JP4629801B2 - Spool rotation prevention structure of spool valve - Google Patents

Spool rotation prevention structure of spool valve Download PDF

Info

Publication number
JP4629801B2
JP4629801B2 JP2010115974A JP2010115974A JP4629801B2 JP 4629801 B2 JP4629801 B2 JP 4629801B2 JP 2010115974 A JP2010115974 A JP 2010115974A JP 2010115974 A JP2010115974 A JP 2010115974A JP 4629801 B2 JP4629801 B2 JP 4629801B2
Authority
JP
Japan
Prior art keywords
spool
flow path
fitting hole
flow rate
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010115974A
Other languages
Japanese (ja)
Other versions
JP2010175084A (en
Inventor
靖丈 加藤
秀和 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2010115974A priority Critical patent/JP4629801B2/en
Publication of JP2010175084A publication Critical patent/JP2010175084A/en
Application granted granted Critical
Publication of JP4629801B2 publication Critical patent/JP4629801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Housings (AREA)

Description

本発明は、スプールの移動により複数の流路間を切換えるスプール弁型の電磁切換弁やパイロット切換弁等のスプールの回転を防止するスプール弁のスプール回転防止構造に関する。   The present invention relates to a spool rotation prevention structure for a spool valve that prevents rotation of a spool such as a spool valve type electromagnetic switching valve or a pilot switching valve that switches between a plurality of flow paths by movement of the spool.

この種のスプール弁のスプール回転防止構造は、本体の嵌合穴にスプールを軸方向へ摺動自在に挿入し、本体の両側には通電により発生する電磁力でスプールを移動する電磁石を備えると共に、スプールの両側にはスプールを中立位置に保持するばねを備え、電磁石の通電・非通電によりスプールを電磁力とばね力との対向作用で軸方向に移動して複数の流路間を切換える。そして、スプールの一端部に軸に平行な面取り部を設け、本体には嵌合穴に同心の開口穴を形成し、開口穴とスプールの面取り部との間には蒲鉾形の回転止め部材を配置し、回転止め部材は、外径を開口穴の内径よりやや小さくすると共に底辺部を開口穴からスプールの面取部までの寸法よりやや小さくし、本体に打ち込んだスプリングピンに微小回転可能に係止している。このため、複数の流路間を流入・流出する流体の流体力によってスプールを回転させようとするが、スプールの面取り部が回転止め部材の底辺部に接触し、回転止め部材の外径が開口穴の内径に当接し、スプールの回転を防止している。なお、スプールを中立位置に保持するばねの一方は、回転止め部材と干渉しないよう他方のばねより小径のものを用いている。   This type of spool valve anti-rotation structure for a spool valve includes an electromagnet for inserting a spool into a fitting hole of the main body so as to be slidable in the axial direction and moving the spool by electromagnetic force generated by energization on both sides of the main body. A spring for holding the spool in a neutral position is provided on both sides of the spool, and the spool is moved in the axial direction by the opposing action of the electromagnetic force and the spring force by the electromagnet energization / non-energization to switch between the plurality of flow paths. Then, a chamfered part parallel to the shaft is provided at one end of the spool, a concentric opening hole is formed in the main body, and a hook-shaped anti-rotation member is provided between the opening hole and the chamfered part of the spool. The anti-rotation member is arranged so that the outer diameter is slightly smaller than the inner diameter of the opening hole and the base is slightly smaller than the dimension from the opening hole to the chamfered portion of the spool, so that the spring pin driven into the body can be rotated slightly. Locked. For this reason, the spool is rotated by the fluid force of the fluid flowing in and out of the plurality of flow paths, but the chamfered portion of the spool contacts the bottom of the rotation stop member, and the outer diameter of the rotation stop member is opened. It contacts the inner diameter of the hole to prevent the spool from rotating. One of the springs that hold the spool in the neutral position has a smaller diameter than the other spring so as not to interfere with the rotation stop member.

特開平8−219300号公報(2−3頁、図1−3)JP-A-8-219300 (page 2-3, FIG. 1-3)

ところが、かかる従来のスプール弁のスプール回転防止構造では、スプールの回転を防止するために、スプールに面取り部を形成すると共に、本体に回転止め部材を微小回転可能に係止するため、スプールと本体との両方にスプールの回転を防止する構成を施さなければならず、構成が複雑になる問題があった。   However, in the conventional spool rotation prevention structure of the spool valve, in order to prevent the rotation of the spool, a chamfered portion is formed in the spool, and the rotation stopper member is locked to the main body so as to be able to rotate slightly. Both have to be provided with a configuration for preventing the rotation of the spool, resulting in a complicated configuration.

本発明の課題は、スプールに回転を防止する構成を格別に施すことなくスプールの回転を防止し、構成を簡素化し得るスプール弁のスプール回転防止構造を提供することにある。   An object of the present invention is to provide a spool rotation prevention structure for a spool valve that can prevent the rotation of the spool without simplifying the structure for preventing the rotation of the spool and can simplify the structure.

かかる課題を達成すべく、本発明は次の手段をとった。即ち、
本体に軸方向へ嵌合穴を穿設すると共に、流体を流入する供給流路と流体を流入出する負荷流路と流体を流出する排出流路とを軸方向へ間隙を有して嵌合穴内周面に開口して設け、嵌合穴には前記複数の流路間を切換連通するスプールを軸方向へ摺動自在に挿入し、供給流路が開口する箇所の嵌合穴内周面とスプール外周面との間に環状隙間を形成し、供給流路には環状隙間に流入する流体の流量を環状隙間の周方向の一方向と他方向とに対向して略同等に調整する流量調整部材を設け、前記スプールを中立位置に保持するばねを前記スプールの両側に備え、前記供給流路が開口する個所の前記嵌合穴内径を前記スプールの外径より大きく設け、前記供給流路を前記嵌合穴の中心より径方向外側に偏移して前記嵌合穴に接線方向で接続し、前記供給流路は先端を有底とした円筒形状の穴で形成し、接線方向で接続する前記嵌合穴に先端部および側面部を開口し、前記流量調整部材は円柱形状で前記供給流路の先端部に固定し、前記嵌合穴に開口する前記供給流路の先端部および側面部の先端部側を閉塞して前記供給流路から前記環状隙間に流入する流体を周方向の一方向と他方向とに対抗して流量を略同等に調整することを特徴とするスプール弁のスプール回転防止構造がそれである。
In order to achieve this problem, the present invention has taken the following measures. That is,
A fitting hole is drilled in the body in the axial direction, and a supply flow path for flowing in fluid, a load flow path for flowing in and out fluid, and a discharge flow path for flowing out fluid are fitted with a gap in the axial direction. An opening is provided on the inner peripheral surface of the hole, and a spool for switching communication between the plurality of flow paths is inserted into the fitting hole so as to be slidable in the axial direction. An annular clearance is formed between the outer circumferential surface of the spool, and the flow rate adjustment that adjusts the flow rate of the fluid flowing into the annular clearance in the supply flow path so as to oppose the circumferential direction of the annular clearance in one direction and the other direction. Members are provided, springs for holding the spool in a neutral position are provided on both sides of the spool, the inner diameter of the fitting hole where the supply channel opens is larger than the outer diameter of the spool, and the supply channel Shifted radially outward from the center of the fitting hole and connected to the fitting hole in a tangential direction, The supply channel is formed by a cylindrical hole with a bottom at the tip, the tip and the side are opened in the fitting hole connected in the tangential direction, and the flow rate adjusting member is cylindrical and has a cylindrical shape. The fluid that is fixed to the tip and closes the tip of the supply channel and the tip of the side surface that opens to the fitting hole and flows into the annular gap from the supply channel is defined as one direction in the circumferential direction. A spool valve anti-rotation structure for a spool valve is characterized in that the flow rate is adjusted to be substantially equal to the other direction.

以上詳述したように、請求項1に記載の発明は、供給流路から環状隙間に流入する流体の流量が流量調整部材により周方向の一方向と他方向とに略同等に分配されて相対し、スプールを回転しようとする力が周方向で平衡して、スプールの回転を防止できる。そして、供給流路に流量調整部材を設けることでスプールの回転を防止しているため、スプールに回転を防止する構成を格別に施すことなくスプールの回転を防止でき、構成を簡素化することができる。 As described above in detail, according to the first aspect of the present invention, the flow rate of the fluid flowing into the annular gap from the supply flow path is substantially equally distributed between the circumferential direction in one direction and the other direction by the flow rate adjusting member. Then, the force to rotate the spool is balanced in the circumferential direction, and the rotation of the spool can be prevented. And since the rotation of the spool is prevented by providing the flow rate adjusting member in the supply flow path, the rotation of the spool can be prevented without specially providing the structure for preventing the rotation of the spool, and the configuration can be simplified. it can.

また、請求項1に記載の発明は、スプールに回転を防止する構成を格別に施すことなくできるため、スプールを中立位置に保持するばねは、スプールの両側に同一のものを備えることができ、スプールを中立位置に保持するばねの一方を、回転止め部材と干渉しないよう他方のばねより小径のものを用いなければならない従来のスプール回転防止構造に比し、必要とする部品の種類を削減することができる。 In addition, since the invention according to claim 1 can be performed without specially providing a configuration for preventing rotation of the spool, the spring for holding the spool in the neutral position can be provided with the same on both sides of the spool, Compared to the conventional spool rotation prevention structure in which one of the springs that hold the spool in the neutral position must be smaller in diameter than the other spring so as not to interfere with the anti-rotation member, the number of necessary parts is reduced. be able to.

また、請求項1に記載の発明は、供給流路が開口する個所の嵌合穴内径を前記スプールの外径より大きく設け、供給流路を嵌合穴の中心より径方向外側に偏移して嵌合穴に接線方向で接続しているため、供給流路の嵌合穴への開口面積を大きくすることができ、供給流路を大径にすることなく、供給流路から環状隙間に流入する流体の流量増加を図ることができる。 In the first aspect of the present invention, the inner diameter of the fitting hole where the supply flow path opens is larger than the outer diameter of the spool, and the supply flow path is shifted radially outward from the center of the fitting hole. Since it is connected to the fitting hole in the tangential direction, the opening area to the fitting hole of the supply channel can be increased, and the supply channel can be connected to the annular gap without increasing the diameter of the supply channel. The flow rate of the fluid flowing in can be increased.

また、請求項1に記載の発明は、前記供給流路は先端を有底とした円筒形状の穴で形成し、接線方向で接続する前記嵌合穴に先端部および側面部を開口し、前記流量調整部材は円柱形状で前記供給流路の先端部に固定し、前記嵌合穴に開口する前記供給流路の先端部および側面部の先端部側を閉塞して前記供給流路から前記環状隙間に流入する流体を周方向の一方向と他方向とに対抗して流量を略同等に調整しているため、この略同等に調整する流体の流量を流量調整部材で閉塞した残余の供給流路側面部の嵌合穴への開口量に応じて精度良く設定することができる。 Further, in the first aspect of the present invention, the supply flow path is formed by a cylindrical hole having a bottom at the tip, and a tip portion and a side portion are opened in the fitting hole connected in a tangential direction. The flow rate adjusting member has a cylindrical shape, is fixed to the tip of the supply channel, closes the tip of the supply channel and the tip of the side surface that opens in the fitting hole, and is connected to the ring from the supply channel. Since the flow rate of the fluid flowing into the gap is adjusted to be approximately equal to one direction in the circumferential direction and the other direction, the remaining supply flow in which the flow rate of the fluid to be adjusted to be approximately equal is blocked by the flow rate adjusting member. It can be set with high accuracy according to the amount of opening to the fitting hole in the road side surface.

本発明の一実施形態を示した電磁切換弁の縦断面図である。It is a longitudinal cross-sectional view of the electromagnetic switching valve which showed one Embodiment of this invention. 図1の線X−Xに沿った拡大断面図である。It is an expanded sectional view along line XX of FIG.

以下、スプール弁として電磁切換弁に本発明を実施した一実施形態を図面に基づき説明する。
図1及び図2において、1は略矩形状の本体で、両側面にソレノイド2,3を備えると共に、上面に端子箱4を備えている。5は本体1に軸方向へ貫通して穿設の嵌合穴で、本体1の両側面に開口し、両側面の開口はソレノイド2,3で閉塞している。嵌合穴5は軸方向の略中央部に拡径した第1拡径部5Aを形成し、第1拡径部5Aの軸方向両側に間隙を有して拡径した第2拡径部5Bと第3拡径部5Cとを形成し、さらに、第2拡径部5Bと第3拡径部5Cのそれぞれ軸方向外側に間隙を有して拡径した第4拡径部5Dと第5拡径部5Eとを形成している。本体1には流体を流入する供給流路P1と、流体を流入出する第1負荷流路Aと第2負荷流路Bと、流体を流出する第1排出流路T1と第2排出流路T2とをそれぞれ嵌合穴5と略直交方向に本体1の下面から穿設している。供給流路P1は円筒形状の穴で、嵌合穴5の中心より径方向外側に偏移して嵌合穴5の第1拡径部5Aに接線方向で接続し、嵌合穴5の第1拡径部5A内周面へ先端部に加えて側面部を開口し、第1拡径部5Aへの開口面積を大きくして流量増加を図っている。そして、供給流路P1は直径寸法を第1拡径部5Aの軸方向における巾寸法より大きく設け、先端を有底とした円筒形状の穴で形成し、底を平坦面に形成している。また、第1負荷流路Aは第2拡径部5B内周面に、第2負荷流路Bは第3拡径部5C内周面に、第1排出流路T1は第4拡径部5D内周面に、第2排出流路T2は第5拡径部5E内周面にそれぞれ開口している。
Hereinafter, an embodiment in which the present invention is applied to an electromagnetic switching valve as a spool valve will be described with reference to the drawings.
1 and 2, reference numeral 1 denotes a substantially rectangular main body having solenoids 2 and 3 on both side surfaces and a terminal box 4 on the upper surface. Reference numeral 5 denotes a fitting hole that penetrates the main body 1 in the axial direction and opens on both side surfaces of the main body 1, and the openings on both side surfaces are closed by solenoids 2 and 3. The fitting hole 5 forms a first enlarged diameter portion 5A having an enlarged diameter at a substantially central portion in the axial direction, and an enlarged second diameter portion 5B having a gap on both sides in the axial direction of the first enlarged diameter portion 5A. And the third enlarged diameter portion 5C, and the fourth enlarged diameter portion 5D and the fifth enlarged diameter portion 5D are expanded with a gap on the outer side in the axial direction of each of the second enlarged diameter portion 5B and the third enlarged diameter portion 5C. The enlarged diameter portion 5E is formed. The main body 1 has a supply flow path P1 for flowing fluid, a first load flow path A and a second load flow path B for flowing fluid in, and a first discharge flow path T1 and second discharge flow path for flowing fluid. T2 is bored from the lower surface of the main body 1 in a direction substantially orthogonal to the fitting hole 5, respectively. The supply flow path P1 is a cylindrical hole, shifts radially outward from the center of the fitting hole 5 and is connected to the first enlarged portion 5A of the fitting hole 5 in the tangential direction. In addition to the tip portion, the side surface portion is opened to the inner peripheral surface of the first enlarged diameter portion 5A, and the opening area to the first enlarged diameter portion 5A is increased to increase the flow rate. The supply flow path P1 has a diameter dimension larger than the width dimension in the axial direction of the first enlarged diameter portion 5A, is formed by a cylindrical hole having a bottom with a tip, and has a flat bottom. The first load flow path A is on the inner peripheral surface of the second enlarged diameter portion 5B, the second load flow path B is on the inner peripheral surface of the third enlarged diameter portion 5C, and the first discharge flow path T1 is the fourth enlarged diameter portion. On the 5D inner peripheral surface, the second discharge channel T2 opens to the inner peripheral surface of the fifth enlarged diameter portion 5E.

6は嵌合穴5に軸方向へ摺動自在に挿入したスプールで、軸方向へ間隙を有して第1ランド部6Aと第2ランド部6Bとを備えると共に、第1ランド部6Aと第2ランド部6Bとの間に位置する中央軸部6C及び第1ランド部6Aの軸方向外側に位置する第1外側軸部6D及び第2ランド部6Bの軸方向外側に位置する第2外側軸部6Eを備えている。第1ランド部6Aと第2ランド部6Bは、嵌合穴5に摺動する外径寸法に設けると共に、軸方向における巾寸法を嵌合穴5の第2拡径部5Bと第3拡径部5Cの巾寸法より小さく設けている。中央軸部6Cと第1外側軸部6Dと第2外側軸部6Eは、嵌合穴5より小径の外径寸法に設けている。7は環状隙間で、供給流路P1が開口する嵌合穴5の第1拡径部5Aとスプール6の中央軸部6Cとの間に形成している。81は供給流路P1に設けた流量調整部材で、円柱形状に形成し、本体1の下面より供給流路P1の先端部に圧入して固定し、嵌合穴5の拡径部5Aに開口する供給流路P1の先端部を先端面81Aで閉塞すると共に、嵌合穴5の拡径部5Aに開口する供給流路P1の側面部の先端部側を外周面81Bで閉塞する。流量調整部材81は供給流路P1より環状隙間7に流入する流体の流量を環状隙間7の周方向の一方向と他方向とに略同等にするよう軸方向寸法Hを設定する。すなわち、供給流路P1を流れる流体の流量Qは、流量調整部材81の外周面81Bで閉塞した残余の供給流路P1側面部の嵌合穴5への開口から環状隙間7に流入して周方向の一方向に流れる流量Q1と周方向の他方向に流れる流量Q2とに分かれるので、Q1=Q2でスプール6を回転しようとする力が周方向で平衡してスプール6の回転を防止する。よって、Q1=Q2となるよう流量調整部材81の軸方向寸法Hを設定する。なお、流量調整部材81の軸方向寸法Hが長すぎると、供給流路P1側面部の嵌合穴5への開口面積が小さくなって流量Q2が少なく、Q1>Q2となってスプール6が一方向に回転する恐れがあり、逆に、軸方向寸法Hが短すぎると、供給流路P1側面部の嵌合穴5への開口面積が大きくなって流量Q2が多く、Q1<Q2となってスプール6が他方向に回転する恐れがある。 A spool 6 is slidably inserted in the fitting hole 5 in the axial direction and includes a first land portion 6A and a second land portion 6B with a gap in the axial direction, and the first land portion 6A and the first land portion 6A. A second outer shaft located on the outer side in the axial direction of the central shaft portion 6C located between the two land portions 6B, the first outer shaft portion 6D located on the outer side in the axial direction of the first land portion 6A, and the second land portion 6B. Part 6E is provided. The first land portion 6A and the second land portion 6B are provided in an outer diameter dimension that slides in the fitting hole 5, and the width dimension in the axial direction is set to the second enlarged diameter portion 5B and the third enlarged diameter diameter of the fitting hole 5. It is provided smaller than the width dimension of the part 5C. The central shaft portion 6 </ b> C, the first outer shaft portion 6 </ b> D, and the second outer shaft portion 6 </ b> E are provided with an outer diameter smaller than the fitting hole 5. Reference numeral 7 denotes an annular gap, which is formed between the first enlarged diameter portion 5A of the fitting hole 5 where the supply flow path P1 opens and the central shaft portion 6C of the spool 6. 81 is a flow rate adjusting member provided in the supply flow path P1, is formed in a cylindrical shape, is press-fitted and fixed to the tip of the supply flow path P1 from the lower surface of the main body 1, and is opened in the enlarged diameter portion 5A of the fitting hole 5. The front end portion of the supply flow path P1 to be closed is closed by the front end face 81A, and the front end portion side of the side face portion of the supply flow path P1 that opens to the enlarged diameter portion 5A of the fitting hole 5 is closed by the outer peripheral face 81B. The flow rate adjusting member 81 sets the axial dimension H so that the flow rate of the fluid flowing into the annular gap 7 from the supply flow path P1 is substantially equal to one direction in the circumferential direction of the annular gap 7 and the other direction. That is, the flow rate Q of the fluid flowing through the supply flow path P1 flows into the annular gap 7 from the opening to the fitting hole 5 in the side surface portion of the remaining supply flow path P1 closed by the outer peripheral surface 81B of the flow rate adjusting member 81. Since the flow rate Q1 flowing in one direction is divided into the flow rate Q2 flowing in the other circumferential direction, the force to rotate the spool 6 with Q1 = Q2 is balanced in the circumferential direction to prevent the spool 6 from rotating. Therefore, the axial dimension H of the flow rate adjusting member 81 is set so that Q1 = Q2. If the axial dimension H of the flow rate adjusting member 81 is too long, the opening area to the fitting hole 5 on the side surface of the supply flow path P1 becomes small, the flow rate Q2 is small, Q1> Q2, and the spool 6 becomes one. Conversely, if the axial dimension H is too short, the opening area to the fitting hole 5 on the side surface of the supply flow path P1 becomes large and the flow rate Q2 increases, and Q1 <Q2. There is a risk that the spool 6 rotates in the other direction.

10、11はスプール6を図1に示す中立位置に保持するばねで、スプール6を軸方向両端部から付勢するよう嵌合穴5の軸方向両端部に収装し、本体1両側面に固定したソレノイド2,3の固定鉄心2A,3Aとスプール6との間に挟持している。ソレノイド2,3は固定鉄心2A,3Aと対向して可動鉄心2B,3Bを軸方向へ移動自在に備え、端子箱4内部で図示しない外部電源と電気接続したコイル2C,3Cへの通電により生じる電磁力で可動鉄心2B,3Bを固定鉄心2A,3Aに向けて吸引して軸方向へ移動し、この可動鉄心2B,3Bの移動でロッド2D,3Dによりスプール6をばね10,11力に抗して軸方向へ摺動するよう押圧する。 Reference numerals 10 and 11 denote springs for holding the spool 6 in the neutral position shown in FIG. 1. The springs 6 and 11 are accommodated at both ends in the axial direction of the fitting hole 5 so as to urge the spool 6 from both ends in the axial direction. The fixed solenoid cores 2 </ b> A and 3 </ b> A of the fixed solenoids 2 and 3 are sandwiched between the spool 6. Solenoids 2 and 3 are provided with movable iron cores 2B and 3B that are movable in the axial direction so as to face fixed iron cores 2A and 3A, and are generated by energizing coils 2C and 3C that are electrically connected to an external power source (not shown) inside terminal box 4. The movable iron cores 2B and 3B are attracted toward the fixed iron cores 2A and 3A by the electromagnetic force and moved in the axial direction. The movement of the movable iron cores 2B and 3B causes the spool 6 to resist the force of the springs 10 and 11 by the rods 2D and 3D. Then, press to slide in the axial direction.

スプール6はソレノイド2,3の非通電による図1に示す中立位置と、ソレノイド2への通電で図1右方向への摺動による第1切換位置と、ソレノイド3への通電で図1左方向への摺動による第2切換位置との3位置に切換自在に設けている。そして、スプール6は中立位置で第1ランド部6Aが第2拡径部5B内に位置すると共に、第2ランド部6Bが第3拡径部5C内に位置し、供給流路P1と第1負荷流路Aと第2負荷流路Bと第1排出流路T1と第2排出流路T2との間を連通する。また、スプール6は第1切換位置で第1ランド部6Aが第1拡径部5Aと第2拡径部5Bとの間で嵌合穴5に接すると共に、第2ランド部6Bが第3拡径部5Cと第5拡径部5Eとの間で嵌合穴5に接し、第1負荷流路Aを供給流路P1と遮断して第1排出流路T1に切換連通し、第2負荷流路Bを第2排出流路T2と遮断して供給流路P1に切換連通する。また、スプール6は第2切換位置で第1ランド部6Aが第2拡径部5Bと第4拡径部5Dとの間で嵌合穴5に接すると共に、第2ランド部6Bが第1拡径部5Aと第3拡径部5Cとの間で嵌合穴5に接し、第1負荷流路Aを第1排出流路T1と遮断して供給流路P1に切換連通し、第2負荷流路Bを供給流路P1と遮断して第2排出流路T2に切換連通する。 The spool 6 is in the neutral position shown in FIG. 1 when the solenoids 2 and 3 are not energized, the first switching position when the solenoid 2 is energized and slid rightward in FIG. It is provided so as to be switchable to three positions with the second switching position by sliding to the right. The spool 6 is in a neutral position, the first land portion 6A is located in the second enlarged diameter portion 5B, the second land portion 6B is located in the third enlarged diameter portion 5C, and the first flow path 6 The load flow path A, the second load flow path B, the first discharge flow path T1, and the second discharge flow path T2 are communicated with each other. In the spool 6 at the first switching position, the first land portion 6A is in contact with the fitting hole 5 between the first enlarged diameter portion 5A and the second enlarged diameter portion 5B, and the second land portion 6B is in the third enlarged position. The first load flow path A is cut off from the supply flow path P1 and switched to the first discharge flow path T1 in contact with the fitting hole 5 between the diameter portion 5C and the fifth enlarged diameter portion 5E, and the second load The flow path B is blocked from the second discharge flow path T2 and switched to the supply flow path P1. In the spool 6 at the second switching position, the first land portion 6A is in contact with the fitting hole 5 between the second enlarged diameter portion 5B and the fourth enlarged diameter portion 5D, and the second land portion 6B is in the first enlarged position. The first load flow path A is cut off from the first discharge flow path T1 and switched to the supply flow path P1 in contact with the fitting hole 5 between the diameter portion 5A and the third enlarged diameter portion 5C, and the second load The flow path B is cut off from the supply flow path P1 and switched to the second discharge flow path T2.

次に、かかる構成の作動を説明する。
図1及び図2の状態で、供給流路P1を流体源に、第1負荷流路Aと第2負荷流路Bを流体アクチュエータに、第1排出流路T1と第2排出流路T2を低圧側としてのタンクにそれぞれ接続する。
スプール6は、ソレノイド2,3へ非通電状態であるため、ばね10,11で中立位置に保持され、供給流路P1と第1負荷流路Aと第2負荷流路Bと第1排出流路T1と第2排出流路T2との間を連通している。供給流路P1の流体は環状隙間7に流入して嵌合穴5内を流れて第1排出流路T1,第2排出流路T2よりタンクに流出する。
Next, the operation of this configuration will be described.
1 and 2, the supply flow path P1 is used as a fluid source, the first load flow path A and the second load flow path B are used as fluid actuators, and the first discharge flow path T1 and the second discharge flow path T2 are set. Connect each tank to the low pressure side.
Since the spool 6 is not energized to the solenoids 2 and 3, the spool 6 is held in a neutral position by the springs 10 and 11, and the supply flow path P 1, the first load flow path A, the second load flow path B, and the first discharge flow The path T1 communicates with the second discharge channel T2. The fluid in the supply flow path P1 flows into the annular gap 7, flows through the fitting hole 5, and flows out from the first discharge flow path T1 and the second discharge flow path T2 to the tank.

スプール6が中立位置に保持された状態で、一方のソレノイド2を通電すると、スプール6をばね11力に抗して図1の右方向に軸方向摺動して第1切換位置に切換え、供給流路P1より環状隙間7に流入した流体は第3拡径部5C、第2負荷流路Bを流れて流体アクチュエータに流入すると共に、流体アクチュエータより第1負荷流路Aに流出した流体は第2拡径部5Bより第4拡径部5D、第1排出流路T1を流れてタンクに流出する。そして、一方のソレノイド2を非通電にすると、スプール6はばね11力により図1の中立位置に復帰する。 When one solenoid 2 is energized while the spool 6 is held in the neutral position, the spool 6 is axially slid in the right direction in FIG. 1 against the force of the spring 11 and switched to the first switching position. The fluid that has flowed into the annular gap 7 from the flow path P1 flows into the fluid actuator through the third enlarged diameter portion 5C and the second load flow path B, and the fluid that has flowed out of the fluid actuator into the first load flow path A 2 From the large diameter portion 5B, the fourth large diameter portion 5D flows through the first discharge channel T1 and flows out to the tank. When one solenoid 2 is deenergized, the spool 6 returns to the neutral position in FIG.

また、スプール6が中立位置に保持された状態で、他方のソレノイド3を通電すると、スプール6をばね10力に抗して図1の左方向に軸方向摺動して第2切換位置に切換え、供給流路P1より環状隙間7に流入した流体は第2拡径部5B、第1負荷流路Aを流れて流体アクチュエータに流入すると共に、流体アクチュエータより第2負荷流路Bに流出した流体は第3拡径部5Cより第5拡径部5E、第2排出流路T2を流れてタンクに流出する。そして、他方のソレノイド3を非通電にすると、スプール6はばね10力により中立位置に復帰する。 When the other solenoid 3 is energized while the spool 6 is held at the neutral position, the spool 6 is axially slid leftward in FIG. 1 against the force of the spring 10 and switched to the second switching position. The fluid that has flowed into the annular gap 7 from the supply flow path P1 flows through the second enlarged diameter portion 5B and the first load flow path A to flow into the fluid actuator, and flows out from the fluid actuator to the second load flow path B. Flows from the third enlarged diameter portion 5C through the fifth enlarged diameter portion 5E and the second discharge flow path T2 to the tank. When the other solenoid 3 is deenergized, the spool 6 returns to the neutral position by the force of the spring 10.

かかる作動で、供給流路P1から環状隙間7に流入する流体は、流量調整部材81により、環状隙間7に流入して周方向の一方向に流れる流量Q1と、環状隙間7に流入して周方向の他方向に流れる流量Q2とに分けられ、Q1=Q2となるよう流量調整部材81の軸方向寸法Hを設定しているため、流量が環状隙間7の周方向の一方向と他方向とに略同等に分配されて相対し、スプール6を回転しようとする力が周方向で平衡して、スプール6の回転を防止でき、特に、ソレノイド2,3の電磁力とこの電磁力により撓んで増加したばね10,11力とでスプール6を保持する第1切換位置や第2切換位置に比し、ソレノイド2,3の電磁力が作用せずにばね10,11の取付荷重でのみスプール6を保持している中立位置においても良好にスプール6の回転を防止できる。そして、供給流路P1に流量調整部材81を設けることでスプール6の回転を防止しているため、スプール6に回転を防止する構成を格別に施すことなくスプール6の回転を防止でき、構成を簡素化することができる。 With this operation, the fluid flowing into the annular gap 7 from the supply flow path P1 flows into the annular gap 7 and flows in one direction in the circumferential direction by the flow rate adjusting member 81, and flows into the annular gap 7 and flows into the annular gap 7. Since the axial dimension H of the flow rate adjusting member 81 is set so that Q1 = Q2, the flow rate is divided into the flow rate Q2 flowing in the other direction, so that the flow rate is one direction in the circumferential direction of the annular gap 7 and the other direction. The forces to rotate the spool 6 are balanced in the circumferential direction and can prevent the spool 6 from rotating. In particular, the electromagnetic force of the solenoids 2 and 3 and the bending of the electromagnetic force by the electromagnetic force can be prevented. Compared to the first switching position and the second switching position where the spool 6 is held by the increased force of the springs 10 and 11, the spool 6 is applied only by the mounting load of the springs 10 and 11 without the electromagnetic force of the solenoids 2 and 3 acting. Good even in neutral position It can prevent rotation of the spool 6. And since the rotation of the spool 6 is prevented by providing the flow rate adjusting member 81 in the supply flow path P1, the rotation of the spool 6 can be prevented without specially providing a configuration for preventing the spool 6 from rotating. It can be simplified.

また、スプール6に回転を防止する構成を格別に施すことなくできるため、スプールを中立位置に保持するばねの一方を、回転止め部材と干渉しないよう他方のばねより小径のものを用いなければならない従来のスプール回転防止構造に比し、スプール6を中立位置に保持するばね10,11をスプール6の両側に同一のものを備えることができ、必要とする部品の種類を削減することができる。 In addition, since the spool 6 can be configured without any special configuration to prevent rotation, one of the springs that hold the spool in the neutral position must be smaller in diameter than the other spring so as not to interfere with the rotation stop member. Compared to a conventional spool rotation prevention structure, the same springs 10 and 11 for holding the spool 6 in the neutral position can be provided on both sides of the spool 6, and the number of necessary parts can be reduced.

また、供給流路P1が開口する嵌合穴5の第1拡径部5A内径をスプール6の外径より大きく設け、供給流路P1を嵌合穴5の中心より径方向外側に偏移して嵌合穴5の第1拡径部5Aに接線方向で接続しているため、供給流路P1の側面部を嵌合穴5の第1拡径部5A内周面へ開口できて供給流路P1の嵌合穴5への開口面積を大きくすることができ、供給流路P1を大径にすることなく供給流路P1から環状隙間7に流入する流体の流量増加を図ることができる。 In addition, the inner diameter of the first enlarged portion 5A of the fitting hole 5 in which the supply flow path P1 is opened is larger than the outer diameter of the spool 6, and the supply flow path P1 is shifted radially outward from the center of the fitting hole 5. Since the connecting portion 5 is connected to the first enlarged diameter portion 5A of the fitting hole 5 in the tangential direction, the side surface portion of the supply flow path P1 can be opened to the inner peripheral surface of the first enlarged diameter portion 5A of the fitting hole 5. The opening area to the fitting hole 5 of the path P1 can be increased, and the flow rate of the fluid flowing into the annular gap 7 from the supply flow path P1 can be increased without increasing the diameter of the supply flow path P1.

また、供給流路P1は先端を有底とした円筒形状の穴で形成し、接線方向で接続する嵌合穴5に先端部および側面部を開口し、流量調整部材81は円柱形状で供給流路P1の先端部に固定し、嵌合穴5に開口する供給流路P1の先端部および側面部の先端部側を閉塞して供給流路P1から環状隙間7に流入する流体を周方向の一方向と他方向とに対抗して流量を略同等に調整しているため、この略同等に調整する流体の流量を流量調整部材81で閉塞した残余の供給流路P1側面部の嵌合穴5への開口量に応じて精度良く設定することができる。 Further, the supply flow path P1 is formed by a cylindrical hole with a bottom at the front end, the front end portion and the side surface portion are opened in the fitting hole 5 connected in the tangential direction, and the flow rate adjusting member 81 has a cylindrical shape. The fluid flowing in the annular gap 7 from the supply flow path P1 is fixed in the circumferential direction by closing the front end portion of the supply flow path P1 and the front end portion of the side face portion that are fixed to the front end portion of the path P1 and open to the fitting hole 5. Since the flow rate is adjusted to be approximately the same in one direction and the other direction, the fitting hole in the side portion of the remaining supply flow path P1 in which the flow rate of the fluid to be adjusted to be approximately the same is closed by the flow rate adjusting member 81 5 can be set with high accuracy according to the opening amount to 5.

なお、一実施形態では、スプール弁としてソレノイド2,3によりスプール6を切換える電磁切換弁としたが、パイロット流体によりスプールを切換えるパイロット切換弁や機械操作でスプールを切換える機械操作式の切換弁でも良い。また、スプール6は中立位置と第1切換位置と第2切換位置との3位置に切換自在に設けたが、2位置や4位置に切換自在に設けたものでも良い。さらに、第1負荷流路Aと第2負荷流路Bとの2個の負荷流路を設けると共に、第1排出流路T1と第2排出流路T2との2個の排出流路を設けたが、1個の負荷流路や1個の排出流路でも良いことは勿論である。 In the embodiment, the spool valve is an electromagnetic switching valve that switches the spool 6 by the solenoids 2 and 3, but a pilot switching valve that switches the spool by a pilot fluid or a mechanically operated switching valve that switches the spool by machine operation may be used. . Further, the spool 6 is provided so as to be switchable between three positions of the neutral position, the first switching position, and the second switching position, but may be provided so as to be switchable to two positions or four positions. Furthermore, two load channels, a first load channel A and a second load channel B, are provided, and two discharge channels, a first discharge channel T1 and a second discharge channel T2, are provided. However, it is needless to say that one load channel or one discharge channel may be used.

1:本体
5:嵌合穴
6:スプール
7:環状隙間
81:流量調整部材
P1:供給流路
A:第1負荷流路(負荷流路)
B:第2負荷流路(負荷流路)
T1:第1排出流路(排出流路)
T2:第2排出流路(排出流路)
1: body 5: fitting hole 6: spool 7: annular gap 81: flow rate adjusting member P1: supply flow path A: first load flow path (load flow path)
B: Second load channel (load channel)
T1: First discharge channel (discharge channel)
T2: Second discharge channel (discharge channel)

Claims (1)

本体に軸方向へ嵌合穴を穿設すると共に、流体を流入する供給流路と流体を流入出する負荷流路と流体を流出する排出流路とを軸方向へ間隙を有して嵌合穴内周面に開口して設け、嵌合穴には前記複数の流路間を切換連通するスプールを軸方向へ摺動自在に挿入し、供給流路が開口する箇所の嵌合穴内周面とスプール外周面との間に環状隙間を形成し、供給流路には環状隙間に流入する流体の流量を環状隙間の周方向の一方向と他方向とに対向して略同等に調整する流量調整部材を設け、前記スプールを中立位置に保持するばねを前記スプールの両側に備え、前記供給流路が開口する個所の前記嵌合穴内径を前記スプールの外径より大きく設け、前記供給流路を前記嵌合穴の中心より径方向外側に偏移して前記嵌合穴に接線方向で接続し、前記供給流路は先端を有底とした円筒形状の穴で形成し、接線方向で接続する前記嵌合穴に先端部および側面部を開口し、前記流量調整部材は円柱形状で前記供給流路の先端部に固定し、前記嵌合穴に開口する前記供給流路の先端部および側面部の先端部側を閉塞して前記供給流路から前記環状隙間に流入する流体を周方向の一方向と他方向とに対抗して流量を略同等に調整することを特徴とするスプール弁のスプール回転防止構造。 A fitting hole is drilled in the body in the axial direction, and a supply flow path for flowing in fluid, a load flow path for flowing in and out fluid, and a discharge flow path for flowing out fluid are fitted with a gap in the axial direction. An opening is provided on the inner peripheral surface of the hole, and a spool for switching communication between the plurality of flow paths is inserted into the fitting hole so as to be slidable in the axial direction. An annular clearance is formed between the outer circumferential surface of the spool, and the flow rate adjustment that adjusts the flow rate of the fluid flowing into the annular clearance in the supply flow path in a substantially equal manner opposite to the circumferential direction in the circumferential direction of the annular clearance. Members are provided, springs for holding the spool in a neutral position are provided on both sides of the spool, the fitting hole inner diameter where the supply channel opens is larger than the outer diameter of the spool, and the supply channel is Shifted radially outward from the center of the fitting hole and connected to the fitting hole in a tangential direction, The supply channel is formed by a cylindrical hole with a bottom at the tip, the tip and the side are opened in the fitting hole connected in the tangential direction, and the flow rate adjusting member is cylindrical and has a shape of the supply channel. The fluid that is fixed to the tip and closes the tip of the supply channel and the tip of the side surface that opens to the fitting hole and flows into the annular gap from the supply channel is defined as one direction in the circumferential direction. A spool rotation prevention structure for a spool valve, characterized in that the flow rate is adjusted to be substantially equal to the other direction.
JP2010115974A 2004-05-07 2010-05-20 Spool rotation prevention structure of spool valve Active JP4629801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115974A JP4629801B2 (en) 2004-05-07 2010-05-20 Spool rotation prevention structure of spool valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004137955 2004-05-07
JP2010115974A JP4629801B2 (en) 2004-05-07 2010-05-20 Spool rotation prevention structure of spool valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004305317A Division JP4629401B2 (en) 2004-05-07 2004-10-20 Spool rotation prevention structure of spool valve

Publications (2)

Publication Number Publication Date
JP2010175084A JP2010175084A (en) 2010-08-12
JP4629801B2 true JP4629801B2 (en) 2011-02-09

Family

ID=42706236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115974A Active JP4629801B2 (en) 2004-05-07 2010-05-20 Spool rotation prevention structure of spool valve

Country Status (1)

Country Link
JP (1) JP4629801B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172003A (en) * 1986-12-23 1988-07-15 マンネスマン・レックスロート・ゲーエムベーハー Valve gear
JPH0325078U (en) * 1989-07-20 1991-03-14
JP2001271803A (en) * 2000-03-27 2001-10-05 Kayaba Ind Co Ltd Selector valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172003A (en) * 1986-12-23 1988-07-15 マンネスマン・レックスロート・ゲーエムベーハー Valve gear
JPH0325078U (en) * 1989-07-20 1991-03-14
JP2001271803A (en) * 2000-03-27 2001-10-05 Kayaba Ind Co Ltd Selector valve

Also Published As

Publication number Publication date
JP2010175084A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5615286B2 (en) Solenoid valve
US8397759B2 (en) Electromagnetic spool valve
JP2006046414A (en) Three-port solenoid valve
JP2015059597A (en) Electromagnetic valve
JP5997462B2 (en) solenoid valve
JP2010121661A (en) Fluid control valve
US6810912B2 (en) Spool valve with decreased fluid force acting on spool
US6167906B1 (en) Bi-directional flow control valve
JP4629801B2 (en) Spool rotation prevention structure of spool valve
JP4629401B2 (en) Spool rotation prevention structure of spool valve
JP4501789B2 (en) 3-way solenoid valve
JP2009019742A (en) Bleed type valve device
KR102262070B1 (en) solenoid valve
JP2001343086A (en) Solenoid valve device
US20180355993A1 (en) Hydraulic valve configuration for nh vbs with a nl solenoid
CN111212996B (en) Cover with electromagnetic proportional valve
JP2017142696A (en) Two step proportional pressure reducing valve
JPH0771642A (en) Three-way fluid control valve with check valve
US6557823B2 (en) Electromagnetic valve
WO2018168577A1 (en) Spool valve
JP2009058013A (en) Solenoid valve
US3129724A (en) Solenoid controlled distributing valve
JP7433993B2 (en) three-way valve
US20230375102A1 (en) Solenoid Valve
JP2004069015A (en) Solenoid change-over valve provided with detent mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350