JP4630047B2 - Optical transmission equipment - Google Patents

Optical transmission equipment Download PDF

Info

Publication number
JP4630047B2
JP4630047B2 JP2004354355A JP2004354355A JP4630047B2 JP 4630047 B2 JP4630047 B2 JP 4630047B2 JP 2004354355 A JP2004354355 A JP 2004354355A JP 2004354355 A JP2004354355 A JP 2004354355A JP 4630047 B2 JP4630047 B2 JP 4630047B2
Authority
JP
Japan
Prior art keywords
signal
optical
omi
unit
optical modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004354355A
Other languages
Japanese (ja)
Other versions
JP2006166004A (en
Inventor
豊 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2004354355A priority Critical patent/JP4630047B2/en
Publication of JP2006166004A publication Critical patent/JP2006166004A/en
Application granted granted Critical
Publication of JP4630047B2 publication Critical patent/JP4630047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、電気信号を光信号に変換して信号の送信を行う光伝送装置、特に電気/光(E/O)変換部に関するものである。   The present invention relates to an optical transmission device that converts an electrical signal into an optical signal and transmits the signal, and more particularly to an electrical / optical (E / O) conversion unit.

光伝送に於いては、信号伝達の安定性、信頼性を維持する為、電気/光変換した場合に光変調度(OMI:Optical Modulation Index)を一定に保つ必要がある。   In optical transmission, in order to maintain the stability and reliability of signal transmission, it is necessary to keep the optical modulation index (OMI) constant when electrical / optical conversion is performed.

従来、E/Oで変換された光信号の光変調度を一定に制御可能な光伝送装置として特許文献1に示されるものがある。   2. Description of the Related Art Conventionally, an optical transmission apparatus that can control the optical modulation degree of an optical signal converted by E / O to be constant is disclosed in Patent Document 1.

特許文献1には光受信装置が光伝送路で接続され、光送信装置でE/O変換された光信号が光受信装置で受信され、光/電気(O/E)変換される光伝送装置が示されている。   Patent Document 1 discloses an optical transmission device in which an optical receiving device is connected through an optical transmission line, and an optical signal that has been E / O converted by the optical transmission device is received by the optical receiving device and optical / electrical (O / E) conversion is performed. It is shown.

E/O変換部、特にレーザダイオード(LD)は入力される高周波電気信号のゲイン、或はLD自体の温度変化で光変調度に影響を及し、又LDに印加するバイアス電流により光変調度に変動を与えることができることから、特許文献1のE/O変換部では、LDのバイアス電流をモニタし、モニタした結果に基づき、E/O変換された光変調度が一定となる様に、入力される高周波電気信号のゲインを調整している。   The E / O converter, particularly the laser diode (LD), affects the optical modulation factor by the gain of the input high-frequency electrical signal or the temperature change of the LD itself, and the optical modulation factor by the bias current applied to the LD. Therefore, the E / O converter of Patent Document 1 monitors the bias current of the LD, and based on the monitored result, the E / O converted light modulation degree is constant. The gain of the input high-frequency electrical signal is adjusted.

一方、光伝送装置は様々な環境に設置され、設置場所、設置環境によって、要求されるE/O変換条件が異なる。例えば、光伝送区間の3次歪み(IM3:3rd order Inter Modulation)を少なくする、或は雑音(CNR:Carrier to Noise Ratio)を低減したいという要求がある。この場合、従来の光伝送装置の様にE/O変換部で変換した場合の光変調度を一定となる様一義的に制御する方法であると、それぞれの光伝送装置毎に、また設置条件毎に手動で設定しなければならず、面倒であり、設置環境毎に最適なE/O変換条件を実現することが難しいという問題があった。   On the other hand, optical transmission apparatuses are installed in various environments, and required E / O conversion conditions differ depending on the installation location and installation environment. For example, there is a demand to reduce third-order distortion (IM3: 3rd order Inter Modulation) in an optical transmission section or to reduce noise (CNR: Carrier to Noise Ratio). In this case, as in the conventional optical transmission apparatus, the method of uniquely controlling the optical modulation degree when converted by the E / O conversion unit to be constant, for each optical transmission apparatus, installation conditions There is a problem that it must be set manually every time, and is troublesome, and it is difficult to realize optimum E / O conversion conditions for each installation environment.

特開2002−33705号公報JP 2002-33705 A

本発明は斯かる実情に鑑み、光変調度の調整が可能で、設置場所、設置環境に応じて最適な光変調度が容易に得られる光伝送装置を提供するものである。   In view of such circumstances, the present invention provides an optical transmission apparatus that can adjust the light modulation degree and can easily obtain the optimum light modulation degree according to the installation location and the installation environment.

本発明は、電気信号を光信号に変換するレーザダイオードと、該レーザダイオードに入力される信号の減衰率を調整する光変調度調整手段と、前記レーザダイオードのバイアス電流を検出するバイアス電流検出部と、検出されたバイアス電流に基づき設定された光変調度となる様に前記光変調度調整手段の減衰率を制御する演算処理部と、該演算処理部に光変調度の設定値を入力するOMI設定部を具備した光伝送装置に係るものである。   The present invention includes a laser diode that converts an electrical signal into an optical signal, an optical modulation degree adjusting unit that adjusts an attenuation rate of a signal input to the laser diode, and a bias current detection unit that detects a bias current of the laser diode. And an arithmetic processing unit that controls the attenuation factor of the optical modulation degree adjusting means so that the optical modulation degree is set based on the detected bias current, and a setting value of the optical modulation degree is input to the arithmetic processing unit The present invention relates to an optical transmission apparatus including an OMI setting unit.

本発明によれば、電気信号を光信号に変換するレーザダイオードと、該レーザダイオードに入力される信号の減衰率を調整する光変調度調整手段と、前記レーザダイオードのバイアス電流を検出するバイアス電流検出部と、検出されたバイアス電流に基づき設定された光変調度となる様に前記光変調度調整手段の減衰率を制御する演算処理部と、該演算処理部に光変調度の設定値を入力するOMI設定部を具備したので、光変調度を設置場所、設置環境に応じて設定することができ、最適な光変調度が得られるという優れた効果を発揮する。   According to the present invention, a laser diode that converts an electrical signal into an optical signal, a light modulation degree adjusting means that adjusts an attenuation rate of a signal input to the laser diode, and a bias current that detects a bias current of the laser diode A detection unit, an arithmetic processing unit for controlling the attenuation factor of the optical modulation degree adjusting means so as to obtain an optical modulation degree set based on the detected bias current, and a set value of the optical modulation degree in the arithmetic processing unit. Since the input OMI setting unit is provided, the light modulation degree can be set according to the installation location and the installation environment, and an excellent effect of obtaining the optimum light modulation degree is exhibited.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

光伝送装置に於いて、光区間の3次歪み(IM3:3rd order Inter Modulation)と雑音(CNR:Carrier to Noise Ratio)を決定するのは光変調度(OMI:Optical Modulation Index)であり、OMIは光強度の変調振幅と平均光強度の比で定義され、下記(1)式で定義される。   In the optical transmission apparatus, it is the optical modulation index (OMI) that determines the third-order distortion (IM3: 3rd order Inter Modulation) and noise (CNR: Carrier to Noise Ratio) of the optical section, and the OMI (OMI: Optical Modulation Index). Is defined by the ratio between the modulation amplitude of the light intensity and the average light intensity, and is defined by the following equation (1).

OMI=(光強度の変調振幅/平均光強度)
=(Ppeak−Pave)/Pave
=√(2PRF/ZLD)/(Ib−Ith) …(1)
ここで、Ppeak:光強度の変調振幅
Pave :平均光強度
PRF :キャリア1波当りのLD入力レベル
ZLD :LDの入力インピーダンス
Ib :バイアス電流
Ith :閾値電流
OMI = (modulation amplitude of light intensity / average light intensity)
= (Ppeak-Pave) / Pave
= √ (2PRF / ZLD) / (Ib−Ith) (1)
Where Ppeak: modulation amplitude of light intensity
Pave: Average light intensity
PRF: LD input level per carrier wave
ZLD: LD input impedance
Ib: Bias current
Ith: threshold current

又、(1)式に於いて、ZLD、Ib 、Ithは各LDに対して固定値となるので、IM3及びCNRの検討の際に変動可能なパラメータはPRFのみである。従って、PRFの増減に対してOMIが増減し、例えばOMIを大きくする場合は、LDの入力レベル、即ちPRFを増大させればよい。   In the equation (1), ZLD, Ib, and Ith are fixed values for each LD. Therefore, the only parameter that can be changed when examining IM3 and CNR is PRF. Therefore, the OMI increases or decreases with respect to the increase or decrease of the PRF. For example, when the OMI is increased, the input level of the LD, that is, the PRF may be increased.

次に、光伝送区間のIM3、CNR及び利得(Gopt)は下記(2)式、(3)式及び(4)式で示される。   Next, IM3, CNR, and gain (Gopt) in the optical transmission section are expressed by the following equations (2), (3), and (4).

IM3=IM3ref +40log(OMI/OMIref) …(2)
ここで、IM3ref :OMIref で変調した時のIM3
OMIref :基準となるOMI、例えば0.2
IM3 = IM3ref + 40 log (OMI / OMIref) (2)
Here, IM3ref: IM3 when modulated with OMIref
OMIref: Reference OMI, for example 0.2

CNR=[(OMI)2 (η・Pr )2 /2]/{[RIN・(η・Pr )2 +2qηPr +(In)2 ]・BW} …(3)
ここで、RIN :相対強度雑音(Relative Intensity Noise)
η :フォトダイオード(PD)の受光感度効率
Pr :平均受光レベル(例えば光ロスαならば、Pr =α・Pave)
q :電気素量1.60×10-19
In :入力換算雑音電流密度
BW :雑音帯域幅
CNR = [(OMI) 2 ( η · Pr) 2/2] / {[RIN · (η · Pr) 2 + 2qηPr + (In) 2] · BW} ... (3)
Here, RIN: Relative intensity noise
η: Photosensitive sensitivity efficiency of photodiode (PD)
Pr: Average light receiving level (for example, if light loss α, Pr = α · Pave)
q: Elementary electric quantity 1.60 × 10 −19
In: Input equivalent noise current density
BW: Noise bandwidth

Gopt =PRF_OUT−PRF
=(ZPD/2)(OMI・η・Pr )2 −(ZLD/2){OMI・(Ib−Ith)}2 …(4)
ここで、ZPD:PDの負荷抵抗
Gopt = PRF_OUT−PRF
= (ZPD / 2) (OMI · η · Pr) 2 − (ZLD / 2) {OMI · (Ib−Ith)} 2 (4)
Where ZPD: PD load resistance

上記(2)式、(3)式、(4)式からOMI(即ち、LDへの入力レベル)を大きくすればCNRがよくなり、OMIを小さくすればIM3がよくなることが分り、又OMIを決定するとCNR、IM3が一義的に決定される。本発明では、設置場所、設置環境に応じたCNR、IM3が得られる様にOMI値を変更可能としたものである。   From the above formulas (2), (3), and (4), it can be seen that increasing the OMI (that is, the input level to the LD) increases the CNR, and decreasing the OMI improves the IM3. Once determined, CNR and IM3 are uniquely determined. In the present invention, the OMI value can be changed so that CNR and IM3 corresponding to the installation location and installation environment can be obtained.

図1により本発明の第1の実施の形態について説明する。   A first embodiment of the present invention will be described with reference to FIG.

図1は光伝送装置の電気/光変換部1を示しており、該電気/光変換部1にはRFアンプ2を介して前記電気/光変換部1に電気信号が入力される様になっており、前記RFアンプ2は前記電気/光変換部1に一定レベルの電気信号が出力される様に調整されている。   FIG. 1 shows an electrical / optical conversion unit 1 of an optical transmission apparatus. An electrical signal is input to the electrical / optical conversion unit 1 via an RF amplifier 2. The RF amplifier 2 is adjusted so that an electric signal of a certain level is output to the electric / optical converter 1.

該電気/光変換部1について説明する。   The electrical / optical converter 1 will be described.

該電気/光変換部1の入力端子3に入力された電気信号を増幅する第1増幅部4、レーザダイオード9の利得のバラツキを吸収するOMI調整手段である第1可変減衰部5、増幅部の利得のバラツキを吸収する第2可変減衰部6、電気信号を増幅する第2増幅部7、ノイズ等をカットしてレーザダイオードへの過入力を防止する検波回路8、電気信号に対応して発光する電気/光変換器であるレーザダイオード(LD)9が順次接続され、該レーザダイオード9には光伝送部、例えば光ファイバ11が接続されている。前記レーザダイオード9は駆動中、ペルチェ素子等の冷却手段(図示せず)により所定温度に冷却されている。   A first amplifying unit 4 for amplifying an electric signal input to the input terminal 3 of the electric / optical converting unit 1; a first variable attenuating unit 5 which is an OMI adjusting means for absorbing variations in the gain of the laser diode 9; In response to the electric signal, the second variable attenuating unit 6 that absorbs the gain variation, the second amplifying unit 7 that amplifies the electric signal, the detection circuit 8 that cuts noise and prevents over-input to the laser diode A laser diode (LD) 9 which is an electric / optical converter that emits light is sequentially connected, and an optical transmission unit, for example, an optical fiber 11 is connected to the laser diode 9. The laser diode 9 is cooled to a predetermined temperature by a cooling means (not shown) such as a Peltier element during driving.

前記レーザダイオード9のバイアス電流Ibを検出し、A/D変換しバイアス検出信号Cbを出力するバイアス電流検出部12が設けられ、該バイアス電流検出部12からのバイアス検出信号CbはCPUで代表される演算処理部13に入力される様になっている。該演算処理部13は前記バイアス電流検出部12からの検出結果を基に前記第1可変減衰部5に対して制御信号CATを出力し、該制御信号CATはD/A変換部14を介して前記第1可変減衰部5に減衰量制御信号VATとして入力される様になっている。   A bias current detector 12 is provided for detecting a bias current Ib of the laser diode 9, A / D converting and outputting a bias detection signal Cb. The bias detection signal Cb from the bias current detector 12 is represented by a CPU. Are input to the arithmetic processing unit 13. The arithmetic processing unit 13 outputs a control signal CAT to the first variable attenuation unit 5 based on the detection result from the bias current detection unit 12, and the control signal CAT is passed through the D / A conversion unit 14. The first variable attenuator 5 is inputted as an attenuation control signal VAT.

又、前記電気/光変換部1は記憶部15を具備しており、該記憶部15には図2に示される様な制御データテーブル16が格納されており、前記演算処理部13は前記バイアス電流検出部12からの信号に基づき前記制御データテーブル16を参照して前記減衰量制御信号VATを出力する様になっている。   The electrical / optical conversion unit 1 includes a storage unit 15. The storage unit 15 stores a control data table 16 as shown in FIG. 2, and the arithmetic processing unit 13 stores the bias. The attenuation control signal VAT is output with reference to the control data table 16 based on the signal from the current detector 12.

該制御データテーブル16は、OMIに対するバイアス電流Ibと前記演算処理部13に入力されるバイアス検出信号Cb、該演算処理部13から出力される制御信号CATとの関連付けが設定されている。   In the control data table 16, the association between the bias current Ib for OMI, the bias detection signal Cb input to the arithmetic processing unit 13, and the control signal CAT output from the arithmetic processing unit 13 is set.

例えば、前記レーザダイオード9に入力される電気信号のレベルをOMI1 に設定した場合、OMI1 に維持するには、バイアス電流Ib1 の時、バイアス検出信号Cb11、制御信号CAT11であり、バイアス電流Ib2 の場合は、バイアス検出信号Cb12、制御信号CAT12となる等である。   For example, when the level of the electric signal input to the laser diode 9 is set to OMI1, the bias detection signal Cb11 and the control signal CAT11 are used when the bias current Ib1 is used to maintain the OMI1. Are the bias detection signal Cb12, the control signal CAT12, and so on.

更に、図2に示す関係が得られる様に、バイアス電流Ibに対する前記バイアス電流検出部12への入力信号Vb、バイアス検出信号Cb、制御信号CAT、前記D/A変換部14からの減衰量制御信号VATとの関連付けが図3のデータテーブル21に示される様に設定され、例えばバイアス電流Ib1 の時、入力信号Vb1 、バイアス検出信号Cb1 、制御信号CAT1 、減衰量制御信号VAT1 であり、その時の前記第1可変減衰部5の減衰量がDAT1 となる等である。   Further, in order to obtain the relationship shown in FIG. 2, the input signal Vb to the bias current detector 12, the bias detection signal Cb, the control signal CAT, and the attenuation amount control from the D / A converter 14 with respect to the bias current Ib are obtained. The association with the signal VAT is set as shown in the data table 21 of FIG. 3. For example, when the bias current is Ib1, the input signal Vb1, the bias detection signal Cb1, the control signal CAT1, and the attenuation control signal VAT1. The amount of attenuation of the first variable attenuation unit 5 is DAT1.

又、前記演算処理部13にはOMI設定部(図示せず)からOMI設定信号17が入力される様になっており、前記OMI設定部は設置場所、設置環境に応じ最適な前記OMI設定信号17を前記演算処理部13に入力する。   Further, an OMI setting signal 17 is input to the arithmetic processing unit 13 from an OMI setting unit (not shown), and the OMI setting signal is the optimum OMI setting signal according to the installation location and installation environment. 17 is input to the arithmetic processing unit 13.

以下、前記電気/光変換部1に於いて、OMIを一定に制御する作用について説明する。   Hereinafter, the operation of controlling the OMI to be constant in the electrical / optical converter 1 will be described.

設置場所、設置環境に応じ最適な前記OMI設定信号17が前記OMI設定部(図示せず)より前記演算処理部13に入力される。該演算処理部13は入力されたOMI設定信号17に対応するOMI値、例えばOMI1 となる様に、前記第1可変減衰部5の減衰率を制御する。   The optimal OMI setting signal 17 according to the installation location and installation environment is input to the arithmetic processing unit 13 from the OMI setting unit (not shown). The arithmetic processing unit 13 controls the attenuation factor of the first variable attenuation unit 5 so that the OMI value corresponding to the input OMI setting signal 17 becomes, for example, OMI1.

前記レーザダイオード9のバイアス電流Ib2 が前記バイアス電流検出部12によって検出され、A/D変換されてバイアス検出信号Cb12として前記演算処理部13に出力される。該演算処理部13は、入力されたバイアス検出信号Cb12を基に前記制御データテーブル16を参照して制御信号CAT12を出力する。該制御信号CAT12は前記D/A変換部14によってD/A変換され、減衰量制御信号VAT12として前記第1可変減衰部5に入力され、前記レーザダイオード9に入力される電気信号が一定となる様に減衰量DAT12に調整される。   A bias current Ib2 of the laser diode 9 is detected by the bias current detection unit 12, A / D converted, and output to the arithmetic processing unit 13 as a bias detection signal Cb12. The arithmetic processing unit 13 refers to the control data table 16 based on the input bias detection signal Cb12 and outputs a control signal CAT12. The control signal CAT12 is D / A converted by the D / A converter 14 and input to the first variable attenuator 5 as an attenuation control signal VAT12, and the electric signal input to the laser diode 9 becomes constant. In this way, the attenuation is adjusted to DAT12.

又、前記バイアス電流検出部12によって前記レーザダイオード9のバイアス電流Ib1 が検出された場合は、A/D変換されてバイアス検出信号Cb11として前記演算処理部13に出力される。該演算処理部13は、入力されたバイアス検出信号Cb11を基に前記OMI設定信号17がOMI1 となる様に、前記制御データテーブル16を参照して制御信号CAT11を出力する。   When the bias current detector 12 detects the bias current Ib1 of the laser diode 9, it is A / D converted and output to the arithmetic processor 13 as a bias detection signal Cb11. The arithmetic processing unit 13 outputs the control signal CAT11 with reference to the control data table 16 so that the OMI setting signal 17 becomes OMI1 based on the input bias detection signal Cb11.

該制御信号CAT11は前記D/A変換部14によってD/A変換され、減衰量制御信号VAT11として前記第1可変減衰部5に入力され、前記レーザダイオード9に入力される電気信号が一定となる様に減衰量DAT11に調整される。減衰量DATが制御され、前記レーザダイオード9の利得のバラツキが吸収され、該レーザダイオード9に入力されるOMIが設定値に保持される。   The control signal CAT11 is D / A converted by the D / A converter 14 and input to the first variable attenuator 5 as the attenuation control signal VAT11, and the electric signal input to the laser diode 9 becomes constant. In this way, the attenuation amount DAT11 is adjusted. The attenuation amount DAT is controlled, the variation in gain of the laser diode 9 is absorbed, and the OMI input to the laser diode 9 is held at a set value.

而して、外部信号によりOMI値をCPUに入力することによって所望のOMI値が実現される。   Thus, a desired OMI value is realized by inputting the OMI value to the CPU by an external signal.

図4は、本発明の第2の実施の形態を示すものであり、図4中、図1中で示したものと同等のものには同符号を付してある。   FIG. 4 shows a second embodiment of the present invention. In FIG. 4, the same components as those shown in FIG. 1 are denoted by the same reference numerals.

該第2の実施の形態は、基本的には第1の実施の形態と同様な構成を有し、前記第1可変減衰部5の前段に第3可変減衰部18が設けられる。前記演算処理部13は前記第3可変減衰部18にD/A変換部20を介して指令信号19を発する。   The second embodiment basically has the same configuration as that of the first embodiment, and a third variable attenuation unit 18 is provided in the preceding stage of the first variable attenuation unit 5. The arithmetic processing unit 13 issues a command signal 19 to the third variable attenuation unit 18 via the D / A conversion unit 20.

前記演算処理部13に前記OMI設定信号17が入力されると、前記演算処理部13は前記第3可変減衰部18に対し前記D/A変換部20を介して指令信号19を発し、前記第3可変減衰部18は出力信号が前記演算処理部13からの前記指令信号19に対応したOMIとなる様な減衰率を設定する。   When the OMI setting signal 17 is input to the arithmetic processing unit 13, the arithmetic processing unit 13 issues a command signal 19 to the third variable attenuation unit 18 via the D / A conversion unit 20, and The three variable attenuation unit 18 sets an attenuation rate such that the output signal becomes an OMI corresponding to the command signal 19 from the arithmetic processing unit 13.

第2の実施の形態に於ける記憶部15に格納される制御データテーブル16は図5に示される。又、前記第1可変減衰部5は図3で示されるデータテーブル21を有しており、このデータテーブルはOMI値によらず固定とする。   The control data table 16 stored in the storage unit 15 in the second embodiment is shown in FIG. The first variable attenuation unit 5 has a data table 21 shown in FIG. 3, and this data table is fixed regardless of the OMI value.

OMI値(OMI)がOMI1 の時、CPU出力値(COMIAT)がCOMIAT1 とし、COMIAT1は前記D/A変換部20にてVOMIAT1に変換され(DACの出力電圧値VOMIAT)、第3可変減衰部18の減衰量(DOMIAT)がDOMIAT1 に制御される。OMI値は設置場所の各環境下に於いてユーザよりOMI設定部を介して任意に入力されることにより、各OMI値に対応したCPU出力値が出て前記第3可変減衰部18の減衰量が制御される。   When the OMI value (OMI) is OMI1, the CPU output value (COMIAT) is COMIAT1, and COMIAT1 is converted to VOMIAT1 by the D / A converter 20 (DAC output voltage value VOMIAT). The amount of attenuation (DOMIAT) is controlled by DOMIAT1. The OMI value is arbitrarily input from the user via the OMI setting unit in each environment of the installation location, so that a CPU output value corresponding to each OMI value is output, and the attenuation amount of the third variable attenuation unit 18 Is controlled.

第2の実施の形態に於いては、前記第1可変減衰部5の減衰量を調整するとτ−LDのバイアス値をモニタし、E/O変換された光変調度が一定になる様に利得を制御し、前記第3可変減衰部18では光変調度を変更させる場合に光変調度に対応させ減衰率を変更することで利得を可変させる。従って、第2の実施の形態ではLDの光変調度を一定にする調整と、光変調度を変更する調整とを個別に行えるので、CPUの持つデータテーブルが簡素化されると共に調整が簡略化し、安定する。又、第1可変減衰部5と第3可変減衰部18の2つで光変調度を調整することになるので、光変調可変の幅が大きくなる。   In the second embodiment, when the attenuation amount of the first variable attenuating unit 5 is adjusted, the bias value of τ-LD is monitored, and the gain is set so that the E / O converted light modulation degree becomes constant. The third variable attenuator 18 changes the gain by changing the attenuation factor corresponding to the optical modulation factor when the optical modulation factor is changed. Therefore, in the second embodiment, the adjustment for making the optical modulation degree of the LD constant and the adjustment for changing the optical modulation degree can be performed separately, so that the data table of the CPU is simplified and the adjustment is simplified. ,Stabilize. Further, since the light modulation degree is adjusted by the first variable attenuating unit 5 and the third variable attenuating unit 18, the width of the light modulation variable is increased.

以上説明した様に、本発明によれば電気/光変換部1に於いてLDバイアス値をモニタし、そのLDバイアス値によりOMIが一定値になる様前記電気/光変換部1の利得を自動調整し、更に各環境下に於いてOMIを変動させることを可能とし、光伝送装置の最適なIM3・CNRを実現する。   As described above, according to the present invention, the LD bias value is monitored in the electric / optical converter 1, and the gain of the electric / optical converter 1 is automatically adjusted so that the OMI becomes a constant value according to the LD bias value. It is possible to adjust and further change the OMI in each environment, and realize the optimum IM3 · CNR of the optical transmission apparatus.

本発明の第1の実施の形態を示す概略構成図である。It is a schematic block diagram which shows the 1st Embodiment of this invention. 該第1の実施の形態で使用されるデータテーブルを示す図である。It is a figure which shows the data table used by this 1st Embodiment. 該第1の実施の形態に於ける各部位の信号の関係を示す図である。It is a figure which shows the relationship of the signal of each site | part in this 1st Embodiment. 本発明の第2の実施の形態を示す概略構成図である。It is a schematic block diagram which shows the 2nd Embodiment of this invention. 該第2の実施の形態で使用されるデータテーブルを示す図である。It is a figure which shows the data table used by this 2nd Embodiment.

符号の説明Explanation of symbols

1 電気/光変換部
2 RFアンプ
5 第1可変減衰部
6 第2可変減衰部
9 レーザダイオード
13 演算処理部
14 D/A変換部
15 記憶部
16 制御データテーブル
17 OMI設定信号
DESCRIPTION OF SYMBOLS 1 Electrical / optical conversion part 2 RF amplifier 5 1st variable attenuation part 6 2nd variable attenuation part 9 Laser diode 13 Arithmetic processing part 14 D / A conversion part 15 Memory | storage part 16 Control data table 17 OMI setting signal

Claims (1)

電気信号を光信号に変換するレーザダイオードと、該レーザダイオードに入力される信号の減衰を調整する第1の光変調度調整手段及び第2の光変調度調整手段と、前記レーザダイオードのバイアス電流を検出しバイアス検出信号を出力するバイアス電流検出部と、設定された光変調度となる様に前記第1の光変調度調整手段及び第2の光変調度調整手段に制御信号を出力して減衰を制御する演算処理部と、該演算処理部に光変調度の設定値を入力するOMI設定部と、前記設定値と前記バイアス検出信号と前記制御信号との関連付けが設定された制御データテーブルが格納された記憶部とを具備し、前記演算処理部は前記設定値に基づき前記制御データテーブルを参照して得られた前記制御信号により前記第1の光変調度調整手段の減衰量を制御すると共に、前記バイアス検出信号に基づき前記制御データテーブルを参照して得られた前記制御信号により前記第2の光変調度調整手段の減衰量を制御することを特徴とする光伝送装置。 A laser diode for converting an electrical signal into an optical signal, a first light modulation factor adjustment means and the second optical modulation index adjusting means for adjusting the attenuation amount of the signal input to the laser diode, the bias of the laser diode a bias current detecting unit for outputting a detection bias detection signal current, outputs a control signal to the first optical modulation index adjusting means and the second optical modulation adjusting means so as to be set to the optical modulation index an arithmetic processing unit which controls the attenuation amount is, the association of the OMI setting unit for inputting the optical modulation index set value to the arithmetic processing unit, the bias detection signal and the set value and the control signal is set and a storage unit in which the control data table is stored, reduction of the first optical modulation factor adjustment means the arithmetic processing unit by said control signal obtained by referring to the control data table based on the set value Controls the amount, the optical transmission apparatus characterized by controlling the attenuation amount of the reference by said control signal obtained by the second optical modulation index adjusting means said control data table based on the bias detection signal .
JP2004354355A 2004-12-07 2004-12-07 Optical transmission equipment Expired - Fee Related JP4630047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354355A JP4630047B2 (en) 2004-12-07 2004-12-07 Optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354355A JP4630047B2 (en) 2004-12-07 2004-12-07 Optical transmission equipment

Publications (2)

Publication Number Publication Date
JP2006166004A JP2006166004A (en) 2006-06-22
JP4630047B2 true JP4630047B2 (en) 2011-02-09

Family

ID=36667512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354355A Expired - Fee Related JP4630047B2 (en) 2004-12-07 2004-12-07 Optical transmission equipment

Country Status (1)

Country Link
JP (1) JP4630047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6360771B2 (en) * 2014-10-08 2018-07-18 株式会社フジクラ Optical transmission system, optical transmission system control method, and active optical cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142127A (en) * 1990-10-02 1992-05-15 Canon Inc Light transmitter
JPH04192729A (en) * 1990-11-27 1992-07-10 Fujitsu Ltd Optical transmitter
JPH05190950A (en) * 1992-01-17 1993-07-30 Hitachi Cable Ltd Ld deterioration detecting circuit
JPH08265259A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Light amplification repeater
JP2000004203A (en) * 1998-06-17 2000-01-07 Hitachi Cable Ltd Optical transmitter
JP2000193854A (en) * 1998-12-25 2000-07-14 Toshiba Corp Optical analog transmitter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142127A (en) * 1990-10-02 1992-05-15 Canon Inc Light transmitter
JPH04192729A (en) * 1990-11-27 1992-07-10 Fujitsu Ltd Optical transmitter
JPH05190950A (en) * 1992-01-17 1993-07-30 Hitachi Cable Ltd Ld deterioration detecting circuit
JPH08265259A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Light amplification repeater
JP2000004203A (en) * 1998-06-17 2000-01-07 Hitachi Cable Ltd Optical transmitter
JP2000193854A (en) * 1998-12-25 2000-07-14 Toshiba Corp Optical analog transmitter

Also Published As

Publication number Publication date
JP2006166004A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
US7511883B2 (en) Optical amplifying method, optical amplifying apparatus, and optical amplified transmission system using the apparatus
US6535330B1 (en) Dynamic controller for a multi-channel optical amplifier
US7504610B2 (en) Optical modulation amplitude compensation system having a laser driver with modulation control signals
US6690506B2 (en) Control architecture and method for optical amplifiers
US20020171917A1 (en) Optical amplifier performance controller and method of use
KR100909044B1 (en) Light intensity and extinction ratio adjusting device and method
JP2951323B2 (en) Automatic power adjustment device for optical fiber amplifier
EP0539038A2 (en) Optical transmitters
GB2298734A (en) Optical amplifiers
US11463177B2 (en) Optic signal receiver with dynamic control
US5809049A (en) Method and apparatus for monitoring the RF drive circuit of a linear laser transmitter
JP2002022612A (en) Equipment and method for measuring optical characteristics, and recording medium
JP4630047B2 (en) Optical transmission equipment
US7016105B2 (en) Optical amplification device with automatic gain control
JP2001526467A (en) Automatic compensation of CNR and OMI of laser transmitter
US6646790B2 (en) Optical amplifier gain control monitoring
JP2937866B2 (en) Wireless transmission device
JP2008141498A (en) Optical transmitter
JP4091149B2 (en) Optical element power control system
US6519068B1 (en) Circuits and methods for achieving high signal-to-noise ratios and obtaining stabilized laser signals in dense wavelength division multiplexing systems
US7068423B2 (en) Low cost flexible automated optical power management
JP2009278379A (en) Optical receiver
JP3933514B2 (en) Optical amplifier and optical communication system using the optical amplifier
KR102639884B1 (en) Optical network using optical amplifier in gain saturation region
US6885500B2 (en) Optical amplifier controller having adjustable slew-rate limiter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees