JP4628869B2 - Carbon mold production method, permanent magnet particle production method, granulated powder production method for bond permanent magnet, and bond permanent magnet production method - Google Patents

Carbon mold production method, permanent magnet particle production method, granulated powder production method for bond permanent magnet, and bond permanent magnet production method Download PDF

Info

Publication number
JP4628869B2
JP4628869B2 JP2005154607A JP2005154607A JP4628869B2 JP 4628869 B2 JP4628869 B2 JP 4628869B2 JP 2005154607 A JP2005154607 A JP 2005154607A JP 2005154607 A JP2005154607 A JP 2005154607A JP 4628869 B2 JP4628869 B2 JP 4628869B2
Authority
JP
Japan
Prior art keywords
permanent magnet
production method
resin
producing
granulated powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005154607A
Other languages
Japanese (ja)
Other versions
JP2006326650A (en
Inventor
昌浩 岸田
隆明 安村
巌 佐々木
聡和 浜尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Yaskawa Electric Corp
Original Assignee
Kyushu University NUC
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Yaskawa Electric Corp filed Critical Kyushu University NUC
Priority to JP2005154607A priority Critical patent/JP4628869B2/en
Publication of JP2006326650A publication Critical patent/JP2006326650A/en
Application granted granted Critical
Publication of JP4628869B2 publication Critical patent/JP4628869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、最終的にボンド磁石形の永久磁石を製造する永久磁石製造方法に関するもので、特にそのための炭素鋳型作製方法、永久磁石粒子作製方法、およびボンド永久磁石用造粒粉作製方法に関する。   The present invention relates to a permanent magnet manufacturing method for finally manufacturing a bonded magnet-type permanent magnet, and more particularly to a carbon mold manufacturing method, a permanent magnet particle manufacturing method, and a bonded permanent magnet granulated powder manufacturing method.

永久磁石の種類は、鋳造磁石と焼結磁石とボンド磁石とに大別される。
鋳造磁石の代表的なものはアルニコ(Al−Ni−Co)系磁石であり、磁束密度が高く、温度特性が良好であるが、非常に固いため、加工が難しく、高価であるために計器用等の特殊な用途に使用されている。
焼結磁石は、フェライト磁石に代表され、酸化鉄を主成分とする磁性粉末を所定の形状に焼結して製造されるもので、残留磁束密度はやや低いものの、安価で保磁力が高いため広い分野で使用されている。
ボンド磁石は、磁性粉末と、エポキシ樹脂、フェノール樹脂、ポリアミド系合成樹脂(商品名、ナイロン)、ゴム、添加材等を混合して成形したもので、柔軟で成形の自由度が高く、希土類磁性粉を含ませることにより、残留磁束密度、保磁力を高くすることができることから、小型モータを初め、多くの分野で普及が進んでいる。
例えば、特許文献1には、樹脂被覆された磁性粉末である原料粉末の形状を実質的に球形とし、好ましくは粒度分布を正規分布にすることにより、粉末の流動性を高め、また金型に充填したときの原料粉末の充填密度を増大させることが開示されている。
また、特許文献2には、Nd−Fe−B系永久磁石用合金を溶融し、噴霧法により粉末を得た後、この粉末に対し水素吸蔵、崩壊処理を行い、次いで、水素吸蔵、崩壊処理をした粉末をさらに微粉砕する永久磁石用合金粉末の製造方法が開示されている。
また、特許文献3には、ナノサイズの空孔を持った炭素として、ナノ多孔性炭素の製造方法が提案されている。
このように、従来のボンド磁石に用いられる粉末(粒子)は、金属溶解法や直接還元法により、ミクロンオーダーの粒子径を持った磁性粒子が作製されている。 また、このミクロンオーダーの磁性粒子を造粒、成形することで、交換スプリング磁石という新しい概念を持った永久磁石も作製されている。更にナノ多孔性炭素については、触媒、水素貯蔵物質、膜などの適用が考えられている。
特開平7−74012号公報 特開2002−60806号公報 特開2004−161590号公報
The types of permanent magnets are roughly classified into cast magnets, sintered magnets, and bonded magnets.
A typical cast magnet is an Alnico (Al-Ni-Co) magnet, which has a high magnetic flux density and good temperature characteristics, but is very hard, difficult to process, and expensive. It is used for special purposes such as.
Sintered magnets are typified by ferrite magnets, which are manufactured by sintering magnetic powder containing iron oxide as a main component into a predetermined shape. Although the residual magnetic flux density is somewhat low, it is inexpensive and has high coercive force. Used in a wide range of fields.
Bonded magnets are formed by mixing magnetic powder, epoxy resin, phenolic resin, polyamide synthetic resin (trade name, nylon), rubber, additives, etc., and are flexible and highly flexible. Since the residual magnetic flux density and the coercive force can be increased by including powder, it is widely used in many fields including small motors.
For example, in Patent Document 1, the raw material powder, which is a resin-coated magnetic powder, has a substantially spherical shape, and preferably has a particle size distribution of a normal distribution to improve the fluidity of the powder. It is disclosed to increase the packing density of the raw material powder when it is filled.
In Patent Document 2, an Nd-Fe-B permanent magnet alloy is melted to obtain a powder by a spray method, and then this powder is subjected to hydrogen storage and collapse treatment, and then hydrogen storage and collapse processing. A method for producing a permanent magnet alloy powder for further finely pulverizing the powder is disclosed.
Patent Document 3 proposes a method for producing nanoporous carbon as carbon having nano-sized pores.
As described above, the powder (particles) used in the conventional bonded magnet is produced with magnetic particles having a particle size of micron order by a metal dissolution method or a direct reduction method. Also, permanent magnets with a new concept of exchange spring magnets have been produced by granulating and molding these micron-order magnetic particles. Further, for nanoporous carbon, application of catalysts, hydrogen storage materials, membranes, etc. is considered.
Japanese Patent Laid-Open No. 7-74012 Japanese Patent Laid-Open No. 2002-60806 JP 2004-161590 A

特許文献1および2において開示された永久磁石の作製方法では、ミクロンオーダーの粒子径を持った磁性粒子を作製しているが、圧縮成形ボンド磁石の特性として239kJ/m3以上、射出成形ボンド磁石の特性として160kJ/m3以上のエネルギ積が得られず、磁気特性向上に限界があるという問題があった。
また、従来の特許文献3では、ナノサイズの空孔を持った炭素として、ナノ多孔性炭素の製造方法が提案されているが、製造方法が異なるため金属粒子の作製を目的とした鋳型としては使用できない欠点があった。
本発明はこのような問題点に鑑みてなされたものであり、炭素鋳型による永久磁石粒子を作製するとともに、永久磁石粒子により高性能永久磁石を作製することができる方法を提供することを目的とする。
In the method for producing a permanent magnet disclosed in Patent Documents 1 and 2, magnetic particles having a particle size on the order of microns are produced, but the compression-molded bond magnet has a characteristic of 239 kJ / m 3 or more, an injection-molded bond magnet. As a characteristic, there was a problem that an energy product of 160 kJ / m 3 or more could not be obtained, and there was a limit in improving magnetic characteristics.
Further, in Patent Document 3, a method for producing nanoporous carbon has been proposed as carbon having nano-sized pores. However, since the production method is different, as a template for producing metal particles, There was a disadvantage that could not be used.
The present invention has been made in view of such problems, and an object of the present invention is to provide a method capable of producing permanent magnet particles using a carbon mold and producing a high-performance permanent magnet using permanent magnet particles. To do.

上記問題を解決するため、本発明は、次のようにしたのである。
請求項1記載の発明は、炭素鋳型作製方法に係り、ポリオキシエチレン(n=15)セチルエーテルとシクロヘキサンからなる溶液少なくとも、水、ヒドラジン、アンモニア、及び正珪酸四エチルを添加して1〜1000ナノの粒子径を持ったシリカを形成するステップと、その後アルゴン雰囲気で焼成を行なうステップと、得られた焼成物を水酸化ナトリウムに浸漬して前記シリカを溶かすステップにより、ナノサイズの空孔を持った炭素鋳型を作製することをとしている。
請求項2記載の発明は、永久磁石粒子作製方法に係り、請求項1記載の炭素鋳型作製方法により作製された前記炭素鋳型に磁石原料である金属塩水溶液を流し込むステップと、これをカルシウム還元処理するステップにより、1〜1000ナノの永久磁石粒子を作製することを特徴としている。
請求項3記載の発明は、請求項2記載の永久磁石粒子作製方法において、前記金属塩水溶液の金属が、R−Fe−B系、R−Fe−N系、R−Co−Fe系の少なくとも1つの合金からなり、前記Rは希土類金属元素の少なくとも1種類を含有することを特徴としている。
請求項4記載の発明は、ボンド永久磁石用造粒粉作製方法に係り、請求項2又は3記載の永久磁石粒子作製方法により作製した永久磁石粒子と樹脂とを混合する樹脂混合ステップと、前記樹脂混合ステップで得られた混合物を造粒する造粒ステップにより、ナノサイズの永久磁石粒子を有するボンド永久磁石用造粒粉を作製することを特徴としている。
請求項5記載の発明は、請求項4記載のボンド永久磁石用造粒粉作製方法において、前記樹脂混合ステップでは、エポキシ樹脂、フェノール樹脂およびポリアミド系合成樹脂の少なくとも一種を添加することを特徴としている。
請求項6記載の発明は、請求項4又は5記載のボンド永久磁石用造粒粉作製方法において、前記造粒ステップでは、前記永久磁石粒子と前記樹脂溶液の混合物を噴霧乾燥法により造粒することを特徴としている。
請求項7記載の発明は、ボンド永久磁石の製造方法に係り、請求項4〜6のいずれか1項記載のボンド永久磁石用造粒粉作製方法で得られた造粒粉を樹脂で結合させて、所定の形状に成形することにより、ナノサイズの永久磁石粒子を有するボンド永久磁石を製造することを特徴としている。
請求項8記載の発明は、請求項7記載のボンド永久磁石の製造方法において、前記成形ステップでは、圧縮成形法又は射出成形法を用いることを特徴としている。
In order to solve the above problem, the present invention is as follows.
The invention according to claim 1 relates to a carbon template preparation method, wherein at least water, hydrazine, ammonia, and tetraethyl orthosilicate are added to a solution composed of polyoxyethylene (n = 15) cetyl ether and cyclohexane . Nano-sized pores are formed by a step of forming silica having a particle size of 1000 nanometers, a step of firing in an argon atmosphere, and a step of immersing the obtained fired product in sodium hydroxide to dissolve the silica. We are going to make a carbon mold with
The invention according to claim 2 relates to a method for producing permanent magnet particles, a step of pouring a metal salt aqueous solution as a magnet raw material into the carbon template produced by the carbon template production method according to claim 1, and a calcium reduction treatment thereof. This step is characterized in that 1 to 1000 nanometer permanent magnet particles are produced.
A third aspect of the present invention is the permanent magnet particle manufacturing method according to the second aspect, wherein the metal in the aqueous metal salt solution is at least one of R-Fe-B, R-Fe-N, and R-Co-Fe. It is made of one alloy, and R is characterized by containing at least one rare earth metal element.
Invention of Claim 4 is related with the granulated powder preparation method for bond permanent magnets, The resin mixing step which mixes the permanent magnet particle produced by the permanent magnet particle preparation method of Claim 2 or 3, and resin, A granulated powder for bonded permanent magnets having nano-sized permanent magnet particles is produced by a granulating step of granulating the mixture obtained in the resin mixing step.
The invention according to claim 5 is characterized in that, in the granulated powder manufacturing method for bond permanent magnet according to claim 4, at least one of an epoxy resin, a phenol resin and a polyamide synthetic resin is added in the resin mixing step. Yes.
According to a sixth aspect of the present invention, in the granulated powder for bonded permanent magnet according to the fourth or fifth aspect, in the granulating step, the mixture of the permanent magnet particles and the resin solution is granulated by a spray drying method. It is characterized by that.
Invention of Claim 7 is related with the manufacturing method of a bond permanent magnet, and combines the granulated powder obtained by the granulated powder preparation method for bond permanent magnets of any one of Claims 4-6 with resin. Thus, a bonded permanent magnet having nano-sized permanent magnet particles is manufactured by molding into a predetermined shape.
The invention described in claim 8 is the method for manufacturing a bonded permanent magnet according to claim 7, wherein the molding step uses a compression molding method or an injection molding method.

