and collecting it in a virtual focus (virtual light source). A convex lens, a meniscus lens, or the like can be used. In order to make the virtual focal point a virtual light source having the same size as the filament of the incandescent bulb, it is preferable to use an aspheric plano-convex lens in consideration of the influence of aberrations.
The lens diameter, lens thickness, etc. of the condensing lens are the brightness, irradiation distance range, irradiation diameter, focal length, and LED light emitting diode array pattern in the LED array section, which are required according to the spotlight usage. It is appropriately selected according to various conditions such as the irradiation diameter of the irradiation light beam from the LED array section.

照射角制御レンズは、前記仮想焦点(仮想光源)を通過した光の照射角を制御して被照射面に向けて照射するためのレンズで、球面平凸レンズ、非球面平凸レンズ、両凸レンズ、フレネルレンズ、メニスカスレンズなどで構成することができる。収差の影響などを考慮すれば、非球面平凸レンズを用いることが好ましい。
該照射角制御レンズのレンズ径、レンズ厚さなどは、スポットライトの使用状況に対応して要求される明るさ、照射距離範囲、照射径、焦点距離などの各種条件に応じて適宜選択される。
The irradiation angle control lens is a lens for controlling the irradiation angle of the light passing through the virtual focus (virtual light source) and irradiating the irradiated surface toward the irradiated surface, and includes a spherical plano-convex lens, an aspheric plano-convex lens, a biconvex lens, and a Fresnel lens. A lens, a meniscus lens, or the like can be used. In consideration of the influence of aberrations, it is preferable to use an aspheric plano-convex lens.
The lens diameter, lens thickness, and the like of the irradiation angle control lens are appropriately selected according to various conditions such as brightness, irradiation distance range, irradiation diameter, and focal length required in accordance with the spotlight usage situation. .

これらLED配列部、アレイレンズ、集光レンズ、照射角制御レンズの相対的位置関係は、スポットライトの使用状況に対応して要求される明るさ、照射距離範囲、照射径、焦点距離などの各種条件に応じて適宜選択され、灯体内において適正関係位置に保持される。   The relative positional relationship of these LED array part, array lens, condenser lens, and irradiation angle control lens is various, such as brightness, irradiation distance range, irradiation diameter, focal length, etc. required in accordance with the use situation of the spotlight. It is appropriately selected according to the conditions and is held at an appropriate relationship position in the lamp.

灯体は、スポットライトで通常用いられる耐熱性、放熱性をもった軽量材料、例えばアルミニウムなどの金属材料や耐熱性合成樹脂などで成形される。灯体の外径や長さなどは、スポットライトの使用状況に対応して要求される明るさ、照射距離範囲、照射径、焦点距離などの各種条件に応じて適宜選択される。
LED配列部の放熱性を考慮すれば、灯体の後部に放熱フィンなどの放熱手段を設けることが好ましい。
The lamp body is formed of a heat-resistant and heat-dissipating lightweight material usually used in spotlights, for example, a metal material such as aluminum, a heat-resistant synthetic resin, or the like. The outer diameter, length, etc. of the lamp body are appropriately selected according to various conditions such as brightness, irradiation distance range, irradiation diameter, focal length and the like required in accordance with the use situation of the spotlight.
In consideration of the heat dissipation of the LED array portion, it is preferable to provide heat dissipation means such as a heat dissipation fin at the rear of the lamp body.

スポットライトから照射される照射光の照射角を選択的に調整可能とするために、前記照射角制御レンズを光軸に沿って移動可能とすると共に、該照射角制御レンズを前記仮想焦点(仮想光源)に対し所望位置で固定させる手段を備え、前記照射角制御レンズと前記仮想焦点の相対的位置関係を変化し得るよう構成することが好ましい。
ここで、照射角制御レンズを仮想焦点に対し光軸に沿っての移動及び所望位置で固定させる手段の具体的態様として、光軸方向に沿って前後摺動自在としたレンズホルダにより照射角制御レンズを保持すると共に、該レンズホルダを前後摺動させる機構として、灯体側に固定したラックと、レンズホルダ側に設けた歯車の組み合わせからなり、その歯車の回転を手動で操作する機構又は自動で操作する機構などの、スポットライトにおける周知のレンズ摺動機構をあげることができる。
In order to selectively adjust the irradiation angle of the irradiation light emitted from the spotlight, the irradiation angle control lens can be moved along the optical axis, and the irradiation angle control lens is moved to the virtual focus (virtual focus). It is preferable that a means for fixing the light source at a desired position is provided so that the relative positional relationship between the irradiation angle control lens and the virtual focus can be changed.
Here, as a specific aspect of the means for moving the irradiation angle control lens along the optical axis with respect to the virtual focus and fixing it at a desired position, the irradiation angle control is performed by a lens holder that is slidable back and forth along the optical axis direction. As a mechanism for holding the lens and sliding the lens holder back and forth, it consists of a combination of a rack fixed to the lamp body and a gear provided on the lens holder side, and a mechanism for operating the rotation of the gear manually or automatically Well-known lens sliding mechanisms in spotlights, such as operating mechanisms, can be mentioned.

本発明に係るLEDスポットライトは、以上説明したように構成することで、白熱電球を光源とする従来の単レンズスポットライト(例えば特許文献1の図1参照)の代用として提供することができる。また、以下のように構成することで、白熱電球を光源とする従来の結像系スポットライトの代用として提供することができる。
結像系スポットライトとする場合、複数の発光ダイオードを並列状に並べて各発光ダイオードの照射光が前方へ照射されるよう形成したLED配列部と、該LED配列部の前方に設置され、前記LED配列部から照射された光束を平行光にして前方へ照射するアレイレンズと、該アレイレンズの前方に設置され、前記アレイレンズを通過した光を集光して仮想焦点に集める非球面平凸レンズである集光レンズと、該集光レンズの前方で光軸に沿って移動可能に設置された凸レンズである結像レンズと、前記集光レンズと結像レンズの間に設けられ光束の通過範囲を制御する手段と、前記結像レンズを所望位置で固定させる手段と、前記LED配列部、アレイレンズ、集光レンズ、結像レンズを適正関係位置に保持する灯体とから構成し、前記光束の通過範囲を制御する手段に対する前記結像レンズの相対的位置関係を変化させることにより、照射光の結像状態を選択的に調整可能とする。
光束の通過範囲を制御する手段としては、アパーチャやカッターなどの、スポットライトにおける周知の手段を用いることができる。また、結像レンズは、一枚である場合と複数枚である場合を含む。
The LED spotlight according to the present invention can be provided as a substitute for a conventional single-lens spotlight that uses an incandescent bulb as a light source (for example, see FIG. 1 of Patent Document 1) by configuring as described above. Further, by configuring as follows, it can be provided as a substitute for a conventional imaging system spotlight using an incandescent bulb as a light source.
In the case of an imaging system spotlight, a plurality of light emitting diodes are arranged in parallel, and an LED array portion formed so that irradiation light of each light emitting diode is irradiated forward, and the LED array portion is disposed in front of the LED array portion, An array lens that irradiates the light beam emitted from the array unit in parallel light and an aspherical plano-convex lens that is installed in front of the array lens and collects the light that has passed through the array lens and collects it at a virtual focus. A condensing lens, an imaging lens which is a convex lens movably installed along the optical axis in front of the condensing lens, and a light flux passing range provided between the condensing lens and the imaging lens. was constituted by a means for controlling the means for fixing the imaging lens at a desired position, the LED array unit, array lens, a condenser lens, a light body that holds the imaging lens to the proper relationship position, wherein By varying the relative positional relationship between the imaging lens for a means of controlling the passing range of the bundle, and the imaging state of the illumination light selectively adjustable.
As means for controlling the light beam passage range, well-known means in a spotlight such as an aperture or a cutter can be used. In addition, the imaging lens includes a single lens and a plurality of imaging lenses.

本発明に係るLEDスポットライトは以上説明したように構成したので、発光ダイオードを光源として有効利用し、白熱電球を光源とした従来の単レンズスポットライト、結像系スポットライトと同様の照射光を得ることができ、且つ白熱電球式スポットライトが有する各種問題点を解消した新規な照明器具として、テレビスタジオ、舞台、展示会場、宴会場、その他の各種演出空間において有効に用いることができた。
また、集光レンズで集光された仮想焦点が光源となるので、単レンズスポットライトとして提供した場合、照射角制御レンズを光源(仮想焦点)の位置まで後退させることができる。よって、白熱電球を光源とする従来の単レンズスポットライトに比べ、より照射径の広い光(フラッドフォーカス光)を得ることができ、灯体長さを短くして従来よりコンパクトなスポットライトの提供も可能になるなど、多くの効果を奏する。
Since the LED spotlight according to the present invention is configured as described above, it effectively uses a light emitting diode as a light source, and emits light similar to that of a conventional single lens spotlight or imaging system spotlight using an incandescent bulb as a light source. As a new lighting fixture that can be obtained and solves the various problems of incandescent light bulb type spotlights, it can be used effectively in television studios, stages, exhibition halls, banquet halls, and other various production spaces.
Moreover, since the virtual focus condensed by the condensing lens serves as a light source, when provided as a single lens spotlight, the irradiation angle control lens can be moved backward to the position of the light source (virtual focus). Therefore, compared to conventional single-lens spotlights that use incandescent bulbs as the light source, light with a wider irradiation diameter (flood focus light) can be obtained, and the lamp length can be shortened to provide more compact spotlights than before. There are many effects such as being possible.

以下、本発明に係るLEDスポットライトの実施形態の例について、図面を参照しながら説明する。
図1〜図6には、本発明のLEDスポットライトを、従来の単レンズスポットライトの代用として実施した例を示す。すなわち、本例のLEDスポットライトaは、LED配列部1と、アレイレンズ2と、非球面集光レンズ3と、照射角制御レンズ4と、該照射角制御レンズ4を仮想焦点Fに対し光軸Lに沿っての移動及び所望位置で固定させる手段5と、これら光学系を適正関係位置に保持する灯体6から構成されている。
Hereinafter, an example of an embodiment of an LED spotlight according to the present invention will be described with reference to the drawings.
1 to 6 show an example in which the LED spotlight of the present invention is implemented as a substitute for a conventional single lens spotlight. In other words, the LED spotlight a of this example includes an LED array unit 1, an array lens 2, an aspherical condenser lens 3, an irradiation angle control lens 4, and an irradiation angle control lens 4 that emits light to the virtual focal point F. It comprises a means 5 for moving along the axis L and fixing it at a desired position, and a lamp body 6 for holding these optical systems at appropriate positions.

LED配列部1は、複数の白色発光ダイオード10を、灯体6の内部後端に設置した印刷配線基板11の前面に縦横に並列状に並べて、各白色発光ダイオード10の照射光が前方へ照射されるよう形成したもので、印刷配線基板11の後面側には、各白色発光ダイオード10の発光時の熱を逃がすための放熱フィン12aを多数備えた放熱板12が設置されている。放熱板12の各放熱フィン12aは灯体6の外側に突出している。
放熱板12の前面におけるLED配列部1の外側の領域部分から灯体6の内部前端に向けては、アレイレンズ2、非球面集光レンズ3、照射角制御レンズ4を前記適正関係位置に保持するためのガイドバー7が複数本架設されている。
The LED array unit 1 arranges a plurality of white light emitting diodes 10 in parallel in the vertical and horizontal directions on the front surface of the printed wiring board 11 installed at the rear end inside the lamp body 6, and the irradiation light of each white light emitting diode 10 is irradiated forward. The heat radiating plate 12 having a large number of heat radiating fins 12 a for releasing the heat generated when each white light emitting diode 10 emits light is installed on the rear surface side of the printed wiring board 11. Each radiating fin 12 a of the radiating plate 12 protrudes outside the lamp body 6.
The array lens 2, the aspherical condensing lens 3, and the irradiation angle control lens 4 are held in the proper relation positions from the region outside the LED array portion 1 on the front surface of the heat sink 12 toward the inner front end of the lamp body 6. For this purpose, a plurality of guide bars 7 are installed.

アレイレンズ2は、各白色発光ダイオード10からの照射光を平行光に変換する平凸レンズ2a(図3に拡大して示す)が、各白色発光ダイオード10の正面前方に位置するよう、複数の平凸レンズ2aを各白色発光ダイオード10の配列パターンに合わせて整列してなる平凸レンズ集合体である。
アレイレンズ2は、四角形状のレンズホルダ21で保持され、このレンズホルダ21の角部に突設した一対の支持片22,22の通孔に挿通したガイドバー7を該支持片22に対しビス止めするなどして、前記適正関係位置に保持されている。
The array lens 2 includes a plurality of flat lenses so that a plano-convex lens 2a (enlarged in FIG. 3) that converts the irradiation light from each white light-emitting diode 10 into parallel light is positioned in front of each white light-emitting diode 10. This is a plano-convex lens assembly formed by aligning the convex lenses 2 a according to the arrangement pattern of the white light emitting diodes 10.
The array lens 2 is held by a rectangular lens holder 21, and a guide bar 7 inserted into a through hole of a pair of support pieces 22, 22 protruding from the corner of the lens holder 21 is screwed into the support piece 22. It is held at the proper relationship position by, for example, stopping.

非球面集光レンズ3は、各白色発光ダイオード10から照射されアレイレンズ2で平行光に変換された照射光を集光して仮想焦点(仮想光源)Fに集めるための非球面平凸レンズからなる。
非球面集光レンズ3は、円形状のレンズホルダ31で保持され、このレンズホルダ31の直径延長線上に突設した一対の支持片32,32の通孔に挿通したガイドバー7を該支持片32に対しビス止めするなどして、前記適正関係位置に保持されている。
The aspherical condensing lens 3 is composed of an aspherical plano-convex lens for condensing and collecting the irradiation light irradiated from each white light emitting diode 10 and converted into parallel light by the array lens 2 into a virtual focus (virtual light source) F. .
The aspherical condensing lens 3 is held by a circular lens holder 31, and a guide bar 7 inserted into a through hole of a pair of support pieces 32, 32 projecting on a diameter extension line of the lens holder 31 is supported by the support piece. 32 is held in the proper relation position by, for example, screwing.

照射角制御レンズ4は、仮想焦点Fを通過した光の照射角を制御して被照射面に向けて照射するための平凸レンズからなる。
照射角制御レンズ4は、円形状のレンズホルダ41で保持され、このレンズホルダ41の直径延長線上に突設した一対の支持片42,42の通孔にガイドバー7を摺動自在に挿通して、前記適正関係位置に保持され且つ、仮想焦点Fに対し光軸Lに沿っての移動及び所望位置での固定を自在とされている。
The irradiation angle control lens 4 is a plano-convex lens for controlling the irradiation angle of light that has passed through the virtual focal point F and irradiating the surface to be irradiated.
The irradiation angle control lens 4 is held by a circular lens holder 41, and the guide bar 7 is slidably inserted into the through holes of a pair of support pieces 42, 42 protruding on the diameter extension line of the lens holder 41. Thus, it is held at the proper relationship position, and can be freely moved along the optical axis L with respect to the virtual focal point F and fixed at a desired position.

これらLED配列部1、アレイレンズ2、非球面集光レンズ3、照射角制御レンズ4の光学系の相対的位置関係は、スポットライトの使用状況に対応して要求される明るさ、照射距離範囲、照射径、焦点距離などの各種条件に応じて適宜選択され、灯体6内において適正関係位置に保持される。   The relative positional relationship of the optical system of the LED array unit 1, the array lens 2, the aspherical condenser lens 3, and the irradiation angle control lens 4 is determined by the brightness and irradiation distance range required in accordance with the spotlight usage situation. Are appropriately selected according to various conditions such as an irradiation diameter and a focal length, and are held at appropriate positions in the lamp body 6.

灯体6は、アルミニウムなどの金属又は耐熱合成樹脂などにより、耐熱性と軽量性を具備すると共に、前記光学系を適正関係位置に保持し得る径と長さを備えるよう成形されている。   The lamp body 6 is formed of a metal such as aluminum or a heat-resistant synthetic resin so as to have heat resistance and light weight, and to have a diameter and a length that can hold the optical system in an appropriate relationship position.

照射角制御レンズ4を仮想焦点Fに対し光軸Lに沿っての移動及び所望位置で固定させる手段5として、本例では、スポットライトにおける周知のレンズ摺動機構を採用しており、該機構について簡単に説明すれば、光軸Lに沿って灯体6の内部に固定したラック51と、レンズホルダ41と一体に摺動するようレンズホルダ41に回転自在に保持され且つラック51に噛合する歯車52と、灯体6の外側に摺動可能に装備され歯車52を回転操作するための操作レバー(不図示)を備え、該操作レバーの回転操作でレンズホルダ41が光軸Lに沿って移動し、且つ所望位置で固定させることができる機構である。   As a means 5 for moving the irradiation angle control lens 4 along the optical axis L and fixing it at a desired position with respect to the virtual focal point F, in this example, a well-known lens sliding mechanism in a spotlight is adopted. In brief, the rack 51 fixed inside the lamp body 6 along the optical axis L, the lens holder 41 is rotatably held so as to slide integrally with the lens holder 41, and meshes with the rack 51. A gear 52 and an operation lever (not shown) that is slidably provided on the outside of the lamp body 6 and that rotates the gear 52 are provided. The lens holder 41 is moved along the optical axis L by the rotation of the operation lever. It is a mechanism that can be moved and fixed at a desired position.

これにより、仮想焦点Fを通過した光の照射角を、図4に示すスポットフォーカス状態(照射角が最も狭い状態)から、図5に示すミディアムフォーカス状態(スポットフォーカスとフラッドフォーカスの間の状態)を経て、図6に示すフラッドフォーカス状態(照射角が最も広い状態)までの間で、任意角度に調整することができる。   Thereby, the irradiation angle of the light passing through the virtual focus F is changed from the spot focus state shown in FIG. 4 (the state where the irradiation angle is the narrowest) to the medium focus state shown in FIG. 5 (a state between the spot focus and the flood focus). Through these steps, the angle can be adjusted to an arbitrary angle until the flood focus state (the state where the irradiation angle is the widest) shown in FIG.

尚、図示は省略するが、灯体6前面の投光開口部6aに、カラーフィルターなどの部材を適宜装着し得るようにしたり、該投光開口部6aの外側にバンドアを設置するなど、スポットライトにおける周知の照明演出効果手段を付加することは任意である。   Although not shown, a spot such as a member such as a color filter can be appropriately attached to the light projecting opening 6a on the front surface of the lamp body 6, or a band door is installed outside the light projecting opening 6a. It is optional to add a well-known illumination effect effect means in the light.

このような構成になる本例のLEDスポットライトaは、複数の白色発光ダイオード10からの照射光をアレイレンズ2で平行光に変換し、その光束を非球面集光レンズ3で仮想焦点Fに集光してこれを仮想光源とし、該仮想焦点Fを通過した光の照射角を照射角制御レンズ4で制御して被照射面に向けて照射する。よって、白熱電球を光源とする従来の単レンズスポットライトと同様の照射光を得ることができ、テレビスタジオ、舞台、展示会場、宴会場、その他の各種演出空間において有効に用いることができた。
また、図6に示すように、照射角制御レンズ4を光源(仮想焦点F)の位置まで後退させることができるので、白熱電球を光源とする従来の単レンズスポットライトに比べ、より照射径の広い光(フラッドフォーカス光)を得ることができ、その分だけ灯体長さを短くして従来よりコンパクトなスポットライトとして提供することができた。
In the LED spotlight a of this example having such a configuration, irradiation light from the plurality of white light emitting diodes 10 is converted into parallel light by the array lens 2, and the luminous flux is converted to a virtual focus F by the aspherical condenser lens 3. The light is condensed and used as a virtual light source, and the irradiation angle of the light passing through the virtual focal point F is controlled by the irradiation angle control lens 4 to irradiate the irradiated surface. Therefore, the irradiation light similar to that of a conventional single lens spotlight using an incandescent bulb as a light source can be obtained, and can be effectively used in various production spaces such as a television studio, a stage, an exhibition hall, a banquet hall.
Further, as shown in FIG. 6, since the irradiation angle control lens 4 can be moved back to the position of the light source (virtual focus F), the irradiation diameter can be further increased as compared with a conventional single lens spotlight using an incandescent bulb as a light source. Wide light (flood focus light) could be obtained, and the lamp length was shortened by that much, thereby providing a more compact spotlight than before.

以下、より詳細な実施の一例について説明する。
図1に示す構成のLEDスポットライトにおいて、日亜化学工業社のパワー型の白色LED「NCCW(明るさ:42ルーメン)」を、縦8列、横8列になるよう合計64個並べてLED配列部1を形成すると共に、アレイレンズ2として100mm×100mmのサイズのアレイレンズを、集光レンズ3として厚さ60mm、直径150mmの非球面平凸レンズを、照射角制御レンズ4として厚さ47mm、直径94mmの平凸レンズを夫々用い、各白色LEDから照射角制御レンズ4の前面(出射面)までの距離を280mmとした試験機を製作した。
Hereinafter, a more detailed example of implementation will be described.
In the LED spotlight having the configuration shown in FIG. 1, a total of 64 power white LEDs “NCCW (brightness: 42 lumens)” manufactured by Nichia Chemical Industry Co., Ltd. are arranged in a total of 64 rows and 8 rows. In addition to forming the portion 1, an array lens having a size of 100 mm × 100 mm is used as the array lens 2, an aspherical plano-convex lens having a thickness of 60 mm and a diameter of 150 mm is used as the condenser lens 3, and a thickness of 47 mm is used as the irradiation angle control lens 4. 94 mm plano-convex lenses were used, respectively, and a tester was manufactured in which the distance from each white LED to the front surface (exiting surface) of the irradiation angle control lens 4 was 280 mm.

この試験機を用いて、図4に示すスポットフォーカス状態で、LED実装面(LED配列部1における印刷配線基板11の前面)から被照射面までの距離:3.5m、被照射面の照射径約1mの条件で照射を行った。この被照射面の照度を測定したところ、最高照度1600lx、最高照度の1/2以上の範囲が被照射面中心から半径40cmの範囲であり、周辺部に向けて徐々に照度が落ちていくが、ムラの無い均一な照度分布であることが確認できた。該被照射面の中心点を通過する鉛直断面の照度測定結果を図7(イ)に、水平断面の照度測定結果を図7(ロ)に夫々示す。   Using this testing machine, in the spot focus state shown in FIG. 4, the distance from the LED mounting surface (the front surface of the printed wiring board 11 in the LED array 1) to the irradiated surface: 3.5 m, the irradiation diameter of the irradiated surface Irradiation was performed under a condition of about 1 m. When the illuminance of the irradiated surface was measured, the maximum illuminance was 1600 lx, and a range of 1/2 or more of the maximum illuminance was within a radius of 40 cm from the center of the irradiated surface, and the illuminance gradually decreased toward the periphery. It was confirmed that the illuminance distribution was uniform with no unevenness. FIG. 7 (a) shows the illuminance measurement result of the vertical section passing through the center point of the irradiated surface, and FIG. 7 (b) shows the illuminance measurement result of the horizontal section.

同試験機を用いて、図5に示すミディアムフォーカス状態で、LED実装面から被照射面までの距離:3.5m、被照射面の照射径約2mの条件で照射を行った。この被照射面の照度を測定したところ、最高照度890lx、最高照度の1/2以上の範囲が被照射面中心から半径55cmの範囲であり、周辺部に向けて徐々に照度が落ちていくが、ムラの無い均一な照度分布であることが確認できた。該被照射面の中心点を通過する鉛直断面の照度測定結果を図8(イ)に、水平断面の照度測定結果を図8(ロ)に夫々示す。   Using the same testing machine, irradiation was performed in a medium focus state shown in FIG. 5 under the conditions of a distance from the LED mounting surface to the irradiated surface: 3.5 m and an irradiation diameter of the irradiated surface of about 2 m. When the illuminance of the irradiated surface was measured, the maximum illuminance was 890 lx, and a range of 1/2 or more of the maximum illuminance was within a radius of 55 cm from the center of the irradiated surface, and the illuminance gradually decreased toward the periphery. It was confirmed that the illuminance distribution was uniform with no unevenness. FIG. 8 (a) shows the illuminance measurement result of the vertical section passing through the center point of the irradiated surface, and FIG. 8 (b) shows the illuminance measurement result of the horizontal section.

同試験機を用いて、図6に示すフラッドフォーカス状態で、LED実装面から被照射面までの距離:3.5m、被照射面の照射径約2.4mの条件で照射を行った。この被照射面の照度を測定したところ、最高照度405lx、最高照度の1/2以上の範囲が被照射面中心から半径75cmの範囲であり、周辺部に向けて徐々に照度が落ちていくが、ムラの無い均一な照度分布であることが確認できた。該被照射面の中心点を通過する鉛直断面の照度測定結果を図9(イ)に、水平断面の照度測定結果を図9(ロ)に夫々示す。   Using the same testing machine, irradiation was performed in the flood focus state shown in FIG. 6 under the conditions of a distance from the LED mounting surface to the irradiated surface: 3.5 m and an irradiation diameter of the irradiated surface of about 2.4 m. When the illuminance of the irradiated surface was measured, the maximum illuminance of 405 lx and a range of 1/2 or more of the maximum illuminance were within a radius of 75 cm from the center of the irradiated surface, and the illuminance gradually decreased toward the periphery. It was confirmed that the illuminance distribution was uniform with no unevenness. FIG. 9 (a) shows the illuminance measurement result of the vertical section passing through the center point of the irradiated surface, and FIG. 9 (b) shows the illuminance measurement result of the horizontal section.

以上の結果から、本発明に係るLEDスポットライトにより、従来の白熱電球式スポットライトと同様の照射光が得られることが確認できた。   From the above results, it was confirmed that the irradiation light similar to the conventional incandescent bulb type spotlight can be obtained by the LED spotlight according to the present invention.

次に、本発明のLEDスポットライトを、従来の結像系スポットライトの代用として実施した場合について、図10を参照しながら説明する。
この例のスポットライトは、図1における照射角制御レンズ4が結像レンズ4’になり、該結像レンズ4’と非球面集光レンズ3の間にアパーチャ60が形成され、レンズ摺動機構5の操作で結像レンズ4’を前後摺動させ、アパーチャ60に対する結像レンズ4’の相対的位置関係を変化させることにより、照射光の結像状態を選択的に調整可能に構成したものである。
アパーチャ60は、非球面集光レンズ3と結像レンズ4’の間に配設したアパーチャ板61の中心に開設され、非球面集光レンズ3で集光されて仮想焦点(仮想光源)Fに集まる光束の通過範囲を制御する。アパーチャ60に代えて、アパーチャ板61の配設箇所に、複数枚のカッター羽根を摺動自在に配設したカッターを形成して、同様の機能を得ることもできる。
それ以外の構成要素、すなわち、LED配列部1、アレイレンズ2、集光レンズ3、レンズ摺動機構5、灯体6、ガイドバー7などに係る構成については、図1〜図3に示す前述の説明と同様のため、重複する図示及び説明を省略する。
この例においては、結像レンズ4’の前後摺動により、照射光の結像状態を任意に調整することは言うまでもない。またこの例においても、図7〜図9に示す結果と同様の効果が得られることは確認済みである。
Next, a case where the LED spotlight of the present invention is implemented as a substitute for a conventional imaging system spotlight will be described with reference to FIG.
In the spotlight of this example, the irradiation angle control lens 4 in FIG. 1 becomes the imaging lens 4 ′, an aperture 60 is formed between the imaging lens 4 ′ and the aspherical condenser lens 3, and the lens sliding mechanism The image forming lens 4 'is slid back and forth by the operation 5 and the relative positional relationship of the image forming lens 4' with respect to the aperture 60 is changed so that the image forming state of the irradiation light can be selectively adjusted. It is.
The aperture 60 is opened at the center of the aperture plate 61 disposed between the aspherical condenser lens 3 and the imaging lens 4 ′, and is condensed by the aspherical condenser lens 3 to become a virtual focus (virtual light source) F. Controls the passing range of the collected light flux. A similar function can be obtained by forming a cutter in which a plurality of cutter blades are slidably disposed in place of the aperture plate 61 in place of the aperture 60.
The other constituent elements, that is, the configuration relating to the LED array section 1, the array lens 2, the condenser lens 3, the lens sliding mechanism 5, the lamp body 6, the guide bar 7, and the like are described above with reference to FIGS. Since the description is the same as above, overlapping illustration and description are omitted.
In this example, it goes without saying that the imaging state of the irradiation light is arbitrarily adjusted by sliding the imaging lens 4 ′ back and forth. Also in this example, it has been confirmed that the same effects as the results shown in FIGS.

以上、実施形態の例を図面と実施例に基づき説明したが、本発明に係るLEDスポットライトはこれらの例に限定されず、特許請求範囲に記載された技術的思想の範疇において種々の変更が可能であることは言うまでもない。   As mentioned above, although the example of embodiment was demonstrated based on drawing and the Example, the LED spotlight which concerns on this invention is not limited to these examples, A various change is in the category of the technical idea described in the claim. It goes without saying that it is possible.

本発明に係るスポットライトの実施形態の一例を簡略して示す縦断側面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal side view schematically showing an example of an embodiment of a spotlight according to the present invention. (イ)は図1の(I)−(I)線に沿う断面図、(ロ)は同(II)−(II)線に沿う断面図、(ハ)は同(III)−(III)線に沿う断面図、(ニ)は同(IV)−(IV)線に沿う断面図である。(A) is a cross-sectional view taken along line (I)-(I) in FIG. 1, (B) is a cross-sectional view taken along line (II)-(II), and (C) is shown in (III)-(III). Sectional drawing along a line, (D) is a sectional view along the line (IV)-(IV). アレイレンズを構成する平凸レンズの拡大斜視図。The expansion perspective view of the plano-convex lens which comprises an array lens. 図1に係るスポットライトのスポットフォーカス状態を示す模式図。The schematic diagram which shows the spot focus state of the spotlight which concerns on FIG. 図1に係るスポットライトのミディアムフォーカス状態を示す模式図。The schematic diagram which shows the medium focus state of the spotlight which concerns on FIG. 図1に係るスポットライトのフラッドフォーカス状態を示す模式図。The schematic diagram which shows the flood focus state of the spotlight which concerns on FIG. 図4に係る照射状態の被照射面の照度を表し、(イ)は該被照射面の鉛直断面、(ロ)は同水平断面を示す。The illuminance of the irradiated surface in the irradiation state according to FIG. 4 is represented, (A) shows a vertical section of the irradiated surface, and (B) shows the horizontal section. 図5に係る照射状態の被照射面の照度を表し、(イ)は該被照射面の鉛直断面、(ロ)は同水平断面を示す。The illuminance of the irradiated surface in the irradiation state according to FIG. 5 is represented, (A) shows a vertical section of the irradiated surface, and (B) shows the horizontal section. 図6に係る照射状態の被照射面の照度を表し、(イ)は該被照射面の鉛直断面、(ロ)は同水平断面を示す。6 represents the illuminance of the irradiated surface in the irradiation state according to FIG. 本発明に係るスポットライトの実施形態の他例を簡略して示す縦断側面図。The vertical side view which simplifies and shows the other example of embodiment of the spotlight which concerns on this invention.

符号の説明Explanation of symbols

a:LEDスポットライト
1:LED配列部
2:アレイレンズ
3:集光レンズ
4:照射角制御レンズ
4’:結像レンズ
5:レンズ摺動機構
a: LED spotlight 1: LED array part 2: Array lens 3: Condensing lens 4: Irradiation angle control lens 4 ': Imaging lens 5: Lens sliding mechanism

Claims (2)

複数の発光ダイオードを並列状に並べて各発光ダイオードの照射光が前方へ照射されるよう形成したLED配列部と、
該LED配列部の前方に設置され、前記LED配列部から照射された光束を平行光にして前方へ照射するアレイレンズと、
該アレイレンズの前方に設置され、前記アレイレンズを通過した光を集光して仮想焦点に集める非球面平凸レンズである集光レンズと、
該集光レンズの前方に設置され、前記仮想焦点を通過した光の照射角を制御して被照射面に向けて照射する凸レンズである照射角制御レンズと、
該照射角制御レンズを前記仮想焦点に対し光軸に沿って移動可能とすると共に、該照射角制御レンズを前記仮想焦点に対し所望位置で固定させる手段と、
前記LED配列部、アレイレンズ、集光レンズ、照射角制御レンズを保持する灯体と、から構成されることを特徴とするLEDスポットライト。
An LED array portion formed by arranging a plurality of light emitting diodes in parallel so that the irradiation light of each light emitting diode is irradiated forward;
An array lens that is installed in front of the LED array part and irradiates the light beam irradiated from the LED array part in parallel light; and
A condensing lens that is installed in front of the array lens and is an aspheric plano-convex lens that collects the light that has passed through the array lens and collects it in a virtual focus;
An irradiation angle control lens that is a convex lens that is installed in front of the condenser lens and controls the irradiation angle of the light that has passed through the virtual focal point to irradiate the irradiated surface;
Means for enabling the illumination angle control lens to move along the optical axis with respect to the virtual focus, and fixing the illumination angle control lens at a desired position with respect to the virtual focus;
An LED spotlight comprising the LED array section, an array lens, a condenser lens, and a lamp body that holds an irradiation angle control lens .
複数の発光ダイオードを並列状に並べて各発光ダイオードの照射光が前方へ照射されるよう形成したLED配列部と、
該LED配列部の前方に設置され、前記LED配列部から照射された光束を平行光にして前方へ照射するアレイレンズと、
該アレイレンズの前方に設置され、前記アレイレンズを通過した光を集光して仮想焦点に集める非球面平凸レンズである集光レンズと、
該集光レンズの前方で光軸に沿って移動可能に設置された凸レンズである結像レンズと、
前記集光レンズと結像レンズの間に設けられ光束の通過範囲を制御する手段と、
前記結像レンズを所望位置で固定させる手段と、
前記LED配列部、アレイレンズ、集光レンズ、結像レンズを保持する灯体と、から構成され、
前記光束の通過範囲を制御する手段に対する前記結像レンズの相対的位置関係を変化させることにより、照射光の結像状態を選択的に調整可能としたことを特徴とするLEDスポットライト。
An LED array portion formed by arranging a plurality of light emitting diodes in parallel so that the irradiation light of each light emitting diode is irradiated forward;
An array lens that is installed in front of the LED array part and irradiates the light beam irradiated from the LED array part in parallel light; and
A condensing lens that is installed in front of the array lens and is an aspheric plano-convex lens that collects the light that has passed through the array lens and collects it in a virtual focus;
An imaging lens that is a convex lens that is movably installed along the optical axis in front of the condenser lens;
Means for controlling a passing range of a light beam provided between the condenser lens and the imaging lens;
Means for fixing the imaging lens at a desired position;
The LED array unit, an array lens, a condenser lens, and a lamp body that holds an imaging lens ,
An LED spotlight characterized in that the imaging state of irradiation light can be selectively adjusted by changing the relative positional relationship of the imaging lens with respect to the means for controlling the light beam passage range.
JP2005236239A 2005-08-17 2005-08-17 LED spotlight Active JP4632899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236239A JP4632899B2 (en) 2005-08-17 2005-08-17 LED spotlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236239A JP4632899B2 (en) 2005-08-17 2005-08-17 LED spotlight

Publications (2)

Publication Number Publication Date
JP2007052957A JP2007052957A (en) 2007-03-01
JP4632899B2 true JP4632899B2 (en) 2011-02-16

Family

ID=37917263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236239A Active JP4632899B2 (en) 2005-08-17 2005-08-17 LED spotlight

Country Status (1)

Country Link
JP (1) JP4632899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343473B1 (en) * 2013-07-22 2013-12-27 주식회사 빅라이트 Led light type elipsoidal spotlight

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228770A (en) * 2007-03-16 2008-10-02 Morita Mfg Co Ltd Medical lighting device
DE102008013764A1 (en) 2007-03-16 2008-10-23 J.Morita Manufacturing Corp. Medical lighting device and medical imaging device
JP4791395B2 (en) * 2007-03-16 2011-10-12 株式会社モリタ製作所 Medical imaging device
US8623789B2 (en) * 2009-09-21 2014-01-07 Akonni Biosystems, Inc. Integrated cartridge
JP2010135095A (en) * 2008-12-02 2010-06-17 Ushio Inc Floodlight
JP2011049001A (en) * 2009-08-26 2011-03-10 Hibino Kk Lighting device
JP5519303B2 (en) * 2010-01-20 2014-06-11 オリンパス株式会社 Wavelength conversion unit and lighting device including the same
KR100996913B1 (en) * 2010-02-19 2010-11-29 제디아 주식회사 A stage lighting using light emittig diode
KR200473131Y1 (en) 2010-12-16 2014-06-17 윤삼걸 Transfer Device of Underwater light Lens
JP2013161603A (en) * 2012-02-03 2013-08-19 Lel Kk Lighting device
RU2624454C2 (en) * 2012-03-12 2017-07-04 Филипс Лайтинг Холдинг Б.В. Remote formation of light beam
JP2013197033A (en) 2012-03-22 2013-09-30 Harison Toshiba Lighting Corp Solid lighting device
JP5711193B2 (en) * 2012-09-21 2015-04-30 日本応用光学株式会社 Lighting device
KR101302736B1 (en) * 2012-10-09 2013-09-03 기린정밀공업 (주) Led moving head having enhanced safety performance
JP2014229590A (en) * 2013-05-27 2014-12-08 ローム株式会社 Led lighting apparatus
KR101613780B1 (en) 2014-03-28 2016-04-20 김덕휴 LED spotlight apparatus
EP3175172B1 (en) * 2014-08-01 2018-10-10 Coast Cutlery Co. Dual focus flashlight
US10288245B2 (en) * 2015-06-16 2019-05-14 Mitsubishi Electronic Corporation Headlight with illumination device having rotatable transmissive element for shifting light concentration position
CN105042382A (en) * 2015-08-11 2015-11-11 宁波金熠光电科技有限公司 LED zooming imaging lamp
JP6753244B2 (en) * 2016-09-26 2020-09-09 東芝ライテック株式会社 Lighting device
JP7011302B2 (en) * 2017-12-25 2022-01-26 丸茂電機株式会社 LED light source device, manufacturing method of LED light source device and spotlight
KR102089897B1 (en) * 2019-07-11 2020-03-16 한국광기술원 Beacon module with multi emission angle and beacon using the same
JP2021027014A (en) * 2019-08-08 2021-02-22 大日本印刷株式会社 Lighting device and movable body
US20230097767A1 (en) * 2020-02-07 2023-03-30 Koito Manufacturing Co., Ltd. Lamp unit
JP7407668B2 (en) * 2020-07-22 2024-01-04 株式会社小糸製作所 lighting unit
JP7354003B2 (en) * 2020-02-07 2023-10-02 株式会社小糸製作所 lighting unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282501U (en) * 1985-11-12 1987-05-26
JPH0269405U (en) * 1988-11-16 1990-05-25
JPH1132278A (en) * 1997-07-10 1999-02-02 Fuji Xerox Co Ltd Projecting device
JP2002008404A (en) * 2000-06-20 2002-01-11 Marumo Denki Kk Spotlight
JP2002540577A (en) * 1999-03-26 2002-11-26 ヴァリ・ライト、インク Zoom beam spreader with matched optical surface for non-imaging illumination applications
JP2003029338A (en) * 2001-07-16 2003-01-29 Ushio Inc Lamp positioning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282501U (en) * 1985-11-12 1987-05-26
JPH0269405U (en) * 1988-11-16 1990-05-25
JPH1132278A (en) * 1997-07-10 1999-02-02 Fuji Xerox Co Ltd Projecting device
JP2002540577A (en) * 1999-03-26 2002-11-26 ヴァリ・ライト、インク Zoom beam spreader with matched optical surface for non-imaging illumination applications
JP2002008404A (en) * 2000-06-20 2002-01-11 Marumo Denki Kk Spotlight
JP2003029338A (en) * 2001-07-16 2003-01-29 Ushio Inc Lamp positioning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343473B1 (en) * 2013-07-22 2013-12-27 주식회사 빅라이트 Led light type elipsoidal spotlight

Also Published As

Publication number Publication date
JP2007052957A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4632899B2 (en) LED spotlight
US8919994B2 (en) Illumination system and lamp utilizing directionalized LEDs
JP4836209B2 (en) LED headlamp system
JP5097916B2 (en) Lighting device
JP6072805B2 (en) Highly recyclable solid state light source device
US20080080179A1 (en) LED floodlight structure
RU2539976C2 (en) Lighting device with several light sources and one reflecting system and reflector unit
US11754258B2 (en) Digitally adjustable focused beam lighting system
KR20090046120A (en) Illumination apparatus using light emitting diodes
JP6539665B2 (en) Sports lighting equipment
JP4880637B2 (en) Long distance LED lighting fixture
JP4397314B2 (en) LED lighting device and spotlight.
WO2011091615A1 (en) Regulation type light source device
KR101863233B1 (en) LED Floodlight with Adjustable Angle of Angle
JP2003315678A (en) Ring illuminator
JP4331077B2 (en) LED light source device and spotlight
JP2008311175A (en) Incandescent lamp for spotlight and single-lens spotlight equipped with the same
KR101289356B1 (en) Led spotlight apparatus
JP6939854B2 (en) Lighting device
JP2007059220A (en) Lighting system
JP6631327B2 (en) Light source unit and road lighting equipment
JP2014093129A (en) Light-emitting unit and luminaire
TWI692597B (en) Lamp heat sink
JP2022181287A (en) Lighting device
JP2003168309A (en) Light source device for light guide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080814

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4632899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250