請求項1記載の発明によると、ポリオキシエチレン(n=15)セチルエーテルとシクロヘキサンからなる溶液少なくとも、水、ヒドラジン、アンモニア、及び正珪酸四エチルを添加して1〜1000ナノの粒子径を持ったシリカを形成し、その後アルゴン雰囲気で焼成して、得られた焼成物を水酸化ナトリウムに浸漬して前記シリカを溶かすことにより、ナノサイズの空孔を持った炭素鋳型を作製することができるので、この鋳型を用いれば1〜1000ナノの永久磁石粒子を簡単に作製することができる。
請求項2記載の発明によると、作製した炭素鋳型に磁石原料である金属塩水溶液を流し込み、カルシウム還元処理を行なうことで、1〜1000ナノの永久磁石粒子を作製することができる。
また、従来の永久磁石粒子に比べ、カルシウム還元処理などの高温熱処理において永久磁石粒子の粒子成長が見られないため、エネルギ積の高い永久磁石粒子を作製することができる。
請求項3記載の発明によると、R−Fe−B系、R−Fe−N系、R−Co−Fe系の少なくとも1つの合金を使用し、前記Rは希土類金属元素の少なくとも1種類含有する永久磁石粒子を作製することにより、それぞれの特徴を持ったナノオーダの永久磁石粒子を作製することができる。
請求項4記載の発明によると、樹脂混合ステップで得られた混合物を造粒する造粒ステップにより、ナノサイズの永久磁石粒子を有する小粒で大きさの揃ったボンド永久磁石用造粒粉を得ることができる。
請求項5記載の発明によると、作製された永久磁石粒子を粒子と、エポキシ樹脂、フェノール樹脂およびポリアミド系合成樹脂の少なくとも一種を添加した樹脂とを混合することで、エネルギ積の高い永久磁石を作製することができる。
請求項6記載の発明によると、永久磁石粒子と樹脂溶液の混合物を噴霧乾燥法により造粒することで小粒で大きさの揃ったボンド永久磁石用造粒粉を簡単に得ることができ、したがって永久磁石粒子が高密度に充填されることができるため、エネルギ積の高い永久磁石が得られる。
請求項7記載の発明によると、得られた造粒粉を所定の形状に成形することにより、用途に応じた形状のボンド永久磁石を製造することができる。
請求項8記載の発明によると、圧縮成形法又は射出成形法を用いることで、用途に応じた形状のボンド永久磁石を簡単に製造することができる。
According to the invention of claim 1, at least water, hydrazine, ammonia, and tetraethyl orthosilicate are added to a solution composed of polyoxyethylene (n = 15) cetyl ether and cyclohexane to obtain a particle size of 1 to 1000 nanometers. A carbon mold having nano-sized pores can be produced by forming a silica having a porous structure and then firing the resultant in an argon atmosphere and immersing the obtained fired product in sodium hydroxide to dissolve the silica. Since this template can be used, permanent magnet particles of 1 to 1000 nanometers can be easily produced.
According to the invention described in claim 2, permanent magnet particles of 1 to 1000 nanometers can be produced by pouring a metal salt aqueous solution, which is a magnet raw material, into the produced carbon mold and performing a calcium reduction treatment.
Further, since permanent particle growth is not observed in high-temperature heat treatment such as calcium reduction treatment as compared with conventional permanent magnet particles, permanent magnet particles having a high energy product can be produced.
According to the invention described in claim 3, at least one alloy of R—Fe—B, R—Fe—N, and R—Co—Fe is used, and said R contains at least one rare earth metal element. By producing permanent magnet particles, nano-order permanent magnet particles having respective characteristics can be produced.
According to the fourth aspect of the present invention, a granulated powder for bonded permanent magnets having nano-sized permanent magnet particles and having a uniform size is obtained by the granulating step of granulating the mixture obtained in the resin mixing step. be able to.
According to the invention described in claim 5, the permanent magnet particles thus produced are mixed with particles and a resin to which at least one of an epoxy resin, a phenol resin and a polyamide synthetic resin is added. Can be produced.
According to the invention of claim 6, it is possible to easily obtain a granulated powder for bonded permanent magnets having a small size and a uniform size by granulating a mixture of permanent magnet particles and a resin solution by a spray drying method. Since permanent magnet particles can be filled with high density, a permanent magnet having a high energy product can be obtained.
According to the seventh aspect of the present invention, by bonding the obtained granulated powder into a predetermined shape, a bonded permanent magnet having a shape corresponding to the application can be produced.
According to invention of Claim 8, the bond permanent magnet of the shape according to a use can be easily manufactured by using the compression molding method or the injection molding method.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

本発明の実施例1を、図1〜図5を用いて説明する。
図1は、本発明の永久磁石粒子の製造方法を示すフローチャートである。
図1において、ステップ1で、C−15/シクロヘキサン溶液50ccに水、ヒドラジン、NH3、正珪酸四エチル(Si(OC254、略してTEOS)5ccを添加する。ここで、C−15とは、ポリオキシンエチレン(n=15)セチルエーテルのことである。このように、水、ヒドラジン、NH3、TEOSの添加により、1〜1000ナノの粒子径を持った球状シリカが形成され、炭素鋳型の材料が得られる(ステップ2)。
次に、ステップ3で、アルゴン(Ar)焼成を850°Cで5時間行ない、これにより1〜1000ナノの粒子径の球状シリカを含む炭素鋳型が固化する。
ステップ4で、2モル/リットルのNaOH水溶液で球状シリカを3時間程度エッチングすることにより、球状シリカの存在した部位が空洞となり、炭素鋳型が作製される。
その後、磁石原料である金属塩水溶液中に炭素鋳型を入れた容器を真空チャンバに入れ、この真空チャンバ内を真空に引くことで炭素鋳型を脱泡し、金属塩水溶液を含浸させる。次いで、Ca(NO32水溶液0.5モル/リットルを過剰に(余るほど)入れる。金属はR−Fe−B系、R−Fe−N系、R−Co−Fe系の少なくとも1つの合金からなり、Rは希土類金属元素の少なくとも1種類含有するものである。真空含浸により炭素鋳型内の空孔の空気を追い出し真空状態とするので、磁石原料が炭素鋳型の1〜1000ナノの粒子径の空孔に入り込むことができる。
ステップ5で、Ca(NO32水溶液が炭素鋳型の内部に浸透し、850°C8時間Ar(アルゴン)中で加熱することにより、還元される。Ca(NO32水溶液も金属塩と同様に含浸させる。
この後、ミルを用いて炭素鋳型を機械的に粉砕して炭素鋳型を除去することで、空孔内の1〜1000ナノの粒子径の永久磁石粒子が取り出される。
ステップ6で、以上のようにして永久磁石粒子が作製される。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a flowchart showing a method for producing permanent magnet particles according to the present invention.
In FIG. 1, in Step 1, 5 cc of water, hydrazine, NH 3 , and tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 , abbreviated TEOS) are added to 50 cc of a C-15 / cyclohexane solution. Here, C-15 is polyoxine ethylene (n = 15) cetyl ether. Thus, by adding water, hydrazine, NH 3 , and TEOS, spherical silica having a particle diameter of 1 to 1000 nanometers is formed, and a carbon template material is obtained (step 2).
Next, in Step 3, argon (Ar) firing is performed at 850 ° C. for 5 hours, thereby solidifying the carbon template containing spherical silica having a particle diameter of 1 to 1000 nanometers.
In step 4, the spherical silica is etched with a 2 mol / liter NaOH aqueous solution for about 3 hours, so that the portion where the spherical silica is present becomes a cavity, and a carbon template is produced.
Thereafter, a container containing a carbon mold in a metal salt aqueous solution, which is a magnet raw material, is placed in a vacuum chamber. The vacuum mold is degassed by evacuating the vacuum chamber, and impregnated with the metal salt aqueous solution. Subsequently, 0.5 mol / liter of Ca (NO 3 ) 2 aqueous solution is added in excess (as much as possible). The metal is made of at least one alloy of R—Fe—B, R—Fe—N, and R—Co—Fe, and R contains at least one rare earth metal element. Since the air in the carbon mold is expelled by vacuum impregnation and the vacuum state is set, the magnet raw material can enter the pores having a particle diameter of 1 to 1000 nanometers in the carbon mold.
In step 5, an aqueous Ca (NO 3 ) 2 solution penetrates into the carbon mold and is reduced by heating in Ar (argon) at 850 ° C. for 8 hours. A Ca (NO 3 ) 2 aqueous solution is impregnated in the same manner as the metal salt.
Thereafter, the carbon mold is mechanically pulverized by using a mill to remove the carbon mold, whereby permanent magnet particles having a particle diameter of 1 to 1000 nanometers in the pores are taken out.
In step 6, permanent magnet particles are produced as described above.

図2以下の図は、本発明の方法を実施している図で、図2は球状シリカを挿入して炭素鋳型を作製している途中の図である。図2において、C−15/シクロヘキサン溶液に水、ヒドラジン、NH3、TEOSを添加して、1〜1000ナノの粒子径を持った球状シリカ1を形成し、Ar焼成を行なうことで炭素鋳型2が固化する。その後、これをNaOH水溶液に漬けて球状シリカ1をエッチングすると、球状シリカ1の部分が除去され、後に1〜1000ナノの粒子径の空孔3aを多数備えた炭素鋳型3が得られる。図3は、このようにして得られた空孔3aを多数有する炭素鋳型3を示す図である。
次に、磁石原料であるSmCoFe金属塩水溶液(塩化サマリウム、塩化コバルト、塩化鉄の水溶液)をこの炭素鋳型3に真空含浸すると、炭素鋳型3の1〜1000ナノの粒子径の空孔3a内にSmCoFe金属が入り込む。図4は、このようにして炭素鋳型3の空孔3a内にSmCoFe金属が入り込んだ状態を示す図である。
その後、Ca(NO32水溶液を添加し、還元拡散処理を行なうことで、炭素鋳型3が除去され、永久磁石粒子4が得られることとなる。
図5は、このようにして得られた1〜1000ナノの粒子径の多数の永久磁石粒子4を示す図である。
FIG. 2 and subsequent figures are diagrams illustrating the method of the present invention, and FIG. 2 is a diagram in the middle of producing a carbon template by inserting spherical silica. In FIG. 2, water, hydrazine, NH 3 , and TEOS are added to a C-15 / cyclohexane solution to form spherical silica 1 having a particle diameter of 1 to 1000 nanometers, and carbon firing 2 by performing Ar firing. Solidifies. Then, when this is immersed in NaOH aqueous solution and the spherical silica 1 is etched, the part of the spherical silica 1 will be removed and the carbon template 3 provided with many holes 3a with a particle diameter of 1-1000 nanometers will be obtained later. FIG. 3 is a view showing the carbon template 3 having a large number of holes 3a obtained in this manner.
Next, when the carbon template 3 is vacuum-impregnated with an aqueous solution of SmCoFe metal salt (aqueous solution of samarium chloride, cobalt chloride, and iron chloride) that is a magnet raw material, SmCoFe metal enters. FIG. 4 is a view showing a state in which the SmCoFe metal has entered the voids 3a of the carbon template 3 in this way.
Thereafter, by adding a Ca (NO 3 ) 2 aqueous solution and performing reduction diffusion treatment, the carbon template 3 is removed, and the permanent magnet particles 4 are obtained.
FIG. 5 is a diagram showing a large number of permanent magnet particles 4 having a particle diameter of 1 to 1000 nanometers thus obtained.

表1は、永久磁石粒子の作製可能な大きさを示す図である。

Figure 0004628869
Table 1 is a figure which shows the size which can produce a permanent magnet particle.
Figure 0004628869

表1において、上欄の横方向の数字0.5、1、10、100、1000、1200は、永久磁石粒子の大きさを単位nmで示し、下欄の○、×は永久磁石粒子の作製可能(○)と不可能(×)とを示している。
表1から判ることは、本発明の方法によれば、1nmより小さい永久磁石粒子の作製は難しいが、1nm以上の大きさの粒子であれば、1000nmや1200nmの大きさの粒子は容易に可能である、ということである。
In Table 1, horizontal numbers 0.5, 1, 10, 100, 1000, and 1200 in the upper column indicate the size of the permanent magnet particles in the unit of nm, and ○ and X in the lower column indicate the production of the permanent magnet particles. Possible (◯) and impossible (×) are shown.
As can be seen from Table 1, according to the method of the present invention, it is difficult to produce permanent magnet particles smaller than 1 nm, but particles having a size of 1 nm or more can be easily formed to particles having a size of 1000 nm or 1200 nm. It is that.

本発明の実施例2では、実施例1と同様にして、炭素鋳型を作製し、SmおよびCoの金属塩水溶液(塩化サマリウム水溶液0.12モル/リットル、塩化コバルト水溶液0.12モル/リットル)、そして必要に応じてFeの金属塩水溶液(塩化鉄水溶液0.6モル/リットル)を含浸させ、850°Cで5時間熱処理し、Ca還元拡散処理を行なうことにより永久磁石粒子を作製し、その後、この永久磁石粒子にブタノン、エポキシ樹脂を2質量%混合し(例えば、永久磁石粒子10g、ブタノン22.5ml、エポキシ樹脂3.6g(密度0.379g/ml))、噴霧乾燥機中に2kg/cm2、60°Cで噴霧し、Arガスの気流中で乾燥させ、造粒粉を作成した。
この造粒粉をエポキシ樹脂やナイロン樹脂もしくはアクリル樹脂で結合させて、圧縮成形によりボンド磁石を作製した。
そして、永久磁石粒子の大きさ(nm)とエネルギ積(Kj/m3)との関係を調べてみた。
表2は、永久磁石粒子の粒子径の大きさによるボンド磁石の磁気特性を示す図である。

Figure 0004628869
In Example 2 of the present invention, a carbon template was prepared in the same manner as in Example 1, and an aqueous metal salt solution of Sm and Co (samarium chloride aqueous solution 0.12 mol / liter, cobalt chloride aqueous solution 0.12 mol / liter). And, if necessary, impregnated with an aqueous solution of Fe metal salt (iron chloride aqueous solution 0.6 mol / liter), heat-treated at 850 ° C. for 5 hours, and performing Ca reduction diffusion treatment to produce permanent magnet particles, Thereafter, 2% by weight of butanone and epoxy resin are mixed with the permanent magnet particles (for example, 10 g of permanent magnet particles, 22.5 ml of butanone, 3.6 g of epoxy resin (density 0.379 g / ml)), and are placed in a spray dryer. Spraying was performed at 2 kg / cm 2 and 60 ° C., and dried in an Ar gas stream to prepare granulated powder.
The granulated powder was bonded with an epoxy resin, a nylon resin, or an acrylic resin, and a bonded magnet was produced by compression molding.
Then, the relationship between the size (nm) of permanent magnet particles and the energy product (Kj / m 3 ) was examined.
Table 2 is a diagram showing the magnetic characteristics of the bonded magnet according to the particle size of the permanent magnet particles.
Figure 0004628869

表2において、上欄の横方向の数字1、10、100、1000、1200は、永久磁石粒子の大きさを単位nmで示し、下欄の数字はエネルギ積(Kj/m3)を示している。
表2から判ることは、永久磁石粒子の大きさが1000nmまでであれば最大エネルギ積が160kJ/m3以上のものが得られるが、これより大きくなって、例えば1200nmになると、もはや最大エネルギ積が160kJ/m3より小さい磁石しか得られなくなってしまう、ということである。
したがって、最大エネルギ積が160kJ/m3以上に確保される磁石を得るには、本発明により1000nm以下の永久磁石粒子に形成することが重要なことが判る。このように、従来技術による射出成形ボンド磁石では、160kJ/m3以上のエネルギ積の磁石が得られなかったが、本発明の方法によれば、1000nm以下の永久磁石粒子に形成すれば、最大エネルギ積が160kJ/m3以上の磁石を得ることができるようになる。
以上表1と表2を纏めると、本発明の方法によれば、表1から1nm以上の大きさの永久磁石粒子を製造することができ、また表2から永久磁石粒子の大きさが1000nm以下であれば最大エネルギ積が160kJ/m3以上のものが得られることが判明したので、シリカを形成するステップでは、1nm〜1000nmの粒子径を持ったシリカを形成するのが好ましいこととなる。
In Table 2, the numbers 1, 10, 100, 1000, and 1200 in the horizontal direction in the upper column indicate the size of the permanent magnet particles in the unit of nm, and the numbers in the lower column indicate the energy product (Kj / m 3 ). Yes.
It can be seen from Table 2 that if the size of the permanent magnet particles is up to 1000 nm, a maximum energy product of 160 kJ / m 3 or more can be obtained. This means that only a magnet with a lower than 160 kJ / m 3 can be obtained.
Accordingly, it can be seen that, in order to obtain a magnet having a maximum energy product of 160 kJ / m 3 or more, it is important to form permanent magnet particles of 1000 nm or less according to the present invention. As described above, the injection-molded bonded magnet according to the prior art could not obtain a magnet having an energy product of 160 kJ / m 3 or more. However, according to the method of the present invention, if it is formed into permanent magnet particles of 1000 nm or less, the maximum A magnet having an energy product of 160 kJ / m 3 or more can be obtained.
Table 1 and Table 2 are summarized as follows. According to the method of the present invention, permanent magnet particles having a size of 1 nm or more can be produced from Table 1, and from Table 2, the size of the permanent magnet particles is 1000 nm or less. Then, it has been found that a product having a maximum energy product of 160 kJ / m 3 or more can be obtained. Therefore, in the step of forming silica, it is preferable to form silica having a particle diameter of 1 nm to 1000 nm.

次に、図1による本発明方法で作製された永久磁石粒子を用いて、最終的に永久磁石を製造する方法を図6を用いて説明する。
図6において、まず、ステップ11は永久磁石粒子作製工程で、前述の図1のフローである。
ステップ12で、永久磁石粒子を、エポキシ樹脂、フェノール樹脂およびポリアミド系合成樹脂の少なくとも一種を添加した樹脂と混合する。このように、エポキシ樹脂、フェノール樹脂およびポリアミド系合成樹脂の各溶液の少なくとも一種を混合することにより、成形性の優れたボンド磁石を作製することができる。
ステップ13で、樹脂溶液に永久磁石粒子を混合した混合物を造粒する。造粒は、永久磁石粒子と樹脂溶液の混合物を噴霧乾燥法により造粒することができる。
このような造粒により永久磁石粒子が金型内で高密度に充填されることができるので、エネルギ積の高い永久磁石を作製することができる。
Next, a method for finally producing a permanent magnet using the permanent magnet particles produced by the method of the present invention shown in FIG. 1 will be described with reference to FIG.
In FIG. 6, first, Step 11 is a permanent magnet particle production process, which is the flow of FIG.
In step 12, the permanent magnet particles are mixed with a resin to which at least one of an epoxy resin, a phenol resin, and a polyamide synthetic resin is added. Thus, the bonded magnet excellent in moldability can be produced by mixing at least one of each solution of an epoxy resin, a phenol resin, and a polyamide-based synthetic resin.
In step 13, a mixture obtained by mixing permanent magnet particles in a resin solution is granulated. Granulation can be performed by spray drying a mixture of permanent magnet particles and a resin solution.
By such granulation, permanent magnet particles can be filled with high density in the mold, so that a permanent magnet having a high energy product can be produced.

図7は、このように噴霧乾燥法により粒の揃った小粒に造粒された造粒粉の1粒を示す図である。
図で5が造粒粉で、この造粒粉5の樹脂の中に、上記方法で作製された永久磁石粒子4が多数含有されている状態が判る。
ステップ14で このように造粒された造粒粉5(図7)を所定の形状をした金型6(図8のa)に入れて、圧力Pで加圧することで所望の形状の永久磁石が製造される。成形は既存の圧縮成形法または射出成形法を用いるとよい。
FIG. 7 is a diagram showing one granulated powder that has been granulated into small grains with uniform grains by the spray drying method.
In the figure, 5 is granulated powder, and it can be seen that the resin of the granulated powder 5 contains a large number of permanent magnet particles 4 produced by the above method.
In step 14, the granulated powder 5 (FIG. 7) granulated in this manner is put into a mold 6 (FIG. 8 a) having a predetermined shape and is pressurized with a pressure P, so that a permanent magnet having a desired shape is obtained. Is manufactured. For the molding, an existing compression molding method or injection molding method may be used.

図8はステップ14の成形工程を示す概念図で、(a)は本発明に係る成形工程、(b)は従来方法に係る成形工程である。金型6自体はどちらも同じであるが、中に入れられる磁性粒子が(a)では本発明により1〜1000ナノの粒子径の多数の永久磁石粒子4を含有する樹脂でしかも噴霧乾燥法により粒の揃った小粒に造粒された造粒粉5(図7)であるので、造粒粉5が金型6内に均一に隙間なく高充填率で収納されることができる。
このようにすると、ナノオーダの永久磁石粒子を有する高性能のボンド磁石を簡単に製造することができる。
これに対して、(b)では造粒していないため大きさの異なる磁性粒子5’が金型6内に収納されるので、隙間がたくさんできることとなり、充填率は低くなり、最大エネルギ積が小さいものとなってしまうため、高性能のボンド磁石を得ることが難しい。
FIGS. 8A and 8B are conceptual diagrams showing the molding process of Step 14, wherein FIG. 8A shows a molding process according to the present invention, and FIG. 8B shows a molding process according to a conventional method. The mold 6 itself is the same, but the magnetic particles put in it are (a) a resin containing a large number of permanent magnet particles 4 having a particle diameter of 1 to 1000 nanometers according to the present invention, and by spray drying. Since it is the granulated powder 5 (FIG. 7) granulated into small grains with uniform grains, the granulated powder 5 can be uniformly stored in the mold 6 with no high gap.
In this way, a high-performance bonded magnet having nano-order permanent magnet particles can be easily manufactured.
On the other hand, since magnetic particles 5 'having different sizes are stored in the mold 6 because they are not granulated in (b), a lot of gaps are formed, the filling rate is lowered, and the maximum energy product is increased. Since it becomes small, it is difficult to obtain a high-performance bonded magnet.

本発明は、ナノオーダーの粒子径をもつ永久磁石粒子によりボンド磁石を作製することによって、永久磁石の高性能化ができるので、サーボモータの高性能化という用途に適用できる。   Since the present invention can improve the performance of a permanent magnet by producing a bonded magnet from permanent magnet particles having a nano-order particle diameter, the present invention can be applied to the use of improving the performance of a servo motor.

永久磁石粒子の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a permanent magnet particle. 本発明の方法を実施するために、球状シリカを挿入し炭素鋳型を作製している途中の図である。In order to implement the method of this invention, it is a figure in the middle of producing a carbon template by inserting spherical silica. 本発明により作製された空孔を多数有する炭素鋳型を示す図である。It is a figure which shows the carbon template which has many void | holes produced by this invention. 炭素鋳型の空孔内に金属が入り込んだ状態を示す図である。It is a figure which shows the state which the metal entered in the void | hole of the carbon casting_mold | template. 本発明により作製された1〜1000ナノの粒子径の永久磁石粒子を示す図である。It is a figure which shows the permanent magnet particle of the particle diameter of 1-1000 nanoparticles produced by this invention. 本発明方法で作製された永久磁石粒子を用いて永久磁石を製造する方法を説明するフローチャートである。It is a flowchart explaining the method of manufacturing a permanent magnet using the permanent magnet particle produced by the method of this invention. 造粒工程で小粒に造粒された造粒粉の1粒を示す図である。It is a figure which shows 1 grain of the granulated powder granulated by the granulation process at the small granule. ステップ14の成形工程を示す概念図で、(a)は本発明に係る成形工程、(b)は従来方法に係る成形工程である。It is a conceptual diagram which shows the shaping | molding process of step 14, (a) is a shaping | molding process which concerns on this invention, (b) is a shaping | molding process which concerns on a conventional method.

符号の説明Explanation of symbols

1 球状シリカ
2 作製中の炭素鋳型
3 炭素鋳型
3a 炭素鋳型内の空孔
4 永久磁石粒子
5 造粒粉
6 金型
P 圧力
DESCRIPTION OF SYMBOLS 1 Spherical silica 2 Carbon mold 3 in preparation 3 Carbon mold 3a Hole in carbon mold 4 Permanent magnet particle 5 Granulated powder 6 Mold P Pressure

Claims (8)

ポリオキシエチレン(n=15)セチルエーテルとシクロヘキサンからなる溶液少なくとも、水、ヒドラジン、アンモニア、及び正珪酸四エチルを添加して1〜1000ナノの粒子径を持ったシリカを形成するステップと、その後アルゴン雰囲気で焼成を行なうステップと、得られた焼成物を水酸化ナトリウムに浸漬して前記シリカを溶かすステップにより、ナノサイズの空孔を持った炭素鋳型を作製することを特徴とする炭素鋳型作製方法。 Adding at least water, hydrazine, ammonia, and tetraethyl orthosilicate to a solution composed of polyoxyethylene (n = 15) cetyl ether and cyclohexane to form silica having a particle size of 1 to 1000 nanometers; A carbon mold characterized in that a carbon mold having nano-sized pores is produced by performing a firing in an argon atmosphere and a step of immersing the obtained fired product in sodium hydroxide to dissolve the silica. Manufacturing method. 請求項1記載の炭素鋳型作製方法により作製された前記炭素鋳型に磁石原料である金属塩水溶液を流し込むステップと、これをカルシウム還元処理するステップにより、1〜1000ナノの永久磁石粒子を作製することを特徴とする永久磁石粒子作製方法。   A permanent magnet particle of 1 to 1000 nanometers is produced by a step of pouring a metal salt aqueous solution, which is a magnet raw material, into the carbon template produced by the carbon template production method according to claim 1 and a step of reducing the calcium salt. A method for producing permanent magnet particles. 前記金属塩水溶液の金属は、R−Fe−B系、R−Fe−N系、R−Co−Fe系の少なくとも1つの合金からなり、前記Rは希土類金属元素の少なくとも1種類を含有することを特徴とする請求項2記載の永久磁石粒子作製方法。   The metal of the metal salt aqueous solution is composed of at least one alloy of R—Fe—B, R—Fe—N, and R—Co—Fe, and R contains at least one rare earth metal element. The method for producing permanent magnet particles according to claim 2. 請求項2又は3記載の永久磁石粒子作製方法により作製した永久磁石粒子と樹脂とを混合する樹脂混合ステップと、前記樹脂混合ステップで得られた混合物を造粒する造粒ステップにより、ナノサイズの永久磁石粒子を有するボンド永久磁石用造粒粉を作製することを特徴とするボンド永久磁石用造粒粉作製方法。   A resin-mixing step of mixing the permanent magnet particles produced by the permanent magnet particle production method according to claim 2 or 3 and a resin, and a granulating step of granulating the mixture obtained in the resin mixing step, A method for producing a granulated powder for bonded permanent magnets, comprising producing a granulated powder for bonded permanent magnets having permanent magnet particles. 前記樹脂混合ステップでは、エポキシ樹脂、フェノール樹脂およびポリアミド系合成樹脂の少なくとも一種を添加することを特徴とする請求項4記載のボンド永久磁石用造粒粉作製方法。   5. The method for producing a granulated powder for bonded permanent magnets according to claim 4, wherein at least one of an epoxy resin, a phenol resin and a polyamide-based synthetic resin is added in the resin mixing step. 前記造粒ステップでは、前記永久磁石粒子と前記樹脂溶液の混合物を噴霧乾燥法により造粒することを特徴とする請求項4又は5記載のボンド永久磁石用造粒粉作製方法。   6. The granulated powder production method for bond permanent magnet according to claim 4, wherein in the granulating step, the mixture of the permanent magnet particles and the resin solution is granulated by a spray drying method. 請求項4〜6のいずれか1項記載のボンド永久磁石用造粒粉作製方法で得られた造粒粉を樹脂で結合させて、所定の形状に成形することにより、ナノサイズの永久磁石粒子を有するボンド永久磁石を製造することを特徴とするボンド永久磁石の製造方法。
の製造方法。
Nanosized permanent magnet particles obtained by bonding the granulated powder obtained by the method for producing a granulated powder for bonded permanent magnet according to any one of claims 4 to 6 with a resin and forming the resultant into a predetermined shape. A method for producing a bond permanent magnet, comprising producing a bond permanent magnet having a magnetic field.
Manufacturing method.
前記成形ステップでは、圧縮成形法又は射出成形法を用いることを特徴とする請求項7記載のボンド永久磁石の製造方法。   The method for manufacturing a bonded permanent magnet according to claim 7, wherein a compression molding method or an injection molding method is used in the molding step.
JP2005154607A 2005-05-26 2005-05-26 Carbon mold production method, permanent magnet particle production method, granulated powder production method for bond permanent magnet, and bond permanent magnet production method Expired - Fee Related JP4628869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154607A JP4628869B2 (en) 2005-05-26 2005-05-26 Carbon mold production method, permanent magnet particle production method, granulated powder production method for bond permanent magnet, and bond permanent magnet production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154607A JP4628869B2 (en) 2005-05-26 2005-05-26 Carbon mold production method, permanent magnet particle production method, granulated powder production method for bond permanent magnet, and bond permanent magnet production method

Publications (2)

Publication Number Publication Date
JP2006326650A JP2006326650A (en) 2006-12-07
JP4628869B2 true JP4628869B2 (en) 2011-02-09

Family

ID=37548912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154607A Expired - Fee Related JP4628869B2 (en) 2005-05-26 2005-05-26 Carbon mold production method, permanent magnet particle production method, granulated powder production method for bond permanent magnet, and bond permanent magnet production method

Country Status (1)

Country Link
JP (1) JP4628869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757232B2 (en) * 2007-06-04 2011-08-24 株式会社安川電機 Method for manufacturing permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774012A (en) * 1993-09-01 1995-03-17 Sumitomo Metal Ind Ltd Manufacture of bonded permanent magnet and raw material powder therefor
JP2002060806A (en) * 2000-08-08 2002-02-28 Sagami Chemical Metal Co Ltd Method for producing alloy powder for permanent magnet and permanent magnet
JP2003253249A (en) * 2002-02-27 2003-09-10 Katsuhiko Wakabayashi Ultraviolet-shielding material
JP2004161590A (en) * 2002-11-13 2004-06-10 Samsung Electronics Co Ltd Method of manufacturing nanoporous carbon having improved mechanical strength and nanoporous carbon manufactured by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774012A (en) * 1993-09-01 1995-03-17 Sumitomo Metal Ind Ltd Manufacture of bonded permanent magnet and raw material powder therefor
JP2002060806A (en) * 2000-08-08 2002-02-28 Sagami Chemical Metal Co Ltd Method for producing alloy powder for permanent magnet and permanent magnet
JP2003253249A (en) * 2002-02-27 2003-09-10 Katsuhiko Wakabayashi Ultraviolet-shielding material
JP2004161590A (en) * 2002-11-13 2004-06-10 Samsung Electronics Co Ltd Method of manufacturing nanoporous carbon having improved mechanical strength and nanoporous carbon manufactured by the same

Also Published As

Publication number Publication date
JP2006326650A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP5334175B2 (en) Anisotropic bonded magnet manufacturing method, magnetic circuit, and anisotropic bonded magnet
JP4835758B2 (en) Rare earth magnet manufacturing method
CN104112559A (en) R-t-b based sintered magnet
US6558482B1 (en) Magnetic powder and isotropic bonded magnet
KR20130030896A (en) Manufacturing method for bonded magnet
JP4816146B2 (en) Sheet-like rare earth bonded magnet, method of manufacturing the same, and motor using the same
CN111540556A (en) Composite magnet having hard and soft magnetic phases
JP4628869B2 (en) Carbon mold production method, permanent magnet particle production method, granulated powder production method for bond permanent magnet, and bond permanent magnet production method
CN112825279A (en) Composite magnet and method of manufacturing composite magnet
JP3277932B2 (en) Magnet powder, method for producing bonded magnet, and bonded magnet
JP4072893B2 (en) PERMANENT MAGNET PARTICLE, PROCESS FOR PRODUCING THE SAME, PERMANENT MAGNET AND MAGNETIC PARTICLE
JP4518935B2 (en) Permanent magnet and method for manufacturing the same
JP2016146388A (en) Iron nitride magnetic powder and bond magnet including same
CN1151516C (en) Nano composite permanent magnetic RE alloy and its prepn
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
CN112825280A (en) Composite magnet and method of manufacturing composite magnet
JP4525003B2 (en) Method for producing particles for permanent magnet
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof
JP2002237406A (en) Method of manufacturing magnetically anisotropic resin- bonded magnet
JP2011176014A (en) Manufacturing method for rare earth bonded magnet
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP2001185412A (en) Anisotropic bonded magnet
JP2006100560A (en) Rare earth based bond magnet and its manufacturing method
JP2002141211A (en) Magnet powder, method of manufacturing bonded magnet, and bonded magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees